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Abstract

We study the convergence of the transport plans γε towards γ0 as well as the cost of the
entropy-regularized optimal transport (c, γε) towards (c, γ0) as the regularization parameter
ε vanishes in the setting of finite entropy marginals. We show that under the assumption
of infinitesimally twisted cost and compactly supported marginals the distance W2(γε, γ0) is
asymptotically greater than C

√
ε and the suboptimality (c, γε) − (c, γ0) is of order ε. In the

quadratic cost case the compactness assumption is relaxed into a moment of order 2+δ assump-
tion. Moreover, in the case of a Lipschitz transport map for the non-regularized problem, the
distance W2(γε, γ0) converges to 0 at rate

√
ε. Finally, if in addition the marginals have finite

Fisher information, we prove (c, γε)− (c, γ0) ∼ dε/2 and we provide a companion expansion of
H(γε). These results are achieved by disentangling the role of the cost and the entropy in the
regularized problem.
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1 Introduction

We study the regularized optimal transport problem for a cost c ∈ C2(Rd × R
d,R)

inf
γ∈Π(µ0,µ1)

∫

cdγ + εH(γ|µ0 ⊗ µ1) (1)

where the infimum is taken over all measures γ ∈ P(Rd × R
d) with marginals µ0, µ1. Here H(.|.) is

the relative entropy also known as Kullback-Leibler divergence. In this paper we will focus on the
case where µ0, µ1 have finite entropy with respect to Hd, the Lebesgue measure, H(µi | Hd) < ∞
and finite order two moments. In that case the minimizer γε is the same as if µ0 ⊗ µ1 was replaced
by the Lebesgue measure H2d in the entropy term, and hence we consider

OTε := inf
γ∈Π(µ0,µ1)

∫

cdγ + εH(γ|H2d) (εEOT)

We would like to thank G. Carlier and P. Pegon for fruitful discussions and helpful advices.

1

http://arxiv.org/abs/2306.06940v1


Note that ε = 0 yields the classical optimal transport problem. In this case the minimizer need not
to be unique and γ0 will sometimes denote any of them. We are interested in deriving rates for the
cost term

∫

cdγε = (c, γε) as well as the 2-Wasserstein distance between γε and γ0, when it is unique.

In the last decade this problem has witnessed a rapid increase in interest. It has proved to be an
efficient way to approximate OT problems, especially from a computational viewpoint. The cele-
brated Sinkhorn’s algorithm [34] was applied in this framework in the pioneering works [14, 2]. The
good convergence guarantees [19, 27] cemented the success of EOT and its applications.
Clearly EOT is a perturbation of classical OT thus it is natural to study the behaviour of this prob-
lem as ε vanishes. In this direction several aspects deserved to be studied such as the convergence of
optimal values, potentials (optimizers of the dual problem) and optimal plans, possibly with quanti-
tative rates. In the direction of convergence of optimal values recent contributions have thoroughly
treated the issue: in the quadratic case, under regularity assumptions, the link between EOT and
the Schrödinger problem [24] has allowed to find a second order [17] and more recently a third order
[12, 9] expansion of the value OTε in ε. The second order expansion has been generalized to other
cost functions [31], and the first order term has been obtained under very mild assumptions on the
cost function and the marginals [7, 15]. Those articles focus on the value problem of (εEOT).

Our main objective is to disentangle the role of the cost
∫

cdγε and the entropy H(γε | L) in or-
der to derive rate of convegence for both. The cost term is of interest itself because it is a faster
converging approximation of OT0. The entropy term also allows to lower bound W2(γε, γ0), the
Wasserstein distance between the entropic optimal transport plan γε and the optimal transport plan
γ0. The study of the convergence of the cost term in EOT has also been done recently in [1] for the
semidiscrete case which grants an ε2 rate. They also derive convergence rates for the Kantorovich
potentials. In the discrete case the rate of convergence is exponential [10, 36]. In the continuous
case, to our knowledge, no asymptotic rate for the suboptimality

∫

cdγε −
∫

cdγ0 was known but a
rate of order ε was suspected based on simple examples such as Gaussian measures. We tackle the
problem of sizing the suboptimality in this article.

1.1 Main results

The aim of this paper is to provide tight rates of convergence on the Wasserstein distanceW2(γε, γ0),
the cost term (c, γε) and the entropy term H(γε | H2d). Let µ0, µ1 ∈ Pac(Rd) such that H(µi | Hd) <
∞. It is known [7, 15] that under mild assumptions (see lemma 3.6) on µ0, µ1,

OTε = (c, γε) + εH(γε | H2d) ≤ OT0 −
d

2
ε ln(ε) +O(ε) (2)

For the quadratic cost and under the stronger assumption of finite Fisher information for the
marginals, we have (see [17, claim 4.1], see also [31] for other costs and different hypothesis)

OTε = OT0 −
d

2
εln(2πε) + εHm + o(ε) (3)

where Hm := 1
2 [H(µ0 | Hd) + H(µ1 | Hd)]. Our goal are to disentangle the role of the cost term

(c, γε) and of the entropy term H(γε | H2d) in those rates rates of convergence.
For clarity we present here the three main results present in the article. The first gives a second
order expansion of the entropy and the cost of the entropic optimal transport. It relies on known
expansions of the Benamou-Brenier (εBB) formulation of the entropic optimal transport problem.
The proof of this result can be found in section 2

Theorem (Theorem 2.3). Suppose that the cost is quadratic, that is c(x, y) = 1
2‖x − y‖2. Further

assume that I(µi) <∞ and Supp(µi) compact. Then

H(γε | H2d) = −d
2
ln(2πε) +Hm − d

2
+ o(1) (4)
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and

(c, γε) = OT0 +
d

2
ε+ o(ε) (5)

If we relax the finite Fisher information hypothesis the orders of magnitude still hold. The method,
presented in section 3, used to prove that result relies on the Minty reparametrization trick (see
definition 3.3) which implies a quadratic detachment for the duality gap function E = c− (ϕ⊕ ψ),
where ϕ, ψ are Kantorovich potentials.

Theorem (Theorem 3.7). Suppose that the cost is quadratic, that is c(x, y) = 1
2‖x − y‖2. Further

assume that µi have finite moment of order 2 + δ then

(c, γε) = OT0 +Θ(ε), H(γε | H2d) = −d
2
ln(ε) +O(1),

√
ε = O(W2(γε, γ0)) (6)

In the special case where the Monge map ∇f associated to the optimal transport plan γ0 is Lipschitz
then

W2(γε, γ0) = Θ(
√
ε) (7)

Finally for infinitesimally twisted costs we have a similar result but under the stronger assumption
of compactly supported marginals. The concept of local quadratic detachment 4.1 is introduced and
is key to the proof of the result which can be found in section 4.

Theorem (Theorem 4.8). Suppose that the cost is C2 and infinitesimally twisted (see definition 4.3).
Further assume that µi is compactly supported then

(c, γε) = OT0 +Θ(ε), H(γε | H2d) = −d
2
ln(ε) +O(1),

√
ε = O(W2(γε, γ0)) (8)

1.2 Definitions and assumptions

First, let recall the definition of the relative entropy H(µ|ν) and the Fisher information I(µ) that
provide quantitative estimate of the smoothness of a measure : if µ, ν ∈ Pac(Rd), we note

H(µ|ν) :=
{

∫

ln
(

dµ
dν

)

dµ if µ≪ ν

+∞ otherwise
and I(µ) =

{

∫ ‖∇µ(x)‖2

µ(x)2 dµ(x) if µ ≪ Hd

+∞ otherwise
(9)

Where dµ
dν denotes the Radon-Nikodym derivative of µ with respect to ν and µ(x) the density of µ

with respect to the Lebesgue measure Hd by a slight abuse of notation. Note that a finite Fisher
information I(µ) < +∞ implies a finite differential entropy H(µ|Hd) [35, Chapter 9], that we will
often denote simply by H(µ) .
We now introduce the Kantorovich potentials which are the solutions to the dual of the classical
optimal transport problem.

sup
ϕ,ψ

∫

ϕdµ0 +

∫

ψdµ1 (10)

Where the sup is taken over all functions ϕ ∈ L1(µ0), ψ ∈ L1(µ1) such that for all x, y ∈ R
d×R

d, we
have ϕ(x)+ψ(y) ≤ c(x, y). It is well known that in our current setting this problem has maximizers
which are continuous [35, Chapter 1], that is the Kantorovich potentials are continuous. Moreover
it is also possible to assume that the constraint ϕ(x) + ψ(y) ≤ c(x, y) is binding, that is that ϕ and
ψ are c-transform1 one of each other. In the following, we will use the name Kantorovich potentials
to denote a pair of continuous and mutual c-transform solutions to the dual problem (10).
For a pair (ϕ, ψ) of Kantorovich potentials, we will call duality gap the quantity E(x, y) := c(x, y)−
(ϕ(x)+ψ(y)) and we will noteE = c−(ϕ⊗ψ). Remark that in the quadratic case, when µi ∈ Pac(Rd),
the Kantorovich potentials are unique up to a constant and so the duality gap function E is unique.

1ϕ(x) = infy c(x, y)− ψ(y) and ψ(y) = infx c(x, y) − ϕ(x)
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In the general case, we will be interested in the gap between
∫

cdγε and
∫

cdγ0 which can be restated
in terms of any duality gap function E = c− (ϕ ⊕ ψ) with ϕ, ψ Kantorovich potentials. Indeed we
have by duality theorem that

∫

cdγ0 =
∫

ϕdµ0 +
∫

ψdµ1 and so

∫

cdγε −
∫

cdγ0 =

∫

cdγε −
∫

(ϕ⊕ ψ)dγε =

∫

Edγε (11)

As explained in the main results, we will explore three different sets of assumptions, that we present,
from the most specific to the most generic. Each set of assumption correspond to one of the theorems
presented in the main results.

• (H1) The cost is quadratic : c(x, y) := 1
2‖x− y‖2.

The marginal have finite fisher information I(µi) < +∞ and compact support

• (H2) The cost is quadratic : c(x, y) := 1
2‖x− y‖2.

The marginals have finite differential entropy H(µi|Hd) < +∞ and finite moments of order
2 + δ for some δ > 0

• (H3) The cost c belongs to C2 and is infinitesimally twisted (see definition 4.3).
The marginals (µi) have compact support and finite differential entropy.

Since a finite Fisher information implies a finite differential entropy, hypothesis (H2) is an important
relaxation of (H1) on the regularity and concentration of (µi). Similarly, hypothesis (H3) is an
important relaxation of (H1) since the class of cost is broader and the marginals are assumed less
regular. A last remark : while the finite entropy or finite information hypothesis are deeply linked
with the nature of the problem and essential to our results, the concentration assumptions such as
compact support or finite moment must be seen as technical and the results are likely to hold in any
case.

2 Exact asymptotics from the Schrödinger problem

In this section, we assume validity of hypothesis (H1), that is that the cost is quadratic and that
the marginals µ0 and µ1 have finite Fisher information and compact support. Under finite Fisher
information of the marginals, it is known that the value of (εEOT) has a second order expansion in
ε (see [17, claim 4.1], see also [31] for other costs and different hypothesis)

OTε =
1

2
W 2

2 − d

2
εln(2πε) + εHm + o(ε) (ε→ 0) (12)

In this section, we will disentangle the roles of (c, γε) and H(γε|H2d) in this asymptotic formula,
and hence give a Taylor expansion of both. We will use the dynamic formulation of the entropic
optimal transport.

2.1 Schrödinger problem and Benamou-Brenier formulation

The quadratic EOT problem can be reformulated as a Schrödinger problem (see [24])

Cε = min
γ∈Π(µ0,µ1)

H(γ|mε) (13)

where mε be the measure of density 1
(2πε)d/2

e−c/ε with respect to the Lebesgue measure H2d. Since

for γ ∈ Π(µ0, µ1), we can compute explicitely εH(γ|mε) = (c, γ) + εH(γ | H2d) + d
2ε ln(2πε), we

have that the solutions of (13) and (εEOT) are the same and

OTε = εCε −
d

2
ε ln(2πε) (14)
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Moreover there exists an analogous to Benamou-Brenier formula for Cε (see [22]) :

Cε = Hm +min
ρ,v

1

ε

∫ 1

0

∫

1

2
|vt|2dρt(x)dt+

ε

8

∫ 1

0

∫ ‖∇ρt‖2
ρt

dxdt (εBB)

Where the min is taken as in the classical Benamou-Brenier formula on paths from µ0 to µ1 that in
the weak sense solve the continuity equation ∂tρ+div(ρv) = 0. We will denote by vε, ρε the solution.
This dynamic formulation and other variations are in fact the core of the Schrödinger problem, that
intend to solve for the most probable trajectory of a free process at positive temperature with fixed
initial and final marginals µ0 and µ1 (see [24] for a survey). The first term in (εBB) corresponds
to the kinetic energy while the second term corresponds to the diffusion (ε is the temperature
parameter).

2.2 A precise expansion of H(γε) and (c, γε)

Minimization problems (εEOT) and (εBB) give the natural idea of using the envelope theorem to
express the ε-derivative of OTε and Cε. For a minimization problem with a real parameter ε, this
theorem ensures that at any differentiability point ε0 of the value function and for any minimizer, the
derivative of the value function coincide with the ε-partial derivative of the objective function with
fixed minimizer (see [29]). This idea has been followed in [7] for (εEOT) and in [12] for (εBB). We will
use the more general setting of [7] that only requires compact support for the marginals µi and obtain
that ε 7→ OTε is C∞ for ε > 0. From equation (14), it is direct that in that case the function εCε is
also smooth, and so we can apply envelope theorem both to OTε = minγ

∫

1
2‖x−y‖2dγ+εH(γ | H2d)

and to εCε = εHm +minρ,v
∫ 1

0

∫

1
2 |vt|2dρt(x)dt + ε2

8

∫ 1

0 I(ρt)dt to get

d

dε
OTε = H(γε) and

d

dε
[εCε] = Hm +

ε

4

∫ 1

0

I(ρεt )dt (15)

Where H(γε) stands for H(γε | H2d). But from equation (14) d
dεOTε =

d
dε

[

εCε − d
2ε ln(2πε)

]

, so we
have

H(γε) = −d
2
ln(2πε) +Hm − d

2
+
ε

4

∫ 1

0

I(ρεt )dt (16)

This gives a quantitative relation between the entropy H(γε) of the static problem (εEOT) and the

average Fisher Information
∫ 1

0 I(ρ
ε
t )dt of the dynamic problem (εBB). It allows to state a complete

coupling system between the different terms of (εEOT) and (εBB) as explained in the following
proposition :

Proposition 2.1. For the quadratic cost, suppose that the support of µi are compact, and that
H(µi|Hd) < +∞. Then















(c, γε) =

∫ 1

0

∫

1

2
|vεt |2dρt(x)dt −

ε2

8

∫ 1

0

I(ρε)dt+
d

2
ε

H(γε) =
ε

4

∫ 1

0

I(ρε)dt− d

2
ln(2πε) +Hm − d

2

(17)

Proof. The second line of the system (17) is nothing but equation (16). For the first line, equation
(14) implies that

(c, γε) = εCε −
d

2
ε ln(2πε)− εH(γε) (18)

We can inject the expression of H(γε) given by (16) and the expression of Cε with the minimal
continuous path (ρε, vε) of equation (εBB) to obtain the first line of the system (17).
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Thanks to the system (17), it is enough to study the asymptotics of ε
∫ 1

0 I(ρ
ε)dt and

∫ 1

0

∫

|vεt |2dρt(x)dt
to get results on (c, γε) and H(γε). When the Fisher information of the marginal is finite, it turns

out that the behaviour of
∫ 1

0
I(ρε)dt and

∫ 1

0

∫

|vεt |2dρt(x)dt can be described quite precisely :

Proposition 2.2. Suppose that the cost is quadratic. If µ0 and µ1 have finite Fisher information,
when ε tends to 0 :

ε

∫ 1

0

I(ρε)dt→ 0 and

∫ 1

0

∫

|vεt |2dρt(x)dt =W 2
2 + o(ε) (19)

Proof. Since the Fisher information of the marginal is finite, from [17, Claim 4.1] the Taylor ex-
pansion (12) of OTε holds. But since OTε = εCε − d

2ε ln(2πε), expansion (12) is equivalent to the
following :

Cε −
1

2ε
W 2

2 −Hm → 0

However from the expression of Cε with the minimal continuous path (ρε, vε) of equation (εBB),

Cε −
1

2ε
W 2

2 −Hm =
1

ε

(
∫ 1

0

∫

1

2
|vεt |2dρt(x)dt −

1

2
W 2

2

)

+
ε

8

∫ 1

0

∫ ‖∇ρεt‖2
ρεt

dxdt

Both terms 1
ε

[

∫ 1

0

∫

1
2 |vεt |2dρt(x)dt− 1

2W
2
2 (µ0, µ1)

]

and ε
8

∫ 1

0

∫ ‖∇ρεt‖2

ρεt
dxdt are positive, the first one

because (ρε, vε) is a path from µ0 to µ1 solving the continuity equation, and so the (ε = 0) Benamou-
Brenier formula holds. Since the sum tends to zero, we know that both terms tend to zero which is
what we needed to prove.

Proposition 2.2 can be seen as a refinement of [20, Lemma 3.3] where, among other asymptotics, it

is shown that ε2
∫ 1

0 I(ρ
ε)dt → 0 and

∫ 1

0

∫

|vεt |2dρt(x)dt →W 2
2 We can now combine propositions 2.1

and 2.2 to obtain a Taylor expansion of (c, γε) and H(γε) :

Theorem 2.3. Suppose that the cost is quadratic, let µ0, µ1 ∈ Pac(Rd) and suppose that for i = 1, 2,
we have I(µi) < +∞ and the support of µi is compact. Then

H(γε) = −d
2
ln(2πε) +Hm − d

2
+ o(1) (20)

and

(c, γε) =
1

2
W 2

2 +
d

2
ε+ o(ε) (21)

Proof. Since a finite Fisher information implies a finite differential entropy, the hypothesis of propo-

sitions 2.1 and 2.2 hold and we can inject the asymptotics on
∫ 1

0
I(ρε)dt and

∫ 1

0

∫

|vεt |2dρt(x)dt (19)
obtained in the latter in the system (17) of the former.

Remark 2.4.
The rate in d

2ε for the subobtimality (c, γε)− (c, γ0) had been already observed in the case of gaussian
measures in 1D (see introductions of [1],[4]). It is astonishing to remark that this first order term
does not depend on µ0 and µ1. Hence, the estimator (c, γε) − d

2ε could provide an interesting
estimate of W 2

2 (µ0, µ1) with a lack of precision comparable to the one of the Sinkhorn divergences
OTε(µ0, µ1)− 1

2 [OTε(µ0, µ0) +OTε(µ1, µ1)] (see [18])

2.3 Rephrasing the results with different functionals

The asymptotic formula for the entropy (20) and the formula for (c, γε) in the system (17) suggest
to introduce two quantities that are linked to our problem. First, the Entropy power function

Nd(µ) :=
e−

2
d
H(µ|Hd)

2πe . This functional has various links with our problem : Costa’s theorem states
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that it is concave along the heat flow (see [13]),
√
N2d is concave along Wasserstein geodesics (see

[16]) and along Schrödinger bridges (see [32]). And it turns out that the asymptotic (20) can be
rewritten in the simple way2

N2d(γε) ∼ Nd(µ0)
1/4Nd(µ1)

1/4ε1/2

The other quantity that we need to present is the energy3

Eε :=
1

ε2

∫

1

2
|vεt |2dρt(x)−

1

8
I(ρεt )

As the notation let think and as it is proved in [11, Corollary 1.1] and [20, lemma 3.3], this energy
does not depend on the time t. With this quantity, the expression of (c, γε) in the system (17)
becomes (c, γε) = ε2Eε + d

2ε, and so the Taylor expansion (21) expresses

ε2Eε =
1

2
W 2

2 + o(ε)

Note that it was already known that ε2Eε → 1
2W

2
2 (see the introduction of [12] or the proof of [20,

lemma 3.3]). The convergence in o(ε) seems new to us. Given the expression for d
dε [εCε] of equation

(15), the other Taylor expansion (20) corresponding to ε
∫ 1

0
I(ρε)dt→ 0 is also equivalent to the fact

that εCε is C1 in 0 with derivative Hm. It can be seen as an extension in 0 of [11, Theorem 1.1].

3 Rates for the quadratic cost

In the last section, under the strong assumptions (H1) of smoothness (I(µi) < +∞) and concen-
tration (Supp(µi) compact), the Taylor expansions of (εEOT) and (εBB) allowed us to give precise
rates for the entropy as well as the cost term in (εEOT). The main idea was to disentangle the role
of the entropy and the cost. In this section we choose the weaker set of assumptions (H2). The
cost is still the quadratic one : c(x, y) = 1

2‖x− y‖2, but the Fisher information need not to be finite
and so the second order Taylor expansion (12) of (εEOT) need not to hold. However, the entropy
H(µi) is still supposed finite. Thanks to the technical assumption that the moments of order 2 + δ
of the marginals are finite for some δ > 0, we still have (see lemma 3.6) some rates of convergence
for the value of (εEOT) of the form

0 ≤ OTε −OT0 ≤ −d
2
ε ln(ε) +O(ε) (22)

From that, it is still possible to disentangle the cost and the entropy (theorem 3.7) through a careful
study of the behaviour of H(γε) as ε→ 0. It will grant rates for (c, γε)− (c, γ0) of the same order ε
as in last section. We start by providing a sketch of the proof :
Let E be a duality gap function E = c− (ϕ⊕ ψ). Recall that since γε has µi as marginals, we have
that

∫

Edγε = (c, γε) − (c, γ0), and so we will denote by (E, γε) this suboptimality. The goal is to
prove (E, γε) ≃ ε and H(γε) ≃ − d

2 ln(ε), so it is natural to try to prove first H(γε) ≃ − d
2 ln(E, γε),

or in terms of entropy power, N2d(γε) ≃
√

(E, γε). But thanks to the information encoded in

inequality (22), it is enough to show an inequality of the type N2d(γε) ≤ C
√

(E, γε).
In fact, as explained in detail in section 3.1, this kind of inequality is not specific to γε and it comes
from the following fact : the contact set Σ := {x, y/E(x, y) = 0} has d dimensions less than the
ambiant space R

2d and (E, γ) quantifies the average distance of γ to Σ because E has a quadratic
detachment in Minty’s coordinates (see definitions 3.1 and 3.3). As a matter of fact, W 2

2 (γ, γ0) also

2Remark that since the functional N is multiplicative, the right hand side is the 4d entropy power of µ0 ⊗ µ1 ⊗

N (0, ε
2d
I2d)

3see the introduction of [12] for a discussion on the name energy
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quantifies this distance, because γ0 is supported on Σ. In proposition 3.5 we obtain results of the
form

N2d(γ) ≤ C
√

(E, γ) and N2d(γ) ≤ CW2(γ, γ0) (23)

or equivalently in term of entropy,

H(γ) ≥ −d
2
ln(E, γ) + C and H(γ) ≥ −d

2
ln(W 2

2 (γ, γ0)) + C (24)

These inequalities are the key for all our rates of convergence of (E, γε), W
2
2 (γε, γ0) and H(γε)

detailed in section 3.2.

3.1 Lower bounds on the entropy

The results of this section are completely independent of the optimality of γε, and even independent
of the fact that γε transports µ0 on µ1. Hence in the following, we will replace γε by a generic
γ ∈ Pac(R2d). The results presented in this section are lower bounds on its entropy H(γ). These
inequalities rely on the comparison of γ with a Gaussian along directions transverse to the support
of a generic optimal plan γ0 for ε = 0. Indeed we know that any optimal plan γ0 is supported on
Σ = {E = 0} which is approximatively a submanifold of (co)dimension d. We will then show that
∫

Edγ as well as W 2
2 (γ, γ0) control the variance of γ along transverse directions to Σ. Finally since

under variance constraint the Gaussian has the smallest entropy we will conclude with the wanted
lower bounds of equations (23) and (24). The same strategy will work in the case of twisted costs.
However in the quadratic case the proof requires only a global change of variable (Minty’s trick)
which makes the arguments clearer. We start with the fundamental property of a function that
allows for estimates like (23) or (24), the quadratic detachment

Definition 3.1 (Quadratic detachment). Let G : Rd × R
d → R+. We say that G has a quadratic

detachment if for any u ∈ R
d it exists vu ∈ R

d such that

∀(u, v) ∈ R
2d G(u, v) ≥ 1

2
‖v − vu‖2 (25)

This quadratic detachment property allows for a bound on the differential entropyH(γ) := H(γ|R2d)
of any plan γ ∈ Pac(R2d) :

Proposition 3.2. Let G be a function on R
d×R

d and γ ∈ Pac(R2d) and denote Cd := − d
2 ln(

4πe
d ).

If G has a quadratic detachment

H(γ) ≥ −d
2
ln

(
∫

Gdγ

)

+H(γ1) + Cd (26)

Where γ1 is the projection of γ on the first coordinate, ie the first marginal of γ, and where H is the
differential entropy (H(γ) = H(γ|R2d) and H(γ1) = H(γ1|Rd))

Proof. If H(γ) = +∞ or
∫

Gdγ = +∞ there is nothing to prove. We assume that H(γ) < +∞
and

∫

Gdγ < +∞. Let γ = γ1 ⊗ γu be the disintegration of γ with respect to the first coordinate.
∫

Gdγ < +∞ implies that γu has a finite moment of order 2, γ1 almost everywhere, because G has
a quadratic detachment. By additivity of entropy we have

H(γ) = H(γ1) +

∫

H(γu)dγ1(u) (27)

However under variance constraint the gaussian with independent coordinates has the smallest en-

tropy thus H(γu) ≥ H(N (0, Var(γu)
d Id)) = − d

2 ln (Var(γ
u)) − d

2 ln(
2πe
d ). Moreover, the average
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of a random variable minimizes the average square distance, so Var(γu) ≤
∫

‖v − vu‖2dγu(v) ≤
2
∫

G(u, v)dγu(v) where the last inequality holds because G has a quadratic detachment. So we have

H(γ) ≥ H(γ1)−
∫

d

2
ln

(

2

∫

G(u, v)dγu(v)

)

dγ1(u)−
d

2
ln(

2πe

d
) (28)

Now by concavity of the logarithm, exchanging it with the integral against γ1 gives an even lower
quantity, hence we obtain the desired inequality.

This result shows a clear path to get lower bounds on the entropy of γε : typically, it is enough to
show that the duality gap has a quadratic detachment to show inequality (24). However, E has no
quadratic detachment in the classic (x, y) coordinates, but in transverse coordinates, that we call
Minty’s coordinates ([30])

Definition 3.3 (Minty’s coordinates). We wil call Minty’s coordinates the coordinates (u, v) =
1√
2
(x+ y, x− y). The change of variable (x, y) 7→ (u, v) is an isometry and for any convex function

f , the graph of the subdifferential of f in the (x, y)-coordinates corresponds to the graph of a
1-Lipschitz function defined on the whole space in the (u, v)-coordinates (see [33, theorem 12.12,
theorem 12.25]). Moreover, for γ ∈ P(R2d), we will denote by γ̂ the pushforward of γ through this
change of variable and call Minty’s decomposition of γ the disintegration of γ̂ with respect to the
orthogonal projection onto the first coordinate γ̂ = µ̂⊗ γ̂u.

The quadratic detachment of E in those coordinates follows from the slightly more general inequality
(30), known as Minty’s trick. It can be generalized for twisted costs (see lemma 4.4). In the quadratic
case, it is somehow folklore and we recall the proof, but for more general cost, it was proved in [7],
following arguments of [28]. We also prove the quadratic detachment of the function d(.,Σ)2 that
we will use to bound the entropy with the Wasserstein distance to an optimizer.

Lemma 3.4. Let µ0, µ1 ∈ P2(R
d) with E := c − (ϕ ⊕ ψ) the duality gap of the quadratic optimal

transport problem from µ0 to µ1. Denote by d(z,Σ) the distance of a point z ∈ R
2d to the set

Σ = {E = 0}. In Minty’s coordinates, the functions (u, v) 7→ E(u, v) and (u, v) 7→ d((u, v),Σ)2 have
quadratic detachment.4

Proof. First note that in the quadratic case E rewrites as E(x, y) = f(x) + f∗(y) − 〈x, y〉 where f
is a convex function and f∗ is its Legendre-Fenchel conjugate. Thus for (x, y), (x′, y′) ∈ R

d ×R
d we

have

E(x, y) + E(x′, y′) = f(x) + f∗(y)− 〈x, y〉+ f(x′) + f∗(y′)− 〈x′, y′〉
≥ 〈x, y′〉 − f∗(y′) + f∗(y)− 〈x, y〉+ 〈x′, y〉 − f(y) + f∗(y′)− 〈x′, y′〉
≥ 〈x− x′, y′ − y〉

(29)

In Minty’s coordinates (u, v) = 1√
2
(x + y, x − y) we can see E as a function of (u, v). In these

coordinates, inequality (29) becomes

E(u, v) + E(u′, v′) ≥ 1

2
(‖v′ − v‖2 − ‖u′ − u‖2) (30)

The set Σ = {x, y/E(x, y) = 0} corresponds to the subdifferential of the convex function f . Hence
in the Minty’s coordinates (u, v), it corresponds to the graph in u of a 1-lipschitz function that is
defined on the whole space R

d (see [33, theorem 12.12, theorem 12.25]). So for any u ∈ R
d, it

exists a unique vu ∈ R
d such that E(u, vu) = 0. And thanks to Minty’s trick (30) we have that

E(u, v) ≥ 1
2 |v − vu|2.

It remains to show that the distance to the graph of the 1-lipschitz function u 7→ vu has a quadratic

4here, by a slight abuse of notation, E denotes E ◦ Φ−1 where Φ : (x, y) 7→ (u, v) is Minty’s change of variable
(definition 3.3)
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detachment. Let u, u′, v ∈ R
d. From the inequality ‖a‖2 + ‖b‖2 ≥ 1

2‖a+ b‖2 applied to a = vu − vu′

and b = vu′ − v, we get

‖vu − vu′‖2 + ‖vu′ − v‖2 ≥ 1

2
‖vu − v‖2

And we can bound ‖vu − vu′‖2 by ‖u− u′‖2 because u 7→ vu is 1-lipschitz. Hence we obtain

‖u− u′‖2 + ‖vu′ − v‖2 ≥ 1

2
‖vu − v‖2

But the left hand side is the distance from (u, v) to (u′, vu′) and the inequality holds for any u′, so

d((u, v),Σ) ≥ 1

2
‖vu − v‖2

Now that we know that E and d(.,Σ)2 have quadratic detachment, we can use proposition 3.2 to
bound the entropy of γ from bellow with

∫

Edγ and W 2
2 (γ, γ0).

Proposition 3.5. Suppose that the cost is quadratic. Let (µ0, µ1) ∈ P2(R
d), (ϕ, ψ) be associated

Kantorovich potentials and E := c−(ϕ⊕ψ) be a duality gap function. Let γ0 be an optimal transport
plan from µ0 to µ1. Then, for any γ ∈ Pac(R2d)

H(γ) ≥ −d
2
ln

(
∫

Edγ

)

+H(µ̂) + Cd (31)

H(γ) ≥ −d
2
lnW 2

2 (γ, γ0) +H(µ̂) + Cd (32)

where γ̂ = µ̂⊗ γ̂u is the Minty’s decomposition of γ and Cd := − d
2 ln(

4πe
d ) (see definition 3.3).

If we denote by σγ(X + Y ) the standard deviation of X + Y when the law of (X,Y ) is γ, we have

N2d(γ) ≤
σγ(X + Y )

d

√

∫

Edγ N2d(γ) ≤
σγ(X + Y )

d
W2(γ, γ0) (33)

Proof. By lemma 3.4, the duality gap E and the square distance d(.,Σ)2 have quadratic detachment.
So we can apply proposition 3.2 on both to obtain

H(γ) ≥ −d
2
ln

(
∫

Edγ

)

+H(µ̂) + Cd (34)

H(γ) ≥ −d
2
ln

(
∫

d(x,Σ)2dγ(x)

)

+H(µ̂) + Cd (35)

The first inequality is exactly (31) and the second implies (32) because an optimal plan γ0 is concen-
trated on a contact set Σ = {x, y/E(x, y) = 0} by optimality and so W 2

2 (γ, γ0) ≥
∫

d(x,Σ)2dγ(x).
The second part is a consequence and we provide only the proof for

∫

Edγ because the proof for
W 2

2 (γε, γ0) is stricly similar. Taking the exponential of (31), we get

N2d(γ)
2 ≤ 2

d
Nd(µ̂)

∫

Edγ

Since the gaussian minimizes the entropy at fixed variance, the entropy power of µ̂ is bigger than

the one of a gaussian of same variance, that is Nd(µ̂) ≤ Var(µ̂)
d . Moreover Var(µ̂) = 1

2Varγ(X + Y )
because µ̂ is the law of the first marginal of γ in the coordinates (u, v) = 1√

2
(x + y, x − y). This is

enough to finish the proof of (33).

We have established the bounds (33) on a general plan γ. It is now time to apply these results to the
entropic plan γε under hypothesis (H2) in order to obtain rates of convergence of the suboptimality
(c, γε)− (c, γ0). We will also quantify the weak convergence of γε towards γ0 in W2 distance.
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3.2 Rates of convergence

In the sequel of the section, we use the set of assumptions (H2) that imply in particular that the
optimizer γ0 is unique. The main result of this section states that the suboptimality (c, γε)− (c, γ0)
converges to 0 at a speed of order ε. We also derive the same speed for W 2

2 (γε, γ0) and this matches
in both cases the rate found for gaussians.
The proofs of the theorems require an upperbound on the rate of convergence of OTε towards OT0.
The key point being that the convergence rate is of the form

εH(γε) ≤ OTε −OT0 ≤ −d
2
ε ln(ε) +O(ε) (36)

This result has been obtained recently for general costs under some regularity conditions [7] and in
the quadratic case under moments conditions [15]. The following lemma explicits the dependence of
the bounded term O(ε) found in the latter.

Lemma 3.6. Assume as in hypothesis (H2) that the cost is quadratic, that µ0, µ1 ∈ P2+δ(R
d) for

some δ > 0 and that H(µi) < +∞. Then, as ε→ 0

OTε −OT0 ≤ −d
2
ε ln(ε) + Cε (37)

for a constant C depending on d, m2+δ(µi) and H(µi).

Proof. The constant C introduced in [15, corollary 3.12] is (up to a numerical constant) the quan-
tization constant of the optimal transport γ0. It allows for the following upper bound

OTε −OT0 ≤ −d
2
ε ln(ε) + (H(µ0) +H(µ1))ε+ Cε (38)

However by Minty’s trick [15, lemma 3.11] this quantization constant is tied to the quantization
constant of a measure admitting a moment of order 2 + δ. In that case [23, corollary 6.7] gives an
explicit bound

C ≤ C′ (m2+δ(γ0) + d) (39)

where C′ is independent of dimension. We conclude by using triangular inequality to upper bound
m2+δ(γ0) by 22+δ(m2+δ(µ0) +m2+δ(µ1)).

With the inequality (37) that gives an upper bound on H(γε) and the lower bound (31) found in
the previous section, we are now able to show that (c, γε)− (c, γ0) = Θ(ε) :

Theorem 3.7. Suppose that the cost is quadratic. Let µ0, µ1 ∈ P2+δ,ac(R
d) for some δ > 0. And

further assume that their entropy is finite. Then in the limit ε→ 0,

(c, γε)− (c, γ0) = Θ(ε), H(γε) = −d
2
ln(ε) +O(1) and OTε = OT0 −

dε

2
ln(ε) +O(ε) (40)

More precisely, there exist c, C > 0, depending on m2+δ(µi), H(µi) and the dimension d, such that

cε ≤
∫

Edγε = (c, γε)− (c, γ0) ≤ Cε (41)

Proof. Set (E, γε) :=
∫

Edγε, and consider d, H(µi) and m2+δ(µi) as fixed. Lemma 3.6 grants the
following upper bound on the regularized problem for ε small enough

(E, γε) + εH(γε) ≤ −d
2
ε ln(ε) + Cε (42)

On the other hand, from proposition 3.5, we know that N2d(γε) ≤ σγε (X+Y )
d

√

(E, γε). But we have

also σγε(X +Y ) ≤ σγε(X)+σγε(Y ) =
√

m2(µ0)+
√

m2(µ1) because the marginals of γε are µ0 and
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µ1. And by Hölder inequality, m2(µ) ≤ m2+δ(µ)
2

2+δ . So N2d(γε) ≤ C′√(E, γε) or equivalently, by
taking the logarithm,

H(γε) ≥ −d
2
ln (E, γε) + C′′ (43)

Now by combining (43) with (42) we have

(E, γε)

ε
− d

2
ln

(

(E, γε)

ε

)

≤ C′′′ (44)

The function x 7→ x− d/2 ln(x) goes to +∞ near 0 and +∞. Thus (E,γε)
ε = Θ(1), or more precisely,

there exist constants c, C > 0, depending on d, m2+δ(µi) and H(µi), such that cε ≤ (E, γε) ≤ Cε.
Injecting (E, γε) = Θ(ε) in inequalities (42) and (43) gives respectively H(γε) ≤ − d

2 ln(ε) + O(1)

and H(γε) ≥ − d
2 ln(ε) +O(1) which concludes the proof.

Now that we have proven that the suboptimality (c, γε)−(c, γ0) has speed ε, we want to do the same
for the the Wasserstein distance W 2

2 (γε, γ0). Inequality (32) will give a lower bound on W 2
2 (γε, γ0),

but we need also an upper bound. If the Brenier map is Lipschitz, the following lemma provides it.5

Lemma 3.8. For the quadratic cost, suppose that the Brenier map T = ∇f is L Lipschitz. Then

W 2
2 (γε, γ0) ≤

∫

‖y − T (x)‖2dγε ≤ 2L ((c, γε)− (c, γ0)) (45)

Proof. Let S(x, y) = (x, T (x)) with T = ∇f and f the Brenier convex function associated with
γ0. Then S is a transport map from γε to γ0 thus W 2

2 (γε, γ0) ≤
∫

‖y − T (x)‖2dγε. We now
use an inequality proved by Berman in [3] and Li and Nochetto in [25], who have built upon an
earlier work of Gigli [21]. The inequality is that whenever the Brenier map is Lipschitz we have
‖y− T (x)‖2 ≤ 2LE with E = c− (ϕ⊕ ψ) the duality gap. Combining these two inequalities grants
the result, since

∫

Edγε = (c, γε)− (c, γ0).

The hypothesis that the Brenier map is Lipschitz might seem abstract. However, note that Caf-
farelli’s regularity theory ([5],[6]) ensures it holds under some simple regularity conditions on the
marginals. For example as soon as the marginals have Hölder densities bounded away from zero
on their supports and the latter are smooth and uniformly convex. In a different direction, recent
works [8] ensure regularity of the transport map between log-concave measures under a variance
constraint.

Theorem 3.9. Suppose that the cost is quadratic. Let µ0, µ1 ∈ P2+δ,ac(R
d) for some δ > 0. And

further assume that their entropy is finite and that the Brenier map T = ∇f is Lipschitz. Then
W 2

2 (γε, γ0) = Θ(ε). More precisely :

1. if µ0, µ1 ∈ P2+δ,ac(R
d) with finite entropy, then there exist c > 0, depending on the moments

m2+δ(µi), the entropies H(µi) and the dimension d, such that, as ε→ 0

cε ≤W 2
2 (γε, γ0) (46)

2. if moreover the Brenier map is L-lipschitz, then there exist C > 0 depending on d, m2+δ(µi),
H(µi) and L, such that, as ε→ 0

cε ≤W 2
2 (γε, γ0) ≤ Cε (47)

5This lemma and its proof was suggested to us by P. Pegon
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Proof. For the first part, let’s recall that from proposition 3.5, we haveN2d(γε) ≤ σγε (X+Y )
d

√

(E, γε).
As in the proof of theorem 3.7, we bound can bound σγε(X + Y ) with the moments m2+δ(µi) and
so we obtain

N2d(γε) ≤ C(m2+δ(µi), d)W2(γε, γ0) (48)

But on the other hand, from lemma 3.6, we now that H(γε) ≤ − d
2 ln(ε) + C(m2+δ(µi), H(µi), d).

Or equivalently,
N2d(γε) ≥ C(m2+δ(µi), H(µi), d)

√
ε (49)

So, combining inequality (48) and (49), we get W 2
2 (γε, γ0) ≥ cε for some constant c depending on

d, H(µi) and m2+δ(µi).
The second part is a direct combination of lemma 3.8 from which W 2

2 (γε, γ0) ≤ 2L ((c, γε)− (c, γ0))
and theorem 3.7 which states that (c, γε)− (c, γ0) ≤ C(m2+δ(µi), H(µi), d)ε.

Remark 3.10. Note that, as explained in [7, Proposition 4.5], the method of lemma 3.8 allows to
control also the L2-gap between Tε, the barycentric projection of γε, and the Brenier map T = ∇f .

||Tε − T ||2L2(µ) ≤
∫

|y − T (x)|2dγε(x, y) ≤ 2L

∫

Edγε ≤ Cε

In a similar fashion we get a control over the distance between the support of γε and the graph of
the optimal transport

∫

d(y, supp(γ0))
2dγε ≤

∫

|y − T (x)|2dγε(x, y) = O(ε) (50)

Hence, for the quadratic case, under technical assumptions, we have obtain generic rates of conver-
gence when the marginals µi have finite differential entropy :

(c, γε) = (c, γ0) + Θ(ε) H(γε) = −d
2
ln(ε) +O(1) W2(γε, γ0) = Θ(

√
ε) (51)

Can we generalize it to a broader class of costs ? This is the objective of next section.

4 Rates for infinitesimally twisted costs

In this section, we use the set of assumption (H3) that is adapted to twisted cost functions. As in
the quadratic case, we begin by estimates on the entropy based on quadratic detachment.

4.1 Lower bound on the entropy

The key ingredient used to lower bound the entropy was the lower bound involving the variance
H(γ) ≥ H(N (0,Var(γ)/d)). In fact we used a finer result using a disintegration of γ in two compo-
nents, one of which had bounded variance. In order to extend the preceding results to more general
costs our goal is to have a local version of the proposition 3.5 that states a precise lower bound for
H(γ). Indeed, imagine that E ≥ 0 is a function such that there is a direction along which E grows
quadratically locally around Σ = {E = 0}. For any measure γ, it is then possible to bound the
variance of γ along that same direction which in turns give a bound on the entropy of γ in a similar
fashion to lemma 3.4. In order to state this idea formally we introduce the concept of local quadratic
detachment for a positive function.

Definition 4.1 (Local quadratic detachment). Let X ⊂ R
d a compact set and E : X ×X → R+

continuous. Assume that Σ = {E = 0} 6= ∅. We says that E has a local quadratic detachment of
parameters ((Ui)i, (Φi)i, κ) where κ > 0, (Ui)i is a finite open covering of Σ, and (Φi)i a family of
volume preserving affine functions Φi : x 7→ (u, v) ∈ R

d ×R
d such that for all (u, v), (u, v′) ∈ Φi(Ui)

E(u, v) + E(u, v′) ≥ κ‖v − v′‖2 (52)

Where E denotes E ◦ Φ−1
i by a slight abuse of notation.
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This local quadratic detachment property is a direct generalisation of the notion of quadratic de-
tachment (definition 3.1). And it happens that the same result holds: the entropy of γ is lower
bounded by the log of the integral of a function having a local quadratic detachment. The idea of
proof is the same as in the quadratic case with some added technical issues associated to the locality
of the quadratic detachment.

Proposition 4.2. Let X ⊂ R
d a compact set and E a continuous function on X × X that has a

local quadratic detachment with parameters ((Ui)
N
i=1, (Φi)

N
i=1, κ). Set R = X × X \ ⋃

i Ui. There
exists a constant C depending on X, ‖Φi‖op and N such that for any γ ∈ P(X ×X) we have

H(γ) ≥ −d
2
ln

(
∫

E(x)dγ

)

− d

2
ln

(

4πe

κd

)

+
d

2
ln

(

1 ∧ inf
x∈R

E(x)

)

+ C (53)

Proof. First if H(γ) = +∞ or
∫

Edγ = +∞, there is nothing to prove. We assume that H(γ) < +∞
thus γ has a density that we denote ρ and

∫

Edγ < +∞. Let κ > 0, (Ui)
N
i=1 and Φi as in the definition

4.1 of the local quadratic detachment. Let ζi a partition of unity subordinate to the family (Ui)i.
Denote by U =

⋃

i Ui. If pi = (ζiρ)(U) > 0 let ρi =
1
pi
ζiρ, else ρi = 0. Then we have the following

decomposition ρ = 1U
∑

i piρi + 1Ucρ which we can inject in the definition of the entropy

H(γ) =

∫

ρ ln(ρ)

=

∫

U

∑

i

piρi ln(
∑

j

pjρj) +

∫

Uc

ρ ln(ρ)

=
∑

i

pi

∫

ρi ln(
∑

j

pjρj) +

∫

Uc

ρ ln(ρ)

≥
∑

i

pi

∫

ρi ln(piρi) +

∫

Uc

ρ ln(ρ)

≥
∑

i

pi ln(pi) +
∑

i

pi

∫

ρi ln(ρi) +

∫

Uc

ρ ln(ρ)

≥
∑

i

piH(ρi)−
1

e

(

N +H2d(X ×X)
)

(54)

Where the first inequality holds because piρi ≤
∑

j pjρj and the last inequality holds because under
support constraint the uniform distribution has the smallest entropy. Now for i such that ρi 6= 0 set
τi = (Φi)#ρi, since Φi is volume preserving we have H(τi) = H(ρi). We now disintegrate τi with
respect to the projection onto the first coordinate u and denote the disintegration τi = µi ⊗ τui . By
additivity of the entropy we have

H(τi) = H(µi) +

∫

H(τui )dµi (55)

However let u in the support of µi and let v within the support of τui . Take v′ ∈ π2Φi(X × X)
such that E(u, v′) = minπ1Φi(X×X)E(u, .), which is possible by compactness of π2Φi(X ×X) and
continuity of E. Then by the local quadratic detachment of E we have

E(u, v) ≥ 1

2
(E(u, v′) + E(u, v)) ≥ κ

2
‖v′ − v‖2 (56)

Moreover since the variance is the distance to the constants in L2 space we have

∫

E(u, v)dτui ≥ κ

2

∫

‖v′ − v‖2dτui ≥ κ

2
Var(τui ) (57)
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Using this control of the variance in conjonction with the fact that the gaussian has lowest entropy
under variance constraint we have

H(τui ) ≥ −d
2
ln (Var(τui ))−

d

2
ln

(

2πe

d

)

≥ −d
2
ln

(
∫

E(u, v)dτui

)

− d

2
ln

(

4πe

κd

) (58)

On the other hand we know that µi is supported in π1Φi(Ui) the diameter of which is smaller than
a constant time that of X , thanks to the continuity of Φi. Thus since on a bounded support the
uniform distribution has the smallest entropy we have H(µi) ≥ − ln(Hd(π1Φi(Ui))) = C(‖Φi‖op, X).
Now coming back to equation (55) we have

H(ρi) = H(τi) = H(µi) +

∫

H(τui )dµi

≥ −d
2

∫

ln

(
∫

E(u, v)dτui

)

dµi −
d

2
ln

(

4πe

κd

)

+ C(‖Φi‖op, X)

≥ −d
2
ln

(
∫

E(u, v)dτi

)

− d

2
ln

(

4πe

κd

)

+ C(‖Φi‖op, X)

≥ −d
2
ln

(
∫

E(x)dρi

)

− d

2
ln

(

4πe

κd

)

+ C(‖Φi‖op, X)

(59)

where the second to last inequality holds by concavity of the logarithm and the last inequality holds
because Φi is volume preserving. We now multiply equation (59) by pi and sum over i in order to
combine it with the lower bound term in equation (54)

H(γ) ≥
∑

i

piH(ρi)−
1

e

(

N +H2d(X ×X)
)

≥
∑

i

pi

(

−d
2
ln

(
∫

E(x)dρi

)

− d

2
ln

(

4πe

κd

)

+ C(‖Φi‖op, X)

)

− 1

e

(

N +H2d(X ×X)
)

≥ −d
2
ρ(U) ln

(
∫

U

E(x)dρ

)

− d

2
ln

(

4πe

κd

)

+ C(N, ‖Φi‖op, X)

(60)

where we used the concavity of the logarithm one last time. It remains to prove that there is a
constant such that −ρ(U) ln

(∫

U
Edρ

)

≥ − ln
(∫

Edρ
)

+ C.
Let E0 = 1 ∧ infx∈Uc E(x) > 0 because Σ ∩ U c = ∅ is a compact set and E is continuous. Then
∫

Uc Edρ ≥ E0(1− ρ(U)) which implies − ln
(∫

Edρ
)

≤ − ln
(∫

U
Edρ+ E0(1− ρ(U))

)

. For α ∈ [0, 1]
and x > 0 set f : x 7→ −α ln(x) + ln(x + E0(1 − α)). We have f(x) ≥ f(αE0) = −α ln(α) + (1 −
α) ln(E0) ≥ ln(E0). This allows us to conclude that

H(γ) ≥ −d
2
ln

(
∫

E(x)dρ

)

− d

2
ln

(

4πe

κd

)

+
d

2
ln(E0) + C(N, ‖Φi‖op, X) (61)

4.2 Rates of convergence of OTε

The quadratic case showed that the duality gap function E = c − (ϕ ⊕ ψ) has a global quadratic
detachment, where ϕ, ψ are any Kantorovich potentials. In fact the duality gap still has a quadratic
detachment, though local, in the more general case of infinitesimally twisted costs, which includes
situations where the optimal plans are not necessarily given by a map. This is the point of [7, lemma
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4.2], which relies on a generalized version of Minty’s trick also stating that in charts the support of
γ0 is the graph of a Lipschitz function. They also provide a quadratic lower bound on the duality
gap in these local charts. Our goal is to then apply proposition 4.2 in order to control the entropy
of the optimal regularized transport plans as ε → 0. We will then be able to conclude by finding a
rate of order ε for (c, γε)− (c, γ0) in a similar fashion to the quadratic case.
Throughout this section we will work on X a compact subset of Rd. We denote by Ω an open set
containing X . We will assume that the marginals µ0, µ1 are supported in X and have finite entropy.
We start by recalling the results found in [7].

Definition 4.3 (Infinitesimal twist). Given c ∈ C2(Ω2) we say that c is infinitesimally twisted if
∇2
xyc(x, y) = (∂2xiyjc(x, y))i,j ∈Md(R) is invertible for every (x, y) ∈ Ω2.

We now recall the quadratic detachment lemma [7, lemma 4.2]. Their proof closely follow an earlier
proof found in [28], however they are interested in points that do not belong to the support of the
optimal transport plan.

Lemma 4.4. Let c ∈ C2(Ω2) be an infinitesimally twisted cost, and (ϕ, ψ) ∈ C(X)2 be a pair of
c-conjugate functions. We denote by E = c− ϕ⊕ ψ ≥ 0 the duality gap function defined on X ×X,
by Σ = {E = 0} the contact set and for every r > 0,

τ(r) = sup
x,x′∈X×X
‖x′−x‖≤r

‖∇2
xyc(x

′)−1∇2
xyc(x)− Id‖ ∈ [0,∞) (62)

If x̄ ∈ X ×X and x,x′ ∈ Br(x̄) ∩ (X ×X), then

E(x) + E(x′) ≥ ‖∆v‖2 − ‖∆u‖2 − τ(r)(‖∆v‖2 + ‖∆u‖2) (63)

where ∆u = u(x′)− u(x),∆v = v(x′)− v(x), and

u(x) =
1

2
(x−∇2

xyc(x̄)y), v(x) =
1

2
(x+∇2

xyc(x̄)y) (64)

for every x = (x, y).

Remark 4.5. The following remark was made in [7]. What directly follows from the lemma is that
locally, up to a change of variable, the support of γ0 lies within the graph of a Lipschitz function,
with Lipschitz constant arbitrarily close to 1. Indeed for (u, v), (u′, v′) ∈ Φ(B(x̄, r)) ∩ Φ(suppγ0) we
have

0 = E(u, v) + E(u′, v′) ≥ (1− τ(r))‖∆v‖2 − (1 + τ(r))‖∆u‖2 (65)

Thus
√

1 + τ(r)

1− τ(r)
‖∆u‖ ≥ ‖∆v‖ (66)

This lemma essentially says that locally around the set Σ = {E = 0} the function E grows at least
quadratically along the direction Im(Id + ∇2

xyc(x̄)). In particular when the functions (ϕ, ψ) are
Kantorovich potentials of the optimal transport problem, this gives a quadratic lower bound of the
duality gap close to Σ. The following lemma restates lemma 4.4 in the language of the quadratic
detachment of the duality gap function.

Lemma 4.6. Using the notations of lemma 4.4. Let (ϕ, ψ) ∈ C(X)2 be a pair of c-conjugate
functions. Then E = c−(ϕ⊕ψ) has a local quadratic detachment of parameters ((B(xi, r))i, (Φi)i, κ)
where r is such that τ(r) ≤ 1

2 , and κ = 1
4 infx∈X2 |det(∇2

xyc(x))|1/d). The familly (B(xi, r))i is a
finite covering of Σ, and Φi(x) = αi(ui(x)−ui(xi), vi(x)−vi(xi)) with αi chosen such that JΦi = 1
and

ui(x) =
1

2
(x−∇2

xyc(xi)y), vi(x) =
1

2
(x+∇2

xyc(xi)y) (67)
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Proof. We use the notations of lemma 4.4. Let r > 0 such that τ(r) ≤ 1/2 which is possible since by
continuity of ∇2

xyc over the compact set X2. We have τ(r) → 0 as r → 0. Note that E is continuous
because ϕ, ψ are c-conjugate functions and c is continuous. Thus Σ is closed, hence compact. We
can choose (xi)

N
i=1 ∈ ΣN such that (B(xi, r))i is a finite covering of Σ. For i ∈ [1, N ] and for every

x,x′ ∈ B(xi, r) such that ui(x) = ui(x
′), we have by lemma 4.4

E(x) + E(x′) ≥ (1− τ(r))‖∆vi‖2 ≥ 1

2α2
i

‖∆(αivi)‖2 (68)

where vi(x) = 1/2(x+∇2
xyc(xi)y). Note that Φi is an affine volume preserving map thus we have

1 =
α2d

i

2d |det(∇2
xyc(xi))|. The determinant and the cross derivative are continuous which implies

I = infx∈X2 | det(∇2
xyc(x))| > 0 by the infinitesimal twist condition on c. We conclude that

E(x) + E(x′) ≥ 1

2α2
i

‖∆(αivi)‖2 ≥ I1/d

4
‖∆(αivi)‖2 (69)

We will use this lemma in the specific case ofa duality gap function where ϕ, ψ are Kantorovich
potentials for the optimal transport problem. Note that there is no dependence in ε and thus the
quadratic detachment framework can be used to derive the rates found in the quadratic cost case.
It is known (see [15, 7]) that for infinitesimally twisted cost and compactly supported marginals of
finite entropy, the regularized problem εEOT satisfies the following inequality for some real M

OTε −OT0 ≤ −d
2
ε ln(ε) +Mε (70)

We formally recall that convergence result in the following lemma.

Lemma 4.7. [15, Theorem 3.8, Lemma 3.13] Assume that µi are compactly supported and c ∈
C2(Ω2) is infinitesimally twisted. Then there is C > 0 such that, as ε→ 0

OTε −OT0 ≤ −d
2
ε ln(ε) + Cε (71)

Proof. Let X compact such that supp(µi) ⊂ X . Then by continuity, ∇2c is bounded. Moreover since
µi are compactly supported [15, lemma 3.13] ensures that the optimal transport plan γ0 satisfies the
right quantization property for [15, theorem 3.8] to apply and grant a constant C > 0 such that

OTε −OT0 ≤ −d
2
ε ln(ε) + Cε (72)

Note that OTε−OT0 =
∫

Edγε+εH(γε). Thus in combination with lemma 4.7 and the lower bound
on the entropy 4.2 we have the following result.

Theorem 4.8. Let c ∈ C2(Ω2) infinitesimally twisted. Let µi ∈ Pac(Ω) two compactly supported
measures satsifying H(µi) <∞. Then

(c, γε)− (c, γ0) = Θ(ε), H(γε) = −d
2
ln(ε) +O(1) and OTε = OT0 −

dε

2
ln(ε) +O(ε) (73)

Proof. We denote by X a compact subset of Ω such that µi(X) = 1. It is known that the Kantorvich
potentials are c-conjugate functions and thus are continuous on Ω. In particular the duality gap
function E(x, y) = c(x, y) − ϕ(x) − ψ(y) is continuous on Ω× Ω. By lemma 4.6 we thus know that
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E has a local quadratic detachment. Thus proposition 4.2 implies that there is a constant C such
that

H(γε) ≥ −d
2
ln

(
∫

Edγε

)

+ C (74)

Now combining this inequation with the upper bound on the rate of convergence (70) we have

−d
2
ε ln(ε) + Cε ≥

∫

Edγε + εH(γε) ≥
∫

Edγε −
d

2
ε ln

(
∫

Edγε

)

+ Cε (75)

Dividing both sides by ε and adding ln(ε) we get
∫

Edγε
ε

− d

2
ln

(
∫

Edγε
ε

)

≤ C (76)

And we conclude as in theorem 3.7.

4.3 Lower bound on W2(γε, γ0)

We now focus on the lower bound of the Wasserstein distance between γε and γ0. Unlike the
quadratic case we won’t be able to directly use a quadratic detachment for the Wasserstein distance.
For ε > 0, by construction γε is absolutely continuous with respect to the Lebesgue measure, thus
there is an optimal transport map for the quadratic cost from γε to γ0. In particular this map
is the gradient of a convex function f . We are now able to write the Wasserstein distance as
W 2

2 (γε, γ0) =
∫

‖x−∇f(x)‖2dγε(x). Inspired by the quadratic case and the last section we could
say that x 7→ ‖x−∇f(x)‖2 has a local quadratic detachment, but this function is not necessarily
continuous which prevents us from applying the results on quadratic detachment. However the spirit
of the proofs remains true and the results of this section are essentially an adaptation of the results
presented before. First the Wasserstein distance between two measures satisfies a property close to
a quadratic detachment whenever one of the measure is supported on a Lipschitz graph.

Lemma 4.9. Let E a subspace of Rn, T : E → E⊥ and µ = (Id× T )#µ0 with µ0 a probability on
E with finite moment of order 2. Suppose that T is L-Lipschitz. Then for any ν ∈ P2,ac(R

d)

W 2
2 (µ, ν) ≥ (1− L)W 2

2 (µ0, ν0) +
1

L+ 1

∫

V ar(νx)dν0(x) (77)

where ν = ν0 ⊗ νx is the disintegration of ν with regard to the orthogonal projection on E. In
particular

(1 + L)2W 2
2 (µ, ν) ≥

∫

V ar(νx)dν0(x) (78)

Proof. Let π be the optimal coupling between µ, ν. Let (X ′, Y ′) ∼ µ and (X,Y ) ∼ ν such that
(X ′, Y ′, X, Y ) ∼ π. Thus

W 2
2 (µ, ν) = Eπ

[

‖X −X ′‖2 + ‖Y − T (X ′)‖2
]

(79)

. Now using that T is L-Lipschitz:

L‖X −X ′‖+ ‖Y − T (X ′)‖ ≥ ‖Y − T (X)‖. (80)

and taking the square

L2‖X −X ′‖2 + ‖Y − T (X ′)‖2 + 2L‖X −X ′‖‖Y − T (X ′)‖ ≥ ‖Y − T (X)‖2. (81)

Thus we have

W 2
2 (ν, µ) ≥ Eπ

[

‖X −X ′‖2 + ‖Y − T (X ′)‖2
]

≥ (1− L2)Eπ
[

‖X −X ′‖2
]

+ Eπ

[

‖Y − T (X)‖2
]

− 2LEπ [‖X −X ′‖‖Y − T (X ′)‖]
(82)
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but the last term satisfies by Young inequality ab ≤ 1
2 (a

2 + b2)

Eπ [‖X −X ′‖‖Y − T (X ′)‖] ≤ 1

2
(Eπ

[

‖X −X ′‖2
]

+ Eπ

[

‖Y − T (X ′)‖2
]

) ≤ W 2
2 (µ, ν)

2
(83)

Inequality (82) becomes

W 2
2 (µ, ν)(1 + L) ≥ (1− L2)Eπ

[

‖X −X ′‖2
]

+ Eπ

[

‖Y − T (X)‖2
]

(84)

and finally we have

W 2
2 (µ, ν) ≥ (1 − L)Eπ

[

‖X −X ′‖2
]

+
1

1 + L
Eπ

[

‖Y − T (X)‖2
]

≥ (1 − L)W 2
2 (µ0, ν0) +

1

1 + L

∫

Eνx

[

‖Y − E [Y | X = x] ‖2
]

dν0

≥ (1 − L)W 2
2 (µ0, ν0) +

1

1 + L

∫

V ar(νx)dν0

(85)

Where the second inequality is true since the mean is the L2 orthogonal projection of the random
variable on the space of constants. Now since W 2

2 (µ, ν) ≥W 2
2 (µ0, ν0) we have

(1 + L)W 2
2 (µ, ν) ≥W 2

2 (µ, ν) + LW 2
2 (µ0, ν0) ≥W 2

2 (µ0, ν0) +
1

1 + L

∫

V ar(νx)dν0 (86)

Which finally grants (1 + L)2W 2
2 (µ, ν) ≥

∫

V ar(νx)dν0.

The proof can be slightly modified to show that the function x 7→ d(x,Γ)2 where Γ is the graph
of a Lipschitz function has a quadratic detachment. As stated before, to use the local quadratic
detachment apparatus one could show that x 7→ ‖x − ∇f(x)‖2 has a local quadratic detachment
where ∇f is the optimal transport from γε to γ0. And thanks to remark 4.5, γ0 is supported on a
Lipschitz graph on charts. In particular if on an open set U , γ0 is the graph of a Lipschitz function,
then x 7→ ‖x−∇f(x)‖2 satisfies a quadratic detachment on (∇f)−1(U). However since we have no
information on the regularity of the transport map we cannot conclude that (∇f)−1(U) is open and
observe a local quadratic detachment. Thus we have to adapt the proof of proposition 4.2 in order
to manage this issue and derive a lower bound for the entropy of γε using W 2

2 (γε, γ0).

Proposition 4.10. Let µi ∈ P(Ω) two compactly supported measures of finite entropy. Then there
exists C > 0 such that as ε→ 0

H(γε) ≥ −d
2
ln
(

W 2
2 (γε, γ0)

)

+ C (87)

Proof. Throughout we use the notations of lemma 4.4. Since γε has a density, there is a transport
map T for the optimal transport problem with quadratic cost from γε to γ0. Let r > 0 such that
τ(r) ≤ 1

2 . Let (Ui = B(xi, r)i an open covering of the support of γ0 with xi ∈ suppγ0. Let (ζi)i
a partition of unity subordinate to the covering (Ui)i. For i set γiε = 1

pi
ζi ◦ Tγε and γi0 = 1

pi
ζiγ0,

where pi is the normalization constant which is independent of ε. Note that T transports γiε to
γi0. Thus we have W 2

2 (γε, γ0) ≥ ∑

i piW
2
2 (γ

i
ε, γ

i
0) We now introduce Φi : Φi(x, y) = αi(ui(x, y) −

ui(xi), vi(x, y)− vi(xi)) where αi is such that Φi is volume preserving. Let τ iε, τ
i
0 the pushforwards

of γiε and γi0 with respect to this map. We disintegrate τ iε with respect to the projection on the
variable u and denote it µiε ⊗ τ i,uε . Note that Φi is not an isometry, however it is an affine map thus
W 2

2 (γ
i
ε, γ

i
0) ≥ CiW

2
2 (τ

i
ε, τ

i
0), where Ci = 1/‖Φi‖op. Note that Ci only depends on ∇2

xyc(xi), thus it

is independent of ε. It was pointed out in remark 4.5 that for every i, τ i0 is supported on the graph
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of a
√
3-Lipschitz function. Thus thanks to lemma 4.9

H(γiε) = H(τ iε) = H(µiε) +

∫

H(τ i,uε )dµiε

≥ H(µiε)−
d

2
ln

(
∫

V ar(τ i,uε )dµiε

)

+ C

≥ H(µiε)−
d

2
ln
(

W 2
2 (γ

i
ε, γ

i
0)
)

+
d

2
ln

(

Ci√
3 + 1

)

+ C

≥ −d
2
ln
(

W 2
2 (γ

i
ε, γ

i
0)
)

+ C(X)

(88)

Where the last inequality holds because µiε is supported on a compact set of diameter comparable
to that of X , as seen in the proof of theorem 4.2. We proceed as in the proof of proposition 4.2 .
Thus by summing over i we get

H(γε) =
∑

i

pi ln(pi) +
∑

i

piH(γiε)

≥ −d
2

∑

i

pi ln
(

W 2
2 (γ

i
ε, γ

i
0)
)

+ C

≥ −d
2
ln
(

W 2
2 (γε, γ0)

)

+ C

(89)

Where the last inequality holds by concavity of the logarithm.

It remains to combine the last result with the rate of convergence of (εEOT) in order to retrieve the
negative result on the Wasserstein distance between γε and γ0.

Theorem 4.11. Let c ∈ C(Ω2) infinitesimally twisted. Let µi ∈ P(Ω) two compactly supported
measures of finite entropy. Then there exists c > 0 such that as ε→ 0

W 2
2 (γε, γ0) ≥ cε (90)

Proof. Lemma 4.7 ensures that

εH(γε) ≤
∫

Edγε + εH(γε) ≤ −d
2
ε ln(ε) + Cε (91)

And proposition 4.10 grants the following lower bound for the entropy

H(γε) ≥ −d
2
ln(W 2

2 (γε, γ0)) + C (92)

Combining the two equations together we have

−d
2
ln(W 2

2 (γε, γ0)) ≤ −d
2
ln(ε) + C (93)

Taking the exponential grants the result.

Remark that in the general case, we obtain only the domination ε = O(W 2
2 (γε, γ0)) whereas in

the quadratic case, even if it is under strong assumptions, we could obtain W 2
2 (γε, γ0) = Θ(ε)

(theorem 3.9). The reason is not that the solution are not smooth enough. Indeed, there exist some
precise assumptions, such as the Ma-Trudinger-Wang conditions (see [26]), that guarantee regularity
of the solutions of the dual problem. The true difficulty is to replace the formula W 2

2 (γε, γ0) ≤
L(E, γε) of lemma 3.8 that transform this regularity (the lipschitz constant L of the transport map)
into a bound of W 2

2 (γε, γ0).
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