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Introduction: Expected phase diagram for the 3d jellium
From Jones, Ceperley, PRL 76 (1996) and Zing, Lin, Ceperley, Phys. Rev. E 66 (2002).
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Hartree-Fock jellium
= Electrons in uniform positive background, described with Hartree-Fock.

States = one-body density matrices: γ ∈ S(L2(Ω,C2)), 0 ≤ γ ≤ 1. We write γ =

(
γ↑↑ γ↑↓

γ↓↑ γ↓↓

)
.

Energy:
EHF(γ, ρ, T ) =

1

2
Tr (−∆γ) +

1

2

¨
Ω2

(ργ(r)− ρ)(ργ(r′)− ρ)

|r− r′|
dr dr′

−
1

2

¨
Ω2

trC2 |γ(r, r′)|2

|r− r′|
dr′ dr′ − T Tr (S(γ))

where S(t) := −t log(t)− (1− t) log(1− t) is the entropy.

Constraint: Tr(γ) = ρ|Ω|.

Thermodynamic limit: Ω → R3, and ρ constant → EHF(ρ, T ).

Goal: Study the phase diagram: features of the minimisers in the (ρ, T ) plane.

Spatial symmetry breaking
If γ(r, r′) = γ(r− r′,0), then γ is invariant by translation (fluid phase).
Otherwise, γ breaks spatial symmetry (e.g. Wigner crystallisation).

Spin symmetry breaking
If γ↑↑ = γ↓↓ and γ↑↓ = γ↓↑ = 0, then γ is paramagnetic.
Otherwise, it is (partially) ferromagnetic.
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The fluid phase
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Perform the minimisation only on translational-invariant states: γ(r, r′) = γ(r− r′).
=⇒ ργ = ρ = γ(0) is constant =⇒ the direct term vanishes.

Fourier operator, γ is multiplication operator in Fourier by (still denoted by γ)

γ(k) =

(
γ↑↑(k) γ↑↓(k)
γ↓↑(k) γ↓↓(k)

)
, γ(k) = γ(k)∗, 0 ≤ γ(k) ≤ I2.

HF energy for fluid states

1

2(2π)3

ˆ
R3

k2trC2γ(k)dk−
1

(2π)5

¨
(R3)2

trC2 [γ(k)γ(k′)]

|k− k′|2
dkdk′ −

T

(2π)3

ˆ
R3

S(γ(k))dk.

Constraints
1

(2π)3

ˆ
R3

trC2γ(k)dk = ρ.

No-spin version γ → g, that is g ∈ L1(R3,R), 0 ≤ g ≤ 1 and (2π)−3

ˆ
R3

g = ρ.

1

2(2π)3

ˆ
R3

k2g(k)dk−
1

(2π)5

¨
(R3)2

g(k)g(k′)

|k− k′|2
dkdk′ −

T

(2π)3

ˆ
R3

S(g(k))dk.
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Lemma
Any minimiser among fluid states is of the form

γ(k) = U

(
g↑(k) 0

0 g↓(k)

)
U∗ with U ∈ SU(2).

Proof: trC2 (UD1U∗D2) ≤ trC2 (D1D2) with D1, D2 diagonal with ordered entries.

Corollary

EHF,fluid(ρ, T ) = inf
t∈[0,1/2]

{
EHF,fluid

nospin (tρ, T ) + EHF,fluid
nospin ((1− t)ρ, T )

}
.

The best t ∈ [0, 1
2
] is called the polarisation.

Lemma (Euler-Lagrange)
Any such minimiser γ must satisfy the Euler-Lagrange equation

γ =
(
1 + eβ(

1
2
k2−γ∗|·|−2−µ)

)−1
for some Lagrange multiplier µ ∈ R.

In particular, g↑ and g↓ satisfy g↑/↓(k) =
(
1 + eβ(

1
2
k2−g↑/↓∗|·|−2−µ)

)−1
for the same µ.

Remark: Spin symmetry breaking (g↑ 6= g↓) can only happen if
the map ρ 7→ µ(ρ, T ) is not one-to-one;

the equation g 7→
(
1 + eβ(

1
2
k2−g∗|·|−2−µ)

)−1
has at least two fixed points.
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An important example: the T = 0 case.

Lemma

At T = 0, for all ρ > 0, the no-spin energy Efluid
nospin has a unique minimiser, which is g := 1(k2 ≤ cρ3/2).

Hence
Efluid

nospin(ρ, T = 0) = CTFρ
5/3 − CDρ4/3,

and

µ(ρ, T = 0) =
∂

∂ρ
Efluid

nospin =
5

3
CTFρ

2/3 −
4

3
CDρ1/3 (not one-to-one).

Proof: The minimiser is radial decreasing + the energy is concave, so g(k) ∈ {0, 1}.

Figure: black: T = 0, red: T = 0.01 Ha, blue: T = 0.03 Ha.
David Gontier Symmetry breaking in the Hartree-Fock jellium 7 / 16



Symmetry breaking at T = 0 case.
Including the spin, we just need to study the map

t 7→ CTFρ
5/3(t5/3 + (1− t)5/3)− CDρ4/3(t4/3 + (1− t)4/3).

Theorem (G-Lewin 2019, but well-known result)

There is a first order phase transition at ρc =
125

24π5

(
1

1 + 21/3

)3

(rs ≈ 5.45):

For ρ < ρc, the minimiser is unique up to global spin rotation, and it is pure ferromagnetic (g↓ = 0);

For ρ > ρc, the minimiser is unique, and is paramagnetic.

The energy is continuous, and has a kink at ρ = ρc.
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Fluid phase diagram

Figure: Level lines of the polarisation t ∈ [0, 1/2].

Theorem (G-Lewin 2019)

For T ≥ Cρ1/3 or T ≥ Ce−αρ1/6 , the minimiser for the spin-fluid energy is unique and paramagnetic.
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Idea of the proof (D. Gontier, M. Lewin, arXiv 1812.07679.)

We prove that, «in some regime», there is a unique solution to the fixed-point equation

g = GT,µ[g] where GT,µ[g](k) :=
1

1 + e
1
T

(
1
2
k2−g∗w(k)−µ

) (Hammerstein integral equation)

Setting V := g ∗ w ∈ L∞(R3), this is also

V = VT,µ[V ] where VT,µ[V ](k) :=
1

1 + e
1
T

(
1
2
k2−V −µ

) ∗ w.

Step 1: V 7→ V[V ] is increasing: V1 ≤ V2 =⇒ V[V1] ≤ V[V2].
Define V −

0 = 0 and V +
0 = a with a ∈ R large enough. Then,

V −
n+1 := V[V −

n ] is increasing, bounded by a, hence converges to some Vmin,

V +
n+1 := V[V +

n ] is decreasing, bounded by 0, hence converges to some Vmax.

The functions Vmin(T, µ) (resp. Vmax(T, µ)) are minimal (resp. maximal) fixed point of VT,µ.

Remark: This gives a priori bounds µ ↔ ρ.

Step 2: For µ small enough (µ → ∞), we must have Vmin(T, µ) = Vmax(T, µ).
The map VT,µ becomes a contraction among its fixed points.
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Step 3: At a fixed point V (or g), study the linearised operator

L := dV
(
V − VT,µ[V ]

)
: v 7→ v −

1

T
w ∗ (g(1− g)v)︸ ︷︷ ︸

:=Agv

.

If ‖A‖∞,∞ < 1, the operator L = 1−A is invertible with bounded inverse.

The operator A has positive kernel, so

‖A(f)‖∞ ≤ ‖f‖∞‖A(1)‖∞.

For instance, for low densities,

‖A(1)‖∞ =
1

T
‖w ∗ g(1− g)‖∞ ≤

1

T
‖w ∗ g‖∞ ≤ C

ρ1/3

T
.

For high densities, use that g(1− g) is small away from the Fermi surface.

Conclusion: With the implicit function theorem, (T, µ) 7→ Vmin(T, µ) and (T, µ) 7→ Vmax(T, µ) have
unique continuations, hence are equal.
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Spatial symmetry breaking
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Theorem (Overhauser, Phys. Rev. Lett. 4, 462 (1960))
At T = 0, the fluid minimiser is never a HF minimiser. Actually,

EHF(ρ, T = 0) < EHF,fluid(ρ, T = 0)− Ce−αρ1/6 Delyon, Bernu, Baguet, Holzmann, Phys. Rev. B 92.

Fluid states are unstable with respect to the formation of Spin Density Waves (SDW).

=⇒ Much more complex phase diagram.

Phase diagram at T = 0 (from Baguet, Delyon, Bernu, Holzmann, Phys. Rev. B 90 (2014))
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Theorem (G-Hainzl-Lewin 19)
At T = 0, ∣∣∣EHF,fluid(ρ, T = 0)− EHF(ρ, T = 0)

∣∣∣ ≤ Ce−αρ1/6 .

If ρ � 1 and T > Ce−αρ1/6 , EHF(ρ, T ) has a unique minimiser, which is fluid and paramagnetic. In
particular, EHF(ρ, T ) = EHF,fluid(ρ, T ).

Idea of the proof: Control the difference with the first eigenvalue of the Schrödinger-like operator

H(ε) := |∆+ 1| −
ε

|r|
.

Lemma (G-Hainzl-Lewin 19)

The first eigenvalue λ1(ε) of H(ε) satisfies

−Ce−α/
√
ε ≤ λ1(ε) ≤ −C′e−α′/

√
ε.

Based on similar results: Hainzl, Seiringer 2008: For 1 < s < 2,

−Ce−α/ε ≤ λ1

(
|∆+ 1| −

ε

|r|s

)
≤ −C′e−α′/ε

In our case, use that, for a > 0,
e−a|x|

|x|
≤

1

|x|
≤

e−a|x|

|x|
+ a,

and optimise a := a(ε).
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Idea of the proof for T = 0: Fix kF the Fermi level. In a finite box ΩL of size L with PBC, let γL be the
(periodised) free Fermi state

γ̂L(k,k
′) = δk,k′1(k ≤ kF ) = δk,k′ (1 [HL(k) ≤ HL(kF )]) ,

with

HL(k) :=
1

2
k2 −

4π

L3

∑
k′ 6=k

1(k′ ≤ kF )

|k− k′|2
(mean-field fluid Hamiltonian).

SinceHL is the sum of two increasing functions, we have

|HL(k)−HL(kF )| ≥
1

2
|k2 − k2F |, or, as operators,

∣∣∣HL − εLF

∣∣∣ ≥ 1

2
| −∆L − k2F |.

After some computations, we get, for all projectors γ with the same density, and with Q := γ − γL,

EHF
L (γ)− EHF

L (γL) ≥
1

2
TrL

(∣∣∆x,L + k2F
∣∣Q2

)
−

1

2

¨
(ΩL)2

Q2(x,y)GL(x− y)dxdy

≥
1

2

ˆ
ΩL

dy
(〈

Q(·,y)
∣∣∣ ∣∣∆x,L + k2F

∣∣−GL(· − y)
∣∣∣Q(·,y)

〉)
≥

1

2
λ1

{
|∆L + k2F | −GL(x)

}︸ ︷︷ ︸
≤0

¨
(ΩL)2

Q2(x,y)dxdy︸ ︷︷ ︸
≤2N

≥ Nλ1

{
|∆L + k2F | −GL(x)

}
.

After normalisation, and limit L → ∞,

EHF − EHF,fluid ≥ λ1

{
|∆+ k2F | −

1

|x|

}
= k2Fλ1

{
|∆+ 1| −

1

kF |x|

}
.
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Expected Phase diagram for the HF jellium
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