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Optimal fransport



Transport map

T ]) X1 o T(XQ)

Figure 1: the map T transports ponto v : Tup =v



Transport plan

-8 -6 -4 -2 0 2 3 6 8

Figure 2: The plan 7 transports p onto v : 7 € T(, v) (image from Wikipedia)



Optimal transport

Given a cost function ¢ : RY x RY — R and two measures fig, 11 € P(RY),
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Optimal transport

Given a cost function ¢ : RY x RY — R and two measures fig, 11 € P(RY),

e Monge problem (1781) is

inf / T d 1
Lo [ el T60)duo(x) ()

e Kantorovich formulation:
OTo(p,v) ;== inf /c(x,y)dfy(x,y) (P)

yEM(po.p1)
e Dual problem:
OTo(un.v)i= sup | gdo+ [ D)
dPY<c

In the following, the cost function is c(x,y) = 3|x — y|2. It defines the Wasserstein

distance W2(p,v) := inf /|x — y[2dvy(x, y)
€N (po.p1)



Legendre transform

Definition
The Legendre transform of a function f is

f*(y) =supx -y — f(x) (2)



Legendre transform

Definition
The Legendre transform of a function f is

f*(y) =supx -y — f(x) (2)

e f* is always convex

e if f is convex and if both f and f* are differentiable, then

(VAL =vr* 3)



Legendre transform

A X = (£%)'(y)
y = f'(x)

Figure 3: The Legendre transform in 1d



Structure of the optimizers
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Structure of the optimizers

inf /c(x, T(x))dpo(x) > min / c(x, y)dv(x,y) sup /(ﬁduo—i—/wd,u,l

TH#Hpuo=p1 y€M(po.p1) ¢@ P<c

Theorem (Brenier)
For the quadratic cost c(x,y) = 3|x — y|%:

If o € Pa.ac(RY) then the solutions T,~o, ¢, 1 can be expressed thanks to a unique

convex function f:

« T—VF,

e v = (id, Vf)ypo,

o ¢(x) = 3lx* — f(x),
o ¥(y) =3y = (y).



Energy gap

Let define the Energy gap function
E(x.y) = c(xy) — o(x) = ¥(y) )



Energy gap

Let define the Energy gap function
E(x.y) = c(xy) — o(x) = ¥(y) )

V(x,y) € R?? E(x,y) >0,
(x,y) € Supp(0) = E(x,y) =0,

If v € M(uo, p1) then
/Cd’)’—/Cd"}/o = /Edw,

E(xy)=f(x)+f"(y)—x"y,

For the quadratic cost,



Legendre transform

A X = (£%)'(y)
y = f'(x)

Figure 4: We can identify E(x,y) = f(x) + f*(y) — x - y on this drawing



Energy gap

A

f(x)+f*(y)-xy

Figure 5: The energy gap in 1d




Benamou-Brenier formulation

Let o, 1 € P2(RY), for the quadratic cost, the Benamou-Brenier formulation is:

1

OTo(po, p11) = inf = |ve|?ppdt BB

O(MO Ml) 8tp+g-](pv):0 // 2’Vt’ Pt (BB)
PO=H0,P1=H1



Benamou-Brenier formulation

Let o, 1 € P2(RY), for the quadratic cost, the Benamou-Brenier formulation is:

1

OTo(po, p11) = inf = |ve|?ppdt BB

O(MO Ml) 8tp+g-](pv):0 // 2’Vt’ Pt (BB)
PO=H0,P1=H1

(The advection equation d:p + V - (pv) = 0 means that the density p is transported by
the velocity field v)



Entropic optimal transport

Let p € P2.c(R¥) be a continuous measure with finite variance, define

H(p) = /Rkp(x)lnp(x)dx and  I(p) := /Rkp(x)|V|np(x)\2dx ©)

differential entropy Fisher information
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Entropic optimal transport

Let p € P2.c(R¥) be a continuous measure with finite variance, define

H(p) = /Rkp(x)lnp(x)dx and  I(p) := /Rkp(x)|V|np(x)\2dx ©)

differential entropy Fisher information

I(p) < +oo implies H(p) < +oco Let ¢ be a C? cost function.
Let o, 11 € Pac(RY) be such that H(u;) < +oo.
Fore >0

OT.(po, p1) :==  inf /c’y +eH(v) (¢EQT)
Y€EM(p0.111)



Entropic optimal transport

£=05-10""! e=10"1 - =102

Figure 6: Entropic optimal transport in 1d (image from [PC18]



Sinkhorn algorithm

The dual problem of (¢EOT) is

d@—c
OT(1o. p11) :iu£/¢dﬂo+/¢dﬂl —s/e = dpoduy + ¢ @



Sinkhorn algorithm

The dual problem of (¢EOT) is
¢@v—c
OT(1o. p11) :iu£/¢dﬂo+/¢dﬂl —s/e = dpoduy + ¢ @
The optimality conditions are

$()—c(xy)

o(x) = —5In/ew(Y)7eC(X'y)dM1(y), P(y) = —eln/e = duo(x). (8)




Sinkhorn algorithm

The dual problem of (¢EOT) is
DY —c
OT(1o. p11) :iu£/¢dﬂo+/¢dﬂl —s/e = dpoduy + ¢ @

The optimality conditions are

P(x) = _5|”/6Mdﬂl(y). P(y) = —eln/e

d(x)—c(xy)
= dpo(x). 8)

Sinkhorn algorithm
Pnr1(x)—clxy)

Gnia(x) = —ln [0 0), vanl) = —ehn [ duo(),
9)




Entropic optimal transport

Fore >0

OT.(po, p1) :=  inf /c'y +eH(y) (eEOT)
vEM(po.p1)

Question: What happens when e — 07



Qualitative convergence results.
e [-convergence : [Mik04],[MTO08],[L&13],[CDPSI15]
Quantitative convergence results.

e Discrete optimal transport: [CM94]

e Semi-discrete optimal transport: [ANWS21],[Del21]
e Finite Fisher information: [ADPZ11],[EMR15],[Con19]
Finite entropy: [Pal19],[EN22],[CPT22]
Multimarginal: [NP23]

Sinkhorn divergence: [FSV'18, CRLT20]



Convergence of the value

Proposition [ADPZ11][EMR15]

Assume c(x,y) = 3|lx — y||?. and that Supp(;) are compact with /(11;) < +00
then

H(po) + H(p1)

5 + o(¢) (TE-OT,)

d
OT. — OTy = —5€ In(2me) + ¢




Convergence of the value

Proposition [ADPZ11][EMR15] ~

Assume c(x,y) = 3|lx — y||?. and that Supp(;) are compact with /(11;) < +00
then

H(po) + H(p1)

5 + o(¢) (TE-OT,)

J

Proposition [EN22, CPT22] ~

Assume c is infinitesimally twisted and Supp(u;) compact then

d
OT.— 0Ty = —5¢ In(2me) + ¢

(—gsln(s) + Ce S) OT. — 0Ty < —gsln(e) + Ce (10)
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Question 1:
How did they get these results?

Question 2:

OT. - 0Ty = /c'y6 —/C’yo +e H(7:)
——

— entropy
suboptimality

Can we disentangle ?

Question 3:
Is there a rate of convergence for Wa(7:,70) ?



Block approximation

Definition

Let i, v € Paac(RY) and v € N(u, v).

Let § > 0 and (Q?); be a partition of R? into cubes of side length 4.
The block approximation of v is defined by

ey O x O Bl = (0 x @By L) 1
x,y € Q xQp (xy) 'Y(QJXQI‘)M(QJ(';)V(QI(E) "



Block approximation

Figure 7: The block approximation in 1d (image from [CDPS17])



Block approximation

[[CPT22]] Let j1, v € Paa2c(R?) and v € M(y, v) be the optimal transport plan.
Let § > 0 and 7 be the block approximation of ~.
Then

/C’y&_/w:/E’V‘S < C6% and H(y’) < —dIn(8) + C (12)



Block approximation

[[CPT22]] Let j1, v € Paa2c(R?) and v € M(y, v) be the optimal transport plan.
Let § > 0 and 7 be the block approximation of ~.
Then

/C’y&_/w:/E’V‘S < C8* and H(y’) < —dIn(8)+ C (12)
So for § = /e, we have

OT.(uv) < /C’y‘S +eH(7%) < —g In(e) + Ce (13)



Convergence of the value

Proposition [ADPZ11][EMR15] ~

Assume c(x,y) = 3|lx — y||?. and that Supp(;) are compact with /(11;) < +00
then

H(po) + H(p1)

5 + o(¢) (TE-OT,)

J

Proposition [EN22, CPT22] ~

Assume c is infinitesimally twisted and Supp(u;) compact then

d
OT.— 0Ty = —5¢ In(2me) + ¢

(—gsln(s) + Ce S) OT. - 0Ty < —gsln(e) + Ce (14)
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How did they get these results? by Block approximation



Question 1

How did they get these results? by Block approximation

Question 2:

OT. - OTyg = /C’y,S —/C’Yo +e H(7:)
I ——

— entropy
suboptimality

Can we disentangle ?

Question 3:
Is there a rate of convergence for Wa(7:,70) ?



Fisher information and quadratic
cost



Main result

- Theorem [MS23] ~

Suppose that the cost is quadratic, that is c(x,y) = 3|x — y|2. Further assume

that /(i) < oo and Supp(pi) compact. Then
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Main result

- Theorem [MS23] ~

Suppose that the cost is quadratic, that is c(x,y) = 3|x — y|2. Further assume

that /(i) < oo and Supp(pi) compact. Then
d d
H(~:) = > In(2me) + Hm — 5t o(1) (15)

where H,, = w Moreover

/c% - /c70 = ga + o(e) (16)
\ J
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Recall H,, = w The dynamic formulation [Lé13] is

d
OT, =eH,, — 55|n(27r5) 8p+v (pv // 2| t| prt + — 5 / (pe)t (eBB)

PO=H0.P1=H1



Sketch of proof

Recall H,, = w The dynamic formulation [Lé13] is

d
OT, =eH,, — 55|n(27r6) 8p+v (pv // 2| t| prt + — 5 / (pe)t (eBB)

PO=H0.P1=H1

Known asymptotics (TE-OT,) is

OT.— 0Ty = —gs In(27me) + eHpm + o(e) (TE-OT.)



Sketch of proof

Recall H,, = w The dynamic formulation [Lé13] is

OT. =eHp, —5In(27re +// oSt 4+ — 5 / (p7)t (BB)

Known asymptotics (TE-OT,) is

OT. — OTy + ge In(2me) — eHp = o(e) (17)



Sketch of proof

Recall H,, = w The dynamic formulation [Lé13] is
OT. =eHp, —5In(27re + // oSt 4+ — 5 / (p7)t (BB)
Known asymptotics (TE-OT,) is

OT. — OTy + ge In(2me) — eHp = o(e) (17)

Thus thanks to (¢BB)

1 1 L
———

suboptimality regularity term




Sketch of proof

Recall H,, = w The dynamic formulation [Lé13] is

OT. =eHp, —5 In(27e) + // oSt 4+ — 5 / (p7)t (BB)
Known asymptotics (TE-OT,) is
d
OT. — OTy + 55 In(2me) — eHp = o(e) (17)
Thus thanks to (¢BB)
1 1 1
2 ([[ Gheraie—omo) +5 [ e = ot (g)
€ 2 8 Jo
—_———
suboptimality regularity term

Since both terms are positive they both tend to 0.



Envelop theorem

Theorem
Let X be asetand f : R x X — R be a function.

Let F : R — R be defined by

F(e) = inf f(=.%) 19)

Let x. be a minimizer of f(e,-). If F and f(., x.) are differentiable at ¢ then there
derivative are the same:

Fie) = Z(a x:) (20)



From dynamic to static and back

d 1 2 1
/C%HH(%) — cHp— 55|n(27r€)+//§|vf|2p§t+ ‘;/O (55t (eBB)

(a) static (b) (¢) dynamic




From dynamic to static and back

d 1 2 1
/C%HH(%) — cHp— 55|n(27r5)+//§|vﬂ2p§t+ 58/0 (55t (eBB)

(a) static (b) (¢) dynamic

Envelop theorem

d d d
CTE(‘?) = @(b) + CTE(C)

H(k) = Hn—shn@re) -5 + 5 [ 1)



From dynamic to static and back

d 1 2 1
/C%HH(%) — cHp— 55|n(27r5)+//§|vﬂ2p§t+ 58/0 (55t (eBB)

(a) static (b) (¢) dynamic

Envelop theorem

d d d
CTE(‘?) = @(b) + CTE(C)
HOW = Hn— Sinne) =5 + 5 [ i)t

d
Jecye— 0Ty = // lve | pft—OT—% I(pi)t—kEs

H(7e) = 4/ )t — = In (2me) + Hm



Quadratic cost without Fisher
information



Main result

- Theorem [MS23] ~\
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Main result

- Theorem [MS23] ~

Suppose that the cost is quadratic, that is c(x, y) = ||x — y||?. Further assume
that p1; € Pays,ac(RY) for some & > 0 and that the Monge map V£ is Lipschitz.
Then

/c*y8 - /C’yo =0(e), H(y) = —g In(e) + O(1) (24)

L Cive >Wa(ve 0) = Gov/e (25) )

Key idea :

"If Wa(~,70) is small, then H(v) explodes"

"If [ ¢y — [ ¢y is small, then H(7) explodes"




Figure 8: The best to do is to convolve vy with a Gaussian in the transverse direction



Minty’s coordinates

Minty’s coordinates (u, v) are defined by

Xty y—x

VA R

u=



Minty’s coordinates

Minty’s coordinates (u, v) are defined by

Xty V_y—x

N NG &

u=

Let G C R?“ be the graph of a function y = T(x) in the classical coordinates and of a
function v = S(u) in the Minty’s coordinates.



Minty’s coordinates

Minty’s coordinates (u, v) are defined by

Xty y—X 26)

B TR

u=

Let G C R?“ be the graph of a function y = T(x) in the classical coordinates and of a
function v = S(u) in the Minty’s coordinates.

Then
T = Vfwith f convex < S 1-Lipschitz



Minty’s coordinates

/\{/
’\//’%

Figure 9: Minty’s coordinates in 1d




Minty’s coordinates

'V

v =S(u)

Figure 10: Minty’s coordinates in 1d



Linearity of the entropy
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Y(u,v) =7 (vV)A(v). 27
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Linearity of the entropy

Let v € P2,ac(R2d) be disentegrated in Minty’s coordinates as

Y(u,v) =7 (vV)A(v). 27

Then, by linearity of the entropy,

H() = H3) + [ HG)d3(w) @9

Question: how to choose v in order to minimize H(~) if 4 and
[ v — S(u)>v(u, v)dudv are fixed?



Linearity of the entropy

Figure 11: The best to do is to is to choose v to be a Gaussian
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Linearity of the entropy

By linearity of the entropy,

H() = HA) + [ HG)d3(w) @)

Question: how to choose v in order to minimize H(~) if 4 and
[ v — S(u)>v(u, v)dudv are fixed?
Answer: the best to do is to choose 7" to be a Gaussian, with center S(u).

Let Cg = —d In(%52). Then

/H A(u) > -2 In(/|v— () 2dy(u, v)) + Cy (30)

Question: What do we do with this term [ |v — S(u)[?dy(u, v)?



Wasserstein distance and Lipschitz function

Since 7o is supported by the graph of S, 1-Lipschitz, [ |v — S(u)|?dy(u, v) is bounded
by the Wassertein distance to vg.



Wasserstein distance and Lipschitz function

Since 7o is supported by the graph of S, 1-Lipschitz, [ |v — S(u)|?dy(u, v) is bounded
by the Wassertein distance to vg.

W Proposiion -

Let 7,70 € P2(R2?) be two plans.
If vo is supported by the graph of a 1-Lipschitz function S, then

2
S(u)l dvy(u, v) (31

W3 (y.0) 2 [ =200




Wasserstein distance and Lipschitz function

Safe zone

()

(u,S(u))

Figure 12: There is nothing much better to do than going down



Quadratic detachment

- Minty’s trick ~

For the quadratic cost, the energy gap has a quadratic detachment in Minty’s

coordinates:

v —S(u)P
2

. J

Consequence: if 7 € P2 ac(R?), then

Vu,v, E(uv)> (32)

/E >/| 'y(u v)dudv (33)



Quadratic detachment

- Minty’s trick ~

For the quadratic cost, the energy gap has a quadratic detachment in Minty’s

coordinates:

v —S(u)P
2

. J

Consequence: if 7 € P2 ac(R?), then

Vu,v, E(uv)> (32)

/E >/| 'y(u v)dudv (33)



Quadratic detachment

(uv)

Figure 13: Quadratic detachment in 1d



Bound the transverse distance

Question: What do we do with this term [ |v — S(u)|?dy(u, v)?
Answer: we can bound it with meaningful quantities



Bound the transverse distance

Question: What do we do with this term [ |v — S(u)|?dy(u, v)?
Answer: we can bound it with meaningful quantities

r P

If 7 € P2(R2%), then

[1v = S@Pdr(a.v) < 203 7%0)

\_ /\v — S(u)Pdy(u,v) < 2/ Ery )

Remark that if v € M(u, v),
/E'y:/c'y—/c'yo.
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We had
>In</|v dvuv))+C, (34)

so we get

d d
H(v:) = 5 In sz(ﬂyg,fyo) and H(v:) 2 > In (/ cdy. — /cd'yo)

We are going to combine these inequalities with the existing litterature,

—gsln(s) = OT. — OTy



idea of proof

We had d
H() > -5 In(/ v Sk w) o € (35)

so we get

d d
H(ve) 2 > In W22(fy€,'yo) and H(v:) 2 5 In(/ cdy. — /cd'yo)

We are going to combine these inequalities with the existing litterature,

d
~2ein(@) 2 [ et = [ o +2H(32)



Wasserstein distance

Our result:

d
H(9e) 2 =7 In W5 (72.70)

Existing litterature:

~Zeine) 2 eH(re)



Wasserstein distance

Our result:

d
H(9e) 2 =7 In W5 (72.70)

Existing litterature:

~Zeine) 2 eH(re)

Combining both,
W22(76170) = &



Suboptimality

Our result: J
H(2) 2 =5 ([ ex: = [ )

Existing litterature:

—gsln(s) + Ce > /c% - / cyo +eH(7e)



Suboptimality

Our result: J
H(2) 2 =5 ([ ex: = [ )
Existing litterature:
d
—Esln(s) + Ce > /c% - / cyo + eH(7e)

Combining both,

cxfer—JSen _d (—f Sl M") (36)
€ 2 €

the map x — x — 9 In(x) is coercive, so

C16§/c757/cw < Ge
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Main result

- Theorem [MS23] ~

Suppose that the cost is quadratic, that is c(x, y) = ||x — y||?. Further assume
that p1; € Pays.ac(RY) for some § > 0. Then

/c'y(S - /c% =0(e), H(y) = —g In(e) + O(1), (37

Wa(ve.v0) > Cy/e. (38)




Maps



- Theorem [MS23] ~N

Suppose that the cost is quadratic, that is c(x, y) = ||x — y||?. Further assume
that j1j € Patsac for some § > 0 and that the Monge map Vf is Lipschitz. Then

Cive > Wa(ve.v0) = Gov/e, (39)




- Theorem [MS23] ~N

Suppose that the cost is quadratic, that is c(x, y) = ||x — y||?. Further assume
that j1j € Patsac for some § > 0 and that the Monge map Vf is Lipschitz. Then

Cive > Wa(ve.v0) = Gov/e, (39)
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Suppose that the cost is quadratic, that is c(x, y) = ||x — y||?. Further assume
that j1j € Patsac for some § > 0 and that the Monge map Vf is Lipschitz. Then

Cive > Wa(ve.v0) = Gov/e, (39)

and
IVE = V[T < Ce (40)

Where f. is the Schrédinger potential and V£, is the barycentric map. Vf.is the
barycentric map means

VE) = [ yez(y)
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We got interested in [ |v — S(u)|?dv.(u, v), we can also be interested in
[y — T(x)|?>dv:(x, y). Two good reasons:

e by Jensen inequality

/’/yd% - T(x)

e (x,y) — x, T(x) is a transport map between ~. and 7, so

"0 < [y - TP

W3(e70) < [ ly = TEOPRdv(x.)



—T(x)|?
Figure 14: The energy gap E(x,y) is bounded by %
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y = T()P

Bl o) <
(x,y) < o0

1y =TeoPe(xy) <2t [ Edr.

If V£ is L-lipschitz, then

/\y — T(x)]Pdve(x,y) < 2L (/ Ve — /C’)/()) .




- Theorem [MS23] N

Suppose that the cost is quadratic, that is c(x,y) = %HX — y||?. Further assume
that j1; € Patsac for some § > 0 and that the Monge map Vf is Lipschitz. Then

Cive > Wa(ve.70) = Gove, (41)

and
IVE = V] Z2 < Ce (42)

Where f; is the Schrédinger potential and V£ is the barycentric map.




Infinitesimally twisted costs and
compact supports



Main result

c € C%(Q?) is said to be infinitesimally twisted if
V)%yc(x, y) = (8>2(i},jc(x.y)),~,j € My(R) is invertible for every (x,y) € Q2.

& Iheorem

\
Suppose that the cost is C2 and infinitesimally twisted . Further assume that s,
is compactly supported then
d
(c.7e) = OTo+0(e).  H(ve | H*) = =5 In(e)+0(1). v = O(Wa(%:.%0))
43)
. y,

Note that here ~g is any optimal transport plan.



Thank you !
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