Disentangling entropy and suboptimality in Entropic optimal transport

arXiv:2306.06940

Hugo Malamut and Maxime Sylvestre (Université Paris Dauphine PSL, CEREMADE)

March 24, 2025

Figure 1: the map T transports μ onto ν : $T_{\#}\mu = \nu$

Transport plan

Figure 2: The plan π transports μ onto $\nu : \pi \in \Pi(\mu, \nu)$ (image from Wikipedia)

Given a cost function $c : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and two measures $\mu_0, \mu_1 \in \mathcal{P}(\mathbb{R}^d)$,

Given a cost function $c : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and two measures $\mu_0, \mu_1 \in \mathcal{P}(\mathbb{R}^d)$,

• Monge problem (1781) is

$$\inf_{T \# \mu_0 = \mu_1} \int c(x, T(x)) d\mu_0(x)$$
(1)

• Kantorovich formulation:

$$OT_0(\mu,\nu) := \inf_{\gamma \in \Pi(\mu_0,\mu_1)} \int c(x,y) d\gamma(x,y)$$
(P)

• Dual problem:

$$OT_0(\mu,\nu) := \sup_{\phi \oplus \psi \le c} \int \phi d\mu_0 + \int \psi d\mu_1$$
(D)

Given a cost function $c : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and two measures $\mu_0, \mu_1 \in \mathcal{P}(\mathbb{R}^d)$,

• Monge problem (1781) is

$$\inf_{T \# \mu_0 = \mu_1} \int c(x, T(x)) d\mu_0(x)$$
(1)

• Kantorovich formulation:

$$OT_0(\mu,\nu) := \inf_{\gamma \in \Pi(\mu_0,\mu_1)} \int c(x,y) d\gamma(x,y)$$
(P)

• Dual problem:

$$OT_0(\mu,\nu) := \sup_{\phi \oplus \psi \le c} \int \phi d\mu_0 + \int \psi d\mu_1$$
(D)

In the following, the cost function is $c(x, y) = \frac{1}{2}|x - y|^2$. It defines the Wasserstein distance $W_2^2(\mu, \nu) := \inf_{\gamma \in \Pi(\mu_0, \mu_1)} \int |x - y|^2 d\gamma(x, y)$

Definition The Legendre transform of a function f is

$$f^*(y) = \sup_{x} x \cdot y - f(x)$$
⁽²⁾

Definition The Legendre transform of a function f is

$$f^*(y) = \sup_{x} x \cdot y - f(x)$$
⁽²⁾

- *f*^{*} is always convex
- if f is convex and if both f and f^* are differentiable, then

$$(\nabla f)^{-1} = \nabla f^* \tag{3}$$

Figure 3: The Legendre transform in 1d

$$\inf_{\mathcal{T}\#\mu_0=\mu_1} \int c(x,\mathcal{T}(x)) d\mu_0(x) \ge \min_{\gamma \in \Pi(\mu_0,\mu_1)} \int c(x,y) d\gamma(x,y) = \sup_{\phi \oplus \psi \le c} \int \phi d\mu_0 + \int \psi d\mu_1$$
(4)

$$\inf_{T \# \mu_0 = \mu_1} \int c(x, T(x)) d\mu_0(x) \ge \min_{\gamma \in \Pi(\mu_0, \mu_1)} \int c(x, y) d\gamma(x, y) = \sup_{\phi \oplus \psi \le c} \int \phi d\mu_0 + \int \psi d\mu_1$$
(4)

Theorem (Brenier) For the quadratic cost $c(x, y) = \frac{1}{2}|x - y|^2$: If $\mu_0 \in \mathcal{P}_{2,ac}(\mathbb{R}^d)$ then the solutions T, γ_0, ϕ, ψ can be expressed thanks to a unique convex function f:

$$\inf_{T \# \mu_0 = \mu_1} \int c(x, T(x)) d\mu_0(x) \ge \min_{\gamma \in \Pi(\mu_0, \mu_1)} \int c(x, y) d\gamma(x, y) = \sup_{\phi \oplus \psi \le c} \int \phi d\mu_0 + \int \psi d\mu_1$$
(4)

Theorem (Brenier) For the quadratic cost $c(x, y) = \frac{1}{2}|x - y|^2$: If $\mu_0 \in \mathcal{P}_{2,ac}(\mathbb{R}^d)$ then the solutions T, γ_0, ϕ, ψ can be expressed thanks to a unique convex function f:

- $T = \nabla f$,
- $\gamma_0 = (id, \nabla f)_{\#} \mu_0$,
- $\phi(x) = \frac{1}{2}|x|^2 f(x)$,
- $\psi(y) = \frac{1}{2}|y|^2 f^*(y).$

Energy gap

Let define the Energy gap function

$$E(x, y) := c(x, y) - \phi(x) - \psi(y)$$
(5)

Energy gap

Let define the Energy gap function

$$E(x, y) := c(x, y) - \phi(x) - \psi(y)$$
 (5)

•
$$\forall (x, y) \in \mathbb{R}^{2d}$$
 $E(x, y) \geq 0$,

•
$$(x, y) \in Supp(\gamma_0) \Rightarrow E(x, y) = 0$$

• If $\gamma \in \Pi(\mu_0, \mu_1)$ then

$$\int c \mathrm{d}\gamma - \int c \mathrm{d}\gamma_0 = \int E \mathrm{d}\pi,$$

• For the quadratic cost,

$$E(x,y) = f(x) + f^*(y) - x \cdot y,$$

Figure 4: We can identify $E(x, y) = f(x) + f^*(y) - x \cdot y$ on this drawing

Figure 5: The energy gap in 1d

Let $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$, for the quadratic cost, the Benamou-Brenier formulation is:

$$OT_0(\mu_0,\mu_1) = \inf_{\substack{\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0\\\rho_0 = \mu_0, \rho_1 = \mu_1}} \iint \frac{1}{2} |\mathbf{v}_t|^2 \rho_t \mathrm{d}t \tag{BB}$$

Let $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$, for the quadratic cost, the <u>Benamou-Brenier</u> formulation is:

$$\mathcal{OT}_{0}(\mu_{0},\mu_{1}) = \inf_{\substack{\partial_{t}\rho + \nabla \cdot (\rho\mathbf{v}) = 0\\\rho_{0} = \mu_{0},\rho_{1} = \mu_{1}}} \iint \frac{1}{2} |\mathbf{v}_{t}|^{2} \rho_{t} \mathrm{d}t \tag{BB}$$

(The advection equation $\partial_t \rho + \nabla \cdot (\rho v) = 0$ means that the density ρ is transported by the velocity field v)

Let $ho \in \mathcal{P}_{2,ac}(\mathbb{R}^k)$ be a continuous measure with finite variance, define

$$\underbrace{H(\rho) := \int_{\mathbb{R}^k} \rho(x) \ln \rho(x) dx}_{differential \ entropy} \quad \text{and} \quad \underbrace{I(\rho) := \int_{\mathbb{R}^k} \rho(x) |\nabla \ln \rho(x)|^2 dx}_{Fisher \ information} \tag{6}$$

Let $ho \in \mathcal{P}_{2,ac}(\mathbb{R}^k)$ be a continuous measure with finite variance, define

$$\underbrace{H(\rho) := \int_{\mathbb{R}^k} \rho(x) \ln \rho(x) dx}_{differential \ entropy} \quad \text{and} \quad \underbrace{I(\rho) := \int_{\mathbb{R}^k} \rho(x) |\nabla \ln \rho(x)|^2 dx}_{Fisher \ information} \tag{6}$$

 $I(\rho) < +\infty$ implies $H(\rho) < +\infty$ Let *c* be a C^2 cost function. Let $\mu_0, \mu_1 \in \mathcal{P}_{ac}(\mathbb{R}^d)$ be such that $H(\mu_i) < +\infty$. Let $ho \in \mathcal{P}_{2,ac}(\mathbb{R}^k)$ be a continuous measure with finite variance, define

$$\underbrace{H(\rho) := \int_{\mathbb{R}^k} \rho(x) \ln \rho(x) dx}_{\text{differential entropy}} \quad \text{and} \quad \underbrace{I(\rho) := \int_{\mathbb{R}^k} \rho(x) |\nabla \ln \rho(x)|^2 dx}_{Fisher information} \tag{6}$$

 $I(\rho) < +\infty$ implies $H(\rho) < +\infty$ Let c be a C^2 cost function. Let $\mu_0, \mu_1 \in \mathcal{P}_{ac}(\mathbb{R}^d)$ be such that $H(\mu_i) < +\infty$. For $\varepsilon \ge 0$

$$OT_{\varepsilon}(\mu_{0},\mu_{1}) := \inf_{\gamma \in \Pi(\mu_{0},\mu_{1})} \int c\gamma + \varepsilon H(\gamma) \qquad (\varepsilon \text{EOT})$$

Entropic optimal transport

Figure 6: Entropic optimal transport in 1d (image from [PC18]

Sinkhorn algorithm

The dual problem of (ε EOT) is

$$OT_{\varepsilon}(\mu_{0},\mu_{1}) = \sup_{\phi,\psi} \int \phi d\mu_{0} + \int \psi d\mu_{1} - \varepsilon \int e^{\frac{\phi \oplus \psi - \varepsilon}{\varepsilon}} d\mu_{0} d\mu_{1} + \varepsilon$$
(7)

Sinkhorn algorithm

The dual problem of (ε EOT) is

$$OT_{\varepsilon}(\mu_{0},\mu_{1}) = \sup_{\phi,\psi} \int \phi d\mu_{0} + \int \psi d\mu_{1} - \varepsilon \int e^{\frac{\phi \oplus \psi - c}{\varepsilon}} d\mu_{0} d\mu_{1} + \varepsilon$$
(7)

The optimality conditions are

$$\phi(x) = -\varepsilon \ln \int e^{\frac{\psi(y) - c(x,y)}{\varepsilon}} d\mu_1(y), \quad \psi(y) = -\varepsilon \ln \int e^{\frac{\phi(x) - c(x,y)}{\varepsilon}} d\mu_0(x).$$
(8)

Sinkhorn algorithm

The dual problem of (ε EOT) is

$$OT_{\varepsilon}(\mu_{0},\mu_{1}) = \sup_{\phi,\psi} \int \phi d\mu_{0} + \int \psi d\mu_{1} - \varepsilon \int e^{\frac{\phi \oplus \psi - c}{\varepsilon}} d\mu_{0} d\mu_{1} + \varepsilon$$
(7)

The optimality conditions are

$$\phi(x) = -\varepsilon \ln \int e^{\frac{\psi(y) - c(x,y)}{\varepsilon}} d\mu_1(y), \quad \psi(y) = -\varepsilon \ln \int e^{\frac{\phi(x) - c(x,y)}{\varepsilon}} d\mu_0(x).$$
(8)

Sinkhorn algorithm

$$\phi_{n+1}(x) = -\varepsilon \ln \int e^{\frac{\psi_n(y) - c(x,y)}{\varepsilon}} d\mu_1(y), \quad \psi_{n+1}(y) = -\varepsilon \ln \int e^{\frac{\phi_{n+1}(x) - c(x,y)}{\varepsilon}} d\mu_0(x).$$
(9)

$$\begin{array}{l} \text{For } \varepsilon \geq 0 \\ O\mathcal{T}_{\varepsilon}(\mu_{0},\mu_{1}) := \inf_{\gamma \in \Pi(\mu_{0},\mu_{1})} \int c\gamma + \varepsilon \mathcal{H}(\gamma) \end{array} \tag{εEOT}$$

Question: What happens when $\varepsilon \rightarrow 0$?

Qualitative convergence results.

• Γ-convergence : [Mik04],[MT08],[Lé13],[CDPS15]

Quantitative convergence results.

- Discrete optimal transport: [CM94]
- Semi-discrete optimal transport: [ANWS21],[Del21]
- Finite Fisher information: [ADPZ11],[EMR15],[Con19]
- Finite entropy: [Pal19],[EN22],[CPT22]
- Multimarginal: [NP23]
- Sinkhorn divergence: [FSV⁺18, CRL⁺20]

Convergence of the value

Proposition [ADPZ11][EMR15]

Assume $c(x, y) = \frac{1}{2} ||x - y||^2$, and that $Supp(\mu_i)$ are compact with $I(\mu_i) < +\infty$ then

$$OT_{\varepsilon} - OT_{0} = -\frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \varepsilon \frac{H(\mu_{0}) + H(\mu_{1})}{2} + o(\varepsilon)$$
 (TE-OT_{\varepsilon})

Convergence of the value

Proposition [ADPZ11][EMR15]

Assume $c(x, y) = \frac{1}{2} ||x - y||^2$, and that $Supp(\mu_i)$ are compact with $I(\mu_i) < +\infty$ then

$$OT_{\varepsilon} - OT_{0} = -\frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \varepsilon \frac{H(\mu_{0}) + H(\mu_{1})}{2} + o(\varepsilon)$$
 (TE-OT_{\varepsilon})

Proposition [EN22, CPT22]

Assume *c* is infinitesimally twisted and $Supp(\mu_i)$ compact then

$$\left(-\frac{d}{2}\varepsilon\ln(\varepsilon)+C'\varepsilon\leq\right)OT_{\varepsilon}-OT_{0}\leq-\frac{d}{2}\varepsilon\ln(\varepsilon)+C\varepsilon$$
(10)

Question 1: How did they get these results? Question 1: How did they get these results?

Question 2:

$$OT_{\varepsilon} - OT_{0} = \underbrace{\int c\gamma_{\varepsilon} - \int c\gamma_{0}}_{suboptimality} + \varepsilon \underbrace{H(\gamma_{\varepsilon})}_{entropy}$$

Can we disentangle ?

Question 1: How did they get these results?

Question 2:

$$OT_{\varepsilon} - OT_{0} = \underbrace{\int c\gamma_{\varepsilon} - \int c\gamma_{0}}_{suboptimality} + \varepsilon \underbrace{H(\gamma_{\varepsilon})}_{entropy}$$

Can we disentangle ?

Question 3:

Is there a rate of convergence for $W_2(\gamma_{\varepsilon}, \gamma_0)$?

Definition Let $\mu, \nu \in \mathcal{P}_{2,ac}(\mathbb{R}^d)$ and $\gamma \in \Pi(\mu, \nu)$. Let $\delta > 0$ and $(Q_i^{\delta})_i$ be a partition of \mathbb{R}^d into cubes of side length δ . The <u>block approximation</u> of γ is defined by

$$\forall x, y \in Q_j^{\delta} \times Q_k^{\delta}, \quad \gamma^{\delta}(x, y) = \gamma(Q_j^{\delta} \times Q_k^{\delta}) \frac{\mu(x)\nu(y)}{\mu(Q_j^{\delta})\nu(Q_k^{\delta})}$$
(11)

Block approximation

Figure 7: The block approximation in 1d (image from [CDPS17])

[[CPT22]] Let $\mu, \nu \in \mathcal{P}_{2,ac}(\mathbb{R}^d)$ and $\gamma \in \Pi(\mu, \nu)$ be the optimal transport plan. Let $\delta > 0$ and γ^{δ} be the block approximation of γ .

Then

$$\int c\gamma^{\delta} - \int c\gamma = \int E\gamma^{\delta} \leq C\delta^{2} \quad \text{and} \quad H(\gamma^{\delta}) \leq -d\ln(\delta) + C \tag{12}$$
[[CPT22]] Let $\mu, \nu \in \mathcal{P}_{2,ac}(\mathbb{R}^d)$ and $\gamma \in \Pi(\mu, \nu)$ be the optimal transport plan. Let $\delta > 0$ and γ^{δ} be the block approximation of γ .

Then

$$\int c\gamma^{\delta} - \int c\gamma = \int E\gamma^{\delta} \leq C\delta^{2} \quad \text{and} \quad H(\gamma^{\delta}) \leq -d\ln(\delta) + C \tag{12}$$

So for $\delta=\sqrt{\varepsilon}$, we have

$$OT_{\varepsilon}(\mu,\nu) \leq \int c\gamma^{\delta} + \varepsilon H(\gamma^{\delta}) \leq -\frac{d}{2}\ln(\varepsilon) + C\varepsilon$$
 (13)

Convergence of the value

Proposition [ADPZ11][EMR15]

Assume $c(x, y) = \frac{1}{2} ||x - y||^2$, and that $Supp(\mu_i)$ are compact with $I(\mu_i) < +\infty$ then

$$OT_{\varepsilon} - OT_{0} = -\frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \varepsilon \frac{H(\mu_{0}) + H(\mu_{1})}{2} + o(\varepsilon)$$
 (TE-OT_{\varepsilon})

Proposition [EN22, CPT22]

Assume *c* is infinitesimally twisted and $Supp(\mu_i)$ compact then

$$\left(-\frac{d}{2}\varepsilon\ln(\varepsilon)+C'\varepsilon\leq\right)OT_{\varepsilon}-OT_{0}\leq-\frac{d}{2}\varepsilon\ln(\varepsilon)+C\varepsilon$$
(14)

Question 1:

How did they get these results? by Block approximation

Question 1:

How did they get these results? by Block approximation

Question 2:

$$OT_{\varepsilon} - OT_{0} = \underbrace{\int c\gamma_{\varepsilon} - \int c\gamma_{0}}_{suboptimality} + \varepsilon \underbrace{H(\gamma_{\varepsilon})}_{entropy}$$

Can we disentangle ?

Question 3:

Is there a rate of convergence for $W_2(\gamma_{\varepsilon}, \gamma_0)$?

Fisher information and quadratic cost

Suppose that the cost is quadratic, that is $c(x, y) = \frac{1}{2}|x - y|^2$. Further assume that $I(\mu_i) < \infty$ and $Supp(\mu_i)$ compact. Then

Suppose that the cost is quadratic, that is $c(x, y) = \frac{1}{2}|x - y|^2$. Further assume that $I(\mu_i) < \infty$ and $Supp(\mu_i)$ compact. Then

$$H(\gamma_{\varepsilon}) = -\frac{d}{2}\ln(2\pi\varepsilon) + H_m - \frac{d}{2} + o(1)$$
(15)

where $H_m = \frac{H(\mu_0) + H(\mu_1)}{2}$.

Suppose that the cost is quadratic, that is $c(x, y) = \frac{1}{2}|x - y|^2$. Further assume that $I(\mu_i) < \infty$ and $Supp(\mu_i)$ compact. Then

$$H(\gamma_{\varepsilon}) = -\frac{d}{2}\ln(2\pi\varepsilon) + H_m - \frac{d}{2} + o(1)$$
(15)

where $H_m = \frac{H(\mu_0) + H(\mu_1)}{2}$. Moreover

$$\int c\gamma_{\varepsilon} - \int c\gamma_{0} = \frac{d}{2}\varepsilon + o(\varepsilon)$$
(16)

Recall
$$H_m = \frac{H(\mu_0) + H(\mu_1)}{2}$$
. The dynamic formulation [Lé13] is
 $OT_{\varepsilon} = \varepsilon H_m - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \min_{\substack{\partial \rho + \nabla \cdot (\rho v) = 0 \\ \rho_0 = \mu_0, \rho_1 = \mu_1}} \iint \frac{1}{2} |v_t|^2 \rho_t t + \frac{\varepsilon^2}{8} \int_0^1 I(\rho_t) t \qquad (\varepsilon BB)$

Recall
$$H_m = \frac{H(\mu_0) + H(\mu_1)}{2}$$
. The dynamic formulation [Lé13] is
 $OT_{\varepsilon} = \varepsilon H_m - \frac{d}{2} \varepsilon \ln(2\pi\varepsilon) + \min_{\substack{\partial \rho + \nabla \cdot (\rho v) = 0\\ \rho_0 = \mu_0, \rho_1 = \mu_1}} \iint \frac{1}{2} |v_t|^2 \rho_t t + \frac{\varepsilon^2}{8} \int_0^1 I(\rho_t) t \qquad (\varepsilon BB)$

$$OT_{\varepsilon} - OT_{0} = -\frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \varepsilon H_{m} + o(\varepsilon)$$
 (TE-OT_{\varepsilon})

Sketch of proof

Recall
$$H_m = \frac{H(\mu_0) + H(\mu_1)}{2}$$
. The dynamic formulation [Lé13] is
 $OT_{\varepsilon} = \varepsilon H_m - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \iint \frac{1}{2}|v_t^{\varepsilon}|^2 \rho_t^{\varepsilon} t + \frac{\varepsilon^2}{8}\int_0^1 I(\rho_t^{\varepsilon})t \qquad (\varepsilon BB)$

Known asymptotics (TE-OT $_{\varepsilon}$) is

$$OT_{\varepsilon} - OT_0 + \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) - \varepsilon H_m = o(\varepsilon)$$
 (17)

Sketch of proof

Recall
$$H_m = \frac{H(\mu_0) + H(\mu_1)}{2}$$
. The dynamic formulation [Lé13] is
 $OT_{\varepsilon} = \varepsilon H_m - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \iint \frac{1}{2}|v_t^{\varepsilon}|^2 \rho_t^{\varepsilon} t + \frac{\varepsilon^2}{8}\int_0^1 I(\rho_t^{\varepsilon})t \qquad (\varepsilon BB)$

Known asymptotics (TE-OT $_{\varepsilon}$) is

$$OT_{\varepsilon} - OT_0 + \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) - \varepsilon H_m = o(\varepsilon)$$
 (17)

Thus thanks to (ε BB)

$$\frac{1}{\varepsilon} \underbrace{\left(\iint \frac{1}{2} |v_t^{\varepsilon}|^2 \rho_t^{\varepsilon} t - OT_0 \right)}_{suboptimality} + \frac{\varepsilon}{8} \underbrace{\int_0^1 I(\rho_t^{\varepsilon}) t}_{regularity \ term} = o(1)$$
(18)

Sketch of proof

Recall
$$H_m = \frac{H(\mu_0) + H(\mu_1)}{2}$$
. The dynamic formulation [Lé13] is
 $OT_{\varepsilon} = \varepsilon H_m - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) + \iint \frac{1}{2}|v_t^{\varepsilon}|^2 \rho_t^{\varepsilon} t + \frac{\varepsilon^2}{8}\int_0^1 I(\rho_t^{\varepsilon})t \qquad (\varepsilon BB)$

Known asymptotics (TE-OT $_{\varepsilon}$) is

$$OT_{\varepsilon} - OT_0 + \frac{d}{2}\varepsilon \ln(2\pi\varepsilon) - \varepsilon H_m = o(\varepsilon)$$
 (17)

Thus thanks to (ε BB)

$$\frac{1}{\varepsilon} \underbrace{\left(\iint \frac{1}{2} |v_t^{\varepsilon}|^2 \rho_t^{\varepsilon} t - OT_0 \right)}_{suboptimality} + \frac{\varepsilon}{8} \underbrace{\int_0^1 I(\rho_t^{\varepsilon}) t}_{regularity \ term} = o(1)$$
(18)

Since both terms are positive they both tend to 0.

Theorem

Let X be a set and $f : \mathbb{R} \times X \to \mathbb{R}$ be a function. Let $F : \mathbb{R} \to \mathbb{R}$ be defined by

$$F(\varepsilon) = \inf_{x \in X} f(\varepsilon, x)$$
(19)

Let x_{ε} be a minimizer of $f(\varepsilon, \cdot)$. If F and $f(., x_{\varepsilon})$ are differentiable at ε then there derivative are the same:

$$F'(\varepsilon) = \frac{\partial f}{\partial \varepsilon}(\varepsilon, x_{\varepsilon}) \tag{20}$$

From dynamic to static and back

$$\underbrace{\int c\gamma_{\varepsilon} + \varepsilon H(\gamma_{\varepsilon})}_{(a) \, static} = \underbrace{\varepsilon H_m - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon)}_{(b)} + \underbrace{\int \int \frac{1}{2} |v_t^{\varepsilon}|^2 \rho_t^{\varepsilon} t + \frac{\varepsilon^2}{8} \int_0^1 I(\rho_t^{\varepsilon}) t}_{(c) \, dynamic} \qquad (\varepsilon BB)$$

From dynamic to static and back

$$\underbrace{\int c\gamma_{\varepsilon} + \varepsilon H(\gamma_{\varepsilon})}_{(a) \ static} = \underbrace{\varepsilon H_m - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon)}_{(b)} + \underbrace{\int \int \frac{1}{2} |v_t^{\varepsilon}|^2 \rho_t^{\varepsilon} t + \frac{\varepsilon^2}{8} \int_0^1 I(\rho_t^{\varepsilon}) t}_{(c) \ dynamic} \qquad (\varepsilon BB)$$

Envelop theorem
$$\frac{d}{d\varepsilon}(a) = \frac{d}{d\varepsilon}(b) + \frac{d}{d\varepsilon}(c)$$

$$H(\gamma_{\varepsilon}) = H_m - rac{d}{2}\ln(2\pi\varepsilon) - rac{d}{2} + rac{\varepsilon}{4}\int I(
ho_t^{\varepsilon})t$$

From dynamic to static and back

$$\underbrace{\int c\gamma_{\varepsilon} + \varepsilon H(\gamma_{\varepsilon})}_{(a) \ static} = \underbrace{\varepsilon H_m - \frac{d}{2}\varepsilon \ln(2\pi\varepsilon)}_{(b)} + \underbrace{\int \int \frac{1}{2} |v_t^{\varepsilon}|^2 \rho_t^{\varepsilon} t + \frac{\varepsilon^2}{8} \int_0^1 l(\rho_t^{\varepsilon}) t \qquad (\varepsilon BB)$$
Envelop theorem
$$\frac{d}{d\varepsilon}(a) = \frac{d}{d\varepsilon}(b) + \frac{d}{d\varepsilon}(c)$$

$$H(\gamma_{\varepsilon}) = H_m - \frac{d}{2} \ln(2\pi\varepsilon) - \frac{d}{2} + \frac{\varepsilon}{4} \int l(\rho_t^{\varepsilon}) t$$

$$\begin{cases} \int c\gamma_{\varepsilon} - OT_0 = \iint \frac{1}{2} |v_t^{\varepsilon}|^2 \rho_t^{\varepsilon} t - OT_0 - \frac{\varepsilon^2}{8} \int l(\rho_t^{\varepsilon}) t + \frac{d}{2}\varepsilon \\ H(\gamma_{\varepsilon}) = \frac{\varepsilon}{4} \int_0^1 l(\rho_t^{\varepsilon}) t - \frac{d}{2} \ln(2\pi\varepsilon) + H_m - \frac{d}{2} \end{cases}$$
(21)

Quadratic cost without Fisher information

Suppose that the cost is quadratic, that is $c(x, y) = \frac{1}{2} ||x - y||^2$. Further assume that $\mu_i \in \mathcal{P}_{2+\delta,ac}(\mathbb{R}^d)$ for some $\delta > 0$.

Suppose that the cost is quadratic, that is $c(x, y) = \frac{1}{2} ||x - y||^2$. Further assume that $\mu_i \in \mathcal{P}_{2+\delta,ac}(\mathbb{R}^d)$ for some $\delta > 0$. Then

$$\int c\gamma_{\varepsilon} - \int c\gamma_{0} = \Theta(\varepsilon), \quad H(\gamma_{\varepsilon}) = -\frac{d}{2}\ln(\varepsilon) + O(1), \quad (22)$$
$$W_{2}(\gamma_{\varepsilon}, \gamma_{0}) \ge C\sqrt{\varepsilon}. \quad (23)$$

Suppose that the cost is quadratic, that is $c(x, y) = \frac{1}{2} ||x - y||^2$. Further assume that $\mu_i \in \mathcal{P}_{2+\delta,ac}(\mathbb{R}^d)$ for some $\delta > 0$ and that the Monge map ∇f is Lipschitz. Then

$$\int c\gamma_{\varepsilon} - \int c\gamma_{0} = \Theta(\varepsilon), \quad H(\gamma_{\varepsilon}) = -\frac{d}{2}\ln(\varepsilon) + O(1)$$
(24)

$$C_1 \sqrt{\varepsilon} \ge W_2(\gamma_{\varepsilon}, \gamma_0) \ge C_2 \sqrt{\varepsilon}$$
(25)

Suppose that the cost is quadratic, that is $c(x, y) = \frac{1}{2} ||x - y||^2$. Further assume that $\mu_i \in \mathcal{P}_{2+\delta,ac}(\mathbb{R}^d)$ for some $\delta > 0$ and that the Monge map ∇f is Lipschitz. Then

$$\int c\gamma_{\varepsilon} - \int c\gamma_{0} = \Theta(\varepsilon), \quad H(\gamma_{\varepsilon}) = -\frac{d}{2}\ln(\varepsilon) + O(1)$$
(24)

$$C_1 \sqrt{\varepsilon} \ge W_2(\gamma_{\varepsilon}, \gamma_0) \ge C_2 \sqrt{\varepsilon}$$
(25)

Key idea : "If $W_2(\gamma, \gamma_0)$ is small, then $H(\gamma)$ explodes"

Suppose that the cost is quadratic, that is $c(x, y) = \frac{1}{2} ||x - y||^2$. Further assume that $\mu_i \in \mathcal{P}_{2+\delta,ac}(\mathbb{R}^d)$ for some $\delta > 0$ and that the Monge map ∇f is Lipschitz. Then

$$\int c\gamma_{\varepsilon} - \int c\gamma_{0} = \Theta(\varepsilon), \quad H(\gamma_{\varepsilon}) = -\frac{d}{2}\ln(\varepsilon) + O(1)$$
(24)

$$C_1 \sqrt{\varepsilon} \ge W_2(\gamma_{\varepsilon}, \gamma_0) \ge C_2 \sqrt{\varepsilon}$$
(25)

Key idea :

"If $W_2(\gamma, \gamma_0)$ is small, then $H(\gamma)$ explodes" "If $\int c\gamma - \int c\gamma_0$ is small, then $H(\gamma)$ explodes" Key idea

Figure 8: The best to do is to convolve γ_0 with a Gaussian in the transverse direction

<u>Minty's coordinates</u> (u, v) are defined by

$$u = \frac{x+y}{\sqrt{2}}, \quad v = \frac{y-x}{\sqrt{2}}$$
 (26)

Minty's coordinates (u, v) are defined by

$$u = \frac{x+y}{\sqrt{2}}, \quad v = \frac{y-x}{\sqrt{2}}$$
 (26)

Let $G \subset \mathbb{R}^{2d}$ be the graph of a function y = T(x) in the classical coordinates and of a function v = S(u) in the Minty's coordinates.

Minty's coordinates (u, v) are defined by

$$u = \frac{x+y}{\sqrt{2}}, \quad v = \frac{y-x}{\sqrt{2}}$$
 (26)

Let $G \subset \mathbb{R}^{2d}$ be the graph of a function y = T(x) in the classical coordinates and of a function v = S(u) in the Minty's coordinates. Then

$$T = \nabla f$$
 with f convex $\Leftrightarrow S$ 1-Lipschitz

Minty's coordinates

Figure 9: Minty's coordinates in 1d

Figure 10: Minty's coordinates in 1d

Let $\gamma \in \mathcal{P}_{2,ac}(\mathbb{R}^{2d})$ be disentegrated in Minty's coordinates as

$$\gamma(u, v) = \gamma^{u}(v)\hat{\gamma}(u).$$
⁽²⁷⁾

Let $\gamma \in \mathcal{P}_{2,ac}(\mathbb{R}^{2d})$ be disentegrated in Minty's coordinates as

$$\gamma(u, v) = \gamma^{u}(v)\hat{\gamma}(u).$$
⁽²⁷⁾

Then, by linearity of the entropy,

$$H(\gamma) = H(\hat{\gamma}) + \int H(\gamma^{u}) d\hat{\gamma}(u)$$
(28)

Let $\gamma \in \mathcal{P}_{2,ac}(\mathbb{R}^{2d})$ be disentegrated in Minty's coordinates as

$$\gamma(u, v) = \gamma^{u}(v)\hat{\gamma}(u). \tag{27}$$

Then, by linearity of the entropy,

$$H(\gamma) = H(\hat{\gamma}) + \int H(\gamma^{u}) d\hat{\gamma}(u)$$
(28)

Question: how to choose γ^{u} in order to minimize $H(\gamma)$ if $\hat{\gamma}$ and $\int |v - S(u)|^2 \gamma(u, v) du dv$ are fixed?

Figure 11: The best to do is to is to choose γ^u to be a Gaussian

By linearity of the entropy,

$$H(\gamma) = H(\hat{\gamma}) + \int H(\gamma^{u}) d\hat{\gamma}(u)$$
(29)

Question: how to choose γ^{u} in order to minimize $H(\gamma)$ if $\hat{\gamma}$ and $\int |v - S(u)|^2 \gamma(u, v) du dv$ are fixed?

By linearity of the entropy,

$$H(\gamma) = H(\hat{\gamma}) + \int H(\gamma^{u}) d\hat{\gamma}(u)$$
(29)

Question: how to choose γ^u in order to minimize $H(\gamma)$ if $\hat{\gamma}$ and $\int |v - S(u)|^2 \gamma(u, v) du dv$ are fixed? Answer: the best to do is to choose γ^u to be a Gaussian, with center S(u).

By linearity of the entropy,

$$H(\gamma) = H(\hat{\gamma}) + \int H(\gamma^u) d\hat{\gamma}(u)$$
(29)

Question: how to choose γ^u in order to minimize $H(\gamma)$ if $\hat{\gamma}$ and $\int |v - S(u)|^2 \gamma(u, v) du dv$ are fixed? Answer: the best to do is to choose γ^u to be a Gaussian, with center S(u).

Proposition
Let
$$C_d = -d \ln(\frac{2\pi e}{d})$$
. Then

$$\int H(\gamma^u) d\hat{\gamma}(u) \ge -\frac{d}{2} \ln(\int |v - S(u)|^2 d\gamma(u, v)) + C_d$$
(30)
Linearity of the entropy

By linearity of the entropy,

$$H(\gamma) = H(\hat{\gamma}) + \int H(\gamma^u) d\hat{\gamma}(u)$$
(29)

Question: how to choose γ^u in order to minimize $H(\gamma)$ if $\hat{\gamma}$ and $\int |v - S(u)|^2 \gamma(u, v) du dv$ are fixed? Answer: the best to do is to choose γ^u to be a Gaussian, with center S(u).

Proposition
Let
$$C_d = -d \ln(\frac{2\pi e}{d})$$
. Then
$$\int H(\gamma^u) d\hat{\gamma}(u) \ge -\frac{d}{2} \ln(\int |v - S(u)|^2 d\gamma(u, v)) + C_d$$
(30)

Question: What do we do with this term $\int |v - S(u)|^2 d\gamma(u, v)$?

Since γ_0 is supported by the graph of S, 1-Lipschitz, $\int |v - S(u)|^2 d\gamma(u, v)$ is bounded by the Wassertein distance to γ_0 .

Since γ_0 is supported by the graph of S, 1-Lipschitz, $\int |v - S(u)|^2 d\gamma(u, v)$ is bounded by the Wassertein distance to γ_0 .

Proposition

Let γ , $\gamma_0 \in \mathcal{P}_2(\mathbb{R}^{2d})$ be two plans.

If γ_0 is supported by the graph of a 1-Lipschitz function *S*, then

$$W_2^2(\gamma,\gamma_0) \ge \int \frac{|\nu-S(u)|^2}{2} \mathrm{d}\gamma(u,\nu) \tag{31}$$

Wasserstein distance and Lipschitz function

Figure 12: There is nothing much better to do than going down

Minty's trick

For the quadratic cost, the energy gap has a quadratic detachment in Minty's coordinates:

$$\forall u, v, \quad E(u, v) \geq \frac{|v - S(u)|^2}{2}$$
(32)

Consequence: if $\gamma \in \mathcal{P}_{2,ac}(\mathbb{R}^{2d})$, then

$$\int E\gamma \ge \int \frac{|v - S(u)|^2}{2} \gamma(u, v) du dv$$
(33)

Minty's trick

For the quadratic cost, the energy gap has a quadratic detachment in Minty's coordinates:

$$\forall u, v, \quad E(u, v) \geq \frac{|v - S(u)|^2}{2}$$
(32)

Consequence: if $\gamma \in \mathcal{P}_{2,ac}(\mathbb{R}^{2d})$, then

$$\int E\gamma \ge \int \frac{|v - S(u)|^2}{2} \gamma(u, v) du dv$$
(33)

Figure 13: Quadratic detachment in 1d

Bound the transverse distance

Question: What do we do with this term $\int |v - S(u)|^2 d\gamma(u, v)$? Answer: we can bound it with meaningful quantities

Bound the transverse distance

Question: What do we do with this term $\int |v - S(u)|^2 d\gamma(u, v)$? Answer: we can bound it with meaningful quantities

.

Proposition If $\gamma \in \mathcal{P}_2(\mathbb{R}^{2d})$, then $\int |v - S(u)|^2 d\gamma(u, v) \le 2W_2^2(\gamma, \gamma_0)$ $\int |v - S(u)|^2 d\gamma(u, v) \le 2\int E\gamma$

Remark that if $\gamma \in \Pi(\mu, \nu)$,

$$\int E\gamma = \int c\gamma - \int c\gamma_0.$$

We had

$$H(\gamma) \geq -\frac{d}{2} \ln \left(\int |v - S(u)|^2 \mathrm{d}\gamma(u, v) \right) + C, \tag{34}$$

We had

$$H(\gamma) \geq -\frac{d}{2} \ln \left(\int |v - S(u)|^2 \mathrm{d}\gamma(u, v) \right) + C, \tag{34}$$

so we get

$$H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln W_2^2(\gamma_arepsilon,\gamma_0) \hspace{3mm} ext{and}\hspace{3mm} H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln\left(\int c ext{d}\gamma_arepsilon - \int c ext{d}\gamma_0
ight)$$

We had

$$H(\gamma) \geq -\frac{d}{2} \ln \left(\int |v - S(u)|^2 \mathrm{d}\gamma(u, v) \right) + C, \tag{34}$$

so we get

$$H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln W_2^2(\gamma_arepsilon,\gamma_0) \hspace{3mm} ext{and} \hspace{3mm} H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln\left(\int c ext{d}\gamma_arepsilon - \int c ext{d}\gamma_0
ight)$$

We are going to combine these inequalities with the existing litterature,

$$-rac{d}{2}arepsilon \ln(arepsilon)\gtrsim O \mathcal{T}_arepsilon - O \mathcal{T}_0$$

We had

$$H(\gamma) \geq -\frac{d}{2} \ln(\int |v - S(u)|^2 d\gamma(u, v)) + C,$$
(35)

so we get

$$H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln W_2^2(\gamma_arepsilon,\gamma_0) \hspace{3mm} ext{and}\hspace{3mm} H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln(\int c ext{d}\gamma_arepsilon - \int c ext{d}\gamma_0)$$

We are going to combine these inequalities with the existing litterature,

$$-rac{d}{2}arepsilon \ln(arepsilon)\gtrsim\int c {
m d} \gamma_arepsilon -\int c {
m d} \gamma_0 +arepsilon {
m H}(\gamma_arepsilon)$$

Our result:

$$H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln W_2^2(\gamma_arepsilon,\gamma_0)$$

Existing litterature:

$$-rac{d}{2}arepsilon \ln(arepsilon)\gtrsimarepsilon H(\gamma_arepsilon)$$

Our result:

$$H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln W_2^2(\gamma_arepsilon,\gamma_0)$$

Existing litterature:

$$-rac{d}{2}arepsilon \ln(arepsilon)\gtrsimarepsilon H(\gamma_arepsilon)$$

Combining both,

 $W_2^2(\gamma_arepsilon,\gamma_0)\gtrsimarepsilon.$

Suboptimality

Our result:

$$H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln(\int c\gamma_arepsilon-\int c\gamma_0)$$

Existing litterature:

$$-rac{d}{2}arepsilon \ln(arepsilon) + Carepsilon \geq \int c\gamma_arepsilon - \int c\gamma_0 + arepsilon H(\gamma_arepsilon)$$

Suboptimality

Our result:

$$H(\gamma_arepsilon)\gtrsim -rac{d}{2}\ln(\int c\gamma_arepsilon-\int c\gamma_0)$$

Existing litterature:

$$-rac{d}{2}arepsilon \ln(arepsilon) + Carepsilon \geq \int c\gamma_arepsilon - \int c\gamma_0 + arepsilon H(\gamma_arepsilon)$$

Combining both,

$$C \geq rac{\int c \gamma_arepsilon - \int c \gamma_0}{arepsilon} - rac{d}{2} \ln \left(rac{\int c \gamma_arepsilon - \int c \gamma_0}{arepsilon}
ight)$$

(36)

the map $x \mapsto x - \frac{d}{2}\ln(x)$ is coercive, so

$$C_1arepsilon \leq \int c\gamma_arepsilon - \int c\gamma_0 \leq C_2arepsilon$$

Suppose that the cost is quadratic, that is $c(x, y) = \frac{1}{2} ||x - y||^2$. Further assume that $\mu_i \in \mathcal{P}_{2+\delta,ac}(\mathbb{R}^d)$ for some $\delta > 0$.

Suppose that the cost is quadratic, that is $c(x, y) = \frac{1}{2} ||x - y||^2$. Further assume that $\mu_i \in \mathcal{P}_{2+\delta,ac}(\mathbb{R}^d)$ for some $\delta > 0$. Then

$$\int c\gamma_{\varepsilon} - \int c\gamma_{0} = \Theta(\varepsilon), \quad H(\gamma_{\varepsilon}) = -\frac{d}{2}\ln(\varepsilon) + O(1), \quad (37)$$

$$W_2(\gamma_{\varepsilon},\gamma_0) \ge C\sqrt{\varepsilon}.$$
 (38)

Suppose that the cost is quadratic, that is $c(x, y) = \frac{1}{2} ||x - y||^2$. Further assume that $\mu_i \in \mathcal{P}_{2+\delta,ac}$ for some $\delta > 0$ and that the Monge map ∇f is Lipschitz. Then

$$C_1\sqrt{\varepsilon} \ge W_2(\gamma_{\varepsilon},\gamma_0) \ge C_2\sqrt{\varepsilon},$$
(39)

Suppose that the cost is quadratic, that is $c(x, y) = \frac{1}{2} ||x - y||^2$. Further assume that $\mu_i \in \mathcal{P}_{2+\delta,ac}$ for some $\delta > 0$ and that the Monge map ∇f is Lipschitz. Then

$$C_1\sqrt{\varepsilon} \ge W_2(\gamma_{\varepsilon},\gamma_0) \ge C_2\sqrt{\varepsilon},$$
(39)

and

$$\|\nabla f_{\varepsilon} - \nabla f\|_{L^{2}(\mu_{0})}^{2} \leq C\varepsilon$$

$$\tag{40}$$

Where f_{ε} is the Schrödinger potential and ∇f_{ε} is the barycentric map.

Suppose that the cost is quadratic, that is $c(x, y) = \frac{1}{2} ||x - y||^2$. Further assume that $\mu_i \in \mathcal{P}_{2+\delta,ac}$ for some $\delta > 0$ and that the Monge map ∇f is Lipschitz. Then

$$C_1\sqrt{\varepsilon} \ge W_2(\gamma_{\varepsilon},\gamma_0) \ge C_2\sqrt{\varepsilon},$$
(39)

and

$$\|\nabla f_{\varepsilon} - \nabla f\|_{L^{2}(\mu_{0})}^{2} \leq C\varepsilon$$
(40)

Where f_{ε} is the Schrödinger potential and ∇f_{ε} is the barycentric map. ∇f_{ε} is the barycentric map means

$$abla f_{arepsilon}(x) = \int y \mathrm{d} \gamma^x_{arepsilon}(y)$$

We got interested in $\int |v - S(u)|^2 d\gamma_{\varepsilon}(u, v)$, we can also be interested in $\int |y - T(x)|^2 d\gamma_{\varepsilon}(x, y)$. Two good reasons:

We got interested in $\int |v - S(u)|^2 d\gamma_{\varepsilon}(u, v)$, we can also be interested in $\int |y - T(x)|^2 d\gamma_{\varepsilon}(x, y)$. Two good reasons:

• by Jensen inequality

$$\int \left|\int y \mathrm{d}\gamma_\varepsilon^x(y) - T(x)\right|^2 \mathrm{d}\hat{\gamma_\varepsilon}(x) \leq \int |y - T(x)|^2 \mathrm{d}\gamma_\varepsilon(x,y)$$

• $(x, y) \mapsto x, T(x)$ is a transport map between γ_{ε} and γ_0 , so

$$W_2^2(\gamma_{\varepsilon},\gamma_0) \leq \int |y-T(x)|^2 \mathrm{d}\gamma_{\varepsilon}(x,y)$$

ldea

Figure 14: The energy gap E(x, y) is bounded by $\frac{|y-T(x)|^2}{2L}$

ldea

$$E(x,y) \leq \frac{|y-T(x)|^2}{2L}$$

ldea

 $E(x,y) \leq \frac{|y-T(x)|^2}{2L}$

$$\int |y - T(x)|^2 \mathrm{d}\gamma_{\varepsilon}(x, y) \leq 2L \int E \mathrm{d}\gamma_{\varepsilon}$$

So

So

$$E(x,y) \leq rac{|y - T(x)|^2}{2L}$$

 $\int |y - T(x)|^2 d\gamma_{\varepsilon}(x,y) \leq 2L \int E d\gamma_{\varepsilon}$

Proposition If ∇f is L-lipschitz, then

$$\int |y - T(x)|^2 \mathrm{d}\gamma_{\varepsilon}(x, y) \leq 2L \left(\int c \gamma_{\varepsilon} - \int c \gamma_0\right).$$

Suppose that the cost is quadratic, that is $c(x, y) = \frac{1}{2} ||x - y||^2$. Further assume that $\mu_i \in \mathcal{P}_{2+\delta,ac}$ for some $\delta > 0$ and that the Monge map ∇f is Lipschitz. Then

$$C_1\sqrt{\varepsilon} \ge W_2(\gamma_{\varepsilon},\gamma_0) \ge C_2\sqrt{\varepsilon},$$
 (41)

and

$$\|\nabla f_{\varepsilon} - \nabla f\|_{L^{2}(\mu_{0})}^{2} \leq C\varepsilon$$
(42)

Where f_{ε} is the Schrödinger potential and ∇f_{ε} is the barycentric map.

Infinitesimally twisted costs and compact supports

Main result

Definition

 $c\in \mathcal{C}^2(\Omega^2)$ is said to be infinitesimally twisted if

$$abla^2_{xy}c(x,y)=(\partial^2_{x_iy_j}c(x,y))_{i,j}\in M_d(\mathbb{R}) ext{ is invertible for every } (x,y)\in \Omega^2.$$

Theorem

Suppose that the cost is \mathcal{C}^2 and infinitesimally twisted . Further assume that μ_i is compactly supported then

$$(c,\gamma_{\varepsilon}) = OT_0 + \Theta(\varepsilon), \quad H(\gamma_{\varepsilon} \mid \mathcal{H}^{2d}) = -\frac{d}{2}\ln(\varepsilon) + O(1), \quad \sqrt{\varepsilon} = O(W_2(\gamma_{\varepsilon},\gamma_0))$$
(43)

Note that here γ_0 is any optimal transport plan.

Thank you !

References i

Stefan Adams, Nicolas Dirr, Mark A. Peletier, and Johannes Zimmer.
 From a large-deviations principle to the wasserstein gradient flow: A new micro-macro passage.

Communications in Mathematical Physics, 307(3):791–815, September 2011.

- Jason M. Altschuler, Jonathan Niles-Weed, and Austin J. Stromme. **Asymptotics for semidiscrete entropic optimal transport.** SIAM Journal on Mathematical Analysis, 54(2):1718–1741, mar 2021.
- Guillaume Carlier, Vincent Duval, Gabriel Peyré, and Bernhard Schmitzer.
 Convergence of entropic schemes for optimal transport and gradient flows, 2015.

References ii

- Guillaume Carlier, Vincent Duval, Gabriel Peyré, and Bernhard Schmitzer.
 Convergence of entropic schemes for optimal transport and gradient flows, 2017.
- R. Cominetti and J. San Martin.

Asymptotic analysis of the exponential penalty trajectory in linear programming.

Mathematical Programming, 67(1-3):169–187, October 1994.

🔋 Giovanni Conforti.

A second order equation for schrödinger bridges with applications to the hot gas experiment and entropic transportation cost.

Probability Theory and Related Fields, 174(1-2):1-47, 2019.

References iii

- Guillaume Carlier, Paul Pegon, and Luca Tamanini.
 Convergence rate of general entropic optimal transport costs. arXiv preprint arXiv:2206.03347, 2022.
- Lenaic Chizat, Pierre Roussillon, Flavien Léger, François-Xavier Vialard, and Gabriel Peyré.

Faster wasserstein distance estimation with the sinkhorn divergence. Advances in Neural Information Processing Systems, 33:2257–2269, 2020.

Alex Delalande.

Nearly tight convergence bounds for semi-discrete entropic optimal transport, 2021.
- Matthias Erbar, Jan Maas, and Michiel Renger.
 From large deviations to wasserstein gradient flows in multiple dimensions.
 Electronic Communications in Probability, 20:1–12, 2015.
- Stephan Eckstein and Marcel Nutz.
 Convergence rates for regularized optimal transport via quantization, 2022.
- Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun ichi Amari, Alain Trouvé, and Gabriel Peyré. Interpolating between optimal transport and mmd using sinkhorn divergences, 2018.

References v

🔋 Christian Léonard.

A survey of the schrödinger problem and some of its connections with optimal transport, 2013.

🔋 Toshio Mikami.

Monge's problem with a quadratic cost by the zero-noise limit of h-path processes.

Probability Theory and Related Fields, 129(2):245–260, March 2004.

Hugo Malamut and Maxime Sylvestre.

Convergence rates of the regularized optimal transport: Disentangling suboptimality and entropy.

arXiv preprint arXiv:2306.06940, 2023.

🔋 Toshio Mikami and Michèle Thieullen.

Optimal transportation problem by stochastic optimal control. SIAM Journal on Control and Optimization, 47(3):1127–1139, January 2008.

📔 Luca Nenna and Paul Pegon.

Convergence rate of entropy-regularized multi-marginal optimal transport costs, 2023.

🔋 Soumik Pal.

On the difference between entropic cost and the optimal transport cost, 2019.

G. Peyré and M. Cuturi. Computational Optimal Transport.

<u>ArXiv e-prints</u>, March 2018.