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1 Introduction

The purpose of this paper is to provide an equilibrium existence result for economies
with a measure space of agents, a finite set of producers and infinitely many dif-
ferentiated commodities. The approach proposed in this paper, based on the dis-
cretization of measurable correspondences, allows us to extend the existence results
in Ostroy and Zame [32] and Podczeck [34] to economies with a non-trivial pro-
duction sector and with possibly non-ordered preferences. Moreover, our approach
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allows for more general consumption sets than the positive cone and following
the direction introduced by Podczeck in [35], the uniform substitutability assump-
tions of Mas-Colell [29], Jones [23] and Ostroy and Zame [32], are replaced by
the weaker assumptions of uniform properness. Our uniform properness assump-
tions are inspired from those presented in Podczeck [33] and in Florenzano and
Marakulin [16], and they generalize uniform properness assumptions introduced in
Podczeck [35].

As in the models of Mas-Colell [29], Jones [23], Yannelis and Zame [46], and
Ostroy and Zame [32], we specify the set of commodities as a compact metric space
T . Commodity bundles are then modelled as measures on this space of commodities.
As in Jones [23], Ostroy and Zame [32], and Podczeck [34], but different to Mas-
Colell [29] and Cornet and Medecin [11], it is assumed that all commodities are
divisible. The space of all commodity bundles is then M(T ), the space of all finite
signed Borel measures on T .

In the framework of differentiated commodities there exist, among others, two
approaches to model economies with infinitely many agents (or consumers). In
Mas-Colell [29], Jones [23], and Podczeck [35], economies are described by dis-
tributions on the space of agents’ characteristics. Following Ostroy and Zame [32],
Podczeck [34], and Cornet and Medecin [11], we describe an economy as a mapping
from a measure space of agents to the space of agents’ characteristics. The measure
space of agents is not supposed to be purely non-atomic, then we encompass the
finite agents’ set-up.

In our model, as in Ostroy-Zame [32], Podczeck [34], and Cornet and
Medecin [11], aggregation of individual commodity bundles is formalized in terms
of the Gelfand integral and not in terms of the Bochner integral. The Bochner inte-
gration is related to the norm topology whereas the Gelfand integration is related to
the weak star topology. Since the positive cone of the commodity space, endowed
with the weak star topology is separable, this allows us to avoid the problem of
”many more commodities than agents” addressed1 by Tourky and Yannelis [43]
and Podczeck [36]. However, Tourky and Yannelis noted (Remark 10.2 in [43])
that the use of the Gelfand integral could lead interpretive problem in economics.
But for the commodity differentiation, this interpretive problem does not arise.2

Moreover Cornet and Medecin [11] provided an example of an allocation with
a natural economic interpretation which is Gelfand measurable but not Bochner
measurable.

As in Hildenbrand [20], we consider a private ownership economy with a finite
set of firms. We mention the papers of Hart [18,19] and Podczeck [35] on economies
with infinitely many producers and differentiated commodities.

In the framework of economies with finitely many consumers, one of the most
important generalization of the assumptions of Debreu [12], concern the transitivity
and the completeness of preferences. Mas-Colell [28] and Gale and Mas-Colell [17]
proved that the assumptions of completeness and transitivity of preferences are

1 Note that in our context, contrary to [43] and [36], the positive cone of the commodity space has
an empty interior.

2 Indeed, the constant unit price t �→ 1 is strictly positive and then Proposition 10.2 in [43] applies
in our setting.
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superfluous for the existence of equilibrium in the model of Arrow–Debreu–
McKenzie. We can find other generalizations in Shafer and Sonnenschein [40,
41]. In the framework of economies with infinitely many consumers and infinitely
many differentiated commodities, we propose to establish the same generalization,
i.e., to prove that the assumptions of completeness and transitivity of preferences
are superfluous for the existence of equilibrium.

The existence proof in Mas-Colell [29], Jones [23], Ostroy and Zame [32],
and Cornet and Medecin [11] consists of a limit argument based on equilibria in
economies with finitely many commodities, by the discretization of the space of
characteristics. When the consumption sets are more general than the positive cone,
or with a non-trivial production sector, this approach leads ad hoc assumptions
relative to the choice of discretization process (we refer to Jones [24] and Cornet
and Medecin [11] for precisions).

For economies with finitely many agents, Aliprantis and Brown [2] (see also [3–
5]) proposed that the appropriate setting for infinite dimensional analysis is that of a
vector lattice dual system. Mas-Colell [30] then proved the existence of equilibrium
for economies with a topological vector lattice commodity space. But this setting
does not cover the duality pairing of the commodity differentiation. However, this
work was quickly extended in various directions (see Richard [37], Mas-Colell and
Richard [31], Yannelis and Zame [46], Podczeck [34], Tourky [42], and Florenzano
and Marakulin [16]). In particular, the framework of locally-solid lattice commod-
ity spaces was replaced by the more general setting (which in particular cover the
commodity differentiation) of both lattice commodity and lattice price spaces. For
economies with infinitely many agents, Rustichini and Yannelis in [38] and [39],
proved the equivalence between the set of Core allocations and the set of Walrasian
equilibria for Banach lattice commodity space. But for commodity differentiation
with infinitely many agents, Podczeck in [35] is the first to focus on the lattice struc-
ture of both the commodity and price spaces to prove the existence of Walrasian
equilibria. He succeeded to solve the equilibrium existence problem by using fixed
point arguments in infinite dimensional spaces directly, rather than to proceed by
finite dimensional approximations. However, in Podczeck [34], economies are de-
scribed by distributions on the space of agents’ characteristics and not as a mapping
from a measure space of agents to the space of agents’ characteristics.

Our approach also focuses on the lattice structure of the commodity and
price spaces. In order to use the recent results establishing existence of equi-
libria for economies with finitely many agents (e.g. in Yannelis and Zame [46],
Podczeck [33], Tourky [42], Florenzano and Marakulin [16], and many others pa-
pers [1,7,9,15,25]), our approach consists of a limit argument based on equilibria
for economies with finitely many agents. If E is an economy with a measure space
of agents, using the measurability assumptions on the characteristics (initial endow-
ments, consumption sets, preference relations and share functions) we succeed to
construct a sequence (En)n of economies with an increasing but finite set of agents,
converging to the economy E . We then are able to apply a classical equilibria exis-
tence result to each economy En, in order to obtain a sequence of quasi-equilibria
which will converge to a quasi-equilibrium of the initial economy E .
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Our approach of discretization provides an economic interpretation of the mea-
surability assumptions. Indeed, if the characteristics of the economy (initial endow-
ment, consumption sets, preferences and share functions) are measurable, then we
will be able to approach the large economy by a sequence of finite economies.

The paper is organized as follows. In Section 2, we set out the main defini-
tions and notations. In Section 3 we define the model of large economies with
differentiated commodities, we introduce the concepts of equilibria, we give the
list of assumptions that economies will be required to satisfy and finally, we present
the existence result (Theorem 3.14). The Section 4 is devoted to the mathemati-
cal discretization of measurable correspondences. The proof of the main theorem
(Theorem 3.14) is then given in Section 5.

2 Notations and definitions

Consider (E, τ) a topological vector space. IfX ⊂ E is a subset, then the τ -interior
of X is denoted by τ -intX , the τ -closure of X is denoted by τ -clX . The convex
hull of X is denoted by coX and the τ -closed convex hull of X is denoted by τ -
coX . We let A(X) = {v ∈ E : X + {v} ⊂ X} be the asymptotic cone of X and
we letAτ (X) be the set of elements x ∈ E such that x = τ - limn→∞ λnxn where
(λn)n is a real sequence decreasing to 0 and (xn)n is a sequence inX . Note that we
always have A(X) ⊂ Aτ (X), and if X is τ -closed convex, then A(X) = Aτ (X).
If (Cn)n is a sequence of subsets of E, the τ -sequential upper limit of (Cn)n, is
denoted by τ -lsCn and is defined by

τ -lsCn := {x ∈ E : x = τ - limxk , xk ∈ Cn(k)}
where (Cn(k))k is a subsequence of (Cn)n. LetT be any compact metric space. The
set of all continuous functions onT is denoted byC(T ) and the set of all finite signed
Borel measures onT is denoted byM(T ). Note thatC(T ) andM(T ), endowed with
their natural positive conesC(T )+ andM(T )+, are vector lattices. Given elements
x, y ofC(T ) orM(T ), x+, x−, |x|, x∨y, and x∧y have the usual lattice theoretical
meaning. A subsetZ ⊂ M(T ) is a lattice if for every z ∈ Z, z+ and z− still lie inZ.
If p ∈ C(T ), then ‖p‖∞ denotes the sup-norm of p. If x ∈ M(T ), then ‖x‖ denotes
the variation norm of x, that is ‖x‖ = |x|(T ) = x+(T ) + x−(T ). Following the
Riesz representation theorem, M(T ) is the topological dual of (C(T ), ‖.‖∞). The
natural dual pairing 〈C(T ),M(T )〉 is defined by

∀(p, x) ∈ C(T ) ×M(T ), 〈p, x〉 =
∫

T

p(t)dx(t).

If p ∈ C(T ), then p > 0 means that [p ∈ C(T )+ and p 	= 0], and p 
 0 means
that for each t ∈ T , p(t) > 0. If X is a subset of M(T ) and p belongs to C(T ),
then sup{〈p, x〉 : x ∈ X} is denoted by sup 〈p,X〉. If x ∈ M(T ), then x 
 0
means that for every p ∈ C(T ), if p > 0 then 〈p, x〉 > 0. The polar V ◦ of a
subset V ⊂ M(T ) is the subset of C(T ) defined by V ◦ := {p ∈ C(T ) : ∀x ∈
V, | 〈p, x〉 | � 1}. By the support of x ∈ M(T ), denoted by suppx, we mean the
smallest closed subset F of T such that |x|(T \ F ) = 0. Note that x ∈ M(T )
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satisfies x 
 0 if and only if [x > 0 and suppx = T ]. Given any t ∈ T , we
write δt for the Dirac measure at t, and we denote by 1K the unit constant function
on T , i.e. 1K(t) = 1 for each t ∈ T . The weak topology σ(M(T ), C(T )) on
M(T ) is denoted by w∗ and we denote by bw∗ the strongest topology on M(T )
agreeing with the w∗-topology on every w∗-compact set. The Borel σ-algebra of
(M(T ), w∗) and of (M(T ), bw∗) coincide and is denoted by B.

We consider (A,A, µ) a finite measure space, i.e., A is a set, A is a σ-algebra
of subsets of A and µ is a finite measure on A. The measure space (A,A, µ) is
complete if A contains all µ-negligible3 subsets of A. A mapping f from A to
M(T ) is measurable if for every B ∈ B, f−1(B) ∈ A. Note that f is measurable
if and only if it is Gelfand measurable, i.e., for each p ∈ C(T ), the real valued
function a �→ 〈p, f(a)〉 is measurable. A measurable mapping f from A to M(T )
is Gelfand integrable if for each p ∈ C(T ), the real valued function a �→ 〈p, f(a)〉
is integrable. Then there exists a unique element x ∈ M(T ), satisfying for each p ∈
C(T ), 〈p, x〉 =

∫
A

〈p, f(a)〉 dµ(a). The element x is denoted by
∫

A
f(a)dµ(a). A

measurable mapping f fromA toM(T ) is norm integrable if ‖f(.)‖ : a �→ ‖f(a)‖
is integrable. Note that norm integrability implies Gelfand integrability and if f has
its values in M(T )+ then the converse is true. A sequence (fn)n of measurable
mappings from A to M(T ) is integrably bounded if there exists an integrable
function h from A to R+ such that for a.e. a ∈ A, for every n, ‖fn(a)‖ � h(a). If
F : A � M(T ) is a correspondence then f : A → M(T ) is a measurable selection
of F if f is measurable and satisfies for almost every a ∈ A, f(a) ∈ F (a). The set
of measurable selections of F is denoted by S(F ) and the set of Gelfand integrable
selections of F is denoted by S1(F ).

Let X be a space and P ⊂ X ×X be a binary relation on X. The relation P is
irreflexive if (x, x) 	∈ P , for every x ∈ X . The relationP is transitive if [(x, y) ∈ P
and (y, z) ∈ P ] implies (x, z) ∈ P , for every (x, y, z) ∈ X3. The relation P is
negatively transitive if [(x, y) 	∈ P and (y, z) 	∈ P ] implies (x, z) 	∈ P , for every
(x, y, z) ∈ X3. The relation P is a partial order if it is irreflexive and transitive.
The relation P is an order if it is irreflexive, transitive and negatively transitive.
When P is an order, it is usually denoted by 
 and X2 \ P is denoted by �. Note
that when P is an order, then � is transitive, reflexive (x � x for every x ∈ X)
and complete (for every (x, y) ∈ X2 either x � y or y � x).

3 The model and the result

3.1 The model

We consider a compact metric space T , a complete finite measure space (A,A, µ)
and a finite set J . Moreover, we consider, for each j ∈ J , an integrable positive
function θj from A to R+, satisfying

∫
A
θj = 1, and a set Yj ⊂ M(T ), a Gelfand

integrable mapping e from A to M(T ), a correspondence X from A into M(T )
and a correspondence of preference relations P in X , i.e., P is a correspondence

3 A set N is µ-negligible if there exists E ∈ A such that N ⊂ E and µ(E) = 0.
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from A into M(T ) ×M(T ) such that for every a ∈ A, P (a) ⊂ X(a) ×X(a) and
P (a) is irreflexive. An economy E with differentiated commodities is a list

E = ((A,A, µ), 〈C(T ),M(T )〉 , (X,P, e), (Yj , θj)j∈J) .

The commodity space of E is represented by M(T ). Each point of T has the inter-
pretation of representing a complete description of all characteristics of a certain
commodity. Let x ∈ M(T ) be a commodity bundle, then for each Borel setB ⊂ T ,
x(B) specifies the total amount of commodities having their characteristics in B.
Note that since we let every element of M(T ) represent a possible commodity
bundle, we assume, as in the models of Jones [23,24] and Ostroy and Zame [32]
but different to those of Mas-Colell [29] and Cornet and Medecin [11], that all
commodities are perfectly divisible. The natural dual pairing 〈C(T ),M(T )〉 is in-
terpreted as the price-commodity pairing. If p ∈ C(T ), then for each t ∈ T , p(t) is
interpreted as the value (or price) of one unit of the commodity with characteristic
t.

The set of agents (or consumers) is represented byA, the set A represents the set
of admissible coalitions, and the number µ(E) represents the fraction of consumers
which are in the coalition E ∈ A. For each agent a ∈ A, the consumption set is
represented by X(a) ⊂ M(T ) and the preferences are represented by the binary
relation P (a). We define the correspondence4 Pa : X(a) � X(a) by Pa(x) =
{x′ ∈ X(a) : (x, x′) ∈ P (a)}. In particular, if x ∈ X(a) is a consumption bundle,
Pa(x) is the set of consumption bundles strictly preferred to x by the agent a.
The set of consumption allocations (or plans) of the economy is the set S1(X) of
Gelfand integrable selections of X . The aggregate consumption set XΣ is defined
by

XΣ :=
∫

A

X(a)dµ(a) :=
{
v ∈ M(T ) : ∃x ∈ S1(X), v =

∫
A

x(a)dµ(a)
}
.

The initial endowment of the consumer a ∈ A is represented by the commodity
bundle e(a) ∈ M(T ). We denote by ω :=

∫
A
edµ the aggregate initial endowment.

The production sector of the economy E is represented by a finite set J of firms
with production sets (Yj)j∈J , where for every j ∈ J , Yj ⊂ M(T ). The profit made
by the firm j ∈ J is distributed among the consumers following the share function
θj . For each j ∈ J , the function θj : A → R+ satisfies

∫
A
θjdµ = 1. The set of

production allocations (or plans) of the economy is the set S1(Y ) =
∏

j∈J Yj . The
aggregate production set YΣ is defined by YΣ :=

∑
j∈J Yj .

3.2 The equilibrium concepts

We present hereafter the usual concepts of Walrasian quasi-equilibrium and Wal-
rasian equilibrium for an economy.

Definition 3.1. An element (x∗, y∗, p∗) of S1(X) ×S1(Y ) ×C(T ) with p∗ 	= 0 is
a Walrasian equilibrium of an economy E , if the following properties are satisfied.

4 Note that the binary relation P (a) coincide with the graph of the correspondence Pa.
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(a) For almost every a ∈ A,

〈p∗, x∗(a)〉 = 〈p∗, e(a)〉 +
∑
j∈J

θj(a)
〈
p∗, y∗

j

〉

and

x ∈ Pa(x∗(a)) =⇒ 〈p∗, x〉 > 〈p∗, x∗(a)〉 .
(b) For every j ∈ J ,

y ∈ Yj =⇒ 〈p∗, y〉 �
〈
p∗, y∗

j

〉
.

(c) ∫
A

x∗(a)dµ =
∫

A

e(a)dµ+
∑
j∈J

y∗
j .

An element (x∗, y∗, p∗) ∈ S1(X)×S1(Y )×C(T ) with p∗ 	= 0 is a Walrasian
quasi-equilibrium of an economy E , if the conditions (b) and (c) together with

(a’) for almost every a ∈ A,

〈p∗, x∗(a)〉 = 〈p∗, e(a)〉 +
∑
j∈J

θj(a)
〈
p∗, y∗

j

〉

and

x ∈ Pa(x∗(a)) =⇒ 〈p∗, x〉 � 〈p∗, x∗(a)〉
are satisfied.

A Walrasian equilibrium of a production economy E is clearly a Walrasian
quasi-equilibrium of E . We provide in the following remark, a classical condition
on E under which a Walrasian quasi-equilibrium is in fact a Walrasian equilibrium.

Remark 3.2. Let (x∗, y∗, p∗) be a quasi-equilibrium of an economy E . If for almost
every agent a ∈ A, X(a) is convex, the strict-preferred set Pa(x∗(a)) is w∗-open
in X(a) and

inf 〈p∗, X(a)〉 < 〈p∗, e(a)〉 +
∑
j∈J

θj(a) sup 〈p∗, Yj〉 , (3.1)

then (x∗, y∗, p∗) is a Walrasian equilibrium of E . In particular, if p∗ 
 0 then the
condition (3.1) is automatically valid if for almost every agent a ∈ A,


{e(a)} +

∑
j∈J

θj(a)Yj −X(a)


 ∩M(T )+ 	= ∅.
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3.3 The assumptions

We present the list of assumptions that the economy E will be required to satisfy.

Assumption (C). [Consumption Side] For almost every agent a ∈ A, the con-
sumption set X(a) is w∗-closed, convex and comprehensive;5 for each bundle
x ∈ X(a), Pa(x) is w∗-open in X(a), P−1

a (x) := {y ∈ X(a) : x ∈ Pa(y)}
is w∗-open in X(a), x 	∈ coPa(x), and if a belongs to the non-atomic6 part of
(A,A, µ), then X(a) \ P−1

a (x) is convex.

Remark 3.3. Note that when P (a) is ordered, then, following the notations of
Section 2, X(a) \ P−1

a (x) = {y ∈ X(a) : y �a x} and assuming that for ev-
ery x ∈ X(a), {y ∈ X(a) : y �a x} is convex implies that for x ∈ X(a),
x 	∈ coPa(x). It follows that Assumption C is implied by Assumptions E1–E3 and
S1 in Podczeck [34] and by Assumptions P1–P4 for economically thick markets of
Ostroy and Zame [32].

Assumption (M). [Measurability] The correspondence X is graph measurable,
i.e.,

{(a, x) ∈ A×M(T ) : x ∈ X(a)} ∈ A ⊗ B
and the correspondence of preferences P is lower graph measurable, i.e.,

∀y ∈ S(X), {(a, x) ∈ A×M(T ) : (x, y(a)) ∈ P (a)} ∈ A ⊗ B.

Remark 3.4. In Podczeck [34], the correspondences X and P are supposed to be
graph measurable. It can be proved (see [26]) that in the framework of [34], graph
measurability of the correspondence of preference relations implies lower graph
measurability, in particular Assumption M is valid. In Ostroy and Zame [32], it is
assumed that preferences are Aumann measurable. It can be proved (see [26]) that in
the context of Ostroy and Zame [32], Aumann measurability of the correspondence
of preference relations imply lower graph measurability. In particular Assumption
M is valid.

Assumption (P) [Production side] The aggregate production set YΣ is a bw∗-
closed and convex subset of M(T ).

Remark 3.5. For economies with finitely many commodities, Hildenbrand [20] al-
ready used Assumption P. For economies with finitely many consumers, Jones [24]
supposed thatYΣ isw∗-closed and convex. This is equivalent to Assumption P since
the bw∗-topology is locally convex and compatible with the duality 〈M(T ), C(T )〉.

5 That is X(a) + M(T )+ ⊂ X(a).
6 An element E ∈ A is an atom of (A, A, µ) if µ(E) �= 0 and [B ∈ A and B ⊂ E] implies

µ(B) = 0 or µ(E \ B) = 0.
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Assumption (S) [Survival] For almost every a ∈ A,

e(a) ∈ X(a) −
∑
j∈J

θj(a)Yj .

Remark 3.6. Assumption S means that we have compatibility between individual
needs and resources. In the literature of economies with differentiated commodities,
this assumption is automatically valid since initial endowments are supposed to lie
in the consumption set and since inaction is supposed to be a possible production
plan. Note that Theorem 3.14 will be proved under the following weaker Survival
assumption: for a.e. a ∈ A, e(a) ∈ X(a) −∑j∈J θj(a)coYj .

Assumption (MON) [Monotonicity] For almost every agenta ∈ A, the preference
relation P (a) is monotone, i.e.,

∀x ∈ X(a), {x} +M(T )+ ⊂ Pa(x) ∪ {x}.

Remark 3.7. Theorem 3.14 will be proved under the following weaker assumption:
for a.e. a ∈ A, for every x ∈ X(a), for every m ∈ M(T )+, there exists α > 0
such that x+ αm ∈ Pa(x) ∪ {x}.

Assumption (E) [Endowments] There exists v ∈ XΣ and u ∈ YΣ such that
ω + u− v 
 0.

Remark 3.8. That is, there exists an aggregate production plan u ∈ YΣ such that
together with the aggregate initial endowment, all commodities are available in the
aggregate consumption set. Usually in the literature of differentiated commodities,
the consumption sets are suppose to coincide with the positive cone. It follows that
if ω 
 0 and 0 ∈ YΣ (e.g. in [23,24,32,34]) or if ω + u 
 0 (in [35]), then
Assumption E is valid.

Assumption (B) [Bounded] The correspondence X of consumption sets is norm
integrably bounded from below, the initial endowment mapping e is norm integrable
and the aggregate set of free production YΣ ∩M(T )+ is norm bounded.

Remark 3.9. A correspondence X is norm integrably bounded from below if there
exists a norm integrable mapping x : A → M(T ) such that for a.e. a ∈ A,
X(a) ⊂ {x(a)} + M(T )+. Usually in the literature the consumption sets are
supposed to coincide with the positive cone M(T )+ and initial endowments are
suppose to be Gelfand integrable and to lie in the positive cone. Note that if x is
a Gelfand integrable mapping from A to −M(T )+ and e is a Gelfand integrable
mapping such that for every a ∈ A, e(a) � x(a) then x and e are norm integrable.
Hildenbrand in [20], and Podczeck in [35] assumed that there is no free production,
i.e., YΣ ∩M(T )+ = {0}.
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Assumption (WSS) [Weak Strong Survival] For almost every agent a ∈ A, there
exists 0 	= m ∈ M(T )+ such that

e(a) +m ∈ X(a) −
∑
j∈J

θj(a)Yj .

Remark 3.10. Under Assumption C and WSS, each quasi-equilibrium (x∗, y∗, p∗)
with p∗ 
 0 is in fact a Walrasian equilibrium. This assumption may be replaced by
standard irreducibility conditions adapted to our context (see Podczeck [36]). Note
that Theorem 3.14 will be proved under the following weaker assumption: for a.e.
a ∈ A, there existsm > 0 such that e(a)+m ∈ X(a)−∑j∈J θj(a)coYj−A(YΣ).

Assumption (UP) [Uniform Properness] There exists a cone Γ bw∗-open, satis-
fying Γ ∩M(T )+ 	= ∅ and such that for almost every a ∈ A, for every j ∈ J , for
every x ∈ X(a) and every y ∈ Yj ,

(a) there exists a subset Aa
x of M(T ), radial7 at x, such that

({x} + Γ ) ∩ {z ∈ M(T ) : z � x ∧ e(a)} ∩Aa
x ⊂ coPa(x);

(b) there exists a subset Aj
y of M(T ), radial at y, such that

({y} − Γ ) ∩ {z ∈ M(T ) : z � y ∨ 0} ∩Aj
y ⊂ coYj .

Remark 3.11. This assumption is borrowed from the F -properness assumption in-
troduced by Podczeck [33] for pure exchange economies with finitely many agents
and adapted to production economies by Florenzano and Marakulin [16]. As-
sumption UP is close to the uniform properness assumptions developed in Mas-
Colell [30] and Richard [37] for economies with finitely many consumers. For
refinements about the properness conditions used in the literature, we refer to
Aliprantis, Tourky and Yannelis [6].

Remark 3.12. Assumption UP is weaker than Assumptions C3 and P4 in Podczeck
[35], since the radial sets Aa

x and Aj
y are supposed to coincide with M(T ). Hence

following Propositions 3.2.1 and 3.3.1 in [35], Assumption UP is weaker than
usual assumptions about marginal rates of substitution in models of commodity
differentiation, e.g. in Jones [23,24], Ostroy and Zame [32], and Podczeck [34].

Remark 3.13. Following the proof of the existence theorem, we can replace the
condition (b) by the following condition (b’).

(b’) For every u ∈ YΣ , there exists a subset A′
u of M(T ), radial at u, such that

({u} − Γ ) ∩ {z ∈ M(T ) : z � u ∨ 0} ∩A′
u ⊂ YΣ .

7 A subset R ⊂ M(T ) is radial at x ∈ R if for every v ∈ M(T ), there exists λ > 0 such that the
segment [x, x + λv] still lie in R.
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3.4 Existence result

We shall now state the main result of the paper.

Theorem 3.14. If E is an economy satisfying Assumptions C, M, P, S, MON, E,
B and UP, then there exists a quasi-equilibrium (x∗, y∗, p∗), with p∗ 
 0. If
moreover E satisfies WSS, then (x∗, y∗, p∗) is a Walrasian equilibrium.

Remark 3.15. This existence result extends to economies with a non-trivial produc-
tion sector and with possibly non-ordered preferences, existence results (Theorem
1.a and 3.a) in Ostroy and Zame [32], and (in the framework of convex preferences)
in Podczeck [34] (Theorem 5.3). Theorem 3.14 allows for more general consump-
tion sets than the positive cone and the Uniform Properness Assumption is weaker
than usual assumptions about marginal rates of substitution in models of commodity
differentiation, e.g. in Jones [23,24], Ostroy and Zame [32] and Podczeck [34].

Remark 3.16. In this model, aggregation of individual commodity bundles is for-
malized in terms of the Gelfand integral and not the Bochner integral. This allows
us to avoid the problem of ”many more commodities than agents” addressed by
Tourky and Yannelis [43] and Podczeck [36].

Remark 3.17. As it is frequently done in the literature, instead of Assumption E,
we can assume that the aggregate endowment is a uniform properness vector of the
economy, or more generally:

Assumption (E’) There exists v ∈ XΣ and u ∈ YΣ such that ω + u − v ∈
Γ ∩M(T )+.

4 Discretization of measurable correspondences

We consider (A,A, µ) a finite complete measure space and (D, d) a separable
metric space.

4.1 Notations and definitions

A mapping f : A → D is measurable if for every open set G ⊂ D, f−1(G) ∈ A
where f−1(G) := {a ∈ A : f(a) ∈ G}. A correspondence F : A � D is graph
measurable if GF := {(a, x) ∈ A×D : x ∈ F (a)} ∈ A ⊗ B(D), where B(D) is
the σ-algebra of Borelian subsets of D.

Definition 4.1. A partition σ = (Ai)i∈I ofA is a measurable partition if the set I is
finite and if for every i ∈ I , the setAi is non-empty and belongs to A. A finite subset
Aσ ofA is subordinated to the partition σ if there exists a family (ai)i∈I ∈∏i∈I Ai

such that Aσ = {ai : i ∈ I}.

Given a couple (σ,Aσ) where σ = (Ai)i∈I is a measurable partition of A,
and Aσ = {ai : i ∈ I} is a finite set subordinated to σ, we consider φ(σ,Aσ) the
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mapping which maps each measurable mapping f to a simple measurable mapping
φ(σ,Aσ)(f), defined by

φ(σ,Aσ)(f) :=
∑
i∈I

f(ai)χAi
,

where χAi is the characteristic8 mapping associated to Ai.

Definition 4.2. A mapping s : A → D is called a simple mapping subordinated to
f if there exists a couple (σ,Aσ) where σ is a measurable partition of A, and Aσ

is a finite set subordinated to σ, such that s = φ(σ,Aσ)(f).

Given a couple (σ,Aσ) where σ = (Ai)i∈I is a measurable partition of A, and
Aσ = {ai : i ∈ I} is a finite set subordinated to σ, we consider ψ(σ,Aσ), the
mapping which maps each measurable correspondence F : A � D to a simple
measurable correspondence ψ(σ,Aσ)(F ), defined by

ψ(σ,Aσ)(F ) :=
∑
i∈I

F (ai)χAi
.

Definition 4.3. A correspondence S : A → D is called a simple correspondence
subordinated to a correspondence F if there exists a couple (σ,Aσ) where σ is
a measurable partition of A, and Aσ is a finite set subordinated to σ, such that
S = ψ(σ,Aσ)(F ).

Remark 4.4. If f is a mapping fromA toD, let {f} be the correspondence fromA
into D, defined for every a ∈ A by {f}(a) := {f(a)}. We check that

ψ(σ,Aσ)(F ) = {φ(σ,Aσ)(f)} .

The space of all non-empty subsets of D is denoted by P∗(D). We let τWd
be

the Wisjman topology on P∗(D), i.e., the weak topology on P∗(D) generated by
the family of distance functions (d(x, .))x∈D.

4.2 Approximation of measurable correspondences

Hereafter we assert that for a countable set of graph measurable correspondences,
there exists a sequence of measurable partitions approximating each correspon-
dence. The proof of the following theorem is given in Martins-da-Rocha [26].

Theorem 4.5. Let F be a countable set of graph measurable correspondences with
non-empty values fromA intoD and let G be a finite set of integrable functions from
A into R. There exists a sequence (σn)n of finer and finer measurable partitions
σn = (An

i )i∈In of A, satisfying the following properties.

8 That is, for every a ∈ A, χAi
(a) = 1 if a ∈ Ai and χAi

(a) = 0 elsewhere.
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(a) Let (An)n be a sequence of finite sets An subordinated to the measurable par-
tition σn and let F ∈ F . For every n ∈ N, we define the simple correspondence
Fn := ψ(σn, An)(F ) subordinated to F . Then for each a ∈ A, F (a) is the
Wijsman limit of the sequence (Fn(a))n, i.e.,

∀a ∈ A, ∀x ∈ A, lim
n→∞ d(x, Fn(a)) = d(x, F (a)).

(b) There exists a sequence (An)n of finite setsAn subordinated to the measurable
partition σn, such that for each n, if we let fn := φ(σn, An)(f) be the simple
function subordinated to each f ∈ G, then

∀f ∈ G, ∀a ∈ A, |fn(a)| � 1 +
∑
g∈G

|g(a)|.

In particular, for each f ∈ G,

lim
n→∞

∫
A

|fn(a) − f(a)|dµ(a) = 0.

Remark 4.6. The property (a) implies in particular that if (xn)n is a sequence ofD,
d-converging to x ∈ D, then

∀a ∈ A, lim
n→∞ d(xn, Fn(a)) = d(x, F (a)).

It follows that if F is non-empty closed valued, then property (a) implies that

∀a ∈ A, lsFn(a) ⊂ F (a).

5 Proof of Theorem 3.14

Let E be an economy satisfying Assumptions C, M, P, S’, MON, E, B and UP,
where Assumption S’ defined by

for a.e. a ∈ A, e(a) ∈ X(a) −
∑
j∈J

θj(a)coYj ,

replaces the stronger survival Assumption S. Without any loss of generality9 we
can suppose that for every a ∈ A, x(a) = 0 and for every j ∈ J , 0 ∈ Yj .

Following Podczeck [33] and Holmes [22], thew∗ and bw∗ topologies coincide
onD := M(T )+. Moreover this topology is separable and completely metrizable.
We let d be a metric on D satisfying these properties. Applying Proposition B.2,
there exists a sequence (fk)k of measurable selections of X such that for every
a ∈ A,X(a) := d-cl {fk(a) : k ∈ N}. For everyk, we letRk be the correspondence

9 Following Assumption S, for each j ∈ J there exists ỹj ∈ Yj . Consider now the economy Ẽ
where for each a ∈ A, X̃(a) = X(a) − {x(a)}, for each j ∈ J , Ỹj = Yj − {ỹj} and ẽ(a) =
e(a) − x(a) +

∑
j∈J θj(a)ỹj .
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from A into M(T ), defined by Rk(a) = {x ∈ X(a) : fk(a) 	∈ Pa(x)}. Then for
almost every agent a ∈ A, for every x ∈ X(a),

d(x,Rk(a)) > 0 ⇔ fk(a) ∈ Pa(x).

If f is a mapping from A to D, then we let {f(.)} be the correspondence from
A into D defined for every a ∈ A, by {f(.)}(a) := {f(a)}. Note that if f is
measurable then f is Gelfand integrable if and only if ‖f(.)‖ : a �→ ‖f(a)‖ from
A to R+ is integrable.

Let G := {‖e(.)‖ , θj : j ∈ J} and F := {{e(.)}, {fk(.)}, Rk : k ∈ N}.
Applying Theorem 4.5, there exists a sequence (σn)n of measurable partitions
σn = (An

i )i∈Sn of (A,A), and a sequence (An)n of finite setsAn = {an
i : i ∈ Sn}

subordinated to the measurable partition σn, satisfying the following properties.10

Fact 5.1 For every a ∈ A,

(i) for every j ∈ J and for every k ∈ N,

lim
n→∞ en(a) = e(a) , lim

n→∞ θn
j (a) = θj(a) lim

n→∞ fn
k (a) = fk(a);

(ii) for every sequence (xn)n of D, d-converging to x ∈ D,

lim
n→∞ d(xn, Xn(a)) = d(x,X(a))

and for every k,

lim
n→∞ d(xn, Rn

k (a)) = d(x,Rk(a));

(iii) if we pose g(a) :=
∑

j∈J θj(a) + ‖e(a)‖ then g is an integrable function
satisfying

∀n ∈ N, max{θn
j (a), ‖en(a)‖ : j ∈ J} � 1 + g(a)

and if we pose for each n ∈ N, ωn :=
∫

A
en and ϑn

j :=
∫

A
θn

j , then

lim
n→∞ωn = ω ∀j ∈ J, lim

n→∞ϑn
j = 1.

5.1 Approximating sequence of economies

We propose to construct a sequence (En)n of economies with finitely many
consumers and differentiated commodities, converging to E . For each n, we let
ϑn := max{ϑn

j : j ∈ J}. Applying Fact 5.1, limn→∞ ϑn = 1, thus, without any
loss of generality, we can suppose that for all n, 1/2 � ϑn � 2. For each n, we de-
note by En the following economy with finitely many consumers and differentiated
commodities:

En =
(
〈C(T ),M(T )〉 , (Xn

i , P
n
i , e

n
i )i∈In∪{∞} ,

(
Y n

j , θ
n
j

)
j∈J

)
,

10 Following notations of Section 4, iff is mapping fromA toD, then for eachn,{f(.)}n = {fn(.)}.
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where In := {i ∈ Sn : µ(An
i ) 	= 0}. For every j ∈ J , the production set is defined

by Y n
j := ϑnYj and the shares are defined by

∀i ∈ In, θn
ij :=

1
ϑn
µ (An

i ) θj (an
i ) θn

∞j :=
ϑn − ϑn

j

ϑn
.

The characteristics of each consumer i ∈ In are defined by

Xn
i = µ (An

i )X (an
i ) , en

i = µ (An
i ) e (an

i ) and Pn
i = µ (An

i )P (an
i ) .

The characteristics of the consumer ∞ are defined by Xn
∞ := D, en

∞ := 0 and
Pn

∞ := {(x, y) ∈ D2 : y − x ∈ Γ}. We assert that we can apply to each economy
En, a quasi-equilibrium existence result (Lemma A.1 in Appendix) for economies
with finitely many agents.

Claim 5.1. For every n, En satisfies the assumptions of Lemma A.1.

Proof. Indeed, the only assumption whose verification is not trivial is the bound-
edness of the set AX(En) of realizable consumption allocations. We recall that:

AX(En) =


x ∈

∏
i∈In∪{∞}

Xn
i :

∑
i∈In

xi + x∞ − ωn ∈ ϑnYΣ


 .

It follows that

x ∈ AX(En) =⇒
∑
i∈In

xi + x∞ ∈ D ∩ Z , where Z :=
⋃
n

({ωn} + ϑnYΣ) .

Since 0 ∈ YΣ and YΣ is convex,
⋃

n ϑ
nYΣ ⊂ 2YΣ andAw∗(Z) ⊂ Aw∗(YΣ). Now

since 0 ∈ YΣ and YΣ is convex and w∗-closed, Aw∗(YΣ) ⊂ YΣ . Therefore (since
Aw∗(YΣ) is a cone) Assumption B implies Aw∗(YΣ) ∩M(T )+ = {0}. Applying
Proposition B.1, we get that for every x ∈ AX(En),

∑
i∈In xi lie in a bounded

set. For each i ∈ In, xi � 0 and
∥∥∑

i∈In xi

∥∥ =
∑

i∈In ‖xi‖. Hence AX(En) is
bounded. ��

Let v ∈ Γ ∩M(T )+ be a properness vector and let V be a bw∗-open convex
and symmetric subset of M(T ) such that {v} + V ⊂ Γ . Applying Claim 5.1 and
Lemma A.1, there exists a quasi-equilibrium(

(xn
i )i∈In∪{∞} ,

(
zn
j

)
j∈J

, pn
)

∈
∏

i∈In∪{∞}
Xn

i ×
∏
j∈J

Y n
j × C(T )

for the economy En, with 〈pn, v〉 = 1. Moreover, there exist individual prices
pn

i ∈ V ◦, i ∈ In ∪ {∞}, such that pn = sup{pn
i : i ∈ In ∪ {∞}}. Following

Proposition B.4, there exists a set K compact in (C(T ), ‖.‖∞) such that for all n,
pn ∈ K. For every j ∈ J , let yn

j := 1
ϑn z

n
j ∈ Yj . Let us then define xn : A → D,

by:

xn :=
∑
i∈In

1
µ(An

i )
xn

i χAn
i
.
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We have defined a Gelfand integrable mapping xn : A → D such that:

∀a ∈
⋃

i∈In

An
i , 〈pn, xn(a)〉 = 〈pn, e(a)〉 +

∑
j∈J

θn
j (a)ϑn

〈
pn, yn

j

〉
(5.1)

〈pn, xn
∞〉 =

∑
j∈J

(ϑn − ϑn
j )
〈
pn, yn

j

〉
(5.2)

∀a ∈
⋃

i∈In

An
i , 〈pn, Pn

a (xn(a)〉 � 〈pn, xn(a)〉 (5.3)

〈pn, Pn
∞(xn

∞)〉 � 〈pn, xn
∞〉 (5.4)

∀j ∈ J,
〈
pn, yn

j

〉
� 〈pn, Yj〉 (5.5)

∫
A

xn(a)dµ(a) + xn
∞ = ωn + ϑn

∑
j∈J

yn
j . (5.6)

We let A0 be the following measurable set A0 :=
⋃

n∈N
A \ (∪i∈InAn

i ). Note that
µ(A0) = 0.

5.2 Convergence of (xn, yn, pn)n∈N

Since for every n ∈ N, pn ∈ K, we can suppose (extracting a subsequence if
necessary) that (pn)n is a ‖.‖∞-convergent sequence to p∗ ∈ K ⊂ C(T ). Since,
for every n, 〈pn, v〉 = 1 then 〈p∗, v〉 = 1. Let us remark that following (5.3)
and Assumption MON, we have for every n, pn � 0, and thus p∗ � 0. We let
G := {−ωn/ϑn : n ∈ N} and un :=

∑
j∈J y

n
j . Following (5.6), we have for every

n,

un ∈ (G+M(T )+) ∩ YΣ .

Since G is bounded, Aw∗ (G+M(T )+) = M(T )+. Applying Proposition B.1
and Assumption B, we can conclude that the sequence (un)n is ‖.‖-bounded. We
can suppose (extracting a subsequence if necessary) that (un)n is a sequence w∗-
converging to u∗ ∈ YΣ . It follows that there exists y∗ ∈ S1(Y ) such that u∗ =∑

j∈J y
∗
j .

Claim 5.2. It can be assumed that for every j ∈ J ,

lim
n→∞

〈
pn, yn

j

〉
=
〈
p∗, y∗

j

〉
and

〈
p∗, y∗

j

〉
= sup 〈p∗, Yj〉 .
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Proof. The sequence (pn)n is ‖.‖∞-convergent to p∗ and the sequence (un)n is
w∗-convergent to u∗, it follows that

lim
n→∞ 〈pn, un〉 = 〈p∗, u∗〉 .

Since (〈pn, un〉)n converges, the sequence (
∑

j∈J

〈
pn, yn

j

〉
)n is bounded. For ev-

ery j ∈ J , 0 ∈ Yj , hence for every n,
〈
pn, yn

j

〉
� 0. It follows that for each j ∈ J ,

the sequence
(〈
pn, yn

j

〉)
n

is bounded. Then passing to a subsequence if necessary,

we can suppose that for each j ∈ J , the sequence
(〈
pn, yn

j

〉)
n

converges to some
αj � 0. We easily check that:∑

j∈J

αj =
∑
j∈J

〈
p∗, y∗

j

〉
.

Following (5.5), we have that for every n, 〈pn, un〉 = sup 〈pn, YΣ〉. Passing to the
limit, we get that 〈p∗, u∗〉 = sup 〈p∗, YΣ〉. It is now routine to prove that:

∀j ∈ J,
〈
p∗, y∗

j

〉
= sup 〈p∗, Yj〉 .

Moreover, since for every n, for each j ∈ J ,
〈
pn, yn

j

〉
= sup 〈pn, Yj〉, we easily

check that for each j ∈ J , αj � 〈p∗, Yj〉. It follows that for each j ∈ J , αj =〈
p∗, y∗

j

〉
. ��

Following Claim 5.2 , the production plan y∗ ∈ S1(Y ) satisfies the condition
(b) of the definition of a quasi-equilibrium for the economy E .

Claim 5.3. p∗ 
 0.

Proof. We already proved that p∗ � 0. Suppose that there exists t ∈ T such that
p∗(t) = 0. We let x ∈ S1(X) be such that v =

∫
A
xdµ and we let y ∈ S1(Y )

be such that v =
∑

j∈J yj , where u and v are defined by Assumption E. We let
B ∈ A be the following set:

B :=


a ∈ A :

〈
p∗, e(a) +

∑
j∈J

θj(a)yj − x(a)

〉
> 0


 .

Assumption E implies that 〈p∗, ω + u− v〉 > 0, hence µ(B) > 0.

Claim 5.4. For a.e. a ∈ B, lim
n→∞ ‖xn(a)‖ = +∞.

Proof. LetB′ ⊂ B be a measurable subset ofB, with µ(B \B′) = 0, such that all
almost everywhere assumptions and properties are satisfied for every a ∈ B′ and
such that B′ ⊂ A \ A0. Let a ∈ B′. Suppose that there exists a subsequence, still
denoted by (xn(a))n,w∗-converging tom ∈ M(T ). For every n, xn(a) ∈ Xn(a).
It follows that for every n, d(xn(a), Xn(a)) = 0. Now applying11 Fact 5.1 and

11 We recall that in D the w∗-topology and the bw∗-topology coincide with the metric d.
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using the fact that (xn(a))n converges to m, we get that d(m,X(a)) = 0. Since
X(a) is closed, it means that m ∈ X(a). We will now prove that:

∀z ∈ Pa(m), 〈p∗, z〉 � 〈p∗,m〉 .

Let z ∈ Pa(m). We have that X(a) = d-cl {fk(a) : k ∈ N}, thus there exists a
subsequence still denoted by (fk(a))k, converging to z. But Pa(m) is d-open in
X(a), thus there exists k0 ∈ N, such that for every k � k0, fk(a) ∈ Pa(m). To
prove that 〈p∗, z〉 � 〈p∗,m〉, it is sufficient to prove that for every k large enough,
〈p∗, fk(a)〉 � 〈p∗,m〉. Now, let k � k0. Since (xn(a))n is d-convergent to m,
applying Fact 5.1,

lim
n→∞ d(xn(a), Rn

k (a)) = d(m,Rk(a)).

Since fk(a) ∈ Pa(m), d(m,Rk(a)) > 0. It follows that for every n large enough,
d(xn(a), Rn

k (a)) > 0. Since xn(a) ∈ Xn(a), it follows that for every n large
enough, fn

k (a) ∈ Pn
a (xn(a)). Applying (5.3), we obtain that for every n large

enough, 〈pn, fn
k (a)〉 � 〈pn, xn(a)〉 . Applying Fact 5.1, we get that 〈p∗, fk(a)〉 �

〈p∗,m〉.
Now we prove that for every z ∈ Pa(m), 〈p∗, z〉 > 〈p∗,m〉. Since a ∈ B′, we

have that
〈
p∗, e(a) +

∑
j∈J θj(a)yj − x(a)

〉
> 0 and thus

inf 〈p∗, X(a)〉 <
〈
p∗, e(a) +

∑
j∈J

θj(a)yj

〉
�
〈
p∗, e(a) +

∑
j∈J

θj(a)y∗
j

〉
.

Passing to the limit in (5.1), inf 〈p∗, X(a)〉 < 〈p∗,m〉 and the rest of the proof is
routine.

Following Assumption MON, there exists α > 0 such that m+ αδt ∈ Pa(m)
thus, following the previous result, we have that 〈p∗,m+ αδt〉 > 〈p∗,m〉, i.e.,
p∗(t) > 0. Contradiction. It follows that the sequence (xn(a))n has no w∗-
convergent subsequence. Hence limn→∞ ‖xn(a)‖ = +∞. ��

From (5.6),
∫

A
xn(a)dµ(a) + xn

∞ = ωn + ϑnun. But for almost every a ∈ A,
for every n, xn(a) � 0. It follows that ‖xn(a)‖ = 〈1K , x

n(a)〉 and

∫
A

‖xn(a)‖ dµ(a) + ‖xn
∞‖ =

∥∥∥∥
∫

A

xn(a)dµ(a) + xn
∞

∥∥∥∥ = ‖ωn + ϑnun‖ .

Since limn→∞ ωn + ϑnun = ω + u∗, applying Fatou’s lemma, we get a contra-
diction. ��

The sequence (pn)n is ‖.‖∞-convergent to p∗, it follows that there exists η > 0,
such that for every n large enough, pn � η1K .

Claim 5.5. The sequence (xn)n is integrably bounded and (xn
∞)n isw∗-convergent

to 0.
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Proof. We will first prove that limn→∞ xn
∞ = 0. For every n, pn lie in a ‖.‖∞-

compact set K. Without any loss of generality we can suppose that for every n,
‖pn‖ � 1 and pn � η1K . From (5.2), for every n,

η ‖xn
∞‖ �

∑
j∈J

(ϑn − ϑn
j )| 〈pn, yn

j

〉 |.

Since for each j ∈ J , lim
n→∞ 〈pn, yn

i 〉 =
〈
p∗, y∗

j

〉
, it follows, using Fact 5.1, that

lim
n→∞ ‖xn

∞‖ = 0.

Now we prove that the sequence (xn)n is integrably bounded. Let A′ ∈ A
be a measurable subset of A \ A0 with µ(A \ A′) = 0 and such that all almost
everywhere assumptions and properties are satisfied for every a ∈ A′. Let a ∈ A′,
from (5.1), for every n,

〈pn, xn(a)〉 = 〈pn, en(a)〉 +
∑
j∈J

θn
j (a)

〈
pn, yn

j

〉
.

Since for every j ∈ J , limn→∞
〈
pn, yn

j

〉
=
〈
p∗, y∗

j

〉
, there existsM > 0 such that

η ‖xn(a)‖ � ‖en(a)‖ +M
∑
j∈J

θn
j (a).

Following Fact (5.1), for every n,

‖xn(a)‖ � (1 +MJ)(1 + g(a))
η

.

��
Applying Theorem B.3 and passing to a subsequence if necessary, there exists

a Gelfand integrable mapping x∗ : A → M(T ), such that∫
A

x∗(a)dµ(a) = w∗- lim
n→∞

∫
A

xn(a)dµ(a),

and such that for a.e. a ∈ Ana, x∗(a) ∈ w∗-co [w∗-ls {xn(a)}] and for every
a ∈ Apa, x∗(a) ∈ w∗-ls {xn(a)} where Ana is the non-atomic part of (A,A, µ)
and Apa is the purely atomic part of (A,A, µ).

5.3 The element (x∗, y∗, p∗) is a quasi-equilibrium of E

The condition (b) of the definition of a quasi-equilibrium has already been proved
in Claim 5.2 . Since limn→∞

∫
A
xn(a)dµ(a) = ω+

∑
j∈J y

∗
j , to get the condition

(c) of the definition of a quasi-equilibrium for the economy E , it is sufficient to
prove that x∗ ∈ S1(X). We recall that

A0 =
⋃
n∈N

A \ (∪i∈InAn
i ) .
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LetA′ be a subset ofA\A0 with µ(A\A′) = 0 and such that all almost everywhere
assumptions and properties are satisfied for every a ∈ A′. We propose to prove that
for every a ∈ A′, x∗(a) ∈ X(a). Let a ∈ A′, by construction, we have that
for every n, xn(a) ∈ Xn(a), and thus, for every n, d(xn(a), Xn(a)) = 0. Let
m ∈ d-ls {xn(a)}, applying Fact 5.1, d(m,X(a)) = 0. Since X(a) is d-closed, it
means that m ∈ X(a). Thus d-ls {xn(a)} ⊂ X(a), and under Assumption C, it
follows that x∗(a) ∈ X(a).

Now we prove that (x∗, y∗, p∗) satisfies the condition (a’) of the definition of
a quasi-equilibrium of E . Let a ∈ A′. First, with (5.1), Claim 5.2 and Fact 5.1, we
easily check that

〈p∗, x∗(a)〉 = 〈p∗, e(a)〉 +
∑
j∈J

θj(a)
〈
p∗, y∗

j

〉
.

Second, we will prove that

∀x′ ∈ Pa(x∗(a)), 〈p∗, x′〉 � 〈p∗, x∗(a)〉 .
Let x′ ∈ Pa(x∗(a)). Since X(a) = d-cl {fk(a) : k ∈ N}, we can suppose
(extracting a subsequence if necessary) that (fk(a))k is d-convergent to x′. But
Pa(x∗(a)) is d-open inX(a), thus there exists k0 ∈ N, such that for every k � k0,
fk(a) ∈ Pa(x∗(a)). To prove that 〈p∗, x′〉 � 〈p∗, x∗(a)〉, it is sufficient to prove
that for every k large enough, 〈p∗, fk(a)〉 � 〈p∗, x∗(a)〉. Now, let k � k0.

Claim 5.6. There exist an increasing mapping ϕ : N → N and such that for every
n,

f
ϕ(n)
k (a) ∈ Pϕ(n)

a

(
xϕ(n)(a)

)
.

Proof. Suppose that for every increasing mapping ϕ : N → N, there exists an
increasing mapping φ : N → N, such that for every n,

d
(
xϕ◦φ(n)(a), Rϕ◦φ(n)

k (a)
)

= 0.

Applying Fact 5.1, it follows that for every � ∈ w∗-ls {xn(a) : n ∈ N}, we have
d(�, Rk(a)) = 0. Then following Assumption C,

d-co [d-ls {xn(a) : n ∈ N}] ⊂ Rk(a),

if a belongs to the non-atomic part of (A,A, µ), and

d-ls {xn(a) : n ∈ N} ⊂ Rk(a)

elsewhere. It follows that x∗(a) ∈ Rk(a), i.e., fk(a) 	∈ Pa(x∗(a)). Contradiction.
��

With Claim 6 , (5.1) and (5.3), for every n,〈
pϕ(n), f

ϕ(n)
k (a)

〉
�
〈
pϕ(n), eϕ(n)(a)

〉
+
∑
j∈J

θ
ϕ(n)
j (a)

〈
pϕ(n), y

ϕ(n)
j

〉
.

Passing to the limit, we get that

〈p∗, fk(a)〉 � 〈p∗, e(a)〉 +
∑
j∈J

θj(a)
〈
p∗, y∗

j

〉
= 〈p∗, x∗(a)〉 .
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A Finitely many agents

We provide in this section, an equilibrium existence result for economies with
finitely many consumers. The following Lemma A.1 is mostly inspired from the
existence result in Zame [48]. We say that an economy E has finitely many agents if
A is a finite set, A = 2A is the set of all subsets ofA and µ is the counting measure
on A.

Assumption (Bf ) The set of realizable consumption plans AX(E) is compact in∏
a∈AXa for the product w∗-topology, where

AX(E) :=

{
x ∈

∏
a∈A

Xa :
∑
a∈A

xa ∈ {ω} + YΣ

}
.

Lemma A.1. Let E be an economy with finitely many consumers satisfying Assump-
tions C, M, P, S, Bf and UP. Let v ∈ Γ ∩M(T )+ be a properness vector and let V
be a bw∗-open convex and symmetric subset ofM(T ) such that {v}+V ⊂ Γ . Then
there exists a quasi-equilibrium (x∗, y∗, p∗), with 〈p∗, v〉 = 1. Moreover there exist
individual prices pa ∈ V ◦, a ∈ A, such that p∗ = sup{pa : a ∈ A}.

Remark A.2. The arguments of Theorem 1 in Zame [48] can be adjusted to the set
of assumptions of Lemma A.1. However, the content of Lemma A.1 carries over
to more abstract settings, and some assumptions may be weakened. For precisions,
we refer to Martins-da-Rocha [27].

B Mathematical auxiliary results

B.1 Asymptotic cones

Following Section 2, we recall that if X is a subset of M(T ), then we let Aw∗(X)
be the set of elements x ∈ L such that x = w∗- limn→∞ λnxn where (λn)n is a
real sequence decreasing to 0 and (xn)n is a sequence in X .

Proposition B.1. Let X , Y two subsets of M(T ) and G be a bounded subset of
M(T ). Suppose that X ⊂ G+M(T )+ and that Aw∗(X) ∩Aw∗(Y ) = {0}, then
X ∩ Y is ‖.‖-bounded.

Proof. Suppose in the contrary, thatX∩Y is not ‖.‖-bounded. We can thus extract
a sequence (xn)n in X ∩ Y , such that for every n, ‖xn‖ � n. Let, for every n,
vn := xn/ ‖xn‖. By the Banach-Alaoglu Theorem, we can suppose, without any
loss of generality, that the sequence (vn)n is w∗-convergent to v ∈ M(T ). Since
for every n, there exists gn ∈ G such that vn − gn/ ‖xn‖ � 0, then

〈1K , v
n − gn/ ‖xn‖〉 = ‖vn − gn/ ‖xn‖‖ � |‖vn‖ − ‖gn‖ / ‖xn‖| .

Passing to the limit, we get that 〈1K , v〉 � 1 and then v 	= 0. But v ∈ Aw∗(X) ∩
Aw∗(Y ). Contradiction.
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B.2 Measurability and integration

We consider (A,A, µ) a finite complete measure space and (D, d) a complete
separable metric space. Following Aumann [8], graph measurable correspondences
have measurable selections.

Proposition B.2. Consider F a graph measurable correspondence from A into D
with non-empty values. Then there exists a sequence (zn)n of measurable selections
of F , such that for every a ∈ A, (zn(a))n is dense in F (a).

We provide hereafter a classical version of Fatou’s Lemma for Gelfand inte-
grable mappings.

Theorem B.3. Let (fn)n a sequence of Gelfand integrable mappings from A into
M(T ). If (fn)n is integrably bounded, then there exists an increasing mapping
φ : N → N and a Gelfand integrable mapping f∗ from A to M(T ), such that

w∗- lim
n→∞

∫
A

fφ(n)(a)dµ(a) =
∫

A

f∗(a)dµ(a),

for a.e. a ∈ Ana, f∗(a) ∈ w∗-co
[
w∗-ls {fφ(n)(a)}

]
and

for every a ∈ Apa, f∗(a) ∈ w∗-ls {fφ(n)(a)},
where Ana is the non-atomic part of (A,A, µ) and Apa is the purely atomic part
of (A,A, µ).

Proof. Let, for each n, vn :=
∫

A
fn. Since the sequence (fn)n is integrably

bounded, the sequence (vn)n is bounded and there exists a subsequence w∗-
converging to some v∗ ∈ M(T ). Applying Lemma 6.6 in Podczeck [34] and
following the proof of Corollary 4.4 in Balder and Hess [10], the result follows.

For more precisions about measurability and integration of correspondences,
we refer to papers [44] and [45] of Yannelis.

B.3 Compactness and lattice operations

Proposition B.4. Let V ⊂ M(T ) be a bw∗-neighborhood V of zero. The following
set K(V ) ⊂ C(T ) is relatively ‖.‖∞-compact,

K(V ) =

{
n∨

i=1

pi : n � 1 and ∀i ∈ {1, · · · , n}, pi ∈ V ◦
}
.

Proof. Following Holmes [22], without any loss of generality, we can assume that
there exists B a ‖.‖∞-compact convex and circled12 subset of C(T ) such that
V ◦ ⊂ B. Since the set B is equicontinuous and norm-bounded, it follows that
K(V ) is also equicontinuous and norm-bounded. The end of the proof follows
from Ascoli’s Theorem.

12 A set A in a vector space X is circled if for each x ∈ A the line segment joining x and −x lies
in A.
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