The Lee-Huang-Yang formula for the ground state energy of Bose gases

Søren Fournais

Department of Mathematics, Aarhus University, Ny Munkegade 118, DK-8000 Aarhus C, Denmark

Based on joint work with Jan Philip Solovej

Les Treilles, May 2019

The dilute Bose gas

Consider N interacting, non-relativistic bosons in a box $\Lambda := [-L/2, L/2]^3$. Let $N \in \mathbb{N}$, $\rho := N/|\Lambda| = N/L^3$.

The Hamiltonian of the system is, on the symmetric (bosonic) space $\bigotimes_{s}^{N} L^{2}(\Lambda)$,

$$H_{N} := \sum_{i=1}^{N} -\Delta_{i} + \sum_{i < j} v(x_{i} - x_{j}),$$

and $0 \le v \in L^1(\mathbb{R}^3)$ is radially symmetric with compact support.

The dilute Bose gas

Consider N interacting, non-relativistic bosons in a box $\Lambda := [-L/2, L/2]^3$. Let $N \in \mathbb{N}$, $\rho := N/|\Lambda| = N/L^3$.

The Hamiltonian of the system is, on the symmetric (bosonic) space $\bigotimes_{s}^{N} L^{2}(\Lambda)$,

$$H_N := \sum_{i=1}^N -\Delta_i + \sum_{i< j} v(x_i - x_j),$$

and $0 \le v \in L^1(\mathbb{R}^3)$ is radially symmetric with compact support.

The ground state energy of the system is

$$E_0(N,\Lambda) := \inf \operatorname{Spec} H_N.$$

The dilute Bose gas

Consider N interacting, non-relativistic bosons in a box $\Lambda := [-L/2, L/2]^3$. Let $N \in \mathbb{N}$, $\rho := N/|\Lambda| = N/L^3$.

The Hamiltonian of the system is, on the symmetric (bosonic) space $\bigotimes_{s}^{N} L^{2}(\Lambda)$,

$$H_N := \sum_{i=1}^N -\Delta_i + \sum_{i< j} v(x_i - x_j),$$

and $0 \le v \in L^1(\mathbb{R}^3)$ is radially symmetric with compact support.

The ground state energy of the system is

$$E_0(N,\Lambda) := \inf \operatorname{Spec} H_N.$$

The energy density in the thermodynamic limit is

$$e(\rho) = \lim_{L \to \infty, N/|\Lambda| = \rho} E_0(N, \Lambda)/L^3.$$

The scattering length

Scattering equation

$$(-\Delta + \frac{1}{2}v(x))(1 - \omega(x)) = 0,$$
 with $\omega \to 0$, as $|x| \to \infty$.

Scattering length

$$a:=\lim_{|x|\to\infty}|x|\omega(x)=rac{1}{8\pi}\int v(1-\omega)<rac{1}{8\pi}\int v=:a_1.$$

With $g = v(1 - \omega)$ the scattering equation can be reformulated as

$$-\Delta\omega=rac{1}{2}g,$$
 i.e. $\widehat{\omega}(k)=rac{\widehat{g}(k)}{2k^2}.$

The two-term formula

We study $e(\rho)$ in the dilute limit $\rho a^3 \to 0$. The following formula is expected to be true

$$e(\rho) = 4\pi \rho^2 a (1 + \frac{128}{15\sqrt{\pi}}(\rho a^3)^{1/2}) + \rho^2 a o((\rho a^3)^{1/2}).$$

The two-term formula

We study $e(\rho)$ in the dilute limit $\rho a^3 \to 0$. The following formula is expected to be true

$$e(
ho\,)=4\pi
ho^{\,2}a(1+rac{128}{15\sqrt{\pi}}(
ho a^3)^{1/2})+
ho^{\,2}a\,o((
ho a^3)^{1/2}).$$

- Lenz (1929), Bogoliubov (1947), Lee-Huang-Yang (1957).
- Rigorous proof of leading term Dyson (1957, upper), Lieb-Yngvason (1998).
- Upper bounds giving second order term: Erdős-Schlein-Yau (2008), Yau-Yin (2009).
- Study of the limit for v becoming 'soft' as $\rho \to 0$: Lieb-Solovej, Giuliani-Seiringer (2008), Brietzke-Solovej (2018).
- Bogoliubov theory for confined Bose gases (Gross-Pitaevskii limit)
 Boccato-Brennecke-Cenatiempo-Schlein (2017-2018).

The Lee-Huang-Yang formula

Theorem (SF, Solovej 2019)

Given a potential $v \neq 0$, non-negative, radial, L^1 , with compact support there exist $C, \eta > 0$ (depending on v) such that for all ρ sufficiently small,

$$e(\rho) \geq 4\pi \rho^2 a (1 + \frac{128}{15\sqrt{\pi}}(\rho a^3)^{\frac{1}{2}}) - C\rho^2 a (\rho a^3)^{\frac{1}{2} + \eta}.$$

The Lee-Huang-Yang formula

Theorem (SF, Solovej 2019)

Given a potential $v \neq 0$, non-negative, radial, L^1 , with compact support there exist $C, \eta > 0$ (depending on v) such that for all ρ sufficiently small,

$$e(
ho\,) \geq 4\pi
ho^{\,2}a(1+rac{128}{15\sqrt{\pi}}(
ho a^3)^{rac{1}{2}}) - C
ho^{\,2}a(
ho a^3)^{rac{1}{2}+\eta}.$$

Combined with the upper bound from Yau-Yin this proves the Lee-Huang-Yang formula for the ground state energy.

Strategy of proof

- Localize to boxes of size $\ell \gg (\rho a)^{-\frac{1}{2}}$. Localization non-standard since need to preserve 'Neumann gap'. To get a priori information localize to smaller boxes of size $\lesssim (\rho a)^{-\frac{1}{2}}$. Here Neumann gap can be used to control errors. Rest of analysis carried out on large box. The interaction between localized particles is denoted by $w(x_i, x_i)$.
- ullet Condensation. Let P projection on constant function, Q orthogonal complement.

$$n_0 = \sum P_i, \qquad n_+ = \sum Q_i.$$

A priori bounds control expected values $\langle n_0 \rangle$ and $\langle n_+ \rangle$. Energy error negligible if localizing to subspace where $n_+ \leq \mathcal{M}$, where \mathcal{M} is of the order of the bound on $\langle n_+ \rangle$.

Clearly
$$1 = P_1P_2 + Q_1P_2 + P_1Q_2 + Q_1Q_2$$
.

Clearly
$$1 = P_1 P_2 + Q_1 P_2 + P_1 Q_2 + Q_1 Q_2$$
.

$$w(x_i, x_j) = P_i P_j w P_j P_i + (Q_i P_j w P_j P_i + P_i Q_j w P_j P_i + h.c.) + \dots + Q_i Q_j w Q_j Q_i$$

$$= \{Q_i Q_i + (P_i P_i + P_i Q_i + Q_i P_i) \omega\} w \{Q_i Q_i + \omega (P_i P_i + P_i Q_i + Q_i P_i)\} + \dots$$

Clearly
$$1 = P_1P_2 + Q_1P_2 + P_1Q_2 + Q_1Q_2$$
.

$$w(x_{i}, x_{j}) = P_{i}P_{j}wP_{j}P_{i} + (Q_{i}P_{j}wP_{j}P_{i} + P_{i}Q_{j}wP_{j}P_{i} + h.c.) + ... + Q_{i}Q_{j}wQ_{j}Q_{i}$$

$$= \{Q_{i}Q_{j} + (P_{i}P_{j} + P_{i}Q_{j} + Q_{i}P_{j})\omega\} w \{Q_{j}Q_{i} + \omega(P_{i}P_{j} + P_{i}Q_{j} + Q_{i}P_{j})\} + ...$$

So (all sums over
$$i \neq j$$
): $\frac{1}{2} \sum w(x_i, x_j) \geq Q_0 + Q_1 + Q_2 + Q_3'$,

Clearly
$$1 = P_1P_2 + Q_1P_2 + P_1Q_2 + Q_1Q_2$$
.

$$w(x_{i}, x_{j}) = P_{i}P_{j}wP_{j}P_{i} + (Q_{i}P_{j}wP_{j}P_{i} + P_{i}Q_{j}wP_{j}P_{i} + h.c.) + ... + Q_{i}Q_{j}wQ_{j}Q_{i}$$

$$= \{Q_{i}Q_{j} + (P_{i}P_{j} + P_{i}Q_{j} + Q_{i}P_{j})\omega\} w \{Q_{j}Q_{i} + \omega(P_{i}P_{j} + P_{i}Q_{j} + Q_{i}P_{j})\} + ...$$

So (all sums over $i \neq j$): $\frac{1}{2} \sum w(x_i, x_j) \geq Q_0 + Q_1 + Q_2 + Q'_3$, where

$$\begin{aligned} Q_3' &:= \sum P_i Q_j w_1(x_i, x_j) Q_j Q_i + h.c. \\ Q_2 &:= \sum P_i Q_j w_2(x_i, x_j) P_j Q_i + \sum P_i Q_j w_2(x_i, x_j) Q_j P_i \\ &+ \frac{1}{2} \sum (P_i P_j w_1(x_i, x_j) Q_j Q_i + h.c.), \\ Q_1 &:= \sum P_j Q_i w_2(x_i, x_j) P_i P_j, \qquad Q_0 &:= \frac{1}{2} \sum P_i P_j w_2(x_i, x_j) P_j P_i \end{aligned}$$

and where
$$w_1 = w(1 - \omega) \approx g$$
, $w_2 = w(1 - \omega^2) = w_1(1 + \omega)$.

Strategy of proof II

- Discarding the positive 4Q term has renormalized the interaction. No "bare" w appears.
- Rest of proof in 2nd quantization. For simplicity of presentation, we will assume periodic boundary conditions and w = v. Then 1Q terms disappear. In the real proof, 1Q terms are present and the cancelation of the 1Q terms has to be done carefully.

Strategy of proof II

- Discarding the positive 4Q term has renormalized the interaction. No "bare" w appears.
- Rest of proof in 2nd quantization. For simplicity of presentation, we will assume periodic boundary conditions and w = v. Then 1Q terms disappear. In the real proof, 1Q terms are present and the cancelation of the 1Q terms has to be done carefully.

Standard bosonic creation/annihilation operators $a_k, a_k^{\dagger}, \ k \in (2\pi\ell^{-1})\mathbb{Z}^3.$

$$[a_k, a_{k'}] = 0, \qquad [a_k, a_{k'}^{\dagger}] = \delta_{k,k'}.$$

- c-number substitution. Replace all a_0, a_0^{\dagger} by \sqrt{n} . Expect $n_0 \approx n \approx \rho \ell^3 = K^3 (\rho a^3)^{-\frac{1}{2}}$. So $1/n_0 \ll (\rho a^3)^{\frac{1}{2}}$.
- Localize 3*Q*-term: A preliminary analysis allows cut-offs in the 3*Q*-term to soft-pair interactions only.

Diagonalizing the operator

Let K be the Hamiltonian on a periodic box, after c-number substitution

$$\mathcal{K} = rac{1}{2}
ho^2\ell^3\widehat{g}(0) + rac{1}{2}
ho^2\ell^3\widehat{g\omega}(0) + \mathcal{K}^{\mathrm{Bog}} + \mathcal{Q}_2^{\mathrm{ex}} + \mathcal{Q}_3.$$

Here, with $\mathcal{A}(k) := k^2 + \rho \widehat{w_1}(k), \quad \mathcal{B}(k) := \rho \widehat{w_1}(k).$

$$\mathcal{K}^{\mathrm{Bog}} := \frac{1}{2} \sum_{k} \left(\mathcal{A}(k) (a_k^{\dagger} a_k + a_{-k}^{\dagger} a_{-k}) + \mathcal{B}(k) (a_k^{\dagger} a_{-k}^{\dagger} + a_k a_{-k}), \right.$$

and (with P_L being low momenta $\leq \sqrt{
ho a}$, P_H high momenta $pprox a^{-1}$)

$$\begin{aligned} \mathcal{Q}_2^{\text{ex}} &:= \rho \sum_k \left(\widehat{w_1 \omega}(0) + \widehat{w_1 \omega}(k) \right) a_k^{\dagger} a_k \approx 2 \rho \widehat{w_1 \omega}(0) n_+ \\ \mathcal{Q}_3 &:= \ell^{-3} \sqrt{n} \sum_{k \in P_u, s \in P_u} \widehat{w}_1(k) (a_s^{\dagger} a_{s-k} a_k + a_k^{\dagger} a_{s-k}^{\dagger} a_s). \end{aligned}$$

Diagonalizing $\mathcal{K}^{\mathrm{Bog}}$ (The idealized Bogoliubov calculation)

$$(a_k^{\dagger} + \alpha_k a_{-k})(a_k + \alpha_k a_{-k}^{\dagger}) = a_k^{\dagger} a_k + \alpha_k^2 a_{-k}^{\dagger} a_{-k} + \alpha_k (a_k a_{-k} + a_k^{\dagger} a_{-k}^{\dagger}) - \alpha_k^2 [a_{-k}, a_{-k}^{\dagger}].$$

Diagonalizing $\mathcal{K}^{\mathrm{Bog}}$ (The idealized Bogoliubov calculation)

$$(a_k^{\dagger} + \alpha_k a_{-k})(a_k + \alpha_k a_{-k}^{\dagger}) = a_k^{\dagger} a_k + \alpha_k^2 a_{-k}^{\dagger} a_{-k} + \alpha_k (a_k a_{-k} + a_k^{\dagger} a_{-k}^{\dagger}) - \alpha_k^2 [a_{-k}, a_{-k}^{\dagger}].$$

$$\mathcal{K}^{\text{Bog}} = \frac{1}{2} \sum_k \left(\mathcal{A}(k)(a_k^{\dagger} a_k + a_{-k}^{\dagger} a_{-k}) + \mathcal{B}(k)(a_k^{\dagger} a_{-k}^{\dagger} + a_k a_{-k}) \right)$$

$$= \sum_k \left(\mathcal{D}_k b_k^{\dagger} b_k - (\mathcal{A}_k - \sqrt{\mathcal{A}_k^2 - \mathcal{B}_k^2}) \right)$$

where
$$b_k := a_k + \alpha_k a_{-k}^{\dagger}$$
, $\mathcal{D}_k = \frac{1}{2} (\mathcal{A}_k + \sqrt{\mathcal{A}_k^2 - \mathcal{B}_k^2}) \approx k^2$, and $\alpha_k = \mathcal{B}_k^{-1} (\mathcal{A}_k - \sqrt{\mathcal{A}_k^2 - \mathcal{B}_k^2}) \approx \frac{\mathcal{B}_k}{2\mathcal{A}_k} \approx \rho \frac{\widehat{g}(k)}{2k^2} = \rho \widehat{\omega}(k)$ (\approx valid for $|k|$ near a^{-1}).

Diagonalizing $\mathcal{K}^{\mathrm{Bog}}$ (The idealized Bogoliubov calculation)

$$(a_k^{\dagger} + \alpha_k a_{-k})(a_k + \alpha_k a_{-k}^{\dagger}) = a_k^{\dagger} a_k + \alpha_k^2 a_{-k}^{\dagger} a_{-k} + \alpha_k (a_k a_{-k} + a_k^{\dagger} a_{-k}^{\dagger}) - \alpha_k^2 [a_{-k}, a_{-k}^{\dagger}].$$

$$\mathcal{K}^{\text{Bog}} = \frac{1}{2} \sum_k \left(\mathcal{A}(k)(a_k^{\dagger} a_k + a_{-k}^{\dagger} a_{-k}) + \mathcal{B}(k)(a_k^{\dagger} a_{-k}^{\dagger} + a_k a_{-k}) \right)$$

$$= \sum_k \left(\mathcal{D}_k b_k^{\dagger} b_k - (\mathcal{A}_k - \sqrt{\mathcal{A}_k^2 - \mathcal{B}_k^2}) \right)$$

where
$$b_k := a_k + \alpha_k a_{-k}^{\dagger}$$
, $\mathcal{D}_k = \frac{1}{2}(\mathcal{A}_k + \sqrt{\mathcal{A}_k^2 - \mathcal{B}_k^2}) \approx k^2$, and $\alpha_k = \mathcal{B}_k^{-1}(\mathcal{A}_k - \sqrt{\mathcal{A}_k^2 - \mathcal{B}_k^2}) \approx \frac{\mathcal{B}_k}{2\mathcal{A}_k} \approx \rho \frac{\widehat{g}(k)}{2k^2} = \rho \widehat{\omega}(k)$ (\approx valid for $|k|$ near a^{-1}). The constant term $\sum (\mathcal{A}_k - \sqrt{\mathcal{A}_k^2 - \mathcal{B}_k^2})$ joins the constant $\frac{1}{2}\rho^2 \ell^3 \widehat{g}(0) + \frac{1}{2}\rho^2 \ell^3 \widehat{g}(0)$ from \mathcal{K} to give the right energy to LHY precision.

Treating $\mathcal{Q}_3 = \ell^{-3} \sqrt{n} \sum_{k \in P_H, s \in P_L} \widehat{w}_1(k) (a_s^\dagger a_{s-k} a_k + a_k^\dagger a_{s-k}^\dagger a_s)$

$$\begin{aligned} &a_{s-k}a_k = \\ &\frac{1}{1-\alpha_k^2}\frac{1}{1-\alpha_{s-k}^2} \left(\mathbf{b}_{s-k}\mathbf{b}_k - \alpha_k \mathbf{b}_{-k}^\dagger \mathbf{b}_{s-k} - \alpha_{s-k}\mathbf{b}_{k-s}^\dagger \mathbf{b}_k + \alpha_k \alpha_{s-k}\mathbf{b}_{k-s}^\dagger \mathbf{b}_{-k}^\dagger - \alpha_k [\mathbf{b}_{s-k}, \mathbf{b}_{-k}^\dagger] \right). \end{aligned}$$

Treating $\mathcal{Q}_3 = \ell^{-3} \sqrt{n} \sum_{k \in P_H, s \in P_L} \widehat{w}_1(k) (a_s^\dagger a_{s-k} a_k + a_k^\dagger a_{s-k}^\dagger a_s)$

$$\begin{split} &\frac{1}{1-\alpha_{k}^{2}}\frac{1}{1-\alpha_{s-k}^{2}}\left(b_{s-k}b_{k}-\alpha_{k}b_{-k}^{\dagger}b_{s-k}-\alpha_{s-k}b_{k-s}^{\dagger}b_{k}+\alpha_{k}\alpha_{s-k}b_{k-s}^{\dagger}b_{-k}^{\dagger}-\alpha_{k}[b_{s-k},b_{-k}^{\dagger}]\right). \\ &\text{So,} \\ &\sum_{k\in P_{H}}\mathcal{D}_{k}b_{k}^{\dagger}b_{k}+\mathcal{Q}_{3}\approx\sum_{k\in P_{H}}\mathcal{D}_{k}b_{k}^{\dagger}b_{k}+\ell^{-3}\sqrt{n}\sum_{k\in P_{H},s\in P_{L}}\widehat{w}_{1}(k)(a_{s}^{\dagger}b_{s-k}b_{k}+b_{k}^{\dagger}b_{s-k}^{\dagger}a_{s})\\ &=\sum_{k\in P_{H}}\mathcal{D}_{k}\left(b_{k}^{\dagger}+\ell^{-3}\sqrt{n}\frac{\widehat{w}_{1}(k)}{\mathcal{D}_{k}}\sum_{s\in P_{L}}a_{s}^{\dagger}b_{s-k}\right)\left(b_{k}+\ell^{-3}\sqrt{n}\frac{\widehat{w}_{1}(k)}{\mathcal{D}_{k}}\sum_{s'\in P_{L}}b_{s'-k}^{\dagger}a_{s'}\right)\\ &-2\frac{n}{\ell^{6}}\sum_{k\in P_{H}}\frac{\widehat{w}_{1}(k)^{2}}{2\mathcal{D}_{k}}\sum_{s\in P_{L}}a_{s}^{\dagger}b_{s-k}\sum_{s'\in P_{L}}b_{s'-k}^{\dagger}a_{s'}. \end{split}$$

Treating $Q_3 = \ell^{-3} \sqrt{n} \sum_{k \in P_H, s \in P_L} \widehat{w}_1(k) (a_s^{\dagger} a_{s-k} a_k + a_k^{\dagger} a_{s-k}^{\dagger} a_s)$

$$\begin{aligned} & a_{s-k}a_k = \\ & \frac{1}{1-\alpha_k^2}\frac{1}{1-\alpha_{s-k}^2} \bigg(b_{s-k}b_k - \alpha_k b_{-k}^\dagger b_{s-k} - \alpha_{s-k}b_{k-s}^\dagger b_k + \alpha_k \alpha_{s-k}b_{k-s}^\dagger b_{-k}^\dagger - \alpha_k [b_{s-k},b_{-k}^\dagger] \bigg). \\ & \text{So,} \end{aligned}$$

$$\begin{split} \sum_{k \in P_H} \mathcal{D}_k b_k^{\dagger} b_k + \mathcal{Q}_3 &\approx \sum_{k \in P_H} \mathcal{D}_k b_k^{\dagger} b_k + \ell^{-3} \sqrt{n} \sum_{k \in P_H, s \in P_L} \widehat{w}_1(k) (a_s^{\dagger} b_{s-k} b_k + b_k^{\dagger} b_{s-k}^{\dagger} a_s) \\ &= \sum_{k \in P_H} \mathcal{D}_k \Big(b_k^{\dagger} + \ell^{-3} \sqrt{n} \frac{\widehat{w}_1(k)}{\mathcal{D}_k} \sum_{s \in P_L} a_s^{\dagger} b_{s-k} \Big) \Big(b_k + \ell^{-3} \sqrt{n} \frac{\widehat{w}_1(k)}{\mathcal{D}_k} \sum_{s' \in P_L} b_{s'-k}^{\dagger} a_{s'} \Big) \\ &- 2 \frac{n}{\ell^6} \sum_{k \in P_H} \frac{\widehat{w}_1(k)^2}{2\mathcal{D}_k} \sum_{s \in P_L} a_s^{\dagger} b_{s-k} \sum_{s' \in P_L} b_{s'-k}^{\dagger} a_{s'}. \end{split}$$

Notice that $\ell^{-3} \sum_{k \in P_H} \frac{\widehat{w}_1(k)^2}{2\mathcal{D}_k} \approx \widehat{g\omega}(0)$ and $[b_{s-k}, b_{s'-k}^{\dagger}] \approx \delta_{s,s'}$. Therefore, this term takes out $\mathcal{Q}_2^{\text{ex}}$.