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Summary. We consider exchange economies with a measure space of agents and
for which the commodity space is a separable and reflexive Banach lattice. Under
assumptions imposing uniform bounds on marginal rates of substitution, positive re-
sults on core-Walras equivalence were established in Rustichini–Yannelis [27] and
Podczeck [25]. In this paper we prove that under similar assumptions on marginal
rates of substitution, the set of competitive equilibria (and thus the core) is non-
empty.
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1 Introduction

We consider an exchange economy with infinitely many agents and infinitely many
commodities. Infinite dimensional commodity spaces arise very naturally in eco-
nomics, in particular in problems involving the allocation of resources over an
infinite time horizon (e.g. an �p commodity space) or uncertainty about the pos-
sibly infinite number of states of nature (e.g. an Lp([0, 1]) commodity space). In
our model, the commodity space will be a reflexive and separable Banach space. In
the formulation of the Arrow–Debreu–McKenzie model of an exchange economy

� Thanks to Charalambos D. Aliprantis, Konrad Podczeck, Rabee Tourky, Nicholas C. Yannelis and
an anonymous referee for helpful discussions and suggestions.
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(Arrow–Debreu [5], McKenzie [22], Debreu [11]), a finite number of agents take
prices as given. This formulation raises a conceptual difficulty: a finite number of
agents should mean that individuals are able to exercise some influence, which
contradicts the price-taking behavior assumption. To model perfectly competitive
markets, we follow Aumann [6,7] and Hildenbrand [14], who suggested to model
the set of agents by a finite complete measure space. The insignificance of individual
agents is thus captured by the idea of a set of zero measure.

In the literature dealing with large economies (infinitely many agents), two so-
lution concepts are used: the competitive (Walrasian) equilibrium and the core. For
the first concept, agents are assumed to take prices as given and they engage in
the sale and purchase of commodities in order to maximize their utilities subject to
their budgets. Agents trade freely in a decentralized market and this process results
in allocations which equate supply with demand. The second concept allows for the
possibility of cooperation among agents. They are allowed to bargain multilaterally
which leads to an allocation of resources where it is not possible for any coalition
of agents to redistribute their initial endowments among themselves in any way that
makes each member of the coalition better off. Aumann [6] proved that in perfectly
competitive economies (i.e. economies with an atomless finite measure space of
agents) with finitely many commodities, the core coincides with the set of com-
petitive equilibria. He also proved in [7], that the set of competitive equilibria (and
thus the core) is non-empty. The core-Walras equivalence theorem was extended
by Rustichini–Yannelis [27], to commodity spaces being separable Banach spaces.

In the framework of large square economies (i.e. with infinitely many agents
and infinitely many commodities), there are several equilibrium existence results:
Bewley [9], Khan–Yannelis [16], Podczeck [24] and Martins-da-Rocha [19] for sep-
arable Banach commodity spaces with an interior point in the positive cone; and
Mas-Colell [21], Jones [15], Ostroy–Zame [23], Podczeck [24,26] and Martins-
da-Rocha [20] for economies with differentiated commodities.1 To the best of our
knowledge, this paper is the first to provide an equilibrium existence result for
economies with a separable and reflexive Banach lattice (i.e. �p or Lp([0, 1]) for
1 < p < +∞). Under assumptions imposing uniform bounds on marginal rates
of substitution, positive results on core-Walras equivalence were established in
Rustichini–Yannelis [27] and Podczeck [25]. In this paper we prove that under
similar assumptions on marginal rates of substitution, the set of competitive equi-
libria (and thus the core) is non-empty. More precisely, we provide two frameworks
to prove the existence of competitive equilibria. In the first one, existence is proved
under an assumption (borrowed from Zame [30] and Podczeck [25]) imposing the
existence, at each state of nature, of uniform (over consumption) upper and lower
bounds on marginal rates of substitution. In the second one, the commodity space is
�p and existence is proved for preference relations represented by separable utility
functions. But for this framework, we only require the existence of an upper bound
on the marginal rates of substitution at the initial endowment (and not uniformly

1 The commodity space is M([0, 1]) the space of Radon measures on [0, 1] and the price space is
C([0, 1]) the space of continuous functions on [0, 1].
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over consumption) and we require the existence of a uniform (over consumption)
lower bound on the marginal rates of substitution at only one state of nature.

Recently, Tourky–Yannelis [28] showed that, when aggregation of individual
commodity bundles is formalized in terms of the Bochner integral, given a non-
separable Hilbert space E, and given any atomless measure space (Ω,A, µ), there
is an economy with (Ω,A, µ) as space of agents and E as commodity space that
has a non-empty core but does not have a competitive equilibrium. Contrasting
with the positive results of Aumann [6,7] and their extensions to separable Banach
commodity spaces by Rustichini–Yannelis [27], the crucial condition to get these
results is that there are "many more agents than commodities". More precisely,
Podczeck [25] proved that the class {E} of Banach spaces such that, under a
list of "desirable assumptions", any atomless economy with commodity space E
exhibits core-Walras equivalence2 is exactly the class of Banach spaces that are
separable. However, there is no characterization in the literature of a class of Banach
spaces as those spaces in which the existence of competitive equilibria holds. In our
framework, the commodity space is a separable Banach space, thus under "desirable
assumptions" the core-Walras equivalence theorem is valid. But, the separability
assumption of the commodity space is no more sufficient to get the existence of
competitive equilibria. We introduce an additional assumption which requires a
compatibility (Definition 2.2 and Assumption 3.4) between the geometry of the
lattice ordering of the commodity space and initial endowments. When L2([0, 1])
is endowed with the natural pointwise lattice ordering, we construct an economy
satisfying a list of "desirable assumptions", but not satisfying the compatibility
assumption and for which there are no competitive equilibria at all. It appears that for
the issue of the existence of competitive equilibria, the topological way of measuring
the cardinality of the number of markets introduced by Tourky–Yannelis [28] is not
appropriate. It is the geometric structure of the lattice ordering that matters. In this
paper, several examples of lattice ordering which satisfy the compatibility condition
are given. For these examples, the positive cone has countably many extreme rays.
However the number of extreme directions of the positive cone is not the appropriate
way of measuring the cardinality of the number of markets since positive results
for smooth positive cones3 are given in Martins-da-Rocha [20].

Following the approach used in Martins-da-Rocha [19,20], our proof of the
existence of an equilibrium is based on the discretization of the set of agents.
We approximate the initial economy E by a sequence of economies (En) with
finitely many agents. To each finite economy En, we use the lattice structure of
the commodity space and the properness assumptions on preferences to get the
existence of a quasi-equilibrium (xn, pn). The last step consists on proving that
the sequence (xn, pn) converges to an equilibrium (x, p). In order to apply a Fatou
type lemma to the sequence of mappings (xn), we need a specific compatibility
(Definition 2.2 and Assumption 3.4) between the geometry of the lattice ordering
and initial endowments.

2 When feasibility of allocation is defined in terms of the Bochner integral.
3 The commodity space is M([0, 1]) ordered by the natural pointwise positive cone.
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The paper is organized as follows. In Section 2 we define the model of an
economy with infinitely many agents and commodities and we set out the main
definitions and notations. In Section 3 we give the list of assumptions that economies
will be required to satisfy and we present the two existence results. The different
assumptions on the marginal rates of substitution are discussed in Section 4. Finally,
Section 5 is devoted to the proof of the two theorems.

2 The model

2.1 Preliminaries

LetE be a separable and reflexive Banach lattice.4 We denote byE∗ the dual space
of E, i.e. the space of all continuous linear functions from E into R. If x ∈ E and
p ∈ E∗, the value p(x) of p at x will often be denoted 〈p, x〉. We write ‖.‖ for both
the norm ofE and the dual norm ofE∗. We writew for the weak topologyσ(E,E∗)
onE,w∗ for the weak-star topology σ(E∗, E) onE∗, and s for the norm-topology.
As usual, the ordering of E is denoted by �, and E+ denotes the positive cone of
E, i.e. E+ = {x ∈ E : x � 0}. The dual space E∗ will always be regarded as
endowed with the dual ordering, i.e. E∗

+ = {p ∈ E∗ : p(x) � 0, ∀x ∈ E+}. A
vector x ∈ E is said positive if x � 0, a linear functional q ∈ E∗ is said strictly
positive if q(x) > 0 whenever x belongs toE+ \{0}. For x, y ∈ E the expressions
x+, x−, |x| have the usual lattice theoretical meaning. Let τ be a topology on E.
If (Cn)n is a sequence of subsets of E, the τ -sequential upper limit of (Cn)n, is
denoted τ -lsnCn and is defined by

τ -lsnCn := {x ∈ E : x = τ - lim
k
xk , xk ∈ Cn(k)}

where (Cn(k))k is a subsequence of (Cn)n.
The Borel σ-algebra of E for the norm-topology or for the weak-topology

coincide and is denoted by B. Let (Ω,A, µ) be a complete finite positive measure
space. A correspondence F fromΩ toE is said to be graph measurable if {(a, x) ∈
Ω ×E : x ∈ F (a)} belongs to A ⊗ B. A correspondence P from Ω to E ×E is
said to be graph measurable if {(a, x, z) ∈ Ω ×E ×E : (x, z) ∈ P (a)} belongs
to A ⊗ B ⊗ B. A mapping s from Ω to E is simple if there exist x1, x2, . . . , xn

in E and A1, A2, . . . , An in A such that s =
∑n

i=1 xiχAi where χAi(a) = 1
if a ∈ Ai and χAi(a) = 0 if a �∈ Ai. A mapping x : Ω → E is Bochner
measurable if there is a sequence of simple mappings sn : Ω → E such that
limn ‖sn(a) − x(a)‖ = 0 almost every where. Since E is separable, we know
from Pettis’ measurability theorem (see [12, Theorem II.1.2, p.42]) that a mapping
x : Ω → E is Bochner measurable if and only if for eachB ∈ B, x−1(B) := {a ∈
Ω : x(a) ∈ B} belongs to A. A Bochner measurable mapping x from Ω to E is
Bochner integrable if there is a sequence of simple mappings sn : Ω → E such that
limn

∫
Ω

‖sn(a) − x(a)‖ dµ(a) = 0. For each measurable set A in A, we denote
by

∫
A
xdµ the limit limn

∫
A
sndµ. It can easily be shown (see [12, p.45]) that a

4 We refer to Aliprantis–Border [2] for definitions.
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Bochner measurable mapping x is Bochner integrable if and only if the mapping
a 
→ ‖x(a)‖ is integrable. In particular

∥∥∫
A
xdµ

∥∥ �
∫

A
‖x(a)‖ dµ(a).

2.2 Fatou’s cone

We define hereafter a class of lattice orderings which will enable us to apply a Fatou
type lemma.

Definition 2.1. Let E be a Banach lattice, a functional ρ from E into [−∞,+∞]
is a positive extended linear functional if

(i) the space Eρ = {x ∈ E : ρ(x) ∈ R} is a vector subspace of E,
(ii) the restriction of ρ to Eρ is linear and,
(iii) the functional ρ is positive, i.e. for any y � x � 0, we have ρ(y) � ρ(x) � 0.

Definition 2.2. Let E be a Banach lattice ordered by a positive cone E+ and let
e : Ω → E+ be a Bochner integrable mapping. The cone E+ is a Fatou’s cone
relatively to e if there exists a positive extended linear functional ρ such that

(a) for every x in E+, ‖x‖ � ρ(x),
(b) the function a 
→ ρ[e(a)] from Ω to R+ is integrable.

Example 2.3. Take E = �p for any 1 < p < +∞, and E+ = �p+ the natural
pointwise positive cone.5 Then, for any Bochner integrable mapping e : Ω → �p+,
if the function6 a 
→ ‖e(a)‖1 is integrable, then E+ is a Fatou’s cone relatively
to e.

Example 2.4. Take E = L2([0, 1]) and let (bn)n be an Hilbert basis of E. Let

E+ = {x ∈ E : ∀n ∈ N, 〈x, bn〉 � 0},

then E is a Banach lattice. Moreover, if e : Ω → E+ is a Bochner integrable
mapping such that the function

a 
−→
∑

n

〈e(a), bn〉

is integrable, then E+ is a Fatou’s cone relatively to e.

Remark 2.5. In the above two examples, the positive cone has countably many
extreme rays. Let (T, T , σ) be an atomless measure space and 1 < p < +∞. We
prove in Appendix B.2 that when E = Lp(T, T , σ) is ordered by the pointwise
"smooth" positive cone E+ = Lp(T, T , σ)+, then for every Bochner integrable
mapping e : Ω → E+ with

∫
Ω
edµ > 0, the cone E+ is not a Fatou’s cone

relatively to e.

5 The natural pointwise positive cone of �p is �p
+ = {x = (xn) ∈ �p : ∀n ∈ N, xn � 0}.

6 If x = (xn) belongs to �p, we let ‖x‖1 =
∑

n |xn|.
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2.3 The model

An economy E is a list

E = ((Ω,A, µ), E,X,�, e) ,

where X is a correspondence from Ω to E, � is a correspondence from Ω to
E × E and e is a mapping from Ω to E. The space of agents is (Ω,A, µ), a
complete finite positive measure space. The commodity space isE. For each agent
a ∈ Ω, the consumption set is X(a), the initial endowment is e(a) ∈ E and the
preference/indifference relation is �a⊂ X(a) ×X(a), a reflexive binary relation
on X(a).

We define the correspondence7 Pa : X(a) � X(a) by Pa(x) = {x′ ∈
X(a) : x′ 
a x}. In particular, if x ∈ X(a) is a consumption bundle, the
set Pa(x) is the set of consumption bundles strictly preferred to x by agent a.
We let P be the correspondence from Ω to E × E defined for each a ∈ Ω by
P (a) = {(x, x′) ∈ X(a) ×X(a) : x′ 
a x}.

The set of allocations (or plans) of the economy is the set S1(X) of Bochner
integrable selections of X , i.e. S1(X) is the set of mappings x from Ω to E which
are Bochner integrable and which satisfies x(a) ∈ X(a) for almost every a ∈ Ω.
An allocation x ∈ S1(X) is feasible if∫

Ω

xdµ =
∫

Ω

edµ.

We assume that the mapping e : Ω → E is a Bochner integrable mapping and
we denote by ω :=

∫
Ω
edµ the aggregate initial endowment.

Definition 2.6. A pair (x, p) consisting of a feasible allocation x and a non-zero
price p is said to be a competitive equilibrium if for almost every a ∈ Ω, 〈p, x(a)〉 =
〈p, e(a)〉, and z ∈ Pa(x(a)) implies 〈p, z〉 > 〈p, x(a)〉.

3 Existence of a competitive equilibrium

We will maintain in this paper the following assumptions on the economy E .

Assumption 3.1. For each a ∈ Ω,

(i) the consumption set is X(a) = E+;
(ii) the initial endowment is not zero, i.e. e(a) > 0;
(iii) �a is reflexive, transitive and complete;
(iv) �a is strictly monotone, i.e. for each x ∈ X(a), if z > x then z 
a x.

7 As usual, y �a x means [y �a x and x ��a y]. Note that the binary relation �a coincide with
the graph of the correspondence Pa.
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Assumption 3.2. For each a ∈ Ω, for every x ∈ X(a),

(i) the sets Pa(x) and P−1
a (x) = {z ∈ X(a) : x 
a z} are norm-open in X(a);

(ii) the set {z ∈ X(a) : z �a x} is convex.

Assumption 3.3. The correspondence P is graph measurable.

Assumption 3.4. The positive cone E+ is a Fatou’s cone relatively to e.

Remark 3.1. Assumptions 3.1–3.3 are standard in the literature dealing with ex-
change economies with finitely or infinitely many agents. We will see that in our
framework, we can not dispense with Assumption 3.4.

We provide hereafter two frameworks to prove the existence of competitive
equilibria. In the first one, existence is proved under an assumption imposing up-
per and lower uniform (over agents and consumption) bounds on marginal rates
of substitution. In the second one, existence is proved for preference relations rep-
resented by separable utility functions defined on �p, but the assumption on the
marginal rates of substitution required for the existence is weaker. We only require
a uniform (over agents only) upper bound on the marginal rates of substitution at
the initial endowment and a uniform (over agents and consumption) lower bound
on the marginal rates of substitution at only one state of nature.

3.1 The general case

In this section, we consider economies with general preference relations. The fol-
lowing requirement is borrowed from Zame [30]. It is discussed in Section 4.

Definition 3.2. The preference relations (�a) are said to be strong-uniformly
proper, if there exist strictly positive prices α and β in E∗ with α � β and such
that for every a ∈ Ω, whenever x, u, v ∈ E+ satisfy v � x and 〈α, u〉 > 〈β, v〉
then x− v + u 
a x.

An economy E is said strong-uniformly proper if it has strong-uniformly proper
preference relations.

We can now state our first result for economies with general preference relations.

Theorem 3.3. If the economy E is strong-uniformly proper then there exists a
competitive equilibrium.

Remark 3.4. The strong-uniform properness assumption was already used in
Zame [30]. Podczeck in [26] proved the equivalence between the core and the set of
competitive equilibria under this assumption. Note that Rustichini–Yannelis [27]
also proved the equivalence between the core and the set of competitive equilibria
under another properness assumption.

Assumption 3.4 is unusual. Following Zame [30] we provide hereafter two
examples of a strong-uniformly proper economies satisfying Assumptions 3.1–3.3
and not satisfying Assumption 3.4. For these economies the set of competitive
equilibria is empty.
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Counterexample 3.5. Consider the economy E whereΩ = [0, 1], A is the Lebesgue
σ-algebra and µ is the Lebesgue measure. The commodity space E is �p for 1 <
p < +∞, ordered by the pointwise positive cone �p+. For each trader a ∈ [0, 1], the
utility function ua is defined by

ua(x) =
∑
n∈N

(2 + a)−nxn

and the initial endowment is defined by e(a) = (1, 1/2, 1/3, . . . , 1/n, . . . ). The
economy E is strong-uniformly proper, it satisfies Assumptions 3.1–3.3 but not
Assumption 3.4. It is proved in Zame [30] that E has no competitive equilibrium.

Counterexample 3.6. Consider the economy E where Ω = [0, 1], A is the
Lebesgue σ-algebra and µ is the Lebesgue measure. The commodity space E is
Lp([0, 1], µ) where 1 < p < +∞ ordered by the "smooth" pointwise positive cone
Lp([0, 1], µ)+. For each trader a ∈ [0, 1], the utility function ua is defined by

ua(x) =
∫

[0,1]
qa(t)x(t)µ(dt)

and the initial endowment is e(a) : t 
→ 1. For each a ∈ (0, 1], the function qa is
defined by

qa(t) =




1
2

+
t

2a
if 0 � t � a

a− 2
2(a− 1)

+
t

2(a− 1)
if a � t � 1.

The economy E is strong-uniformly proper, it satisfies Assumptions 3.1–3.3 but not
Assumption 3.4. It is proved in Zame [30] that E has no competitive equilibrium.

3.2 The separable case

In this section, we consider economies with the space �p as the commodity space and
for which preference relations are represented by separable utility functions. For
each 1 < p < +∞, we denote by �p the real vector space of sequencesx = (xk)k in
R

N such that limn

∑n
k=0 |xk|p < ∞ and we denote by ‖x‖p = (

∑
k∈N

|xk|p)1/p.
We denote by �p+ the natural positive cone defined by x ∈ �p+ if and only if xk � 0
for each k ∈ N. The space �p endowed with the norm ‖.‖p and the positive cone �p+
is a reflexive and separable Banach lattice whose dual is �q where 1 < q < +∞ is
defined by 1/p+ 1/q = 1.

Definition 3.7. A utility function u : �p+ → R is called separable if there exists for
each n, a function vn : [0,+∞) → R concave and strictly increasing such that

∀x ∈ �p+, u(x) =
∑
n∈N

vn(xn).
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The function v = (vn) is called the kernel of u. The left derivative of vn in t > 0
is noted v−

n (t) and the right derivative is denoted v+
n (t). If x ∈ �p+ then we note

v−(x) := (v−
n (xn))n. Forx ∈ �p+ we defineS(x) = {h ∈ �p : ∃t > 0, x+th � 0}

and I(x) = S(x)∩−S(x).We defineu′(x)·h = limr→0(1/r)[u(x+rh)−u(x)] for
each x ∈ �p+ and eachh ∈ S(x). Note that ifh � 0 then u′(x)·h =

∑
n v

+
n (xn)hn.

For economies with separable utility functions, a weaker condition than the uni-
form properness will be sufficient to prove the existence of competitive equilibria.

Definition 3.8. An economy E is said separably proper if for each agent a ∈ Ω,
the preference relation 
a is represented8 by a separable utility function ua which
kernel is denoted va and if there exists a measurable set Ω′ ∈ A of full measure,9

satisfying the following conditions.

(a) There exists β ∈ �q such that for each a ∈ Ω′,

v−
a (e(a)) � β.

(b) There exists k ∈ N and αk > 0 such that ωkαk > 0 and for each a ∈ Ω′,

0 < αk � inf{v+
a,k(t) : t � 0} = lim

t→+∞ v+
a,k(t).

We can now state our second existence result for economies with preference
relations represented by utility functions.

Theorem 3.9. If the economy E is separably proper then there exists a competitive
equilibrium.

The two properness conditions are not comparable. Obviously, not all strong-
uniformly proper economies are separably proper. Moreover, we provide hereafter
an example of an economy which is separably proper but not strong-uniformly
proper.

Example 3.10. Consider the economy E where Ω = [0, 1], A is the Lebesgue σ-
algebra and µ is the Lebesgue measure. For each trader a ∈ [0, 1], the consumption
set coincide with �p+, the utility function ua is defined by

ua(x) = x0 +
∑
n�1

1 − exp(−axnn
2)

n2

and the initial endowment is defined by e(a) = (1, 1/2, 1/3, . . . , 1/n, . . . ). Fol-
lowing Example 4.6 the economy E satisfies Assumptions 3.1–3.4. Moreover this
economy is separably proper but not strong-uniformly proper.

4 Proper economies

We discuss in this section the notions of properness used in Theorem 3.3 and
Theorem 3.9.

8 That is x′ �a x if and only if ua(x′) > ua(x).
9 That is µ(Ω \ Ω′) = 0.
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4.1 Strong-uniformly proper economies

We recall that the preference relations (�a) are said to be strong-uniformly proper,
if there exist strictly positive prices α and β in E+ with α � β and such that for
every a ∈ Ω, whenever x, u, v ∈ E+ satisfy v � x and 〈α, u〉 > 〈β, v〉 then
x − v + u 
a x. This properness condition is borrowed from Zame [30]. Note
that this is a requirement on preferences that is uniform over agents as well as
over consumption. We refer to Zame [30] for a discussion of this condition as well
as for corresponding examples. Following Podczeck [25], it may be seen that if
for each a ∈ Ω, {y ∈ X(a) : y �a x} is convex then uniform properness is
equivalent to the following statement: There are strictly positive prices α, β ∈ E∗,
such that given any a ∈ Ω and x ∈ X(a) there is a price p in the order interval
[α, β] such that 〈p, x〉 � 〈p, y〉 for all y ∈ X(a) with y �a x. Since supporting
prices are measures of marginal rates of substitution, the strong-uniform properness
assumption is a condition that puts strong bounds on these rates.

We recall the notion of uniform properness introduced by Yannelis–Zame [29]
for economies with finitely many agents.

Definition 4.1. The preference relations (�a) are said to be v-uniformly proper
with v ∈ E, if there exists a norm-open 0-neighborhood V ⊂ E such that for each
a ∈ Ω, for each x ∈ E+, (x+ Γ ) ∩ E+ ⊂ Pa(x) where Γ = ∪t>0t(v + V ).

Remark 4.2. The strong-uniform properness assumption on the preference rela-
tions implies that

∀a ∈ Ω, ∀x ∈ E+, (x+ Γ ) ∩ E+ ⊂ Pa(x),

where Γ is the convex and norm-open cone defined by Γ = {x ∈ E : α(x+) >
β(x−)}.

Example 4.3. Consider the case of positive separable utility functions ua : �p+ →
R, defined by the formula ua(x) =

∑
n va,n(xn) where for each n, the function

va,n : [0,+∞) → R is continuous, the derivative v′
a,n(t) exists for each t > 0.

Suppose that there exist α and β two strictly positive functionals in �q such that

∀a ∈ Ω, ∀t > 0, αn � v′
a,n(t) � βn.

Then the preference relations defined by the utility functions (ua)a∈Ω are strong-
uniformly proper. Indeed, let x, y, z ∈ �p+ satisfying y � x and α(z) > β(y).
Using the mean value theorem, we see that for each n there exists tn > 0 such that

va,n(xn − yn + zn) − vn(x) = v′
a,n(tn)[zn − yn].

But v′
a,n(tn)[zn − yn] � αnzn − βnyn, in particular

u(x− y + z) − v(x) � α(z) − β(y) > 0.

We refer to Araujo–Monteiro [3], Le Van [17] and Aliprantis [1] for precisions
about proper conditions for separable utility functions.
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4.2 Separably proper economies

Following Aliprantis [1], we introduce the following notion of separable utility
function.

Definition 4.4. A separable utility function u : �p+ → R, where u(x) =∑
n vn(xn), is said to be rational if for each n ∈ N,

(a) vn(0) = 0;
(b) vn is positive, continuous and concave on [0,+∞); and
(c) vn is differentiable on (0,+∞) with v′

n(t) > 0 for each t > 0.

Now let u be a rational separable utility function. The components of the lower
and upper gradient sequences v′ = (v′

1, v
′
2, . . . ) and v′ = (v′

1, v
′
2, . . . ) are given

by

v′
n = lim

t→+∞ v′
n(t) and v′

n = lim
t→0

v′
n(t).

Following Aliprantis [1, Theorem 6.7], we have the following result.

Proposition 4.5. Let u : �p+ → R be rational utility function given by u(x) =∑
n vn(xn). If the preference relations represented by u are ω-uniformly proper

for some ω ∈ �p strictly positive, then

(a) the lower gradient v′ is non-zero and belongs to �q+; and
(b) there exists some k ∈ N such that

(0, 0, . . . , 0, v′
k, v

′
k+1, . . . ) ∈ �q+.

It follows that if E is an economy with rational separable utility function such
that E is ω-uniformly proper and ω is strictly positive, then E is separably proper.
We provide hereafter an example of a rational separable utility function which is
separably proper but which is not uniformly proper.

Example 4.6. Consider the rational separable utility function u : �p+ → R defined
by

v0(t) = t and ∀n � 1, vn(t) =
1 − exp(−tn2)

n2 .

For each n � 1, v′
n(t) = exp(−n2t). It follows that

v′ = (1, 0, 0, . . . ) and v′ = (1, 1, 1, . . . ).

It follows that u is not uniformly proper. However if e = (en)n is defined by e0 = 1
and for each n � 1 by en = 1/n then

v′(e) = (e−n)n ∈ �p+.

Hence u is separably proper.
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5 Proof of Theorem 3.3 and Theorem 3.9

Since E is a separable and reflexive Banach space, it follows that E∗ is norm-
separable. Let (pi)i∈N be a norm-dense sequence in the closed unit ball of E∗ and
define for each x, y in E,

d(x, y) =
∑
i∈N

| 〈pi, x− y〉 |
2i

.

The topology defined by this distance coincide with the w-topology on norm-
bounded subsets of E. Moreover, the d-topology is separable and the Borel σ-
algebra generated by d coincide with the Borel σ-algebra B generated by the norm-
topology and the w-topology.

Let E be an economy satisfying Assumptions 3.1–3.4. Suppose that E is ei-
ther strong-uniformly proper or separably proper. The correspondence X is graph
measurable. Applying Theorem B.1, there exists a sequence (fk)k of measurable
selections of X such that for each a ∈ Ω, X(a) = s- cl{fk(a) : k ∈ N}. For every
k ∈ N, we letRk be the correspondence fromΩ intoE, defined byRk(a) = {x ∈
E+ : x �a fk(a)}. For each ν ∈ N, we let Xν : a 
→ Xν(a) := X(a) ∩ νB and
Rk,ν : a � Rk,ν(a) := Rk(a) ∩ νB, where B is the closed unit ball in E.

Claim 5.1. There exists10 a sequence (σn)n of measurable partitions σn =
(An

i )i∈Sn of (Ω,A), and a sequence (An)n of finite sets An = {an
i : i ∈ Sn}

subordinated to the measurable partition σn, satisfying 11 for each a ∈ Ω,

(i) limn ‖en(a) − e(a)‖ = 0 and ∀k ∈ N, limn ‖fn
k (a) − fk(a)‖ = 0;

(ii) for each ν ∈ N, for each sequence (xn)n of E, d-converging to x ∈ E and
for every k ∈ N,

lim
n
d(xn, Rn

k,ν(a)) = d(x,Rk,ν(a));

(iii) if we pose12 g(a) := ρ[e(a)] then g is an integrable function satisfying

∀n ∈ N, ρ[en(a)] � 1 + g(a).

Proof. If f is a function from Ω to E, then we let {f(.)} be the correspondence
from Ω into E defined for each a ∈ Ω, by {f(.)}(a) := {f(a)}. Note that if f is
measurable then f is Bochner integrable if and only if ‖f(.)‖ : a 
→ ‖f(a)‖ from
Ω to R+ is integrable.

Let Z := E × E and consider the following distance δ on Z defined for each
x = (x1, x2) and y = (y1, y2) in Z by

δ(x, y) := ‖x1 − y1‖ + d(x2, y2).

10 We refer to Appendix A.2 for definitions and notations.
11 Following notations of Section B.2, if f is function from Ω to E, then for each n, {f(.)}n =

{fn(.)}.
12 The functional ρ is given by Assumption 3.4.
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The metric space (Z, δ) is complete and separable. Let G := {ρ[e(.)]} and13

F := {{e(.)} × {0}, {fk(.)} × {0}, {0} ×Rk : k ∈ N} .

Now apply Theorem B.6.

We construct a sequence (En)n of economies with finitely many consumers
converging to E . We let

En :=
(
(In, 2In

, σ), E,Xn,
n, en
)
,

where In = {i ∈ Sn : µ(An
i ) �= 0} is the finite set of consumers; σ is the counting

measure on In; for each agent i ∈ In, the consumption set is defined by Xn
i :=

µ(An
i )X(an

i ) = E+, the initial endowment is defined by en
i := µ(An

i )e(an
i )

and the preference relation is defined by x′ 
n
i x if and only if (x′/µ(An

i )) 
an
i

(x/µ(An
i )). In particular, the correspondence of strictly preferred bundlesPn

i from
Xn

i to Xn
i is defined by Pn

i (x) = µ(An
i )Pan

i
(x/µ(An

i )), for each x ∈ Xn
i .

Claim 5.2. There exists a feasible allocation (xn
i )i∈In for the finite economy En,

a non-zero price pn and a w∗-compact set K ⊂ E∗ such that

(1) for each i ∈ In, 〈pn, xn
i 〉 = 〈pn, en

i 〉, and z ∈ Pn
i (xn

i ) implies 〈pn, z〉 �
〈pn, xn

i 〉; and
(2) pn ∈ K with 〈pn, ω〉 = 1.

Proof. If the economy E is strong-uniformly proper then each economy En satisfies
the assumptions of Theorem A.1. In particular if we let K := {q ∈ E∗ : 〈q, ω〉 =
1 and 〈q, Γ 〉 > 0}, where Γ = {x ∈ E : 〈α, x+〉 > 〈β, x−〉}, then Claim 5.2 is
proved.

If the economy E is separably proper then for each n large enough, αkω
n
k > 0.

Hence the economy En satisfies the assumptions of Theorem A.3. In particular
for each n, ‖pn‖q � (1/αkω

n
k ) ‖β‖q. Since (ωn

k )n is norm-convergent to ωk, it
follows that the sequence (pn)n lies in a norm-bounded set K ⊂ �q. In particular,
Claim 5.2 is proved. ��

If we denote by xn and en the Bochner integrable mappings defined by

xn :=
∑
i∈In

xn
i χAn

i
and en :=

∑
i∈In

en
i χAn

i

then ∫
Ω

xndµ =
∫

Ω

endµ(5.1)

for a.e. a ∈ Ω, 〈pn, xn(a)〉 = 〈pn, en(a)〉
and z ∈ Pn

a (xn(a)) ⇒ 〈pn, z〉 � 〈pn, en(a)〉(5.2)

pn ∈ K and 〈pn, ω〉 = 1.(5.3)

13 If F and G are two correspondences from Ω to E, then we let F × G be the correspondence from
Ω to E × E, defined for each a ∈ Ω by (F × G)(a) = F (a) × G(a).
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The setK isw∗-compact. SinceE is norm-separable, passing to a subsequence
if necessary, we can suppose that (pn)n w

∗-converge to a non-zero price p ∈ E∗

which satisfies 〈p, ω〉 = 1.
Now we want to apply a Fatou’s Lemma to the sequence (xn). It is only at this

step that we need Assumption 3.4. For each z ∈ E+, ‖z‖ � ρ(z); and for each
y ∈ E+, ρ(z + y) = ρ(z) + ρ(y). Hence from (5.1), we have

∫
Ω

‖xn(a)‖ dµ(a) �
∫

Ω

ρ[xn(a)]dµ(a) =
∫

Ω

ρ[en(a)]dµ(a).

Applying Claim 5.1, the sequence of Bochner integrable mappings (xn)n is mean
norm-bounded, i.e.

sup
n

∫
Ω

‖xn(a)‖ dµ(a) < +∞.

Passing to a subsequence if necessary, we can suppose that w-limn

∫
Ω
xndµ exists

in E. Applying Fatou’s Lemma (Theorem C.1) of Cornet–Martins-da-Rocha [10],
there exists a Bochner integrable mapping x from Ω to E such that

∫
Ω

xdµ � w - lim
n

∫
Ω

xndµ(5.4)

x(a) ∈ co w -lsn{xn(a)} a.e.(5.5)

Claim 5.3. The Bochner integrable mapping x satisfies
∫

Ω

xdµ �
∫

Ω

edµ.

Proof. This is a direct consequence of Claim 5.1, (5.1) and (5.4). ��

Claim 5.4. For almost every a ∈ Ω, x(a) ∈ E+ and z ∈ Pa(x(a)) implies
〈p, z〉 � 〈p, e(a)〉.

Proof. Consider Ω0 =
⋃

n∈N
Ω \ (∪i∈InAn

i ), then µ(Ω0) = 0. Let Ω′ be a mea-
surable subset of Ω \Ω0 with µ(Ω \Ω′) = 0 and such that all almost everywhere
assumptions and properties are satisfied for each a ∈ Ω′.

SinceX(a) = E+ is closed convex, we have that for eacha ∈ Ω′,x(a) ∈ X(a).
We will now prove that for each a ∈ Ω′, if z ∈ Pa(x(a)) then 〈p, z〉 � 〈p, e(a)〉.
Let a ∈ Ω′ and let z ∈ Pa(x(a)). Since E+ = s- cl{fk(a) : k ∈ N}, we can
suppose (extracting a subsequence if necessary) that (fk(a))k is norm-convergent
to z. But Pa(x(a)) is norm-open in E+, thus there exists k0 ∈ N, such that for
each k � k0, fk(a) ∈ Pa(x(a)). To prove that 〈p, z〉 � 〈p, e(a)〉, it is sufficient to
prove that for each k large enough, 〈p, fk(a)〉 � 〈p, e(a)〉. Now, let k � k0.

Claim 5.5. There exists an increasing function ϕ : N → N such that

∀n ∈ N, f
ϕ(n)
k (a) ∈ Pϕ(n)

a

(
xϕ(n)(a)

)
.
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Proof. Suppose that for each increasing function ϕ : N → N, there exists an
increasing function φ : N → N, such that:

∀n ∈ N, xϕ◦φ(n)(a) ∈ R
ϕ◦φ(n)
k (a).

Let � ∈ w -ls{xn(a) : n ∈ N}, then there exists a subsequence (xϕ(n)(a))n

w-converging to �. In particular (xϕ◦φ(n)(a))n is w-convergent to �. It follows
that there exists ν > 0 such that for each n, xϕ◦φ(n)(a) belongs to νB. In
particular, d(xϕ◦φ(n)(a), Rϕ◦φ(n)

k,ν (a)) = 0. Applying Claim 5.1, it follows that
d(�, Rk,ν(a)) = 0. Since Rk,ν(a) is w-closed and d coincide with w on νB, we
have that � ∈ Rk(a). Thus w -ls{xn(a)} ⊂ Rk(a), and under Assumption 3.2,
this implies that co w -lsn{xn(a)} ⊂ Rk(a). It follows that x(a) ∈ Rk(a), i.e.
fk(a) �∈ Pa(x(a)): contradiction. ��

With Claim 5.5 and (5.2), for each n,
〈
pϕ(n), f

ϕ(n)
k (a)

〉
�

〈
pϕ(n), eϕ(n)(a)

〉
.

Passing to the limit, we get that 〈p, fk(a)〉 � 〈p, e(a)〉. ��
Now let x̄ be the Bochner integrable mapping from Ω to �p defined by

∀a ∈ Ω, x̄(a) = x(a) + (1/µ(Ω))
∫

Ω

(e− x)dµ.

Claim 5.6. The pair (x̄, p) is an equilibrium of E .

Proof. Since
∫

Ω
(e − x)dµ � 0, Assumption 3.1 implies that x̄(a) ∈ E+ and

Pa(x̄(a)) ⊂ Pa(x(a)). In particular the allocation x̄ is feasible and for each a ∈ Ω′,
if z ∈ Pa(x̄(a)) then 〈p, z〉 � 〈p, e(a)〉. Since 
a is monotone, it follows that x̄(a)
belongs to the norm-closure of Pa(x̄(a)), in particular 〈p, x̄(a)〉 � 〈p, e(a)〉. But∫

Ω
x̄dµ =

∫
Ω
edµ, it follows that for almost every a ∈ Ω, 〈p, x̄(a)〉 = 〈p, e(a)〉.

To prove that (x̄, p) is an equilibrium, it is now sufficient to prove that for almost
every a ∈ Ω,

inf{〈p, z〉 : z ∈ E+} < 〈p, e(a)〉 .

LetB := {a ∈ Ω′ : 〈p, e(a)〉 > 0}. The setB is measurable and since 〈p, ω〉 = 1,
µ(B) �= 0. Now for each a ∈ B, inf{〈p, z〉 : z ∈ E+} < 〈p, e(a)〉 and z ∈
Pa(x̄(a)) ⇒ 〈p, z〉 � 〈p, x̄(a)〉. It follows that

∀a ∈ B, z ∈ Pa(x̄(a)) ⇒ 〈p, z〉 > 〈p, x̄(a)〉 .

The preference relation 
a is monotone, i.e. for each z > 0, x̄(a)+ z ∈ Pa(x̄(a)).
It follows that for each z > 0, 〈p, z〉 > 0. Now from Assumption 3.1, for each
a ∈ Ω, e(a) > 0, hence

inf{〈p, z〉 : z ∈ E+} = 0 < 〈p, e(a)〉 . ��

Appendix A. Finitely many consumers

We suppose in this section that the economy is finite in the sense that the set of
consumers (Ω,A, µ) is (I, 2I , σ) where I is a finite set, 2I is the σ-algebra of all
subsets of I and σ is the counting measure.
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A.1 The general case

If E is strong-uniformly proper then we denote by Γ the norm-open convex cone
defined by Γ = {x ∈ E : 〈α, x+〉 > 〈β, x−〉}.

Theorem A.1. Let E be a finite economy satisfying Assumptions 3.1–3.4. If E is
strong-uniformly proper then there exists a pair (x, p) consisting of a feasible
allocation x and a non-zero price p such that

1. for each i ∈ I , 〈p, xi〉 = 〈p, ei〉, and z ∈ Pi(xi) implies 〈p, z〉 � 〈p, xi〉;
2. 〈p, ω〉 = 1 and 〈p, Γ 〉 > 0.

Proof. Since order intervals [0, x] = {y ∈ E : 0 � y � x} are w-compact,14

following Florenzano [13], there exists a feasible allocation x = (xi)i such that15

0 �∈ G(x) := co
⋃
i∈I

[Pi(xi) − ei].

Lemma A.2. G(x) ∩ −Γ = ∅.

Proof. To see this,16 assume by way of contradiction that G(x) ∩ −Γ �= ∅. Then
there exist γ ∈ Γ , (λi)i with λi � 0,

∑
i λi = 1 and (zi)i with zi ∈ Pi(xi) such

that ∑
i

λizi + γ =
∑

i

λiei.

Suppose first that γ � 0. For each i ∈ I , we set yi := zi +γ. Then yi 
i zi for each
i since preference relations are strictly monotone, whence yi 
i xi by transitivity.
One the other hand, ∑

i

λiyi =
∑

i

λiei

and we have thus got a contradiction.
Thus suppose that γ− �= 0. We must have γ− �

∑
i λizi, so by the Riesz

decomposition theorem there exist elements ui � 0 such that ui � zi and∑
i λiui = γ−. Set for each i,

vi =
〈β, ui〉
〈β, γ−〉γ

+.

Since 〈α, γ+〉 > 〈β, γ−〉 by definition of Γ ,

〈α, vi〉 =
〈β, ui〉
〈β, γ−〉

〈
α, γ+〉

� 〈β, ui〉 ,

14 Since E is a Banach lattice, the order interval [0, x] is a subset of ‖x‖ B. Since E is separable and
reflexive then B is w-compact.

15 In fact x is an Edgeworth equilibrium of E .
16 The argument given in the sequel to establish this lemma is taken from Zame [30] and Podczeck [25].
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with strict inequality if ui �= 0. Hence because ui � zi and vi � 0, we have
zi − ui + vi �i zi for each i (in fact, zi − ui + vi 
i zi in case ui �= 0), and
therefore by transitivity of preference relations, zi − ui + vi 
i xi. Also

∑
i

λi(zi − ui + vi) =
∑

i

λizi − γ− +
〈β,

∑
i λiui〉

〈β, γ−〉 γ+ =
∑

i

ei,

again we get a contradiction. ��

Following LemmaA.2, sinceΓ is norm-open, it follows from the separation theorem
that there exists some non-zero linear functional p ∈ E∗ with 〈p, g〉 � − 〈p, γ〉 for
each g ∈ G(x) and γ ∈ Γ . It is now routine to prove that (x, p) satisfies properties
(1) and (2) of Theorem A.1. ��

A.2 The separable case

We recall that a utility function u : �p+ → R is called separable if there exists for
each n, a function vn : [0,+∞) → R concave and strictly increasing such that

∀x ∈ �p+, u(x) =
∑
n∈N

vn(xn).

Theorem A.3. Let E be a finite economy satisfying Assumptions 3.1–3.4. If E is
separably proper then there exists a pair (x, p) consisting of a feasible allocation
x and a non-zero price p such that

(1) for each i ∈ I , 〈p, xi〉 = 〈p, ei〉, and z ∈ Pi(xi) implies 〈p, z〉 � 〈p, xi〉;
(2) 〈p, ω〉 = 1 and ‖p‖q � (1/αkωk) ‖β‖q.

The proof of Theorem A.3 is mostly inspired by the proof of Theorem 3 in
Araujo–Monteiro [4].

Proof. We prove Theorem A.3 in two steps. For the first step, we suppose that the
economy satisfies an additional assumption on the initial endowments.

Step 1: Strictly positive initial endowments. Suppose that for each i, ei is strictly
positive. Let Eω be the vector space of all z ∈ �p such that there exists r > 0
satisfying −rω � z � rω. From Lemma 1 in Araujo–Monteiro [4], there exists a
pair (x, p) consisting of a feasible allocation17 x and a non-zero linear functional
p : Eω → R such that p is positive, i.e. 〈p, z〉 � 0 for each z ∈ Eω

+; 〈p, ω〉 = 1
and such that

∀i ∈ I, 〈p, xi〉 = 〈p, ei〉 and z ∈ Pi(xi) ∩ Eω ⇒ 〈p, z〉 � 〈p, ei〉 .

Now there exists i with 〈p, ei〉 > 0, and since ui is strictly monotone, p is strictly
positive, i.e. 〈p, z〉 > 0 for each 0 �= z ∈ Eω

+. In particular 〈p, ei〉 > 0 for each

17 Note that if x is a feasible allocation then xi ∈ Eω .
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i ∈ I . By the concave alternative (see Lemma 5 in [4]), for each i there exists
λi > 0 such that

∀z ∈ Eω
+, ui(z) − ui(xi) � λi 〈p, z − xi〉 .(A.1)

For z ∈ �p+ we define S(z) = {h ∈ �p : ∃t > 0, z + th � 0} and I(z) =
S(z) ∩ −S(z). Using (A.1) like in [4], we have

∀h ∈ I(xi) ∩ Eω
+, λi 〈p, h〉 �

∑
n

v−
i,n(xi,n)hn.(A.2)

Since ei is strictly positive for each i, we have that b := inf{ei : i ∈ I} is strictly
positive. Hence Eb is norm-dense in �p. From this we conclude that if p is norm-
continuous on Eb then we can extend it to a linear functional still noted p in �q,
such that (x, p) satisfies

∀i ∈ I, 〈p, xi〉 = 〈p, ei〉 and z ∈ Pi(xi) ⇒ 〈p, z〉 � 〈p, ei〉 .

So let us prove that p is norm-continuous on Eb.
We define for each n, In := {i ∈ I : xi,n � ei,n} and for each i we define

Ni = {n ∈ N : i = min In}. Since x is a feasible allocation, we have In �= ∅ for
every n and (Ni)i is a partition of N. Take h ∈ Eb, there exists r > 0 such that
−rei � h � rei for each i. Now let hi ∈ Eb be defined by

hi = (hi
n)n where hi

n =

{
|hn| if n ∈ Ni

0 if n �∈ Ni.

As hi belongs to I(xi), it follows from (A.2) that18

λi

〈
p, hi

〉
�

∑
n∈Ni

v−
i,n(xi,n)|hn| �

∑
n∈Ni

v−
i,n(ei,n)|hn|.

Since p is positive, we have that | 〈p, h〉 | �
∑

i

〈
p, hi

〉
. It follows that

| 〈p, h〉 | �
∑

i

(1/λi)
∑

n∈Ni

v−
i,n(ei,n)|hn|.

We define u′
i(z) ·h = limr→0(1/r)(ui(z+ rh)−ui(z)) for each z ∈ �p+ and each

h ∈ S(z). It follows from (A.1) and separable properness that

0 < αkωk < u′
i(xi) · ω � λi.

In particular

| 〈p, h〉 | � (1/αkωk)
∑

i

∑
n∈Ni

v−
i,n(ei,n)|hn|

� (1/αkωk)
∑
n∈N

βn|hn| � (1/αkωk) ‖β‖q ‖h‖p .

18 Note that v−
i,n is a decreasing function.



Equilibria in reflexive Banach lattices with a continuum of agents 487

From separable properness we have that ‖β‖q < +∞. This proves the norm-
continuity of p on Eb.

Step 2: Positive initial endowments. Let E be a separably proper finite economy
satisfying Assumptions 3.1–3.4. Let v be a strictly positive vector of �p and con-
sider En the economy defined by E = (I, �p, X,
, en) where en

i := ei + (1/n)v.
Since v−

i (en
i ) � v−

i (ei), the economy En is separably proper and satisfies As-
sumptions 3.1–3.4. Applying Step 1, there exists a pair (xn, pn) consisting of
a feasible allocation xn and a non-zero price pn such that for each i ∈ I ,
〈p, xn

i 〉 = 〈p, en
i 〉, z ∈ Pi(xn

i ) implies 〈pn, z〉 � 〈pn, xn
i 〉, 〈pn, ωn〉 = 1 and

‖pn‖q � (1/αkω
n
k ) ‖β‖q.

Since the sequence (ωn
k )n is norm-convergent to ωk, it follows that the se-

quence (pn)n is norm-bounded, and passing to a subsequence if necessary, we
can suppose that the sequence (pn)n is w∗-convergent to a price p ∈ �q with
‖p‖q � (1/αkωk) ‖β‖q. Moreover, since 〈pn, ωn〉 = 1 it follows that 〈p, ω〉 = 1.

For each i, xn
i belongs to the interval [0, ω + v], in particular, passing to a

subsequence if necessary, we can suppose that (xn
i )n is w-convergent to xi ∈ �p+.

Moreover, since
∑

i x
n
i = ωn, we have that x is a feasible allocation for the

economy E . It is now routine to prove that for each i ∈ I , 〈p, xi〉 = 〈p, ei〉, and
z ∈ Pi(xi) implies 〈p, z〉 � 〈p, xi〉. ��

Appendix B. Measurable correspondences

We consider (Ω,A, µ) a finite complete measure space and (D, d) a separable
metric space. We recall that a function f : Ω → D is measurable if for each open set
G ⊂ D, f−1(G) ∈ A where f−1(G) := {a ∈ Ω : f(a) ∈ G}. A correspondence
F : Ω � D is graph measurable if GF := {(a, x) ∈ Ω × D : x ∈ F (a)} ∈
A ⊗ B(D), where B(D) is the σ-algebra of Borelian subsets of D.

B.1 Measurable selections

Following Aumann [8], graph measurable correspondences have measurable selec-
tions.

Theorem B.1. Consider F a graph measurable correspondence from Ω into D
with non-empty values. If (D, d) is complete then there exists a sequence (zn)n of
measurable selections ofF , such that for each a ∈ Ω, (zn(a))n is d-dense inF (a).

B.2 Discretization of measurable correspondences

Definition B.2. A partition σ = (Ai)i∈I of Ω is a measurable partition if for
each i ∈ I , the set Ai is non-empty and belongs to A. A finite subset Aσ of Ω is
subordinated to the partition σ if there exists a family (ai)i∈I ∈

∏
i∈I Ai such that

Aσ = {ai : i ∈ I}.
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Given a couple (σ,Aσ) where σ = (Ai)i∈I is a measurable partition of Ω,
and Aσ = {ai : i ∈ I} is a finite set subordinated to σ, we consider φ(σ,Aσ)
the application which maps each measurable function f to a simple measurable
function φ(σ,Aσ)(f), defined by

φ(σ,Aσ)(f) :=
∑
i∈I

f(ai)χAi ,

where χAi
is the characteristic19 function associated to Ai.

Definition B.3. A function s : Ω → D is called a simple function subordinated to
f if there exists a couple (σ,Aσ) where σ is a measurable partition of Ω, and Aσ

is a finite set subordinated to σ, such that s = φ(σ,Aσ)(f).

Given a couple (σ,Aσ) where σ = (Ai)i∈I is a measurable partition ofΩ, and
Aσ = {ai : i ∈ I} is a finite set subordinated to σ, we consider ψ(σ,Aσ), the
application which maps each measurable correspondence F : Ω � D to a simple
measurable correspondence ψ(σ,Aσ)(F ), defined by

ψ(σ,Aσ)(F ) :=
∑
i∈I

F (ai)χAi .

Definition B.4. A correspondence S : Ω → D is called a simple correspondence
subordinated to a correspondence F if there exists a couple (σ,Aσ) where σ is
a measurable partition of Ω, and Aσ is a finite set subordinated to σ, such that
S = ψ(σ,Aσ)(F ).

Remark B.5. If f is a function from Ω to D, let {f} be the correspondence from
Ω into D, defined for each a ∈ Ω by {f}(a) := {f(a)}. We check that

ψ(σ,Aσ)(F ) = {φ(σ,Aσ)(f)} .

The space of all non-empty subsets of D is noted P∗(D). We let τWd
be the

Wijsman topology on P∗(D), that is the weak topology on P∗(D) generated by
the family of distance functions (d(x, .))x∈D.

Hereafter we assert that for a countable set of graph measurable correspon-
dences, there exists a sequence of measurable partitions approximating each corre-
spondence. The proof of the following theorem is given in Martins-da-Rocha [18].

Theorem B.6. Let F be a countable set of graph measurable correspondences with
non-empty values fromΩ intoD and let G be a finite set of integrable functions from
Ω into R. There exists a sequence (σn)n of finer and finer measurable partitions
σn = (An

i )i∈In of Ω, satisfying the following properties.

(a) Let (An)n be a sequence of finite setsAn subordinated to the measurable par-
tition σn and let F ∈ F . For each n ∈ N, we define the simple correspondence
Fn := ψ(σn, An)(F ) subordinated to F . Then for each a ∈ Ω, F (a) is the
Wijsman limit of the sequence (Fn(a))n, i.e.,

∀a ∈ Ω, ∀x ∈ D, lim
n
d(x, Fn(a)) = d(x, F (a)).

19 That is, for each a ∈ Ω, χAi
(a) = 1 if a ∈ Ai and χAi

(a) = 0 elsewhere.
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(b) There exists a sequence (An)n of finite setsAn subordinated to the measurable
partition σn, such that for each n, if we let fn := φ(σn, An)(f) be the simple
function subordinated to each f ∈ G, then

∀f ∈ G, ∀a ∈ Ω, |fn(a)| � 1 +
∑
g∈G

|g(a)|.

In particular, for each f ∈ G,

lim
n→∞

∫
Ω

|fn(a) − f(a)|dµ(a) = 0.

Remark B.7. The property (a) implies in particular that, if (xn)n is a sequence of
D, d-converging to x ∈ D, then

∀a ∈ Ω, lim
n
d(xn, Fn(a)) = d(x, F (a)).

It follows that if F is non-empty closed valued, then property (a) implies that

∀a ∈ Ω, lsnF
n(a) ⊂ F (a).

Appendix C. Fatou’s Lemma

The proof of the following theorem is given in Cornet–Martins-da-Rocha [10].

Theorem C.1. Let (Ω,A, µ) be a finite positive complete measure space. Let (fn)n

be a sequence of Bochner integrable mappings fromΩ toE+, which is mean norm-
bounded, i.e.

sup
n

∫
Ω

‖fn(a)‖ dµ(a) < +∞.

Suppose that w-limn

∫
Ω
fndµ exists in E then there exists a Bochner integrable

mapping f such that ∫
Ω

fdµ � w - lim
n

∫
Ω

fndµ

and

f(a) ∈ co w -lsn{fn(a)} a.e.

Moreover ∫
Ω

‖f(a)‖ dµ(a) � sup
n

∫
Ω

‖fn(a)‖ dµ(a).
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Appendix D. Fatou’s cone

Proposition D.1. Let (T, T , σ) be an atomless measure space. For 1 < p < +∞
we consider the space E = Lp(T, T , σ) ordered by the cone E+ defined by

E+ = {f ∈ Lp(T, T , σ) : ∀t ∈ T, f(t) � 0}.

The space E ordered by the cone E+ is a Banach lattice. But for every Bochner
integrable mapping e : Ω → E+ with

∫
Ω
edµ > 0, the cone E+ is not a Fatou’s

cone relatively to e.

Proof. Consider a Bochner integrable mapping e : Ω → E+ with
∫

Ω
edµ > 0.

Suppose that E+ is a Fatou’s cone relatively to e, then there exists a positive
extended linear functional ρ satisfying conditions (a) and (b) of Definition 2.2.
Since a 
→ ρ[e(a)] is integrable, there exists Ω′ in A such that µ(Ω \Ω′) = 1 and
for all a ∈ Ω′, ρ[e(a)] < +∞. Moreover, since

∫
Ω
edµ > 0, there exists b ∈ Ω′

such that e(b) > 0. We let ω = e(b), without any loss of generality, we may assume
that ‖ω‖ = 1. We denote by δ the probability on (T, T ) defined by

∀B ∈ T , δ(B) =
∫

B

[ω(t)]pσ(dt).

Since (T, T , σ) is atomless, the measure space (T, T , δ) is also atomless. Apply-
ing Lyapunov Convexity Theorem (see Aliprantis–Border [2, Theorem 12.33]),
{δ(B) : B ∈ T } = [0, 1]. Fix n > 0, then there exists T1 ∈ T such that∫

T1

ωpdσ =
1
n
.

Now the restriction of δ to T \ T1 is a finite positive measure, such that

{δ(B) : B ∈ T and B ∩ T1 = ∅} = [0, 1 − 1/n].

Hence there exists T2 ∈ T with T2 ∩ T1 = ∅ such that∫
T2

ωpdσ =
1
n
.

By induction, there exists a measurable partition (T1, . . . , Tn) of T such that

∀k ∈ {1, . . . , n},
∫

Tk

ωpdσ =
1
n
.

For each k ∈ {1, . . . , n}, let χk be the characteristic function of Tk, i.e. χk(t) = 1
if t ∈ Tk and χk(t) = 0 elsewhere. Then

n1−1/p =
n∑

k=1

(
1
n

)1/p

=
n∑

k=1

‖ωχk‖ �
n∑

k=1

ρ[ωχk] = ρ(ω),

contradiction. ��
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