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The dilute Bose gas

Consider N interacting, non-relativistic bosons in a box A := [~L/2,L/2]3. Let N € N,
p:=N/IN=N/L3.
The Hamiltonian of the system is, on the symmetric (bosonic) space @V L?(A),

N
Hy =Y =D+ v(x —x),
i=1 i<j

and 0 < v € L1(RR3) is radially symmetric with compact support.
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The dilute Bose gas

Consider N interacting, non-relativistic bosons in a box A := [~L/2,L/2]3. Let N € N,
p:=N/IN=N/L3.
The Hamiltonian of the system is, on the symmetric (bosonic) space @V L?(A),

N
Hy = Z —A\; + Z v(xi — x;j),
i=1

i<j

and 0 < v € L1(RR3) is radially symmetric with compact support.
The ground state energy of the system is

Eo(N, ) := inf Spec Hy.

SETLIN,
g’ %% AARHUS UNIVERSITY
mﬁg Sgren Fournais



The dilute Bose gas

Consider N interacting, non-relativistic bosons in a box A := [~L/2,L/2]3. Let N € N,
p:=N/IN=N/L3.
The Hamiltonian of the system is, on the symmetric (bosonic) space @V L?(A),

N
Hy =Y =D+ v(x —x),
i=1 i<j

and 0 < v € L1(RR3) is radially symmetric with compact support.
The ground state energy of the system is

Eo(N, ) := inf Spec Hy.
The energy density in the thermodynamic limit is

e(p)= lim  Eo(N,N)/L3.

L—00,N/|A|=p
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The scattering length

Scattering equation
1
(—A+ Ev(x))(l —w(x)) =0, with w — 0, as |x| — oo.

Scattering length

a:= lim |x|w(x):8iﬂ/v(1—w)<8i/v:: ai.

|x|—o00 ™
With g = v(1 —w) the scattering equation can be reformulated as

1 ) N g(k)
—Aw = Eg, 1.e. W(k) = W
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The two-term formula

We study e(p) in the dilute limit pa®> — 0. The following formula is expected to be
true

e(p) = 4mp2a(l + W(péﬁ)l/z) +p2ao((pa*)'?).
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The two-term formula

We study e(p) in the dilute limit pa® — 0. The following formula is expected to be
true

e(p) = 4mp2a(l + W(Péﬁ)m) +p2ao((pa®)'?).
o Lenz (1929), Bogoliubov (1947), Lee-Huang-Yang (1957).
@ Rigorous proof of leading term Dyson (1957, upper), Lieb-Yngvason (1998).

o Upper bounds giving second order term: Erdés-Schlein-Yau (2008), Yau-Yin
(2009).

o Study of the limit for v becoming 'soft’ as p — 0: Lieb-Solovej, Giuliani-Seiringer
(2008), Brietzke-Solovej (2018).

@ Bogoliubov theory for confined Bose gases (Gross-Pitaevskii limit)
Boccato-Brennecke-Cenatiempo-Schlein (2017-2018).
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The Lee-Huang-Yang formula

Theorem (SF, Solovej 2019)

Given a potential v # 0, non-negative, radial, L', with compact support there exist
C,n > 0 (depending on v) such that for all p sufficiently small,

128
157

e(p) > 4mp2a(l + (pa®)2) — Cp2a(pa®)2*.
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The Lee-Huang-Yang formula

Theorem (SF, Solovej 2019)

Given a potential v # 0, non-negative, radial, L', with compact support there exist
C,n > 0 (depending on v) such that for all p sufficiently small,

128
157

Combined with the upper bound from Yau-Yin this proves the Lee-Huang-Yang
formula for the ground state energy.
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Strategy of proof

o Localize to boxes of size £ > (pa)_%. Localization non-standard since need to
preserve ‘Neumann gap’. To get a priori information localize to smaller boxes of
size < (pa)_%. Here Neumann gap can be used to control errors. Rest of analysis
carried out on large box. The interaction between localized particles is denoted by
w(xi, X;).

o Condensation. Let P projection on constant function, @ orthogonal complement.

n0:ZP,-, n+:ZQI-

A priori bounds control expected values (ng) and (ni). Energy error negligible if
localizing to subspace where ny < M, where M is of the order of the bound on

(ny).
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2-particle terms/The 4Q term

Clearly 1 = P1P2+ QiP> + P1Q2 + Q1 Qu.



2-particle terms/The 4Q term
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2-particle terms/The 4Q term

Clearly 1 = P1P2+ QiP> + P1Q2 + Q1 Qu.

W(X,',XJ') = P,'PJ'WPJ'P,' + (Q,’PJ'WPJ'P,' + P,'QJ'WPJ'P,' + h.C.) + ...+ QinWQjQ,’
={QiQ; + (PiP; + PiQj + QiPj)w} w{Q; Qi + w(P;iP; + P;Q; + QiPj)} + ...

So (all sums over i # j): 5> w(x;,x;) > Qo+ Q1+ Qs + O}, where
5= Z P;i Qijwi(xi, xj) Qi Qi + h.c.
Q= Z P;i Qiwa(xi, xj)P; Qi + Z P Qiwo(xi, x;) Qj P;
5 S (PP ) Qi + e,
Q1 = Z P; Qiwa(x;, x;) Pi P}, Qo = %Z P;i Pjwa(x;, x;) P; P

and where w; = w(l —w) = g, wo = w(l — w?) = wi (1 +w).



Strategy of proof Il

@ Discarding the positve 4Q term has renormalized the interaction. No "bare” w
appears.

@ Rest of proof in 2nd quantization. For simplicity of presentation, we will assume
periodic boundary conditions and w = v. Then 1Q terms disappear. In the real
proof, 1Q terms are present and the cancelation of the 1Q terms has to be done

carefully.
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Strategy of proof Il

@ Discarding the positve 4Q term has renormalized the interaction. No "bare” w
appears.

@ Rest of proof in 2nd quantization. For simplicity of presentation, we will assume
periodic boundary conditions and w = v. Then 1Q terms disappear. In the real
proof, 1Q terms are present and the cancelation of the 1Q terms has to be done
carefully.

Standard bosonic creation/annihilation operators a, a;r(, k € (2nt~1)Z3.
lak,aw] =0, [ak, al] = O -

@ c-number substitution. Replace all ag, ag by /n.

Expect ny ~ n ~ pf3 = K3(pa®)~2. So 1/ny < (pa®)?.

o Localize 3Q-term: A preliminary analysis allows cut-offs in the 3Q-term to

soft-pair interactions only.
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Diagonalizing the operator

Let K be the Hamiltonian on a periodic box, after c-number substitution
1 . 1 —
K= §p2€3g(0) + E,ozfagw(O) + KCBos - 05% 1 Q3.
Here, with A(k) := k? + pwi(k), B(k) := pwi(k).

1
KB = 23 (A(k)(a;f(ak +al a )+ Blk)(alal , + aka_y),
k

and (with P, being low momenta < ,/pa, Py high momenta ~ a~1)
Q5 == p Y (Wiw(0) + wiw(k))akax ~ 2pwiw(0)n.
k

Qs:= (7 3 (k) (alas o+ alalyas).

kePy,seP;



Diagonalizing KB (The idealized Bogoliubov calculation)

(a}: + aka—k)(ak + akaT_k) = aZak + a,%aT_ka_k + ax(aka—k + aLaT_k) — ai[a_k, aT_k].



Diagonalizing KB (The idealized Bogoliubov calculation)

(a}: + aka—k)(ak + ozkaT_k) = aZak + a,%aT_ka_k + ax(aka—k + aJ{(aT_k) — ai[a_k, aT_k].

1

KcBee = 5 Z < (k)(akak +a 'a—k)+ B(k)( k + aka_g)
K

=> (Dkb}:bk — (A — [ A} - Bi))
p

where by := aj + akaT_k, K = %(Ak + \/A2 — 15’2) ~ k2, and
Q) = B; (.Ak - \/ )

22

BT ~ pg2—(kk2— = pw(k) (= valid for |k| near a=1).



Diagonalizing KB (The idealized Bogoliubov calculation)

(a}: + aka—k)(ak + ozkaT_k) = aZak + a,%aT_ka_k + ax(aka—k + aLaT_k) — ai[a_k, aJr_k].

KBos = Z ( (akak +al 'a—k)+ B(k)( k + aka_g)

= (Dkb bi = (Ax — /43 — BY))
k
where by —ak-l—aka_k, P % .Ak-i-\/.Az Bz)Nkz
ax = B Ak — /A2 — BY) ~ 2%( ~ p% = pii(k) (= valid for |k| near a=1).

The constant term Z(.Ak — /A2 — B2) joins the constant 3p?¢3g(0) + 3p%(3gw(0)
from KC to give the right energy to LHY precision.



Treating Q3 = (3\/n zkEPH’sepL Wl(k)(alas—kak + a}:al_kas)

as_kdk =
L i (bs—kbk - aka_kbs—k - as—kb;r(_sbk + Oékas—kb;r(_st_k — a[bs—k, bT_k]>-

2 2
l-aj 1-aZ_,




Treating Q3 = £73\/n> ", cp. scp, Wi(k)(alas_rar + al

kal—kas)

ds—kdk =
1 1

2 2
1-aj 1-aZ

. (bs kbk - akb_kbs—k - as_kb;i_sbk + O‘kas—kb;r(_st_k — ak[bs P T k])
So,

> Db+ Qs~ Y Diblb+073/n > w(k)(albs_kby + bib!_,a5)
kePy kePy kEPy,sEP;,

> <fL 5 ) (o B )
kePy

seP;

EG Z Wl(k) ZaTbs . Z bsf La.

kEPH SEPL S/GPL

s'eP,



Treating Q3 = £73\/n> ", cp. scp, Wi(k)(alas_rar + al

kal—kas)

as—kadk =
1 1

2 2
l—ak l—as

» (bs kb —axb’ ; bs_y — as—kb/t_sbk + Olkas—kb;r(_st_k — ak[bs_, b k])
So,

> Dibjbi+ Qs ~ Y Diblbe+¢3Vn Y @n(k)(albs_iby + bib._,as)
kePy kePy kePy,seP;

> <fL 5 ) (o B )
kePy

seP;

£6 Z Wl(k) ZaTbs " Z bs' s’

kePy seP; s'eP,

s'eP,

Notice that /3 D kePy W;g(k)z ~ gw(0) and [bs_k, bl,_k] ~ Jss. Therefore, this term
takes out Q5*.




