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Classical mechanics and Gibbs measures

A Hamiltonian system consists of the following ingredients.
B Linear phase space I' 3 ¢.
® Hamilton (or energy) function H € C*(T").
® Poisson bracket {-,-} on C®(T) x C>(T").
(Properties: antisymmetric, bilinear, Leibnitz rule in both arguments,

Jacobi identity.)

Classical dynamics is given by Hamiltonian flow ¢ — St® on I defined by the
ODE

S 1(5'0) = (H, [}(5"0)
for any f € C>=(I).



Standard example: classical system of n degrees of freedom.

® Phase space I' = R?" > (p, q).
® Hamilton function H(p,q Z pz

® Poisson bracket {f, g} = Z(gf gg
Pi 04;

Hamiltonian flow reads
d  O0H

&pi = —87% = —81“/((])7

The Gibbs measure at temperature 3 is
P(dg) == —e PH(? dg,

P is invariant under the flow S?.

9f 9
dq; Op;i )

Z = /e—5H<¢> do.



Nonlinear Schrodinger equations

Let T? = R?/Z? be the d-dimensional torus.
® Phase space I' is some appropriate subspace of {¢ : T? — C}.

® Hamilton function

H(9) = [ dwi@)n - 2)ola) + ;5 [ dodyula = plo@) o).
where k > 0.

® Poisson bracket

{o(@),0()} =id(xz—y),  {d(2),0()} = {d(x),6(y)} =0.

Hamiltonian flow given by time-dependent nonlinear Schrodinger equation

i0,6(x) = (5 — A)p(a) + / dy w(z - y)|o()26(x).



Time-dependent nonlinear Schrodinger equation
i0:6(a) = (5 = A)o(o) + [ dyula ~ o) o(z). 1)
Gibbs measure of nonlinear Schrédinger equation is formally
P(d¢) = %e*m@d(ﬁ.

Formally, P is invariant under the flow generated by (1).

Rigorous results: Lebowitz—Rose—Speer, Bourgain, Bourgain—Bulut, Tzvetkov,
Thomann-Tzvetkov, Nahmod—Oh—Rey-Bellet—-Staffilani, Oh—Quastel,
Deng—Tzvetkov—-Visciglia, Cacciafesta—de Suzzoni, Genovese—Lucd—Valeri, ...

Important application: P-almost sure well-posedness of (1) for rough initial
data.



Goal

Analyse P and (S?) through

® the moments of P (which determine P),

B the time-dependent correlation functions
[x15m) X7 (570) d(o).
for X' € C*°(T) and t; € R.

Derivation as a (high-temperature) limit of a microscopic n-body quantum
theory of bosons.



Rigorous construction of Gibbs measure

Spectral decomposition

K—A:Z/\kuku,t, A >0, HukHL2=1.
keN

Let w = (wy)ren € CN be i.i.d. Ng(0,1) random variables with joint law .

Define the Gaussian free field

¢”E¢::Z:/d—/%uk.

keN

The sum converges in ||@|| := ||(k — A)*/26| 2 in the sense of LP(pq) for all
p € (1,00), provided that
Z AT < o0,

keN

2 .
B o(|g|3,. = ZEMW;Z => Nt

keN kEN

For example,



Under o, ¢ = Z %uk is a Gaussian free field with covariance (k — A)~1:
k

keN

E* (f,0)(,9) = (f,(k—A)"'g).

o 1 ifd=1
“°[¢€H]_{o fd>1.

We find that

Define the measure

pld) = e V(). W9 = 5 [ dodyula -~ o) o).

1 is well-defined for instance if

d=1 w € L™ w positive definite

3

since then 0 < W (¢) < 0o pp-a.s.
(Then P is defined as ¢.p.)



Quantum many-body theory

Define the one-particle space § := L2(T¢;C) and the n-particle space

ﬁ(n) — ﬁ@symn L2 ((Td)n) .

sym

Hamilton operator

n

H™ . H(n) A Z 71,] H(gn) — Z(’i*Ami)

1<i<jsn i=1

. . _r7(n)
Canonical thermal state at temperature 7 > 0 is PT(") = M/

Expectation of an observable A € B(H™) is

<AP£“>>



What happens as n — oco?
In order to obtain a nontrivial limit, we set A = 1/n.

Theorem [Lewin-Nam-Serfaty-Solovej, 2012; Lewin-Nam-Rougerie, 2013]. For

A =1/n and 7 fixed, the state p(T")(~) converges to the atomic measure dg in
the sense of p-particle correlation functions (see later), where ® is the
minimizer of the energy function H.

Complete Bose-Einstein condensation for fixed 7.

In order to obtain the Gibbs measure y, we need to let
® 7 grow with n (high-temperature limit),

® 7 fluctuate. (n/7 will correspond to ||¢||3.)



High-temperature limit and Fock space

Define the Fock space F := @D, oy H™ and the grand canonical thermal state

Pr=@PW =t Ho= L HD.
neN T neN

Rescaled particle number operator N, := %@HGN nl. Expectation of an
observable A € B(F) is
_ Tr(AP;)

A=y

Explicit computation for d =1 and A = 0:
: kY _ 2k —
}g&pT(NT) E*|6]l75 , k=1,2,....

Number of particles is of order 7. Thus, set A := 7~! to obtain nontrivial
interacting limit.



Second quantization

Let b,b* be the bosonic annihilation and creation operators on F and set
¢ = 1"/2b. Hence,

[¢r(2), 97 (y)] = %5(90 -y), o (2),9-(y)] = [¢7(2), 07 (y)] = 0.
Thus, we can write H, = H; o+ W, where

Hoo= / da ¢ (2) (k — D), (),
W, = %/dx dy ¢%(z) - (@) w(z — y) ¢ (y)b-(y)

as well as P, = e, p,(A) = TP




High-temperature limit for d = 1

Define the p-particle reduced density matrix
’Y-r,p(mla e Tpi Yl ees yp) = Pr (¢j—(yl) s ¢:(yp)¢7'(xl) e ¢T($p)) .

Analogously, we define the classical p-particle correlation function

Vo(@1s - Ty, yp) = B (D) Blyp)p(a1) - dlap)) -

The family (7,)pen completely determines all moments of the field ¢.

Theorem [Lewin-Nam-Rougerie, 2015]. For d = 1 and w positive definite, for
any p € N we have v, , — 1, in trace class as 7 — o0.



Time-dependent correlations

Introduce Hamiltonian time evolution:

(Cl) for a random variable X = X (¢) set ¥ X (¢) := X(St¢);
(Qu) for an operator X on F set Ui X := et7Hr X g~ it7Hr

For a p-particle operator & on $)(P) introduce the observables

(Ch e = /dxl-~-dxpdy1-~-dyp§(x1,...,xp;yl,...,yp)
X q;(ml) T (g(xp)(b(yl) e B(Yp)s

(QU) ®T(€) = /dxl"'dxpdyl'"dypg(xla"wxp;yla"'7yp)
X ¢7(x1) - 7 (wp)Pr(y1) -+ D7 (Yp) -



Theorem [Frohlich-K-Schlein-Sohinger, 2017]. Let d =1 and w € L™ be
pointwise positive. Given m € N, p1,...,py, €N,
e L®mP),. .., &m e L(HP)) and ty,...,t, € R, we have

Tim g, (82 6, (¢1) -+ W ©,(¢™)) = BA(W" O(E) - W O(g™).

Remarks:

® Also works on R instead of T, with sufficiently confining potential v in free
Hamiltonian x — A + v(z).

® We also prove that there exists a null sequence € = ¢, such that, with a
quantum two-body potential 2w (Z) the limit is that of the cubic NLS
with local nonlinearity, w = 6.



Higher dimensions

If d > 1 then ¢ has ug-a.s. negative regularity, ¢ ¢ L?, since > keN )\;1 = 00.

Consequences:
mW(p) = %fda? dyw(z — y)|q§(x)|2\¢(y)|2 ill-defined even for w € L®°.

® p-particle correlation functions 7y, are not in trace class, since
. Y72 2
Tr(y1) = E*[[¢]|72 = oo

® On the quantum side, rescaled number of particles N is no longer
bounded. Explicit computation for noninteracting case w = 0:

1 1
priN) =) s e
keN
as 7 — 00. Quantum model has intrinsic cutoff at energies \; = 7.

Heuristics:

Singularity of classical field <= Rapid growth of number of particles.



Renormalization

Renormalize interaction W by Wick ordering. Formally, take

W(6) = 5 [ dedywte — 9)(jo) - 50)(6() - o0).

Rigorously, introduce truncated field and density

K

WE 2

Pk = Z —=U s ok (z) = EF o ()]
k=0 V Ak

Then

Wik) = %/dx dy w(x — y)(|¢[K] (z))? — O[K] (95))(|¢[K] (z)]* - 9[K] (x))

has a limit in LP(uo) as K — oo, denoted by .

p<oo

Use this W in definition of u.



Similarly, we need to renormalize the quantum interaction. The quantum Gibbs
state is defined by the renormalized many-body Hamiltonian H, = H, o + W,
where

W, - % / dady (6% (2)ér (2) — 0 (2)) wlx — ) (65 (W) (W) — 0:(9)) »

where the quantum density at 2 o, () is defined as

or(x) = pro(d7(2)¢-(2)).



Convergence of moments for d = 2,3

For technical reasons, instead of P, = ¢~ H0=W= we consider a family of
modified thermal quantum states

P = o Hroe=(1=20)Hr o= Wy o—nH7r0 , nelo,1).
Theorem [Frohlich-K-Schlein-Sohinger, 2016]. Let d = 2,3, w € L™ positive
definite, n > 0, and p € N. Then ~] , — 7, in Hilbert-Schmidt as 7 — oo.
Recent developments:

m [Sohinger, 2019] optimal integrability conditions [Bourgain, 1997] on w:
weL' (d=1), we L' (d=2), we L3 (d=3).
® [Lewin-Nam-Rougerie, 2018] n = 0 for smooth w and d = 2.



Counterterm problem

Also works on R? with sufficiently confining potential V. Relation between
original and renormalized problems is nontrivial. True Hamiltonian

i, = [ dedyor@)(v - A+ V)(@)é0)
4y [ drdyor@)0r W wie — 1) 6 (@)r ()
compared with renormalized Hamiltonian (from above),
Hy = [ do g (@) - &+ 0)or (o)
+5 [ drdy (@:@)0- (@) - o) wie 1) (636, W) - o)

Essentially, H, and H, are related by a shift in a diverging chemical potential,
provided that one chooses the bare one-body potential v, appropriately
(depending on 7).



More precisely, for any constant g, € R we have
~ N 1 1
Hy = Hr+|0:0(0) = -w(0) +v — | No =5 [ dzdy o (z)w(z—y)er (y)

provided that v, solves the counterterm problem
UT:V+w*(Q:T_§T)' (2)

For oY — o, to remain bounded, we need lim,_, 0 = 0o, and hence (for
bracket to vanish) lim,_,., v = —oco. (Compensates large repulsive interaction
energy.)

The counterterm problem (2) is solved in [FKSS, 2016], where we also show
that the solution v, converges (in a suitable space) to some v = the correct
renormalized external potential.



Morsels of proof

Basic approach: perturbative expansion of partition functions E#oe~*"W and
Tr(e Hro=2W) in powers of z. Well-defined for Re z > 0 but ill-defined for
Re z < 0: zero radius of convergence around z = 0.

4

A(z) = \/12?/Rdxex2/ze” ;

analytic for Re z > 0 but zero radius of convergence, with Taylor coefficient
am = AT (0)/m! ~ m!.

Toy problem:

However, Taylor series >~ - a,,,2™ has Borel transform B(z) := ", 5, 92"
=z = )

with positive radius of convergence. Formally, we can recover A from

Az) = / dt e B(tz).
0
Works provided we can prove good enough bounds on Taylor coefficients and
remainder term of A (Sokal, 1980).

Main work: control of the coefficients and remainder of quantum many-body
problem. Starting point for algebra is Wick's theorem for the free states.



For time-dependent problem, we perform an expansion of
UiO, (&) =m0, (¢) e *Hr in powers of the interaction potential w.

The expansion is controlled graphically, tree graphs sum up precisely to the
quantization of U'O(¢).

Problem: expansion is only convergent on sector of F where N, is bounded.
Introduce cutoff in rescaled number of particles V.. Need to show that for

f € C(R) we have

lim p,(©,(&)f(N7)) = E*(O(&)f(NV)) ©)

i de el

Problem: cutoff breaks Gaussianity, and Wick's theorem does not apply to (3).

Idea: using complex analysis, it suffices to analyse p, (©,(£)e V") for fixed
v>0.



