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Abstract

An F -cone is a pointed and generating convex cone of a real vector space that is the union of
a countable family of finite dimensional polyhedral convex cones such that each of which is an
extremal subset of the subsequent one. In this paper, we study securities markets with countably
many securities and arbitrary finite portfolio holdings. Moreover, we assume that each investor is
constrained to have a non-negative end-of-period wealth. If, under the portfolio dominance order,
the positive cone of the portfolio space is anF -cone, then Edgeworth allocations and non-trivial
quasi-equilibria exist. This result extends the case where, as in Aliprantis et al. [J. Math. Econom.
30 (1998a) 347], the positive cone is a Yudin cone.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a finance model withm investors trading securities and having identical
expectations on the security payoffs. LetE be a portfolio (vector) space. Given an ordered
vector payoff spaceX, for example someLp(Ω,Σ,P) for 1 ≤ p ≤ ∞ and an underlying
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probability space(Ω,Σ,P), let a linear operatorR : E → X define for each portfolioz the
payoffR(z) an investor expects to receive when holding the portfolioz. If we suppose thatR
is one-to-one, it is natural to order the portfolio spaceE by theportfolio dominance ordering:

z ≥R z′ whenever R(z) ≥ R(z′).
Let us now assume that investors are constrained to have non-negative end-of-period wealth
or, equivalently, that their portfolio set is equal to the coneK = {z ∈ E : z ≥R 0} of positive
payoff portfolios. If each investor has a strict preference overK described by a correspon-
dencePi : K → K and an initial endowment of securitiesωi ∈ K, then afinancial market
is given by:

E = (E,K, (Pi, ωi)mi=1).

An equilibrium concept for this economy requires the definition of a security price vector
spaceE′, in duality withE. Relative to this duality, anequilibrium is as usual a pair(p, x)
consisting of a non-zero pricep ∈ E′ and a market clearing allocationx = (xi)mi=1 ∈ Km of
investors’ optimal portfolios subject to the given security prices. Our paper is a contribution
to the equilibrium existence problem in this type of financial models.

The existence of equilibrium in these models was first studied byBrown and Werner
(1995), and then byAliprantis et al. (1998a), who introduced the notion of portfolio domi-
nance ordering. As inBrown and Werner (1995), Aliprantis et al. (1998a)assume that there
are countably infinitely many securities, but inAliprantis et al. (1998a), each investor is
restricted to portfolios with non-zero holdings of only finitely many securities. The port-
folio space of the model is thus the vector spaceΦ of all eventually zero real sequences.
Assuming that the coneK of positive payoff portfolios is a Yudin cone,Aliprantis et al.
(1998a)prove that the portfolio spaceΦ, equipped with the inductive limit topology1 rel-
ative to the family of all finite dimensional subspaces ofΦ, is a topological vector lattice.
As the portfolio trading sets of investors coincide with the positive coneK of the portfolio
space, in the spirit ofMas-Colell (1986), the existence of a quasi-equilibrium with a price
in R

N, the topological dual ofΦ, is mainly based on assumptions of uniform properness on
K of the preferences of the investors. Our purpose in this paper is to show that, in the same
setting and under comparable properness assumptions, the key assumption that the coneK

of positive payoffs portfolios is a Yudin cone can be seriously weakened.
We assume that there is a finite number or a countable infinity of securities defined by their

payoffs, and that the portfolio spaceE is either some Euclidean spaceR
J or, as inAliprantis

et al. (1998a),Φ, both ordered by the portfolio dominance ordering and equipped with the
inductive limit topology. As inAliprantis et al. (1998a), we assume that the agents have
the positive cone as their portfolio trading sets and make properness assumptions on their
preferences, but we replace the lattice ordering hypothesis by the strictly weaker assumption
that the positive cone is anF -cone. By this assumption, on which we will comment later,
we mean that, under the portfolio dominance ordering, the positive cone of the portfolio
space is a convex, pointed and generating coneK = ⋃∞

n=1Kn, which is the union of a
countable family of finite dimensional polyhedral convex conesKn such that eachKn is

1 The definition of a Yudin cone and the properties of this topology will be discussed inSection 2.



C.D. Aliprantis et al. / Journal of Mathematical Economics 40 (2004) 683–699 685

an extremal subset (or a face) ofKn+1. Under these assumptions we shall establish that
equilibrium exists. Moreover, the countably many extremal vectors of the positive cone have
the same economic interpretation as the vectors of the Yudin basis assumed inAliprantis
et al. (1998a). The corresponding portfolios can be thought of as mutual funds that investors
trade under the no short sales restriction.

The main tool of this extension is a result ofAliprantis et al. (2002a)(Theorem 5.1)
stating a sufficient condition for decentralizing Edgeworth allocations of a proper exchange
economy of which the commodity space is not a vector lattice. This condition, expressed in
terms of properness of the Riesz–Kantorovich functional associated to a list of continuous
linear functionals onE, should be understood as a condition (satisfied in our model) of
compatibility between the topology and the order structure of the portfolio space. The
existence of Edgeworth allocations is obtained under classical continuity assumptions on
the preferences of the agents. Their decentralization as non-trivial quasi-equilibria requires
properness assumptions that we shall make precise later. The double assumption on the
topology of the portfolio space and its order structure guarantees that we can apply the
result inAliprantis et al. (2002a).

The paper is organized as follows: InSection 2, we review the definition and properties of
the inductive limit topologyξ onE generated by the family of its finite dimensional vector
subspaces. We also defineF -cones and establish some properties ofξ whenE is ordered by
anF -cone. Edgeworth and non-trivial quasi-equilibria of our financial economy are studied
in Section 3. Section 4is devoted to examples. The properness of the Riesz–Kantorovich
functional is proved in the last section. This section and anAppendix Aare the only technical
parts of the paper.

2. Inductive limit topology and F -cones

2.1. The inductive limit topology

Let E be a real vector space and letF be the family (directed by inclusion) of all finite
dimensional vector subspaces ofE. The inductive limit topologyξ onE generated byF is
the finest locally convex topology onE for which, for eachF ∈ F, the natural embedding
iF : F ↪→ E is (τF , ξ)-continuous, whereτF is the unique Hausdorff linear topology
onF .

The fact that, as a finite dimensional space, eachF ∈ F admits a unique Hausdorff linear
topologyτF has several remarkable consequences that are easy to derive:2

• If (Fγ)γ∈Γ is a family of finite dimensional vector subspaces such that eachF ∈ F is
contained in someFγ , thenξ is also the finest locally convex topology onE for which,
for eachγ ∈ Γ , the natural embeddingiγ : Fγ ↪→ E is (τFγ , ξ)-continuous.

• The topologyξ is also the finest locally convex topology onE. Consequently,ξ is Haus-
dorff and the topological and algebraic dualsE′ andE∗ coincide.

2 For details about inductive limit topologies see the monographsBourbaki (1966), Kelley and Namioka (1963),
andSchaefer (1971).
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• If (ei)i∈I is a Hamel basis ofE, thenE is the direct sum of the one dimensional vector
spacesRei and ξ is the finest locally convex topology onE for which each natural
embeddingRei ↪→ E is (τRei , ξ)-continuous.

• For eachε = (εi)i∈I ∈ (0,∞)I , let

Vε := {x ∈ E : |xi| < εi for each i ∈ I}.
The family of all subsetsVε is a base of neighborhoods at 0 for the topologyξ.

The following result is also classical; seeBourbaki (1966)(Chapter II, §4, Exercise 8). We
give its proof for the sake of completeness.

Proposition 2.1. Assume thatE is a real vector space with a countable Hamel basis. A
subsetA ofE is ξ-closed if and only if for each finite dimensional vector subspaceF ofE,
the setA ∩ F is closed for the unique Hausdorff linear topology onF .

In particular, if F is the family of all finite dimensional subspaces ofE, then

ξ = {V ⊂ E : V ∩ F is open inF for eachF ∈ F}.

Proof. LetA be aξ-closed subset ofE. For each finite dimensional subspaceF of E, the
subseti−1

F (A) = A ∩ F is closed inF .
Conversely, letA be a subset ofE such that for each finite dimensional subspaceF of

E, the subsetA∩F is closed. If dimE <∞, then there is nothing to prove. Otherwise, let
(en)n∈N be a countable basis ofE and letx ∈ E\A. We claim that there existsε = (εi)i∈N ∈
(0,∞)N such thatx+ Vε ⊂ E \A. For eachn ∈ N, we letEn be the vector space spanned
by the vectors{e1, . . . , en}, and for each finite family{B1, . . . , Bn} of subsets ofR, we let

n∏
i=1

Bi :=
{
x ∈ En : x =

n∑
i=1

αiei with αi ∈ Bi for each i = 1, . . . , n

}
.

Without any loss of generality we can suppose thatx ∈ E1. Then for eachn ≥ 1 we have

x ∈ En \ (A ∩ En).
AsA ∩ En is closed inEn, it follows that there exists(ε1, . . . , εn) ∈ (0,∞)n such that

x+
n∏
i=1

(−εi, εi) ⊂ En \ (A ∩ En). (2.1)

Let α > 1. We claim that there existsεn+1 > 0 such that

x+
n+1∏
i=1

(
−εi
α
,
εi

α

)
⊂ En+1 \ (A ∩ En+1). (2.2)

To see this, suppose that the claim is not true. Then, we can construct a sequence(vk)k∈N
of En+1 such that for eachk ∈ N,

vk ∈
n∏
i=1

(
−εi
α
,
εi

α

)
×
(

−1

k
,

1

k

)
and x+ vk ∈ A ∩ En+1.
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The sequence(vk)k∈N lies in a compact subset ofEn+1. Passing to a subsequence if neces-
sary, we can suppose that(vk)k∈N converges to somev ∈ En+1. Note that

v ∈
n∏
i=1

[
−εi
α
,
εi

α

]
× {0}.

It follows that

x+ v ∈ A ∩
(
x+

n∏
i=1

[
−εi
α
,
εi

α

])
⊂ A ∩

[
x+

n∏
i=1

(−εi, εi)
]
.

This contradicts(2.1)and the validity of(2.2)has been established.
In order to apply the previous claim, we consider a sequence(αn)n∈N ∈ (1,∞)N such

that3

lim
N→∞

N∏
n=1

αn =
∞∏
n=1

αn <∞.

Applying inductively(2.2), we can construct a sequence(εn)n∈N ∈ (0,∞)N such that for
eachn ∈ N we have

x+
n∏
i=1

(
− εi∏n

i=1 αi
,

εi∏n
i=1 αi

)
⊂ En \ (A ∩ En). (2.3)

Now considerβ ∈ R such thatβ >
∏∞
n=1 αn and letV be the followingξ-neighborhood of

0:

V :=
{
x ∈ E : x =

∑
i∈N
αiei, where |αi| < εi

β
for each i ∈ N

}
.

We assert thatx + V ⊂ E \ A. Indeed, suppose that(x + V) ∩ A �= ∅. Then there exists
somen ∈ N such that(x+ V) ∩ A ∩ En �= ∅. But

(x+ V) ∩ En ⊂ x+
n∏
i=1

(
−εi
β
,
εi

β

)
⊂ x+

n∏
i=1

(
− εi∏n

i=1 αi
,

εi∏n
i=1 αi

)
.

This contradicts(2.3)and the proof is finished. �

An immediate consequence of the preceding result is the following.

Corollary 2.1. LetE be a real vector space with a countable Hamel basis. A subsetA ofE
is ξ-closed if and only if there exists an increasing sequence(Fn)n∈N of finite dimensional
subspaces ofE such that:

1. each finite dimensional subspaceF ofE is contained in someFn,
2. for everyn the setA ∩ Fn is closed inFn.

3 For instance, letαn = exp(1/n2).
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Proof. Assume first thatA is ξ-closed. Pick an increasing sequence(Fn)n∈N of finite
dimensional vector subspaces such that

⋃∞
n=1Fn = F . The latter shows that (1) is true.

Sinceξ induces the Euclidean topology on eachFn, it follows that (2) also is true.
Conversely, assume that a sequence(Fn)n∈N satisfies (1) and (2). In order to apply

Proposition 2.1, we shall prove that for each finite dimensional vector subspaceF of E, the
setA∩F is closed inF . LetF ∈ F. Then there exists somen such thatF ⊂ Fn. Note that

A ∩ F = F ∩ (A ∩ Fn).
SinceA ∩ Fn is closed inFn, the subsetA ∩ F is closed inF . �

2.2. F -cones

For a precise definition of cones, convex cones, finite dimensional polyhedral convex
cones, we refer the reader toRockafellar (1972). We start with the definition of anF -cone.

Definition 2.2. LetE be a real vector space. A (convex) coneK ofE is called afaced cone
(or simply anF-cone) ifK is pointed (i.e.,K∩ (−K) = {0}), generating(i.e.,K−K = E)
andK = ⋃∞

n=1Kn, the union of a countable family of finite dimensional polyhedral convex
cones(Kn)n≥1 such that eachKn is an extremal subset4 of Kn+1.

Remark 2.2. Note that ifK is anF -cone ofE, thenE has a countable Hamel basis.
Moreover, observe that anF -coneK is generated by a countable family of vectors which
is the union of the extremal directions of eachKn. Countably generated Yudin cones5 are
particular cases ofF -cones, but anF -cone is not necessarily a Yudin cone. For example,
if E is finite dimensional, anF -cone is necessarily a (pointed and generating) polyhedral
convex cone. It is easy to check that anF -cone is a Yudin cone if and only if the number of
its extremal directions is equal to the dimension ofE. Assume now thatE is a vector space
with a countably infinite Hamel basis(en)n∈N. LetK be the convex cone generated by the
family {e3 + e1, e3 + e2, e3 − e1, e3 − e2}∪ {en}n≥4. It is easily verified thatK is anF -cone
but not a Yudin cone.

Proposition 2.2. EveryF -cone isξ-closed.

Proof. Let K be anF -cone of a vector spaceE. SinceK is generating, for each finite
dimensional subspaceF of E we haveF ⊂ Kn − Kn for somen. Moreover, it is easy to
see that eachKn is an extremal subset ofKn′ for everyn′ > n. Now we shall prove that for
eachn ∈ N we haveK ∩ (Kn − Kn) = Kn. Indeed, letx ∈ K ∩ (Kn − Kn). Then there

4 A convex subsetA of a convex setC is anextremal subset(or aface) of C if for each line segment [y, z] of C
satisfying(y, z)∩A �= ∅ theny andz belong toA. If K is a convex cone, then a convex subsetA of the cone is an
extremal subset ofK if and only if x = y+ z with x ∈ A andy, z ∈ K imply y, z ∈ A. It follows that an extremal
subset of a cone is itself a convex cone.

5 A convex coneC that is generated by a family(ei)i∈I of vectors in a vector space is called aYudin coneif each
x ∈ C has a unique representation of the formx = ∑

i∈I αiei, whereαi ≥ 0 andαi = 0 for all but finitely many
i ∈ I. It should be clear that the family(ei)i∈I is linearly independent. Yudin cones were introduced and studied
in Aliprantis et al. (1998b).
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existy, z ∈ Kn andn′ > n such thatx ∈ Kn′ andx = y − z. It follows thaty = x + z.
SinceKn is an extremal subset ofKn′ , we see thatx ∈ Kn andK ∩ (Kn − Kn) ⊂ Kn.
The reverse inclusion is obvious. Now recalling that a finite dimensional polyhedral convex
cone is closed, an application ofCorollary 2.1completes the proof. �

For the rest of our discussion in the paper we shall assume thatE is ordered by theF -cone
K.

Proposition 2.3. The order intervals ofE lie in finite dimensional subspaces and thus are
ξ-compact.

Proof. Let a ∈ K satisfya �= 0. We only have to prove that the order interval [0, a] =
K ∩ (a −K) is ξ-compact. Letn be such thata ∈ Kn. For everyx ∈ [0, a], let n′ be such
thatx anda− x lie inKn′ . If n′ ≤ n, thenx ∈ Kn. If n′ > n, then froma = x+ (a− x) and
the fact thatK is anF -cone, we deduce thatx ∈ Kn. Thus, [0, a] ⊂ Kn, and hence [0, a] is
included in the finite dimensional spaceKn −Kn (ordered by the polyhedral convex cone
K ∩ (Kn −Kn) = Kn). It follows that [0, a] is a compact subset ofK ∩ (Kn −Kn) = Kn
and, in view of the definition ofξ, aξ-compact subset ofE. �

Remark 2.3. LetE be a vector space with a countable Hamel basis(en)n∈N. LetK be the
cone generated by the family{e1 − en, en}n≥2. Since the order interval [0, e1] contains the
family {en}n≥1, it is notξ-compact. In view ofProposition 2.3, the coneK is not anF -cone.

3. Equilibrium in securities markets

Let us now return to the model of our financial economy

E = (E, ξ,K, (Pi, ωi)mi=1),

where the portfolio spaceE is either a finite dimensional Euclidean vector spaceR
J or the

vector spaceΦ of all eventually zero real sequences. In both cases,E is equipped with the
inductive limit topology6 ξ, while the positive coneK of the portfolio dominance ordering
is assumed to be anF -cone. A Hamel basis ofE consists of the vectors(0, . . . ,0,1,0, . . . )
corresponding to each one of the countably many securities defining the model. According
to the finite or countably infinite dimension ofE, the algebraic and topological dual ofE is
R
J or R

N of which each element can be thought of as a list of prices for each security.
We first observe that it follows fromPropositions 2.2 and 2.3that (E, ξ,K) is an or-

dered linear vector space equipped with a Hausdorff locally convex topology satisfying the
properties:

A1: The positive coneK is generating andξ-closed.
A2: The order intervals ofE areξ-bounded.

These properties are required for the economic model inAliprantis et al. (2002a).

6 Obviously, onRJ the topologyξ coincides with the Euclidean topology ofRJ .
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Let ω = ∑m
i=1ωi be the total initial endowment of securities, i.e., letω be themar-

ket portfolio. A portfolio allocation is anm-tuple x = (xi)
m
i=1 ∈ Km such that

∑m
i=1

xi = ω.

Definition 3.1. A pair (x, p) consisting of an allocationx and a non-zero linear functional
p is said to be:

1. A quasi-equilibrium, if p(xi) = p(ωi) for eachi andyi ∈ Pi(xi) impliesp(yi) ≥ p(xi).
2. An equilibrium, if it is a quasi-equilibrium andyi ∈ Pi(xi) impliesp(yi) > p(xi).

Definition 3.2. A quasi-equilibrium(x, p) is said to benon-trivial if for somei we have

inf {p(zi) : zi ∈ K} < p(ωi).

In this paper, we will be interested only in non-trivial quasi-equilibria.7 We now introduce
the usual optimality properties of portfolio allocations.

Definition 3.3. A portfolio allocationx is said to be:

1. Individually rational, if for eachi we haveωi /∈ Pi(xi).
2. Weakly Pareto optimal, if there is no portfolio allocationy satisfyingyi ∈ P(xi) for

eachi.
3. A core allocation, if it cannot be blocked by any coalition in the sense that there is no

coalitionS and somey ∈ KS such that:
(a)

∑
i∈S yi =

∑
i∈S ωi, and

(b) yi ∈ Pi(xi) for all i ∈ S.
4. An Edgeworth equilibrium, if for every integerr ≥ 1 ther-fold replica ofx belongs

to the core of ther-fold replica of the economyE.8

As well-known, an equilibrium allocation ofE is an Edgeworth equilibrium (and hence a
core, weakly Pareto optimal and individually rational allocation).

Recall that in our financial economyE each investori has the coneK of positive payoff
portfolios as her portfolio set and an initial endowment of securitiesωi ∈ K. We posit on
E the following assumptions.

C1: For eachi and for everyxi ∈ K:
(a) Pi(xi) is convex andxi /∈ Pi(xi).
(b) (Pi)−1(xi) := {yi ∈ Kxi ∈ Pi(yi)} is ξ-open inK.

C2: The total initial endowmentω of securities is such thatω >R 0 (i.e., ω ∈ K and
ω �= 0).

7 If (x, p) is some trivial quasi-equilibrium, then for every allocationy, the pair(y, p) is also a quasi-equilibrium.
If the quasi-equilibrium(x, p) is non-trivial, then it is well-known that (under some additional continuity condition
on preferences or concavity for utility functions and some irreducibility assumption on the economy)(x, p) is
actually an equilibrium.

8 The ideas in this definition go back toDebreu and Scarf (1963). An important reference is alsoAubin (1979).
Edgeworth equilibria were first introduced and studied inAliprantis et al. (1987).
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In view ofProposition 2.3and the previous assumptions, it follows fromFlorenzano
(1990)(Proposition 3) that Edgeworth equilibrium exists forE.

We now introduce the additional assumption onE which will allow to decentralize
with prices inE′ (the topological dual ofE) any Edgeworth equilibrium.

C3: For eachi and every weakly Pareto optimal allocationx = (xi)mi=1, we havexi ∈ Pi(xi)
and:
(a) Pi(xi) is ξ-open inK or Pi(xi) = {yi ∈ K : ui(yi) > ui(xi)} for some concave

utility function ui : K → R.
(b) There is a convex subsetP̂i(xi) ofE such that the vectorxi+ω is aξ-interior point

of P̂i(xi) andP̂i(xi) ∩K = Pi(xi).

Assumption C3(b) states that for eachi the preference correspondencePi isω-properat
every component of a weakly Pareto optimal portfolio allocation. This properness assump-
tion was introduced byTourky (1998)who proved that it is strictly weaker that Mas-Colell’s
ω-uniform properness assumed byAliprantis et al. (1998a)for preferences defined onK
by utility functions. The local non-satiation property assumed in C3 is implied by their
assumption that the market portfolioω is desirable.

Letx = (xi)mi=1 be an Edgeworth equilibrium ofE. In view of Assumptions C1(a), C2, and
C3, it follows fromAliprantis et al. (2002a)(Theorem 5.1) that there exists somep ∈ E′ such
that(x, p) is a non-trivial quasi-equilibrium, provided the following condition is satisfied:

B: If f = (f1, f2, . . . , fm) is a list ofξ-continuous linear functionals such thatfi(ω) > 0
for eachi, andRf (ω) = ∑m

i=1 fi(xi) for somex = (xi)mi=1 ∈ Km such that
∑m
i=1 xi =

ω,9 then the Riesz–Kantorovich functional10Rf isω-proper atω.

We shall see inSection 5that property B is true in our model. Using this, we can establish
the following result which extends in several respects the main theorem (Theorem 6.1) in
Aliprantis et al. (1998a).

Theorem 3.4. Assume thatΦ is equipped with the inductive limit topologyξ and that the
cone of positive payoff portfoliosK is anF -cone. Under the assumptionsC1, C2,andC3on

E = (Φ, ξ,K, (Pi, ωi)mi=1),

there exists a non-trivial portfolio quasi-equilibrium.

WhenE is finite dimensional, the preceding result specializes to the following.

Theorem 3.5. Assume thatJ is a finite set of securities, and that the cone of positive payoff
portfoliosK is anF -cone. Under the assumptions C1, C2, and C3 on

E = (RJ , ξ,K, (Pi, ωi)mi=1),

there exists a non-trivial portfolio quasi-equilibrium.

9 It follows from the definition ofRf and theξ-compactness of the order intervals ofΦ that the condition
Rf (ω) = ∑m

i=1 fi(xi) for somex = (xi)
m
i=1 ∈ Km such that

∑m
i=1 xi = ω is satisfied for any listf =

(f1, f2, . . . , fm) of ξ-continuous linear functionals.
10 The precise definition ofRf will be given in the following section.
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4. Examples

4.1. Finitely many securities

In the following examples, the family of available securities is finite and non-redundant,
i.e., their payoffs are linearly independent.

Example 4.1. We start with a finite setJ of securities and a finite setS of states of the
world (S ≥ J), that is, with a finite dimensional payoff spaceR

S endowed with its canonical
order. We also are given a one-to-one linear payoff operatorR : R

J → R
S . In this case, the

coneK of positive payoff portfolios is simply

K = {z ∈ R
J : Rz≥ 0}.

We have the following properties.

• Since the securities are non-redundant,K is a polyhedral pointed convex cone.
• If markets are complete, i.e., ifJ = S, thenK is generating—and actuallyK is a Yudin

cone.
• If J < S (that is, if markets are incomplete), thenK is not necessarily generating. In

order to know if the positive cone of a given financial modelK is anF -cone, one has to
check, by computing the extremal rays, whether intK �= ∅.

When the coneK is generating, it is anF -cone which may have more extremal direc-
tions than the number of elements inJ (and thus it may not be a Yudin cone). It follows
from Theorem 3.5that under the assumptions C1, C2, and C3, the financial modelE =
(RJ , ξ,K, (Pi, ωi)

m
i=1) has a non-trivial portfolio quasi-equilibrium.

Assume now that the portfolio space is finite dimensional but that the payoff space is not
finite dimensional.

Example 4.2 (Aliprantis–Monteiro–Tourky). Let the payoff space beX = R
[0,2π] and the

portfolio spaceE be the three-dimensional space generated by the following three securities
(defined by their payoff):

R1(s) = coss, R2(s) = sins, and R0(s) = 1, s ∈ [0,2π].

It follows that the portfolio dominance order is defined by the “ice cream” cone

K = {(z0, z1, z2) ∈ R
3 : z0 ≥

√
z21 + z22}.

The coneK is closed, generating and pointed but has infinitely many extremal vectors, and
thus it is not anF -cone ofE.

On this financial structure,Aliprantis et al. (2002b)provide an example of a two in-
vestor economy satisfying the assumptions C1, C2, and C3, that has weak Pareto optimal
allocations and Edgeworth equilibria but no non-trivial quasi-equilibrium.
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4.2. Infinitely many securities

In the following examples, the payoff spaceX is 3∞ endowed with its natural order.
The countably many available securities are defined by their linearly independent payoffs.
Denote by(en)n≥0 the canonical Hamel base ofΦ, i.e.

e0 = (1,0, . . . ), e1 = (0,1,0, . . . ), . . . .

Note that(en)n≥0 is a family of linearly independent vectors of3∞.

Example 4.3. Let the family of available securities(xn)n≥0 be defined by

x0 = (1,1,1,1,0, . . . ), x1 = (0,1,0,1,0, . . . ), x2 = (0,0,1,1,0, . . . )

andxn = en+1 for eachn ≥ 3. Then for eachz ∈ Φ, we haveR(z) ≥ 0 if and only if




z0 ≥ 0

z0 + z1 ≥ 0

z0 + z2 ≥ 0

z0 + z1 + z2 ≥ 0

and zn ≥ 0 for all n ≥ 3.

The coneK of positive payoff portfolios is generated by the family{en}n≥3 ∪{e0 − e1, e0 −
e2, e1, e2}. This coneK is not a Yudin cone but it is anF -cone.

Example 4.4. Let the family of available securities(xn)n≥0 be defined by

x0 = (1,1,1, . . . ) and xn = en for all n ≥ 1.

Then for eachz ∈ Φ, we haveR(z) ≥ 0 if and only ifz0 + zn ≥ 0 for eachn ∈ N. The cone
K of positive payoff portfolios is generated by the family{en}n≥1

⋃{e0 − ∑n
i=1 ei}n≥1.

Since the order interval [0, e0] contains the sequence{en}n≥1, it is notξ-compact. In view
of Proposition 2.3, the coneK is not anF -cone. It is now easy to construct economies
E = (Φ, ξ,K, (Pi, ωi)

m
i=1) satisfying C1, C2, and C3 whose positive cone coincide with

K, and for which there exists neither weakly Pareto optimal allocation nor non-trivial
quasi-equilibrium.

Example 4.5. Consider the coneK of the portfolio spaceΦ defined by

z0 ≥
√
z21 + z22 and zn ≥ 0 for all n ≥ 0.

The coneK is convex, pointed, generating andξ-closed. Moreover, order intervals are
ξ-compact. Note however that the coneK is not anF -cone. Following the example given by
Aliprantis et al. (2002b), one can construct an economyE satisfying C1, C2, and C3 that has
weak Pareto optimal allocations, Edgeworth equilibria but no non-trivial quasi-equilibrium.
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5. Properness of the Riesz–Kantorovich functional

Let E be a real vector space and letK be anF -cone ofE. Following Aliprantis et al.
(2001), for any finite listf = (f1, . . . , fm) of continuous linear functionals on(E, ξ) the
Riesz–Kantorovich functionalRf is defined onK by

Rf (x) = sup

{
m∑
i=1

fi(xi) : xi ∈ K for eachiand
m∑
i=1

xi = x
}
.

If for eachω ∈ K we let

P(ω) = {ω′ ∈ K : Rf (ω
′) > Rf (ω)},

then the Riesz–Kantorovich functionalRf is said to beω-proper atω if there exists a convex
subsetP̂(ω) of E such that 2ω is aξ-interior point ofP̂(ω) andP̂(ω) ∩K = P(ω).

We shall establish in this section that forω > 0 (i.e.,ω ∈ K andω �= 0) and any finite
list f = (f1, . . . , fm) of continuous linear functionals on(E, ξ) such thatfi(ω) > 0 for
eachi, the Riesz–Kantorovich functionalRf isω-proper atω.

5.1. The finite dimensional case

Suppose in this subsection thatE is finite dimensional. Then the inductive limit topology
ξ coincides with the unique Hausdorff linear topology onE. Moreover, theF -coneK is a
pointed and generating polyhedral convex cone.

Proposition 5.1. For ω > 0 and any finite listf = (f1, . . . , fm) of linear functionals on
E such thatfi(ω) > 0 for eachi, the Riesz–Kantorovich functionalRf isω-proper atω.

Proof. The functionalRf is continuous onK; for this conclusion we need Theorems
10.2 and 20.5 inRockafellar (1972). The setR(ω) := {ω′ ∈ K : Rf (ω′) ≥ Rf (ω)}
is a polyhedral convex set; for this conclusion see Theorem 19.3 and Corollary 19.3.4 in
Rockafellar (1972). So, we can expressR(ω) as the set of solutions to a certain system

R(ω) = {x ∈ E : ai(x) ≥ αi for all i ∈ I}, (�)

where the finite family(ai, αi)i∈I ∈ (E∗)I × R
I is minimal. In view of the positive homo-

geneity ofRf , one can assumeαi ≥ 0 for eachi ∈ I. Let I ′ := {i ∈ I : αi > 0}. Since
Rf (ω) > 0, it follows that 0 /∈ R(ω) and hence the setI ′ is nonempty. Let us denote by
I(ω) the level set

I(ω) := {ω′ ∈ K : Rf (ω
′) = Rf (ω)},

and then consider the set

J(ω) := {ω′ ∈ R(ω) : there existsi ∈ I ′ such thatai(x) = αi}.
The proof will be completed by a series of steps.
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Step 1. I(ω) = J(ω).

Assume firstz ∈ I(ω) andz /∈ J(ω). So, for eachi ∈ I ′ we haveai(z) > αi. This implies
that there is some 0< λ < 1 such thatai(λz) > αi for all i ∈ I ′. Now if i /∈ I ′, thenαi = 0
and soai(λz) ≥ 0, and thereforeλz ∈ R(ω). However,z ∈ I(ω) implies

Rf (ω) = Rf (z) > λRf (z) = Rf (λz) ≥ Rf (ω),
which is a contradiction. Thus,I(ω) ⊂ J(ω).

For the reverse inclusion, assumez ∈ J(ω) and z /∈ I(ω). It follows thatRf (z) >
Rf (ω). Therefore, ifλ = Rf (ω)/Rf (z), then 0< λ < 1 andRf (λz) = Rf (ω). Hence
λz ∈ I(ω) ⊂ R(ω) and thusai(λz) ≥ αi for all i ∈ I. Now notice that sincez ∈ J(ω),
there exists somei such thatai(z) = αi > 0. In particular, the vectorλz ∈ R(ω) satisfies
ai(λz) = λai(z) < αi, contrary toλz ∈ R(ω). Hence,J(ω) ⊂ I(ω) is also true and the
validity of Step 1 has been established.

Clearly, Step 1 implies thatP(ω) = R(ω) ∩ {z ∈ E : ai(z) > αi for all i ∈ I ′}. We now
define

P̂(ω) = {z ∈ E : ai(z) > αi for all i ∈ I ′}.
It follows from this definition thatP̂(ω) is a nonempty convex open set and thatP(ω) ⊂
P̂(ω) ∩K.

Step 2. 2ω ∈ P̂(ω).

Indeed, fromω ∈ R(ω), we getai(ω) ≥ αi > 0 for eachi ∈ I ′, and soai(2ω) =
2ai(ω) > αi.

Step 3. For eachi /∈ I ′ there exists someu ∈ R(ω) such thatai(u) = 0. Consequently, for
any suchi /∈ I ′ and for eachz ∈ K we haveai(z) ≥ 0.

To establish this claim, recall first that if for somei ∈ I one hasai(z) > αi for each
z ∈ R(ω), then the inequalityai(z) ≥ αi can be deleted from the expression ofR(ω) given
by (�). Since the family(ai, αi)i∈I is supposed to be minimal, this proves the first assertion
of Step 3.

For the second assertion of Step 3, assume that there existi /∈ I ′ andz ∈ Kwith ai(z) < 0.
Let u ∈ R(ω) be such thatai(u) = 0. SinceRf (u) ≥ Rf (ω) > 0, it follows from the
continuity ofRf atu, that there exists somez′ ∈ K satisfyingai(z′) < 0 andRf (z′) > 0.
Using the positive homogeneity ofRf , we can find someλ ≥ 1 such thatRf (λz′) ≥ Rf (ω).
Henceai(λz′) ≥ 0, which implies thatai(z′) ≥ 0, contrary toai(z′) < 0.

Step 4. P̂(ω) ∩K ⊂ P(ω).

To see this, letz ∈ P̂(ω) ∩K. In view of the definition ofP̂(ω), we have only to prove
thatz ∈ R(ω), i.e., thatz satisfies all the inequalities definingR(ω) in (�). For i ∈ I ′ this
follows from z ∈ P̂(ω). For i /∈ I ′ this follows fromz ∈ K and Step 3.
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We have thus established that the setP̂(ω) is an open convex set with 2ω ∈ P̂(ω) and
such thatP̂(ω) ∩K = P(ω). That is, we have proved thatRf isω-proper atω. �

5.2. The general case

In this subsection, the spaceE is not supposed to be finite dimensional. According to
Definition 2.2, the coneK is pointed, generating andK = ⋃∞

n=1Kn is the union of a
countable family of finite dimensional polyhedral convex cones(Kn)n≥1 such that eachKn
is an extremal subset (or a face) ofKn+1. As noticed inRemark 2.2, observe thatE has a
countable Hamel basis.

Proposition 5.2. For ω > 0 and any finite listf = (f1, . . . , fm) of continuous linear
functionals on(E, ξ) such thatfi(ω) > 0 for eachi, the Riesz–Kantorovich functionalRf
isω-proper atω.

Proof. Letω > 0 and letf = (f1, . . . , fm) be a finite list of continuous linear functionals
on (E, ξ) such thatfi(ω) > 0 for eachi. Without any loss of generality, we can suppose
thatω ∈ K1. For eachn let fn be the finite list(f n1 , . . . , f

n
m), wherefni ∈ (En)∗ is the

restriction offi to the subspaceEn = Kn−Kn. Since eachKn is a face ofK, we first have
thatRfn coincides with the restriction toKn ofRf . That is,

Rfn(x) = Rf (x) for all x ∈ Kn.

In particular, if we letPn(ω) := {ω′ ∈ Kn : Rfn(ω′) > Rfn(ω)}, thenPn(ω) = P(ω) ∩
Kn. Now if we letRn(ω) := {ω′ ∈ Kn : Rfn(ω′) ≥ Rfn(ω)}, then as in the proof of
Proposition 5.1, there exists a finite list(ani )i∈In of linear functionals and positive scalars
(αni )i∈In such that

Rn(ω) = {x ∈ En : ani (x) ≥ αni for all i ∈ In}.

Moreover, if the family(ani , α
n
i )i∈In is chosen to be minimal, thenPn(ω) = P̂n(ω) ∩ Kn,

where

P̂n(ω) := {x ∈ En : ani (x) > α
n
i for all i ∈ I ′n},

andI ′n := {i ∈ In : αni > 0}. Note thatP̂n(ω) is convex and open inEn and 2ω ∈ P̂n(ω).
Observe in addition that, followingLemma 6.1of the Appendix A, the construction of
P̂n(ω) is independent of the choice of the minimal family(ani , α

n
i )i∈In .

11 We claim that the
following property is true.

• The sequence(P̂n(ω))n≥1 is increasing, that is,̂Pn(ω) ⊂ P̂n+1(ω) holds for eachn.

11 Indeed, sinceKn is generating inEn, it follows thatRn(ω) has an interior point inEn. Hence, fromLemma
6.1in theAppendix A, the faces ofRn(ω) with dimension dimKn − 1 are exactly the convex setsHi ∩Rn(ω) for
all i ∈ I, whereHi := {x ∈ En : ai(x) = αi}.
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To see this, letn ≥ 1. From the definition ofK we haveRn+1(ω) ∩ En = Rn(ω). In
particular,

Rn(ω) = {x ∈ En : an+1
i |En(x) ≥ αn+1

i for all i ∈ In+1},

wherean+1
i |En ∈ E∗

n is the restriction ofan+1
i toEn. Consider a subsetJn+1 of In+1 such

that the family(an+1
j |En, αn+1

j )j∈Jn+1 is minimal in the definition ofRn(ω). Following the

construction ofP̂n(ω), we have

P̂n(ω) = {x ∈ En : an+1
j |En(x) > αn+1

j for all j ∈ J ′
n+1}

whereJ ′
n+1 = {j ∈ Jn+1 : αn+1

j > 0}. In particular,J ′
n+1 ⊂ I ′n+1, and P̂n(ω) ⊂

P̂n+1(ω).
We are now ready to complete the proof. Start by letting

P̂(ω) =
∞⋃
n=1

P̂n(ω).

Clearly,P̂(ω) is convex. Since 2ω ∈ P̂1(ω) it follows that 2ω ∈ P̂(ω). Moreover, for eachn
we haveP̂(ω)∩En = ⋃∞

k=n P̂k(ω)∩En, with P̂k(ω)∩En open inEn. ApplyingCorollary
2.1to the family(En)n∈N of finite dimensional vector subspaces ofE, it follows thatP̂(ω)
is ξ-open. Now we assert thatP̂(ω) ∩K = P(ω). Indeed,P̂(ω) ∩K = ⋃∞

n=1 P̂(ω) ∩Kn,
and for eachn ≥ 1 we have

P̂(ω) ∩Kn =
∞⋃
k=n

[P̂k(ω) ∩Kk] ∩Kn =
∞⋃
k=n
Pk(ω) ∩Kn = Pn(ω).

It follows thatP̂(ω) ∩K = ⋃∞
n=1Pn(ω) = P(ω), and the proof is finished. �

Appendix A. A note on the faces of a polyhedral convex set

For notation and terminology not explained in this section, we followRockafellar (1972).
LetE be a non-trivial finite dimensional vector space and letA be a polyhedral convex set.
By definition, there exists a finite family of linear functionals(ai)i∈I and scalars(αi)i∈I
such that

A = {x ∈ E : ai(x) ≥ αi for all i ∈ I}.
The family(ai, αi)i∈I is said minimal if for eachi ∈ I, the set

Ai := {x ∈ E : aj(x) ≥ αj for all j �= i}
contains properlyA.

Again recall that a convex subsetF is aface(or anextremal subset) of A if for each line
segment [x, y] of A satisfying(x, y) ∩ F �= ∅ we havex andy belong toF .
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Lemma 6.1. LetF be the set of faces ofAwith dimensiondimA−1. If the family(ai, αi)i∈I
is minimal and ifA has an interior point then

F = {Hi ∩ A : i ∈ I},
whereHi = {x ∈ E : ai(x) = αi}.

Proof. We first prove that for eachi ∈ I the convex setFi := Hi ∩ A is a face ofA
with dimension dimA − 1. Let i ∈ I and let [x, y] ⊂ A be a line segment such that
(x, y) ∩ Fi �= ∅, that is, there existsλ ∈ (0,1) such thatai(λx + (1 − λ)y) = αi. From
ai(x) ≥ αi andai(y) ≥ αi, we getai(x) = αi andai(y) = αi. We have thus proved thatFi
is a face ofA.

Next we shall prove that dimFi = dimA− 1. To this end, let

Ai := {x ∈ E : aj(x) ≥ αj for all j �= i}
and observe that intAi = {x ∈ E : aj(x) > αj for all j �= i}. Moreover, note that(intAi)∩
Hi ⊂ Fi. Since the family(ak, αk)k∈I is minimal, we conclude that12 (intAi)∩Hi �= ∅. In
particular, we have dim [int(Ai)∩Hi] = dimHi = dimA−1. But(intAi)∩Hi ⊂ Fi ⊂ Hi,
and hence dimFi = dimA− 1.

Now we shall prove thatF ⊂ {Fi : i ∈ I}. LetF be a face ofAwith dimension dimA−1.
Then there exists a linear functionalb and a scalarβ such that

F = A ∩ {x ∈ E : b(x) = β} and A ⊂ {x ∈ E : b(x) ≥ β}.
In particular, we have

{x ∈ E : ai(x) ≥ αi for all i ∈ I} ⊂ {x ∈ E : b(x) ≥ β}.
It follows from Rockafellar (1972)(Theorem 22.3) that there exists a family(λi)i∈I of
non-negative scalarsλi ≥ 0 such that

b =
∑
i∈I
λiai and β ≤

∑
i∈I
λiαi.

But if x ∈ F , then it follows fromai(x) ≥ αi for eachi ∈ I that∑
i∈I
λiαi ≤

∑
i∈I
λiai(x) = b(x) = β ≤

∑
i∈I
λiαi.

Consequently,β = ∑
i∈I αi and hence

F = {x ∈ E : ai(x) ≥ αi for all i ∈ I and
∑
i∈I
λiai(x) =

∑
i∈I
λiαi}.

That is, ifI ′ = {i ∈ I : λi > 0}, thenF = ⋂
i∈I ′ Fi.

12 If (intAi) ∩ Hi = ∅, then intAi ⊂ {x ∈ E : ai(x) > αi}. It follows that intAi ⊂ A, contrary to the fact that
Ai contains properlyA.
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Finally, fix i ∈ I ′ and note thatF ⊂ Fi. SinceF andFi have the same dimension, it follows
that the relative interior ofF is contained in the relative interior ofFi; seeRockafellar
(1972)(Corollary 18.1.2). From this we easily infer thatF = Fi. �
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