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Classical mechanics and Gibbs measures

A Hamiltonian system consists of the following ingredients.

� Linear phase space Γ 3 φ.

� Hamilton (or energy) function H ∈ C∞(Γ).

� Poisson bracket {· , ·} on C∞(Γ)× C∞(Γ).

(Properties: antisymmetric, bilinear, Leibnitz rule in both arguments,
Jacobi identity.)

Classical dynamics is given by Hamiltonian flow φ 7→ Stφ on Γ defined by the
ODE

d

dt
f(Stφ) = {H, f}(Stφ)

for any f ∈ C∞(Γ).



Standard example: classical system of n degrees of freedom.

� Phase space Γ = R2n 3 (p, q).

� Hamilton function H(p, q) =

n∑
i=1

p2
i

2mi
+ V (q).

� Poisson bracket {f, g} =

n∑
i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
.

Hamiltonian flow reads

d

dt
pi = −∂H

∂qi
= −∂iV (q) ,

d

dt
qi =

∂H

∂pi
=

pi
mi

.

The Gibbs measure at temperature β is

P(dφ) ..=
1

Z
e−βH(φ) dφ , Z ..=

∫
e−βH(φ) dφ .

P is invariant under the flow St.



Nonlinear Schrödinger equations

Let Td = Rd/Zd be the d-dimensional torus.

� Phase space Γ is some appropriate subspace of {φ .. Td → C}.

� Hamilton function

H(φ) =

∫
dx φ̄(x)(κ−∆)φ(x) +

1

2

∫
dx dy w(x− y)|φ(x)|2|φ(y)|2 ,

where κ > 0.

� Poisson bracket

{φ(x), φ̄(y)} = iδ(x− y) , {φ(x), φ(y)} = {φ̄(x), φ̄(y)} = 0 .

Hamiltonian flow given by time-dependent nonlinear Schrödinger equation

i∂tφ(x) = (κ−∆)φ(x) +

∫
dy w(x− y)|φ(y)|2φ(x) .



Time-dependent nonlinear Schrödinger equation

i∂tφ(x) = (κ−∆)φ(x) +

∫
dy w(x− y)|φ(y)|2φ(x) . (1)

Gibbs measure of nonlinear Schrödinger equation is formally

P(dφ) =
1

Z
e−H(φ)dφ .

Formally, P is invariant under the flow generated by (1).

Rigorous results: Lebowitz–Rose–Speer, Bourgain, Bourgain–Bulut, Tzvetkov,
Thomann–Tzvetkov, Nahmod–Oh–Rey-Bellet–Staffilani, Oh–Quastel,
Deng–Tzvetkov–Visciglia, Cacciafesta–de Suzzoni, Genovese–Lucá–Valeri, . . .

Important application: P-almost sure well-posedness of (1) for rough initial
data.



Goal

Analyse P and (St) through

� the moments of P (which determine P),

� the time-dependent correlation functions∫
X1(St1φ) · · ·Xm(Stmφ) dP(φ) ,

for Xi ∈ C∞(Γ) and ti ∈ R.

Derivation as a (high-temperature) limit of a microscopic n-body quantum
theory of bosons.



Rigorous construction of Gibbs measure

Spectral decomposition

κ−∆ =
∑
k∈N

λkuku
∗
k , λk > 0 , ‖uk‖L2 = 1 .

Let ω = (ωk)k∈N ∈ CN be i.i.d. NC(0, 1) random variables with joint law µ0.

Define the Gaussian free field

φω ≡ φ ..=
∑
k∈N

ωk√
λk
uk .

The sum converges in ‖φ‖Hs ..= ‖(κ−∆)s/2φ‖L2 in the sense of Lp(µ0) for all
p ∈ (1,∞), provided that ∑

k∈N
λs−1
k <∞ .

For example, Eµ0‖φ‖2Hs =
∑
k∈N

Eµ0 |ωk|2
λsk
λk

=
∑
k∈N

λs−1
k .



Under µ0, φ =
∑
k∈N

ωk√
λk
uk is a Gaussian free field with covariance (κ−∆)−1:

Eµ0 〈f , φ〉〈φ, g〉 = 〈f , (κ−∆)−1g〉 .

We find that

µ0[φ ∈ H0] =

{
1 if d = 1

0 if d > 1 .

Define the measure

µ(dω) ..=
1

Z
e−W (φω)µ0(dω) , W (φ) =

1

2

∫
dxdy w(x− y)|φ(x)|2|φ(y)|2 .

µ is well-defined for instance if

d = 1 , w ∈ L∞ , w positive definite ,

since then 0 6W (φ) <∞ µ0-a.s.

(Then P is defined as φ∗µ.)



Quantum many-body theory

Define the one-particle space H ..= L2(Td;C) and the n-particle space

H(n) ..= H⊗symn = L2
sym

(
(Td)n

)
.

Hamilton operator

H(n) ..= H
(n)
0 + λ

∑
16i<j6n

w(xi − xj) , H
(n)
0

..=
n∑
i=1

(κ−∆xi)

Canonical thermal state at temperature τ > 0 is P
(n)
τ

..= e−H
(n)/τ .

Expectation of an observable A ∈ B(H(n)) is

ρ(n)
τ (A) ..=

Tr(AP
(n)
τ )

Tr(P
(n)
τ )

.



What happens as n→∞?

In order to obtain a nontrivial limit, we set λ = 1/n.

Theorem [Lewin-Nam-Serfaty-Solovej, 2012; Lewin-Nam-Rougerie, 2013]. For

λ = 1/n and τ fixed, the state ρ
(n)
τ (·) converges to the atomic measure δΦ in

the sense of p-particle correlation functions (see later), where Φ is the
minimizer of the energy function H.

Complete Bose-Einstein condensation for fixed τ .

In order to obtain the Gibbs measure µ, we need to let

� τ grow with n (high-temperature limit),

� n fluctuate. (n/τ will correspond to ‖φ‖22.)



High-temperature limit and Fock space

Define the Fock space F ..=
⊕

n∈N H(n) and the grand canonical thermal state

Pτ
..=
⊕
n∈N

P (n)
τ = e−Hτ , Hτ

..=
1

τ

⊕
n∈N

H(n) .

Rescaled particle number operator Nτ ..= 1
τ

⊕
n∈N nI. Expectation of an

observable A ∈ B(F) is

ρτ (A) ..=
Tr(APτ )

Tr(Pτ )
.

Explicit computation for d = 1 and λ = 0:

lim
τ→∞

ρτ (N k
τ ) = Eµ‖φ‖2kL2 , k = 1, 2, . . . .

Number of particles is of order τ . Thus, set λ ..= τ−1 to obtain nontrivial
interacting limit.



Second quantization

Let b, b∗ be the bosonic annihilation and creation operators on F and set
φ ..= τ−1/2b. Hence,

[φτ (x), φ∗τ (y)] =
1

τ
δ(x− y) , [φτ (x), φτ (y)] = [φ∗τ (x), φ∗τ (y)] = 0 .

Thus, we can write Hτ = Hτ,0 +W , where

Hτ,0 =

∫
dxφ∗τ (x)(κ−∆)φτ (x) ,

Wτ =
1

2

∫
dxdy φ∗τ (x)φτ (x)w(x− y)φ∗τ (y)φτ (y) ,

as well as Pτ = e−Hτ , ρτ (A) = Tr(APτ )
Tr(Pτ ) .



High-temperature limit for d = 1

Define the p-particle reduced density matrix

γτ,p(x1, . . . , xp; y1, . . . , yp)
..= ρτ

(
φ∗τ (y1) · · ·φ∗τ (yp)φτ (x1) · · ·φτ (xp)

)
.

Analogously, we define the classical p-particle correlation function

γp(x1, . . . , xp; y1, . . . , yp)
..= Eµ

(
φ̄(y1) · · · φ̄(yp)φ(x1) · · ·φ(xp)

)
.

The family (γp)p∈N completely determines all moments of the field φ.

Theorem [Lewin-Nam-Rougerie, 2015]. For d = 1 and w positive definite, for
any p ∈ N we have γτ,p → γp in trace class as τ →∞.



Time-dependent correlations

Introduce Hamiltonian time evolution:

(Cl) for a random variable X ≡ X(φ) set ΨtX(φ) ..= X(Stφ);

(Qu) for an operator X on F set Ψt
τX

..= eitτHτX e−itτHτ .

For a p-particle operator ξ on H(p) introduce the observables

(Cl) Θ(ξ) ..=

∫
dx1 · · · dxp dy1 · · · dyp ξ(x1, . . . , xp; y1, . . . , yp)

× φ̄(x1) · · · φ̄(xp)φ(y1) · · ·φ(yp) ;

(Qu) Θτ (ξ) ..=

∫
dx1 · · · dxp dy1 · · · dyp ξ(x1, . . . , xp; y1, . . . , yp)

× φ∗τ (x1) · · ·φ∗τ (xp)φτ (y1) · · ·φτ (yp) .



Theorem [Fröhlich-K-Schlein-Sohinger, 2017]. Let d = 1 and w ∈ L∞ be
pointwise positive. Given m ∈ N, p1, . . . , pm ∈ N,
ξ1 ∈ L(H(p1)), . . . , ξm ∈ L(H(pm)) and t1, . . . , tm ∈ R, we have

lim
τ→∞

ρτ
(
Ψt1
τ Θτ (ξ1) · · · Ψtm

τ Θτ (ξm)
)

= Eµ
(
Ψt1 Θ(ξ1) · · · Ψtm Θ(ξm)

)
.

Remarks:

� Also works on R instead of T, with sufficiently confining potential v in free
Hamiltonian κ−∆ + v(x).

� We also prove that there exists a null sequence ε = ετ such that, with a
quantum two-body potential 1

εw
(
x
ε

)
the limit is that of the cubic NLS

with local nonlinearity, w = δ.



Higher dimensions

If d > 1 then φ has µ0-a.s. negative regularity, φ /∈ L2, since
∑
k∈N λ

−1
k =∞.

Consequences:

� W (φ) = 1
2

∫
dxdy w(x− y)|φ(x)|2|φ(y)|2 ill-defined even for w ∈ L∞.

� p-particle correlation functions γp are not in trace class, since

Tr(γ1) = Eµ‖φ‖2L2 =∞ .

� On the quantum side, rescaled number of particles Nτ is no longer
bounded. Explicit computation for noninteracting case w = 0:

ρτ (Nτ ) =
∑
k∈N

1

τ

1

eλk/τ − 1
→∞

as τ →∞. Quantum model has intrinsic cutoff at energies λk ≈ τ .

Heuristics:

Singularity of classical field ⇐⇒ Rapid growth of number of particles .



Renormalization

Renormalize interaction W by Wick ordering. Formally, take

W (φ) =
1

2

∫
dxdy w(x− y)(|φ(x)|2 −∞)(|φ(y)|2 −∞) .

Rigorously, introduce truncated field and density

φ[K]
..=

K∑
k=0

ωk√
λk
uk , %[K](x) ..= Eµ0 |φ[K](x)|2 .

Then

W[K]
..=

1

2

∫
dxdy w(x− y)

(
|φ[K](x)|2 − %[K](x)

)(
|φ[K](x)|2 − %[K](x)

)
has a limit in

⋂
p<∞ Lp(µ0) as K →∞, denoted by W .

Use this W in definition of µ.



Similarly, we need to renormalize the quantum interaction. The quantum Gibbs
state is defined by the renormalized many-body Hamiltonian Hτ = Hτ,0 +Wτ ,
where

Wτ
..=

1

2

∫
dx dy

(
φ∗τ (x)φτ (x)− %τ (x)

)
w(x− y)

(
φ∗τ (y)φτ (y)− %τ (y)

)
,

where the quantum density at x %τ (x) is defined as

%τ (x) ..= ρτ,0
(
φ∗τ (x)φτ (x)

)
.



Convergence of moments for d = 2, 3

For technical reasons, instead of Pτ = e−Hτ,0−Wτ , we consider a family of
modified thermal quantum states

P ητ
..= e−ηHτ,0e−(1−2η)Hτ,0−Wτ e−ηHτ,0 , η ∈ [0, 1) .

Theorem [Fröhlich-K-Schlein-Sohinger, 2016]. Let d = 2, 3, w ∈ L∞ positive
definite, η > 0, and p ∈ N. Then γητ,p → γp in Hilbert-Schmidt as τ →∞.

Recent developments:

� [Sohinger, 2019] optimal integrability conditions [Bourgain, 1997] on w:
w ∈ L1 (d = 1), w ∈ L1+ (d = 2), w ∈ L3+ (d = 3).

� [Lewin-Nam-Rougerie, 2018] η = 0 for smooth w and d = 2.



Counterterm problem

Also works on Rd with sufficiently confining potential V . Relation between
original and renormalized problems is nontrivial. True Hamiltonian

H̃τ
..=

∫
dx dy φ∗τ (x)

(
ν −∆ + V

)
(x; y)φτ (y)

+
1

2

∫
dxdy φ∗τ (x)φ∗τ (y)w(x− y)φτ (x)φτ (y)

compared with renormalized Hamiltonian (from above),

Hτ =

∫
dxφ∗τ (x)(κ−∆ + vτ )φτ (x)

+
1

2

∫
dx dy

(
φ∗τ (x)φτ (x)− %τ (x)

)
w(x− y)

(
φ∗τ (y)φτ (y)− %τ (y)

)
Essentially, H̃τ and Hτ are related by a shift in a diverging chemical potential,
provided that one chooses the bare one-body potential vτ appropriately
(depending on τ).



More precisely, for any constant %̄τ ∈ R we have

H̃τ = Hτ+

[
%̄τ ŵ(0)− 1

2τ
w(0) + ν − κ

]
Nτ−

1

2

∫
dx dy %τ (x)w(x−y)%τ (y) ,

provided that vτ solves the counterterm problem

vτ = V + w ∗ (%vττ − %̄τ ) . (2)

For %vττ − %̄τ to remain bounded, we need limτ→∞ %̄τ =∞, and hence (for
bracket to vanish) limτ→∞ ν = −∞. (Compensates large repulsive interaction
energy.)

The counterterm problem (2) is solved in [FKSS, 2016], where we also show
that the solution vτ converges (in a suitable space) to some v = the correct
renormalized external potential.



Morsels of proof

Basic approach: perturbative expansion of partition functions Eµ0e−zW and
Tr(e−Hτ,0−zWτ ) in powers of z. Well-defined for Re z > 0 but ill-defined for
Re z < 0: zero radius of convergence around z = 0.

Toy problem:
A(z) =

1√
2π

∫
R

dx e−x
2/2 e−zx

4

;

analytic for Re z > 0 but zero radius of convergence, with Taylor coefficient
am = A(m)(0)/m! ∼ m!.

However, Taylor series
∑
m>0 amz

m has Borel transform B(z) ..=
∑
m>0

am
m! z

m

with positive radius of convergence. Formally, we can recover A from

A(z) =

∫ ∞
0

dt e−tB(tz) .

Works provided we can prove good enough bounds on Taylor coefficients and
remainder term of A (Sokal, 1980).

Main work: control of the coefficients and remainder of quantum many-body
problem. Starting point for algebra is Wick’s theorem for the free states.



For time-dependent problem, we perform an expansion of
Ψt
τΘτ (ξ) = eitτHτΘτ (ξ) e−itτHτ in powers of the interaction potential w.

The expansion is controlled graphically, tree graphs sum up precisely to the
quantization of ΨtΘ(ξ).

Problem: expansion is only convergent on sector of F where Nτ is bounded.

Introduce cutoff in rescaled number of particles Nτ . Need to show that for
f ∈ C∞c (R) we have

lim
τ→∞

ρτ
(
Θτ (ξ)f(Nτ )

)
= Eµ

(
Θ(ξ)f(N )

)
(3)

Problem: cutoff breaks Gaussianity, and Wick’s theorem does not apply to (3).

Idea: using complex analysis, it suffices to analyse ρτ
(
Θτ (ξ)e−Nτ

)
for fixed

ν > 0.


