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Abstract

An F-cone is a pointed and generating convex cone of a real vector space that is the union of
a countable family of finite dimensional polyhedral convex cones such that each of which is an
extremal subset of the subsequent one. In this paper, we study securities markets with countably
many securities and arbitrary finite portfolio holdings. Moreover, we assume that each investor is
constrained to have a non-negative end-of-period wealth. If, under the portfolio dominance order,
the positive cone of the portfolio space is Arcone, then Edgeworth allocations and non-trivial
guasi-equilibria exist. This result extends the case where, as in Aliprantis et al. [J. Math. Econom.
30 (1998a) 347], the positive cone is a Yudin cone.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a finance model with investors trading securities and having identical
expectations on the security payoffs. Liebe a portfolio (vector) space. Given an ordered
vector payoff spacé, for example somé. ,(£2, X, P) for 1 < p < oo and an underlying
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probability spacés2, X, P), let alinear operatoR : E — X define for each portfolia the
payoff R(z) an investor expects to receive when holding the portfollbwe suppose thak
is one-to-one, itis natural to order the portfolio sp&d®y theportfolio dominance ordering

z>r 7 whenever R(z) > R(Z).

Let us now assume that investors are constrained to have non-negative end-of-period wealth
or, equivalently, that their portfolio setis equal to the c&he- {z € E : z > 0} of positive

payoff portfolios. If each investor has a strict preference &elescribed by a correspon-
denceP; : K — K and an initial endowment of securities € K, then afinancial market

is given by:

5: (E9 K? (Piv wl)iﬂzl)

An equilibrium concept for this economy requires the definition of a security price vector
spaceE’, in duality with E. Relative to this duality, aequilibriumis as usual a paitp, x)
consisting of a non-zero prigee E’ and a market clearing allocatian= (x;)! ; € K™ of
investors’ optimal portfolios subject to the given security prices. Our paper is a contribution
to the equilibrium existence problem in this type of financial models.

The existence of equilibrium in these models was first studie@doyvn and Werner
(1995) and then byAliprantis et al. (1998a)who introduced the notion of portfolio domi-
nance ordering. As iBrown and Werner (1995 liprantis et al. (1998aassume that there
are countably infinitely many securities, butAdiprantis et al. (19983)each investor is
restricted to portfolios with non-zero holdings of only finitely many securities. The port-
folio space of the model is thus the vector spdcef all eventually zero real sequences.
Assuming that the con& of positive payoff portfolios is a Yudin cond\liprantis et al.
(1998a)prove that the portfolio space, equipped with the inductive limit topologyel-
ative to the family of all finite dimensional subspacesiofis a topological vector lattice.

As the portfolio trading sets of investors coincide with the positive dor# the portfolio

space, in the spirit dflas-Colell (1986)the existence of a quasi-equilibrium with a price

in RN, the topological dual o, is mainly based on assumptions of uniform properness on

K of the preferences of the investors. Our purpose in this paper is to show that, in the same
setting and under comparable properness assumptions, the key assumption that khe cone
of positive payoffs portfolios is a Yudin cone can be seriously weakened.

We assume that there is a finite number or a countable infinity of securities defined by their
payoffs, and that the portfolio spagas either some Euclidean spaké or, as inAliprantis
et al. (1998a)®, both ordered by the portfolio dominance ordering and equipped with the
inductive limit topology. As inAliprantis et al. (19983)we assume that the agents have
the positive cone as their portfolio trading sets and make properness assumptions on their
preferences, but we replace the lattice ordering hypothesis by the strictly weaker assumption
that the positive cone is afi-cone. By this assumption, on which we will comment later,
we mean that, under the portfolio dominance ordering, the positive cone of the portfolio
space is a convex, pointed and generating ckne: | ;7 ; K, which is the union of a
countable family of finite dimensional polyhedral convex cofgssuch that eaclk, is

1 The definition of a Yudin cone and the properties of this topology will be discussgedtion 2
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an extremal subset (or a face) &f, 1. Under these assumptions we shall establish that
equilibrium exists. Moreover, the countably many extremal vectors of the positive cone have
the same economic interpretation as the vectors of the Yudin basis assuilgatantis

etal. (1998a)The corresponding portfolios can be thought of as mutual funds that investors
trade under the no short sales restriction.

The main tool of this extension is a result Afiprantis et al. (2002ajTheorem 5.1)
stating a sufficient condition for decentralizing Edgeworth allocations of a proper exchange
economy of which the commaodity space is not a vector lattice. This condition, expressed in
terms of properness of the Riesz—Kantorovich functional associated to a list of continuous
linear functionals ork, should be understood as a condition (satisfied in our model) of
compatibility between the topology and the order structure of the portfolio space. The
existence of Edgeworth allocations is obtained under classical continuity assumptions on
the preferences of the agents. Their decentralization as non-trivial quasi-equilibria requires
properness assumptions that we shall make precise later. The double assumption on the
topology of the portfolio space and its order structure guarantees that we can apply the
result inAliprantis et al. (2002a)

The paper is organized as follows:$ection 2we review the definition and properties of
the inductive limit topologyt on E generated by the family of its finite dimensional vector
subspaces. We also defifecones and establish some propertieswhenE is ordered by
an F-cone. Edgeworth and non-trivial quasi-equilibria of our financial economy are studied
in Section 3 Section 4is devoted to examples. The properness of the Riesz—Kantorovich
functional is proved in the last section. This section an8gpendix Aare the only technical
parts of the paper.

2. Inductive limit topology and F-cones
2.1. The inductive limit topology

Let E be a real vector space and [Etbe the family (directed by inclusion) of all finite
dimensional vector subspacesfThe inductive limit topology: on E generated byFis
the finest locally convex topology afi for which, for eachF € F, the natural embedding
ir . F — Eis (tr, £)-continuous, wherer is the unique Hausdorff linear topology
onF.

The fact that, as a finite dimensional space, gaehF admits a unique Hausdorff linear
topologytr has several remarkable consequences that are easy to%lerive:

o If (F)),cr is a family of finite dimensional vector subspaces such that éaehF is
contained in somé,, thené is also the finest locally convex topology @hfor which,
for eachy € I', the natural embedding : F,, — E is (zF,, §)-continuous.

e The topolog¥ is also the finest locally convex topology &h Consequently is Haus-
dorff and the topological and algebraic du&lsand E* coincide.

2 For details about inductive limit topologies see the monogr&shsbaki (1966)Kelley and Namioka (1963)
andSchaefer (1971)
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o If (¢;)ics is @ Hamel basis of, thenE is the direct sum of the one dimensional vector
spacesRe; and ¢ is the finest locally convex topology of for which each natural
embeddingRe; — E is (tg,;, £)-continuous.

e Foreacte = (¢;)ic € (0, 00)!, let

Ve :={x € E:|xi| <¢ foreachi e I}.
The family of all subset¥, is a base of neighborhoods at 0 for the topolégy

The following result is also classical; sBeurbaki (1966)Chapter II, 84, Exercise 8). We
give its proof for the sake of completeness.

Proposition 2.1. Assume thak is a real vector space with a countable Hamel basgis
subsetA of E is &-closed if and only if for each finite dimensional vector subspacé £,
the setA N F is closed for the unique Hausdorff linear topology Bn

In particular, if Fis the family of all finite dimensional subspace$othen

&§={V CE:VNF isopenin FforeachF e F}.

Proof. Let A be a&¢-closed subset of. For each finite dimensional subspac®f E, the
subset;1(A) = AN Fis closed inF.

Conversely, letd be a subset of such that for each finite dimensional subsp&cef
E, the subsefA N F is closed. If dimE < oo, then there is nothing to prove. Otherwise, let
(en)nen be acountable basis éfand letx € E\ A. We claim that there exists= (¢&;);eN €
(0, 00)N such thaix + V, C E \ A. For each: € N, we letE, be the vector space spanned
by the vectordes, ..., e,}, and for each finite familyBs, ..., B,} of subsets oR, we let

n n
1_[3,' =3xekE, . x= Zaiei with «; € B; foreachi=1,...,n
i=1 i=1
Without any loss of generality we can suppose thatE;. Then for eaclk > 1 we have
x € E,\ (ANE,).
As AN E, is closed inE,, it follows that there existées1, ..., &,) € (0, 00)" such that
n
x+ [[(—eie) C Ex\ (AN Ey). (2.1)
i=1
Leta > 1. We claim that there exists11 > 0 such that

X+ ]jl (=22 € Ewra\ (AN Ens. (2.2)

)
o

To see this, suppose that the claim is not true. Then, we can construct a sequenRee
of E, 1 such that for each € N,

n
& & 11
Ukel_{(—j,é> X (—E,z> and x+uvr € AN E;41.
i=
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The sequencéy)cn lies in a compact subset éf, 1. Passing to a subsequence if neces-
sary, we can suppose tha),cy converges to somee E,.1. Note that

vel_[[——l 2] x 101

It follows that

x+v€Aﬁ<x+l_[[—i %]) CAD|:x+li[(—s,-,£,-)].

i=1
This contradictg2.1) and the validity of(2.2) has been established.

In order to apply the previous claim, we consider a sequémgg,.cy € (1, o0)N such
that

N oo
lim l_[an = l_[an < 0.
N—o0

n=1 n=1

Applying inductively(2.2), we can construct a sequeneg),cy € (0, co)N such that for
eachn € N we have

&
x+H< 1_[ " H—)cEn\(AmEn). (2.3)

i=1%i

Now consideis € R such thaig > [],2; «, and letV be the followings-neighborhood of
0:

Vi={x€eE . x= Zaiei, where |o;| < & foreachi e N} .
ieN p

We assertthat + V C E \ A. Indeed, suppose thét + V) N A # @. Then there exists

somen € N such thatx + V) N AN E, # #. But

(X+V)0E,1Cx+l_[< 2 Z)Cx+l_[< 1_[ o ]_[Sioe)
19 1%

i=1

This contradict$2.3) and the proof is finished. O

An immediate consequence of the preceding result is the following.

Corollary 2.1. LetE be a real vector space with a countable Hamel ba&isubsetA of £
is &-closed if and only if there exists an increasing sequetg, n of finite dimensional
subspaces of such that

1. each finite dimensional subspageof E is contained in some;,,
2. for everyn the setA N F, is closed inF,,.

3 For instance, le, = exp(1/n?).
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Proof. Assume first thatd is &-closed. Pick an increasing sequen@®),n of finite
dimensional vector subspaces such thjt ; F, = F. The latter shows that (1) is true.
Since¢ induces the Euclidean topology on eagh it follows that (2) also is true.
Conversely, assume that a sequengg),n satisfies (1) and (2). In order to apply
Proposition 2.1we shall prove that for each finite dimensional vector subspaaieE, the
setA N FisclosedinF. Let F € F. Then there exists somesuch thatF' C F,,. Note that

ANF=FN(ANE,).

SinceA N F, is closed inF,, the subsef N F is closed inF. O
2.2. F-cones

For a precise definition of cones, convex cones, finite dimensional polyhedral convex
cones, we refer the readerRmckafellar (1972)We start with the definition of af-cone.

Definition 2.2. Let E be areal vector space. A (convex) cdief E is called &aced cone

(or simply anF-cone) ifK is pointed (i.e.K N (—K) = {0}), generatingi.e.,K — K = E)
andK = [J;2 ; K,, the union of a countable family of finite dimensional polyhedral convex
cones(K,),>1 such that eaclk,, is an extremal subseof K, ,1.

Remark 2.2. Note that if K is an F-cone of E, then E has a countable Hamel basis.
Moreover, observe that aFi-coneK is generated by a countable family of vectors which
is the union of the extremal directions of eakh. Countably generated Yudin coReare
particular cases of’-cones, but arF-cone is not necessarily a Yudin cone. For example,
if E is finite dimensional, ar-cone is necessarily a (pointed and generating) polyhedral
convex cone. It is easy to check that&stone is a Yudin cone if and only if the number of
its extremal directions is equal to the dimensiorFofAssume now thak is a vector space
with a countably infinite Hamel basig,),cn. Let K be the convex cone generated by the
family {e3+ e1, e3+¢2, e3 —e1, e3 — €2} U {e, }n>4. Itis easily verified thaK is anF-cone

but not a Yudin cone.

Proposition 2.2. Every F-cone ist-closed

Proof. Let K be anF-cone of a vector spacg. SincekK is generating, for each finite
dimensional subspade of E we haveF C K, — K, for somen. Moreover, it is easy to
see that eack,, is an extremal subset &, for everyn’ > n. Now we shall prove that for
eachn € Nwe havek N (K, — K,,) = K,,. Indeed, lett € KN (K, — K,,). Then there

4 A convex subset of a convex se€ is anextremal subsegpr aface of C if for each line segmenty z] of C
satisfying(y, z) N A # @ theny andz belong toA. If K is a convex cone, then a convex subsetf the cone is an
extremal subset of if and only if x = y 4+ z with x € A andy, z € K imply y, z € A. It follows that an extremal
subset of a cone is itself a convex cone.

5 A convex congC that is generated by a family;);c; of vectors in a vector space is calletfadin conef each
x € C has a unique representation of the forre: ", _; a;e;, whereo; > 0 ande; = 0 for all but finitely many
i € 1. It should be clear that the family;);c; is linearly independent. Yudin cones were introduced and studied
in Aliprantis et al. (1998h)
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existy, z € K, andn’ > n such thatt € K, andx = y — z. It follows thaty = x + z.
Since K, is an extremal subset &/, we see that ¢ K, andK N (K,, — K,,) C K,.
The reverse inclusion is obvious. Now recalling that a finite dimensional polyhedral convex
cone is closed, an application @brollary 2.1completes the proof. O

For the rest of our discussion in the paper we shall assumé&ikatrdered by thé'-cone
K.

Proposition 2.3. The order intervals oF lie in finite dimensional subspaces and thus are
&-compact

Proof. Leta € K satisfya # 0. We only have to prove that the order intervaldp =

K N (a — K) is é&-compact. Lek be such that € K,,. For everyx < [0, a], let n’ be such
thatx anda — x liein K. If n’ < n, thenx € K,,. If n’ > n, then froma = x + (a — x) and
the fact thatk is an F-cone, we deduce thate K,,. Thus, [Q 4] C K,,, and hence [(1] is
included in the finite dimensional spakg — K, (ordered by the polyhedral convex cone
KN (K, — K,) = K,). Itfollows that [Q, 4] is a compact subset & N (K, — K,,) = K,
and, in view of the definition of, a&-compact subset df. O

Remark 2.3. Let E be a vector space with a countable Hamel bésis, <. Let K be the
cone generated by the famify1 — e,, e, },>2. Since the order interval [@1] contains the
family {e,},>1, it is noté-compact. In view oProposition 2.3the coneX is not anF-cone.

3. Equilibrium in securities markets

Let us now return to the model of our financial economy
g = (E9 gv Kv (Pia wi)?,lzl)v

where the portfolio spacg is either a finite dimensional Euclidean vector spadeor the
vector spac@ of all eventually zero real sequences. In both cagds,equipped with the
inductive limit topology &, while the positive con& of the portfolio dominance ordering
is assumed to be af-cone. A Hamel basis of consists of the vecto®, ...,0,1,0,...)
corresponding to each one of the countably many securities defining the model. According
to the finite or countably infinite dimension &f the algebraic and topological dual Bfis
R’ or RN of which each element can be thought of as a list of prices for each security.

We first observe that it follows fronPropositions 2.2 and 2.Bat (E, &, K) is an or-
dered linear vector space equipped with a Hausdorff locally convex topology satisfying the
properties:

Al: The positive con& is generating ané-closed.
A2: The order intervals of’ are&-bounded.

These properties are required for the economic modaliprantis et al. (2002a)

6 Obviously, orR’ the topologyt coincides with the Euclidean topology Bf .
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Letw = Y ", w; be the total initial endowment of securities, i.e., debe themar-
ket portfolia A portfolio allocationis anm-tuple x = (x)/.; € K™ such that) /",
X = w.

Definition 3.1. A pair (x, p) consisting of an allocatiom and a non-zero linear functional
pis said to be:

1. Aquasi-equilibrium, if p(x;) = p(w;) foreachi andy; € P;(x;) impliesp(y;) > p(x;).
2. Anequilibrium, if it is a quasi-equilibrium and; € P;(x;) implies p(y;) > p(x;).

Definition 3.2. A quasi-equilibrium(x, p) is said to benon-trivial if for somei we have
inf{p(z;) : z; € K} < p(w;).

In this paper, we will be interested only in non-trivial quasi-equiliBridle now introduce
the usual optimality properties of portfolio allocations.

Definition 3.3. A portfolio allocationx is said to be:

1. Individually rational, if for eachi we havew; ¢ P;(x;).

2. Weakly Pareto optimal, if there is no portfolio allocatiory satisfyingy; € P(x;) for
eachi.

3. Acoreallocation, if it cannot be blocked by any coalition in the sense that there is no
coalition S and somey € K such that:
() Yies ¥i = Xjes @ir and
(b) y; € Pi(x;) foralli e S.

4. An Edgeworth equilibrium, if for every integerr > 1 ther-fold replica ofx belongs
to the core of the-fold replica of the economg.®

As well-known, an equilibrium allocation & is an Edgeworth equilibrium (and hence a
core, weakly Pareto optimal and individually rational allocation).

Recall that in our financial econongeach investoi has the con& of positive payoff
portfolios as her portfolio set and an initial endowment of securities K. We posit on
£ the following assumptions.

C1: For eachi and for every; € K:
() P;i(x;)isconvex and; ¢ P;(x;).
(b) (P)~(x;) == {yi € Kx; € P;(y;)} is £&-open inK.

C2: The total initial endowment of securities is such that > 0 (i.e.,w € K and
w #0).

7 If (x, p) is some trivial quasi-equilibrium, then for every allocatigihe pair(y, p) is also a quasi-equilibrium.
If the quasi-equilibrium(x, p) is non-trivial, then it is well-known that (under some additional continuity condition
on preferences or concavity for utility functions and some irreducibility assumption on the ecotamy)is
actually an equilibrium.

8 The ideas in this definition go back Bebreu and Scarf (1963)n important reference is alsubin (1979)
Edgeworth equilibria were first introduced and studiediiprantis et al. (1987)
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In view of Proposition 2.2&nd the previous assumptions, it follows fréfoerenzano
(1990)(Proposition 3) that Edgeworth equilibrium exists fr
We now introduce the additional assumption&which will allow to decentralize
with prices inE’ (the topological dual oF) any Edgeworth equilibrium.
C3: For eachiand every weakly Pareto optimal allocatioe= (x;) ;, we havex; € P;(x;)
and:
(@) P;i(x;) is&-openinkK or P;(x;) = {y; € K : u;(y;) > u;(x;)} for some concave
utility functionu; : K — R.
(b) There is a convex subsBt(x;) of E such that the vector; + w is a&-interior point
of Pi(x;) and P;(x;) N K = Pi(x;).

Assumption C3(b) states that for eadie preference correspondemngds w-properat
every component of a weakly Pareto optimal portfolio allocation. This properness assump-
tion was introduced byourky (1998)wvho proved that it is strictly weaker that Mas-Colell’'s
w-uniform properness assumed Ajiprantis et al. (1998ajor preferences defined ok
by utility functions. The local non-satiation property assumed in C3 is implied by their
assumption that the market portfolipis desirable.

Letx = (x;)!”; be an Edgeworth equilibrium &t In view of Assumptions C1(a), C2, and
C3, itfollows fromAliprantis et al. (2002a)Theorem 5.1) that there exists some E’ such
that(x, p) is a non-trivial quasi-equilibrium, provided the following condition is satisfied:

B: If f=(f1, f2,..., fm) is alist of&-continuous linear functionals such thétw) > 0
for eachi, andR s (w) = Y "i_; fi(x;) for somex = (x;); € K™ suchthafy /", x; =
,% then the Riesz—Kantorovich functiod&IR ; is w-proper atw.
We shall see itsection Rhat property B is true in our model. Using this, we can establish
the following result which extends in several respects the main theorem (Theorem 6.1) in
Aliprantis et al. (1998a)

Theorem 3.4. Assume tha® is equipped with the inductive limit topologyand that the

cone of positive payoff portfolids is an F-cone Under the assumptior@l, C2,andC3on
&= ((pv gv Ka (Pia a)l):n:l)v

there exists a non-trivial portfolio quasi-equilibrium

WhenE is finite dimensional, the preceding result specializes to the following.

Theorem 3.5. Assume thaf is a finite set of securities, and that the cone of positive payoff
portfolios K is an F-cone Under the assumptions C1, C2, and C3 on

=R, &K, (P, w)}Ly).
there exists a non-trivial portfolio quasi-equilibrium

9 It follows from the definition ofR ; and the&-compactness of the order intervals ®fthat the condition
Ri(w) = YI'q fi(x;) for somex = (x), € K™ such that) i’ x; = o is satisfied for any listf =
(f1, f25 -+ - fm) of &-continuous linear functionals.

10 The precise definition dR ¢ will be given in the following section.
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4, Examples
4.1. Finitely many securities

In the following examples, the family of available securities is finite and non-redundant,
i.e., their payoffs are linearly independent.

Example 4.1. We start with a finite sef of securities and a finite sétof states of the
world (S > J), that is, with a finite dimensional payoff spagé endowed with its canonical
order. We also are given a one-to-one linear payoff opetdR’ — RS. In this case, the
conek of positive payoff portfolios is simply

K ={zeR’:Rz> 0.

We have the following properties.

e Since the securities are non-redundahts a polyhedral pointed convex cone.

o If markets are complete, i.e., if = S, thenK is generating—and actuall/ is a Yudin
cone.

o If J < S (that is, if markets are incomplete), thé&his not necessarily generating. In
order to know if the positive cone of a given financial mofek an F-cone, one has to
check, by computing the extremal rays, whetheking ¢.

When the cone&X is generating, it is arF-cone which may have more extremal direc-
tions than the number of elementsdn(and thus it may not be a Yudin cone). It follows
from Theorem 3.%hat under the assumptions C1, C2, and C3, the financial ntbéel
(R, & K, (P, w;)L 1) has a non-trivial portfolio quasi-equilibrium.

Assume now that the portfolio space is finite dimensional but that the payoff space is not
finite dimensional.

Example 4.2 (Aliprantis—Monteiro—Tourky). Let the payoff space Ke= RI%27] and the
portfolio spaceE be the three-dimensional space generated by the following three securities
(defined by their payoff):

R1(s) = coss, Ra(s) = sins, and Ro(s) = 1,s € [0, 2n].

It follows that the portfolio dominance order is defined by the “ice cream” cone

K ={(z0.21.22) € R®: 70 > 22 + 23}

The coneX is closed, generating and pointed but has infinitely many extremal vectors, and
thus it is not anF'-cone of E.

On this financial structureAliprantis et al. (2002bprovide an example of a two in-
vestor economy satisfying the assumptions C1, C2, and C3, that has weak Pareto optimal
allocations and Edgeworth equilibria but no non-trivial quasi-equilibrium.
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4.2. Infinitely many securities

In the following examples, the payoff spadeis ¢, endowed with its natural order.
The countably many available securities are defined by their linearly independent payoffs.
Denote by(e,),>0 the canonical Hamel base &f i.e.
e0=(1,0,...),e1=1(0,1,0,...),....

Note that(e,),>0 is a family of linearly independent vectors &f..

Example 4.3. Let the family of available securitigs,),>0 be defined by
x=(1,121120,...), x1=1(0,1,0,10,...), x2=1(0,0,1,10,...)

andx, = ¢, for eachn > 3. Then for each € @, we haveR(z) > 0 if and only if

20 >0
20+z >0
0 ! - and z, >0 forall n>3.
20+ 22 >0

z20+z1+z2 =0

The coneX of positive payoff portfolios is generated by the fam{igy },>3U {eg — e1, e0 —
e2, e1, e2}. This conek is not a Yudin cone but it is af-cone.

Example 4.4. Let the family of available securitigs,),>0 be defined by
x=(1,1,1,...) and x,=¢, forall n>1.

Then for each € @, we haveRr(z) > 0if and only ifzo+z, > 0 for eachn € N. The cone

K of positive payoff portfolios is generated by the famfby,},>1 U{eo — Y i ; €iln>1.
Since the order interval [@g] contains the sequende, },,>1, it is not§-compact. In view

of Proposition 2.3the conek is not anF-cone. It is now easy to construct economies
&= (2,8 K, (P, )], satisfying C1, C2, and C3 whose positive cone coincide with
K, and for which there exists neither weakly Pareto optimal allocation nor non-trivial
quasi-equilibrium.

Example 4.5. Consider the con& of the portfolio space defined by

20>+/z2+7z5 and z, >0 forall n>0.

The conek is convex, pointed, generating ageclosed. Moreover, order intervals are
&-compact. Note however that the cokiés not anF-cone. Following the example given by
Aliprantis et al. (2002h)one can construct an econofgatisfying C1, C2, and C3 that has
weak Pareto optimal allocations, Edgeworth equilibria but no non-trivial quasi-equilibrium.
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5. Properness of the Riesz—K antorovich functional

Let E be a real vector space and lEtbe anF-cone of E. Following Aliprantis et al.
(2001) for any finite list f = (f1, ..., fn) Of continuous linear functionals ai, &) the
Riesz—Kantorovich function&® ; is defined onk by

m m

Ryrx) = sup{Zfi(x,-) :x; € K foreach ande,- =xq.
i=1 i=1

If for eachw € K we let
P(w) = {0’ € K:Ry(0) > Ry(w)},

then the Riesz—Kantorovich functiorfal; is said to beo-proper at if there exists a convex
subsetP(w) of E such that @ is a&-interior point of P(w) and P(w) N K = P(w).

We shall establish in this section that tor> 0 (i.e.,w € K andw # 0) and any finite
list f = (f1,..., fn) Of continuous linear functionals oE, &) such thatf;(w) > 0 for
eachi, the Riesz—Kantorovich function® ; is w-proper ato.

5.1. The finite dimensional case

Suppose in this subsection tHats finite dimensional. Then the inductive limit topology
& coincides with the unique Hausdorff linear topology &nMoreover, theF-conek is a
pointed and generating polyhedral convex cone.

Proposition 5.1. For w > 0 and any finite listf = (f1, ..., fi) Of linear functionals on
E such thatf;(w) > 0 for eachi, the Riesz—Kantorovich function®l  is w-proper atw.

Proof. The functionalR ¢ is continuous onk; for this conclusion we need Theorems
10.2 and 20.5 irRockafellar (1972) The setR(w) = {0’ € K : Ry(0') = Ry(w)}

is a polyhedral convex set; for this conclusion see Theorem 19.3 and Corollary 19.3.4 in
Rockafellar (1972)So, we can expres®(w) as the set of solutions to a certain system

R(w)={x€ E:ai(x)>a; forall ie I}, ()

where the finite family(a;, «;)ie; € (E*)! x R! is minimal. In view of the positive homo-
geneity ofR s, one can assumg > O for eachi € I. Let]’ := {i € I : o; > 0}. Since
Ry(w) > 0, it follows that 0¢ R(w) and hence the sét is nonempty. Let us denote by
I(w) the level set

I(w) ={w € K: Rf(a)/) =Rr(w)},
and then consider the set
J(w) := {0 € R(w) : thereexistg € I’ suchthat;(x) = o;}.

The proof will be completed by a series of steps.
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Step 1. I(w) = J(w).

Assume first € I(w) andz ¢ J(w). So, for eachi € I’ we haves;(z) > «;. Thisimplies
that there is some & A < 1 suchthat;(Az) > o; foralli € I'. Nowifi ¢ I’, thena; = 0
and sag;(Az) > 0, and thereforez € R(w). Howeverz € I(w) implies

Ri(w) =Ryp(z) > ARf(z) = Rr(Az) = Ry(w),

which is a contradiction. Thug(w) C J(w).

For the reverse inclusion, assumes J(w) andz ¢ I(w). It follows thatR ¢(z) >
R (w). Therefore, ifh = R¢(w)/R¢(z),then0< A < 1 andR ¢(rz) = Ry(w). Hence
Mz € I(w) C R(w) and thusa; (A7) > «; for all i € I. Now notice that since € J(w),
there exists somesuch thaw;(z) = «; > 0. In particular, the vectarz € R(w) satisfies
ai(Az) = ra;(z) < a;, contrary torz € R(w). Hence,J(w) C I(w) is also true and the
validity of Step 1 has been established.

Clearly, Step 1 implies tha®(w) = R(w) N {z € E : a;(z) > a;foralli € I'}. We now
define

P(w)={z€E:aj(z) >« foralliel.

It follows from this definition that?(w) is a nonempty convex open set and tiRéb) C
Pw)NK.

Step 2. 2w € P(w).

Indeed, fromw € R(w), we geta;(w) > a; > 0 for eachi € I’, and soq;(2w) =
2a;(w) > «;.

Step 3. For each ¢ I’ there exists some € R(w) such thatz;(z) = 0. Consequently, for
any such ¢ I’ and for eacly € K we haves;(z) > 0.

To establish this claim, recall first that if for some= I one hasz;(z) > «o; for each
7 € R(w), then the inequality; (z) > «; can be deleted from the expressionRgf») given
by (). Since the family(a;, «;);c; is supposed to be minimal, this proves the first assertion
of Step 3.

For the second assertion of Step 3, assume that there €xistandz € K witha;(z) < O.
Letu € R(w) be such that;(u) = 0. SinceR¢(u) > Ry(w) > 0, it follows from the
continuity of R ; atu, that there exists some € K satisfyinga;(z') < 0 andR s(z’) > 0.
Using the positive homogeneity & ¢, we can find somg > 1suchthaR r(1z') > R r(w).
Henceq; (A7) > 0, which implies that; (z') > 0, contrary taz;(z') < 0.

Step 4. P(w) N K C P(w).
To see this, let € P(w) N K. In view of the definition ofP(w), we have only to prove

thatz € R(w), i.e.A, thatz satisfies all the inequalities definidw) in (*). Fori € I’ this
follows fromz € P(w). Fori ¢ I this follows fromz € K and Step 3.
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We ha\ie thus established that the Beb) is an open convex set withu2e P(») and
such thatP(w) N K = P(w). That is, we have proved th& is w-proper atw. O

5.2. The general case

In this subsection, the spa@eis not supposed to be finite dimensional. According to
Definition 2.2 the conek is pointed, generating ankl = | J,-; K, is the union of a
countable family of finite dimensional polyhedral convex co(€g),,>1 such that eaclk,
is an extremal subset (or a face)kf,1. As noticed inRemark 2.2observe thakt has a
countable Hamel basis.

Proposition 5.2. For @ > 0 and any finite listf = (f1,..., fi) Of continuous linear
functionals on(E, £) such thatf;(w) > 0 for eachi, the Riesz—Kantorovich function®l
is w-proper atw.

Proof. Letw > O and letf = (f1, ..., fn) be afinite list of continuous linear functionals
on (E, &) such thatf;(w) > 0 for eachi. Without any loss of generality, we can suppose
thatew € Kj. For eactn let f be the finite list(f7, ..., f), where f!' € (E,)* is the
restriction of f; to the subspacg,, = K, — K,,. Since eaclk, is a face ofK, we first have
thatR ¢« coincides with the restriction t&,, of R y. That is,

Rym(x) =Rys(x) forallx e K,.

In particular, if we letP, (w) := {o' € K, : R (o) > R (w)}, thenP,(w) = P(w) N
K,. Now if we let R, (w) = {0’ € K, : R (') = R (w)}, then as in the proof of
Proposition 5.1there exists a finite lista);<;, of linear functionals and positive scalars
(a})ier, such that

Ry(@w)={x € E,:adal(x) > o} foralli e I,}.

Moreover, if the family(a}, o}');cy, is chosen to be minimal, theR, (w) = Pu(w) N Ky,
where

P,(w) = {x € E, rdl(x) > of forallie 'y},

andl’, := {i € I, : o > 0}. Note thatP, (w) is convex and open if, and 20 € P,(«).
Observe in addition that, followingemma 6.10f the Appendix A the construction of
P, (w) is independent of the choice of the minimal family , o)ie1, 11 We claim that the
following property is true.

e The sequenceP, (»)),>1 is increasing, that is?, (w) C P, 1(w) holds for each.

11 Indeed, sinceX,, is generating irE,,, it follows that R, (w) has an interior point ir€,. Hence, from_emma
6.1in theAppendix A the faces ok, (w) with dimension dimk,, — 1 are exactly the convex sets N R" (w) for
alli € I, whereH; := {x € E,, : a;(x) = o;}.
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To see this, leh > 1. From the definition oK we haveR, 1(w) N E, = R,(w). In
particular,

R,(w)={xe€E,: a;’+1|En (x) > o™ foralli € 41},

i

wherea" ™|, € EZ is the restriction of ™ to E,. Consider a subsel, 1 of 1,11 such
that the family(a?+1|5n, a?*l)jejm is minimal in the definition ok, (w). Following the
construction ofP, (»), we have

Py(w)={x € E,: a?+1|En (x) > a?"’l forall j e J',y1)

whereJ', 11 = {j € Jyu1 : o' = 0} In particular,J/ ,41 C I'ni1, and Py (w) C

J
Pyi1(w).
We are now ready to complete the proof. Start by letting

Clearly, P(w) is convex. Since@ € Pi(w) it follows that 20 € P(w). Moreover, for each
we haveP (o) N E, = U2, Pr(w) N E,, with P (w) N E,, open inE,. Applying Corollary
2.1to the family(E,),<x of finite dimensional vector subspaceskfit follows that P(w)
is £&-open. Now we assert th#(w) N K = P(w). Indeed,P(w) N K = | J32; P(w) N K,
and for eaclh > 1 we have

P N K, = JIPc(@) N K N Ky = | Pe@) N K, = Py(o).
k=n k=n

It follows that P(w) N K = U;‘lil P, (w) = P(w), and the proof is finished. O

Appendix A. A note on the faces of a polyhedral convex set

For notation and terminology not explained in this section, we folRRmegkafellar (1972)
Let E be a non-trivial finite dimensional vector space andildte a polyhedral convex set.
By definition, there exists a finite family of linear functiondls);c; and scalarga;);cs
such that

A={x€E:.ai(x)>a; foralliel}.
The family (a;, «;);cr is said minimal if for eachi € I, the set
Ali={xe E:ajx)>a; forallj+#i)

contains properh.
Again recall that a convex subsgtis aface(or anextremal subsgof A if for each line
segmentj, y] of A satisfying(x, y) N F # ¢ we havex andy belong toF'.
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Lemmab.1l. LetFbe the set of faces dfwith dimensiorim A — 1. If the family(a;, «;)ics
is minimal and ifA has an interior point then

F={HNA:iel)
whereH; = {x € E : a;(x) = a;}.
Proof. We first prove that for each € I the convex sef; := H; N A is a face ofA
with dimension dimA — 1. Leti € I and let |, y] C A be a line segment such that
(x,y) N F; # @, that is, there exists € (0, 1) such thaty;(Ax + (1 — A)y) = «;. From
a;(x) > a; anda;(y) > «;, we getq; (x) = «; anda;(y) = «;. We have thus proved th#t

is a face ofA.
Next we shall prove that dim; = dim A — 1. To this end, let

A= {xe E:aj(x) >a;forall j # i)

and observe thatit’ = {x € E : aj(x) > a;forall j # i}. Moreover, note thatint A7) N
H; C F;. Since the family(a, ax)e; is minimal, we conclude th&d (int AY) N H; # @. In
particular, we have dim [intA’) N H;] = dim H; = dim A—1. But(int A))NH; C F; C H;,
and hence dinf; = dimA — 1.

Now we shall prove that c {F; : i € I}. Let F be aface ofA with dimension dimA — 1.
Then there exists a linear functiortahnd a scalag such that

F=ANn{xeE:b(x)=p} and AC{xe E:b(kx) > g}
In particular, we have
{(xe E:ai(x)>a; foralliel}C{xeE:bkx) > B

It follows from Rockafellar (1972 Theorem 22.3) that there exists a family;);c; of
non-negative scalais > 0 such that

b= Zkiai and B < Z)\iai.
iel iel

But if x € F, then it follows froma; (x) > «; for eachi € I that

D ke <) hiai(x) =b(x) =B <Y hia.

iel iel iel
Consequentlyg = > ., «; and hence

F={x€E:a(x) > foraliel and Zkia,-(x) - Zkiai}.

iel iel

Thatis, ifI’ ={i € I : ; > 0}, thenF = (,.; F;.

12 If (int A" N H; = @, then intA’ C {x € E : a;(x) > ;}. It follows that intA’ C A, contrary to the fact that
A' contains properly.
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Finally, fixi € I’ and note thaf’ C F;. SinceF andF; have the same dimension, it follows
that the relative interior of is contained in the relative interior df;; seeRockafellar
(1972)(Corollary 18.1.2). From this we easily infer thét= F;. O
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