I@ Available online at www.sciencedirect.com
S

; SCIENCE DIRECT?® JOURNALOF
%@ @ Mathematical
ECONOMICS

www.elsevier.com/locate/jmateco

ELSEVIER Journal of Mathematical Economics 39 (2003) 863-

Equilibria in large economies with a
separable Banach commodity space and
non-ordered preferences
V. Filipe Martins-da-Rocha

CERMSEM, UMR CNRS 8095, Université Paris 1, 106—112 Boulevard dpital,
75647 Paris Cedex 13, France

Received 23 April 2002; received in revised form 28 October 2002; accepted 5 December 2002

Abstract

The purpose of this paper is to provide an existence result of equilibria for economies with a
measure space of agents, a non-trivial production sector and an infinite dimensional commodity
space. The commodity space is modeled by an ordered separable Banach space whose positive cone
has a non-empty interior. Ttdiscretizationapproach proposed in this paper, allows us to extend
the existence results in Khan and Yannelis [Equilibrium in markets with a continuum of agents and
commodities. In: Khan, M.A., Yannelis, N.C. (Eds.), Equilibrium Theory in Infinite Dimensional
Spaces. Springer, Berlin, 1991] and Podczeck [Economic Theory 9 (1997) 585] to economies with
a non-trivial production sector and with possibly non-ordered but convex preferences as well as
partially ordered (possibly incomplete) but non-convex preferences.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

For economies with a measure space of agents and an ordered sépRsataleh com-
modity space, there exist many Walrasian equilibria existence results for exchange economies
with ordered preference relations Hhan and Yannelis (1991dhe preference relations are

E-mail addressvictor.martins-da-rocha@univ-parisl.fr (V. Filipe Martins-da-Rocha).
1 In Tourky and Yannelis (2001jhey proved that equilibria existence resultiiman and Yannelis (1998nd
Rustichini and Yannelis (199Ho not extend to non-separable commaodity spaces.
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ordered and convex. lAumann (1966), Hildenbrand (197@nhd Rustichini and Yannelis
(1991) or inPodczeck (1997}he preference relations are ordered but non-convex.

In both paper&han and Yannelis (199 BndPodczeck (1997}he Gale-Nikaido—Debreu
lemma is applied to the excess demand correspondence. This approach does not cover
non-ordered preference relations. Tdiscretizationapproach proposed in this paper, al-
lows us to extend the existence resultKiman and Yannelis (199 9ndPodczeck (1997)
to economies with a non-trivial production sector and with possibly non-ordered but con-
vex preference relations as well as partially ordered (possibly incomplete) but non-convex
preference relations.

Thediscretizatiorapproach consists of considering an economy with a measure space of
agents as thiémit of a sequence of economies with afinite, butlarger and larger, set of agents.
Applying the measurability properties of the different characteristics of the economy (initial
endowments, consumption sets, production sets and preference relations), we construct an
increasing sequence of finite partitions of the measure space. To each partition we define
a subordinated simpleconomy. Eaclsimpleeconomy will be identified as an economy
with a finite set of agents. Then we apply a classical Edgeworth equilibria existence result
(for which we do not need to suppose that preference relations are ordered) for economies
with a finite set of agents, e.g. FHorenzano (1990By a separation argument we obtain a
sequence of allocations and prices, which will converge to a Walrasian quasi-equilibrium
for the original economy.

The paper is organized as follows. 8ection 2we set out the main definitions and
notations. InSection 3we define the model of large square economies, we introduce the
concepts of equilibria, we give the list of assumptions that economies will be required
to satisfy and finally, we present the existence resiteprem 3.1 Section 4is devoted
to the mathematicaliscretizationof measurable correspondences. The proof of the main
theoremTheorem 3.}isthen givenirSection 5The last section is devoted to mathematical
auxiliary results.

2. Notations and definitions

ConsiderE, 7) atopological vector space.Xf C E is a subset, then theinterior of X is
denoted byt-int X, thez-closure ofX is denoted by-cl X. The convex hull o is denoted
by coX and ther-closed convex hull o is denoted byt-co X. We letA(X) = {v € L:

X + {v} C X} be the asymptotic cone d&f. If (C,), is a sequence of subsets Bf the
7-sequential upper limiof (C,),, is denoted by-Is C,, and is the set of all cluster point of
the sequencéCy,),, i.e.x belongs ta-Is C,, if there exists a sequenc¢e,),, in E satisfying

x=rtlimx, and x, e Cyn
n

whereg:N — N is an increasing application.
Let(L, ||-|l, >) be an ordered separable Banach spakee topology induced by the norm
is denoted by (strong). Thes-dual ofL, i.e., the space ofcontinuous linear functionals

2 Thatis,(L, | - ||) is a separable Banach space and there exists a poifited-C = {0}) closed convex cone
C C L such that is the order induced by i.e.x ywheneverr — y € C.
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onlL, is denoted by.'. The natural dual pairingl.’, L) is defined by(p, x) :== p(x), for
every (p,x) € I’ x L. The weak topology (L, L") is denoted byw and the weak star
topologyo(IL/, L) is denoted byw*. The spacd. is thus endowed with two topologias
andw. Following Podczeck (1997)the Borelo-algebra of(L, w) and of(LL, s) coincide
and is denoted b3(IL). The positive cone df. is denoted by, := {x € L.:x > 0}. We
write L'y for the set{p € L':Vx € L. p(x) > 0}. If x € L thenx > 0 meanst > 0 and
x#0.1f pe L' thenp > 0 meansy > 0 andp # 0. If X is a subset of. and p belongs
to L/, then supp(x):x € X} is denoted by sup(x).

We conside(A, A, 1) afinite complete measure space, Aés a set,A is ac-algebra of
subsets ofA andu is a finite measure od. The measure spacd, A, 1) is complete if4
contains all-negligible® subsets oft. A function f from A to L is measurabléf for each
B e B(L), f~Y(B):={a € A: f(a) € B} € A. Afunction f from A to L is Bochner mea-
surableif there exists a sequence of simple functi¢fig),, pointwises-converging tof, i.e.,

Va e A,lim|| fu(@) — fla)] = 0.

Since(LL, || - ||) is separable then following Theorem 111.36@astaing and Valadier (1977)
f is measurable if and only if is Bochner measurable. A measurable functfofnom A
to L is Bochner integrablef the real-valued functionl f(-)|| : a — || f(a)| is integrable.
Following Diestel and Uhl (1977)a measurable functiori is Bochner integrable if and
only if there exists a sequence of simple functiofig), such that

im [ 11£,(@ ~ @ dni@ =0.

For eachE € A, the integral off over E is defined by

/mMMWﬂmfﬁ@m@.
E n JE

Let (D, d) be a separable metric space. A correspondence (or a multifunétiof)—

D is graph measurablé {(a,x) € A x D:x € F(a)} belongs ta4d ® B(D). A function
f: A — D is ameasurable selectioof F if f is measurable and if, for almost every
a € A, f(a) € F(a). If fisameasurable function fromto D, then we denote byf(-)} the
correspondence defined by { f(a)}. Following Theorem I11.30 irCastaing and Valadier
(1977) the functionf is measurable if and only &£(-)} is graph measurable. The set of
measurable selections Bfis denoted byS(F). WhenD c L, the set of Bochner integrable
selections off is denoted bys1(F) and we denote by’s the following (possibly empty)
setFy:= [, F(a)du(a):={v e D:3x € SY(F), v = [, x(a) du(a)}. The correspondence
F is said to bantegrably boundedf there exists an integrable functignfrom A to R
such that for a.ez € A, for everyx € F(a), ||x]| < h(a).

Let X be a space an® C X x X be a binary relation orX. The relationP is ir-
reflexive if (x, x) ¢ P, for everyx € X. The relationP is transitive if [(x, y) € P and
(y,z) € P]implies (x,z) € P, for every(x, y,z) € X3. The relationP is negatively
transitive if [(x, y) ¢ P and(y, z) ¢ P]implies (x,z) ¢ P, for every(x, y, z) € X3. The

3 A setN is u-negligible if there exist& € A such thatv ¢ E andu(E) = 0.



866 V. Filipe Martins-da-Rocha/ Journal of Mathematical Economics 39 (2003) 863—-889

relation P is a partial order it is irreflexive and transitive. The relatiBris an order if it
is irreflexive, transitive and negatively transitive. Wheis an order, it is usually denoted
by > and X2 \ P is denoted by<. Note that whenP is an order, therx is transitive,
reflexive (c < x for everyx € X) and complete (for everyx, y) € X? eitherx < y
ory < x).

3. Themodel and theresult
3.1. The model

We consider an ordered separable Banach sfiade- ||, >) such that the positive cone
Ly :={x € L:x > 0} is closed and has a non-emptjynterior. Moreover, we consider a
complete finite measure spage, A, 1), a Bochner integrable functiarfrom A to L, two
correspondencesandY from A intolL and a correspondence of preference relatiimsX,
i.e., Pisacorrespondence frominto L x L such thatforevery € A, P(a) C X (a) x X (a)
and P(a) is an irreflexive relation oiX (a).

An economy€is a list

E=((A, A ), (L, L), (X, Y, P,e)).

The commodity space is representedlbyThe natural dual pairingl’, L) is interpreted
as theprice-commaodityairing.

The set of agents (or consumers) is represented e setA represents the set of
admissible coalitions, and the numba(iE) represents the fraction of consumers which are
in the coalitionE € A.

For each agent € A, the consumption set is representeddiy:) C IL and the preference
relation by P(a) C X(a) x X (a). We define the correspondefick, : X (a) — X (a) by
P,(x) = {x' € X(a): (x,x') € P(a)}. In particular, ifx € X(a) is a consumption bundle,
P,(x) is the set of consumption bundles strictly preferred toy the agent.. The set of
consumption allocations (or plans) of the economy is thes5eX) of Bochner integrable
selections ofX. The aggregate consumption $&t is defined by

X5:= / X (a)du(a) = {v eL:3x e S'(X),v= / x(a) du(a)} .
A A

The initial endowment of the consumere A is represented by the commodity bundle
e(a) € L. We denote by := fA e(a) duu(a) the aggregate initial endowment. The produc-
tion possibilities available to the consumerc A are represented by the Sé&t) C L.
The set of production allocations (or plans) of the economy is th&’séh of Bochner
integrable selections df. The aggregate production s&t is defined by

Yz:Z/ Y(a)du(a) = {u elL:3ye Sl(Y), U= / y(a) d,u(a)}.
A A

4 Note that the binary relatioR(a) coincide with the graph of the correspondetize



V. Filipe Martins-da-Rocha/ Journal of Mathematical Economics 39 (2003) 863—-889 867
3.2. The equilibrium concepts

We present hereafter different concepts of (quasi-)equilibrium: Walrasian, free-disposal
and competitive equilibrium.

Definition 3.1. A Walrasian equilibriumof an economy is an elementx*, y*, p*) of
$1(X) x SL(¥) x I such thatp* # 0 and satisfying the following properties.

(a) Foralmostevery € A,
p*(x*(@) = p*le(@) + p*(y" (@)
and
x € Py(x*(a)) = p*(x) > p*(x*(a)).
(b) For almost every € A,
y € Y(a) = p*(») < p* (" ().
(©) [yx"(@du(@) = [, e(a)du(a) + [, y*(a) du(a).

An element(x*, y*, p*) € S1(X) x S1(¥) x L’ with p* # 0 is aWalrasian quasi-
equilibriumof an economy if the conditions (b) and (c) together with

(d) for almost every: € A,
p*(x*(@) = p*(e(@) + p*(y*(a))
and

x € Pu(x*(a)) = p*(x) = p*(x*(a),
are satisfied.
Following Debreu (1982)we introduce the concept of free-disposal equilibria.

Definition 3.2. A free-disposal equilibriunef an economy is an elementx*, y*, p*) €
S1(X) x $1(¥) x L such thatp* > 0 and which satisfies conditions (a) and (b) together
with

©) [yx*(@du@ < [, e(@ du(@) + [, y*(@) du(a).

An element(x*, y*, p*) € S1(X) x S1(¥) x L’ with p* > 0 is afree-disposal quasi-
equilibriumof an economy if the conditions (9, (b) and (¢) are satisfied.

A (free-disposal) Walrasian equilibrium of a production econdtisclearly a (resp. free-
disposal) Walrasian quasi-equilibrium &f We provide in the following remark, a classi-
cal condition on€ under which a (free-disposal) Walrasian quasi-equilibrium is in fact a
(resp. free-disposal) Walrasian equilibrium.
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Remark 3.1. Each (free-disposal) Walrasian quasi-equilibriiy, y*, p*) of an economy
&, is a (resp. free-disposal) Walrasian equilibrium, if we assume that, for almost every agent
a € A, X(a) is convex, the strict-preferred sBt(x*(a)) is s-open inX (a) and

inf p*(X(a)) < p*(e(a)) + supp™(¥(a)). (3.1)

In particular, if p* > 0 then the condition (3.1) is automatically valid if for almost every
agenta € A,

({e(@)} + Y(a) — X (a)) Ns-intLy # .

A Walrasian equilibrium (quasi-equilibrium) of a production econofis clearly a
free-disposal equilibrium (resp. quasi-equilibriumgoie provide in the following remark,
a classical condition ofi under which a free-disposal equilibrium (quasi-equilibrium) is in
fact an equilibrium (resp. quasi-equilibrium).

Remark 3.2. If the aggregate production s&t is free-disposal, i.eYs — Ly C Yy,
then each free-disposal equilibrium (quasi-equilibrium) is in fact a Walrasian (resp. quasi-
equilibrium) equilibrium.

Remark 3.3. We can find in the literature a third concept of equilibrium. Kiman
and Yannelis (19913andRustichini and Yannelis (1991jx*, y*, p*) with p* > 0, is a
competitive equilibriunof £ if it satisfies conditions (b), (¥ together with the following
condition:

(@) For almost every € A,

p*(x*(@) < p¥le(@) + p*(y" (@)

and

x € Pa(x*(@)) = p*(x) > p*(e(@) + p* (3" ().

The free-disposal property on the aggregate production set is no more sufficient to prove
that a competitive equilibrium is in fact a Walrasian equilibrium. However, under a suitable
local non-satiatiorproperty and together with the free-disposal property on the aggregate
production set, we can prove that a competitive equilibrium is in fact a Walrasian equilib-
rium. Note moreover that ifx*, y*, p*) is a free-disposal equilibrium then the value of the
excess of demand is zero, i.9%(/, y*(a) du(a) + w — [, x*(a) di(a)) = 0. This is not
automatically the case {*, y*, p*) is a competitive equilibrium.

The model of production economies defined above encompasses the mogehata
ownership economgresented itHildenbrand (1970Q)In a private ownership economy

E=((A, A ), (L, L), (X, P,e), (Y}, 0)) jes),

the production sector is represented by a finite/seft firms with production setéY;) jc,
where for everyj € J, Y; C L. The profit made by the firm € J is distributed among the
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consumers following a share functién: A — R. The share functions are supposed to
be integrable and to satisfy for eagke J, fA 0j(a)du(a) = 1. If we let for eachu € A,

Y(a):= ) _0j(a)coY;

jeJ

then we define an economdy:= ((A, A, n), (L', L), (X, Y, P, e)). If the production sector
of the private ownership economy satisf@jsje ;Y is closed and convex, then for every
p € ' and for almost every € A,

/AY(a)dM(a)=ZYj and sup(Y(@) = Y _ 0j(@supp(¥)).

jeJ jeJ

It follows that we can apply an equilibria existence result corresponding to the ecdfiomy
to provide a result corresponding to the private ownership ecorfbmy

3.3. The assumptions

We present the list of assumptions that the econ&mwll be required to satisfy. On the
consumption side we consider both non-ordered but convex preference relations (Assump-
tion C.3(i)) and partially ordered (possibly incomplete) but non-convex preference relations
(Assumption C.3(ii)).

Assumption C.1 (continuity). For almost every agente A, the consumption seX(a) is
closed convex and, is continuous, i.e., for each bundies X (a), P,(x) is s-open inX (a)
andP; (x):= {y € X(a):y € P,(x)} is w-open inX (a).

Assumption C.2 (atomic part). Iz belongs to an atofrof (A, A, u) then the relatiorP(a)
is convex, i.e., for each bundiec X (a), x ¢ coP,(x).

Assumption C.3 (non-atomic part). One of the two following properties is satisfied

(i) For almost every: on the non-atomic part gfA, A, ), the preference relatioR(a) is
convex andX (a) \ P, 1(x) is convex.

(ii) For almost every: on the non-atomic part gfA, A, ), the preference relatioA(a) is
a partial order orX (a).

Remark 3.4. WhenX (a) \ P, %(x) is supposed to be convex, the g&tl(x) is w-open in
X (a) if and only if it is s-open inX (a).

Remark 3.5. Note that if P(a) is partially ordered, then assuming that for every X (a),
X(a) \ Pu_l(x) is convex, implies that for every € X(a), x ¢ coP,(x). In particular,

5 An elementE € A is an atom of(A, A, ) if u(E) # 0 and B € AandB c E] implies u(B) = 0 or
w(E\ B) = 0.
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Assumptions C.1, C.2 and C.3(i) are automatically valid under Assumptions A1-A4 in
Podczeck (2001and under Assumptions 3.1 and 3.Zhan and Yannelis (1991)

Remark 3.6. Following the notations oBection 2when preference relations are ordered,
we have

X@\ Py = {y € X(@ly =q ).

If {y € X(a):y >, x} is supposed to be convex then the relati{n) is automatically
convex. In particular, Assumptions C.1, C.2 and C.3(ii) are implied by Assumptions E1-E3
and B1-B2 inPodczeck (1997)by Assumptions a2 and a3 Rustichini and Yannelis
(1991)and by Assumptions 3.1 and 3.2Kiman and Yannelis (1991hn these three papers,
preference relations are supposed to be ordered, but in Assumption C.3(ii), preference
relations are only required to be partially ordered.

We say that two agentsandb are equivalent, denoted lay~ b, if u({a}) = w({b}),
X(a) = X (b), e(a) = e(b) and P(a) = P(b). Two equivalent agents play the same role in
the economy. The binary relationis an equivalence. Each equivalence class represents a
typeof consumers. We leA"@ be the non-atomic part of. To deal with partially ordered
but non-convex preference relations, we need the following assumption.

Assumption (A). If F: A" — L is a graph measurable and integrably bounded corre-
spondence with non-empty amdcompact values, such that for eveby c) € A" b ~ ¢
implies F(b) = F(c), then

/ a)F(a)dli(a)=f F(a) du(a).
Ana Ana

Remark 3.7. Following Theorem 3.1 irlPodczeck (1997)Assumption A is implied by
Assumptions A1-A2 irPodczeck (1997)hich formulate that there are many agents of
(almost) every type. If there exists a fixadcompact sek such that for every: € A",

F(a) C K then Assumption A1l (many more agents than commoditieRustichini and
Yannelis (1991)mplies Assumption A. For several refinements of the Lyapunov Theorem,
we refer toTourky and Yannelis (2001)

Assumption (C) (consumption side). Assumptions C.1 and C.2 are valid and either As-
sumptions C.3(ii) and A are valid or Assumption C.3 (i) is valid.

Assumption (M) (measurability). The correspondencésandY are graph measurable,
ie.,

{(a,x) e AxL:xe X(a)} e AR B(L)
and

{(a,y) e AxL:ye Y} e AR B(L),
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and the correspondence of preference relat®islower graph measurable, i.e.,

Vy € S(X), {(a,x) € A x L:(x, y(@)) € P} € A® B(L).

Remark 3.8. In Khan and Yannelis (19989ndPodczeck (1997the correspondences
and P are supposed to be graph measurable. It can be proveM&&as-da-Rocha, 2002

that in the framework oKhan and Yannelis (199BndPodczeck (1997)graph measura-
bility of the correspondence of preference relations implies lower graph measurability, in
particular Assumption M is valid.

Remark 3.9. In Podczeck (2001)t is assumed that preference relations are Aumann mea-
surable. It can be proved (sktartins-da-Rocha, 200Q2hat in the framework oPodczeck
(2001) Aumann measurability of the correspondence of preference relations implies lower
graph measurability, in particular Assumption M is valid.

Assumption (P) (production side). The aggregate productionisetind the set'y — L.
are closed convex subsetslof

Assumption (S) (survival). For almost every € A,
0€ (fe(a)} + X(a) — Y(@) # 0.

Remark 3.10. Assumption S means that we have compatibility between individual needs
and resources. IKhan and Yannelis (19919ndPodczeck (2001)he initial endowment

is supposed to lie in the consumption set, i.e., for almost everyA, e(a) € X(a) and
inaction is a possible production plan.

Assumption (B) (bounded). The correspondeniés integrably bounded witlv-compact
values.

Remark 3.11. We can find Assumption B irkhan and Yannelis (199]1)Podczeck
(1997, 2001)and Rustichini and Yannelis (1991)n order to applyTheorem A.] this
assumption is the natural framework to deal with general Banach commodity spaces.
Note that under Assumptions M, S and B, the aggregate consumptiokizsét non-
empty.

Assumption (LNS) (local non-satiation). For almost every agent A, for every bundle
x € X(a):

(i) if x is a satiation point, i.eP,(x) = @, then for every € Y(a), x > e(a) + y;
(i) if x is not a satiation point, thene €0 P, (x).

Remark 3.12. In Podczeck (1997, 2001gconomies in consideration are free-disposal
exchange economies, i.e., for everye A, Y(a) = —L,. It follows that Assumptions
B4-B5 inPodczeck (1997and C5-C6 irPodczeck (2001imply Assumption LNS.
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Assumption (SS) (strong survival). For almost every agent A,

({e(@)} + Y(a) — X(a)) Ns—intL; # @.

Remark 3.13. In the framework of exchange economié&d) = {0} or Y(a) = —L),
Podczeck (1997, 2008ndKhan and Yannelis (199kupposed that for almost every agent
a € A, [le(a)} — X(@] Ns—intlLy # @. This obviously implies that Assumption SS is
valid.

Assumption (FD) (free disposal). The aggregate production set is free-disposal, i.e.,
Yy — L+ C Y.

3.4. Existence result
We shall now state the main result of the paper.

Theorem 3.1. If £ is an economy satisfyingssumptionsC, M, P, S, B and LNS, then
there exists a free-disposal quasi-equilibriwai, y*, p*). If moreover€ satisfiesSS, then
(x*, y*, p*) is a free-disposal Walrasian equilibriurtf moreover€ satisfiesSS and FD,
then(x*, y*, p*) is a Walrasian equilibrium

Remark 3.14. Under Assumption LNSTheorem 3.lextends Theorem 5.1 iRodczeck
(1997) Theorem 6.1 irRustichini and Yannelis (19919nd the main theorem iKhan
and Yannelis (1991)to economies with a non-trivial production sector. Moreover, for
economies with convex preference relatidi@orem 3. xtends Theorem 5.1 Podczeck
(1997) and the main theorem iKhan and Yannelis (19910 economies with non-
ordered preference relations. And for economies with possibly non-convex preference
relations, Theorem 3.1lextends Theorem 5.1 iRodczeck (1997and Theorem 6.1 in
Rustichini and Yannelis (1991)o economies with possibly incomplete preference
relations.

Although Khan-Yannelis and Rustichini—Yannelis succeed in proving the existence of
a competitive equilibrium without Assumption LNS, but they assume that for seme
compact subset of the commodity space, &gythe endowment of each agent belongs
to K.

Remark 3.15. If we letY: A — L be the correspondence defined for ewery A by
Y(a):= cl(©Y(a) + A(Ys)),

then following Theorem 111.40 irCastaing and Valadier (197 7Assumption M is valid.
Moreover, followingProposition A.2 Y satisfies Assumption P ar&thhas a free-disposal
satiation quasi-equilibrium if and only if

E=((A, A, p), (L, L), (X, Y, Pe)

has a free-disposal satiation quasi-equilibrium.
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It follows that in Theorem 3.1we can replace Assumptions S and SS by the weaker
Assumptions Sand SSdefined by

Assumption (S). For almost every: € A,

e(a) € X(a) — Y(a).

Assumption (SS). For almost every agemnte A,

({e(a)} + Y(a) — X (a)) N s—intL, # .

4, Discretization of measurable correspondences
4.1. Notations and definitions

We consider(A, A, 1) a complete finite measure space & d) a separable metric
space.

Definition 4.1. A partitiono = (A;);c; of A is ameasurable partitionf 7 is a finite set
and for everyi € I, the setA; is non-empty and belongs td. A finite subsetA? of
A is subordinated to the partition if there exists a familya;)ie; € [];.; Ai such that
A = {a;:i € I}.

iel

Given a couplgo, A?), whereo = (A;)ics is @ measurable partition of, andA° =
{a;:i € I} is afinite set subordinated g we consider (o, A%) the mapping which maps
each measurable functighto a simple measurable functigrio, A%)( f), defined by

¢(o, AN =) flaxa;,
iel

where x4, is the characteristfcfunction associated withi;. Note that the sum is well
defined since there exists at most one non-zero factor.

Definition 4.2. A functions: A — D is calleda simple function subordinateid 1 if
there exists a coupl@, A%), whereo is a measurable partition af, andA? is a finite set
subordinated te, such that = ¢ (o, A%)( /).

Given a couplgo, A?), whereo = (A;);cs iS @ measurable partition of, and A° =
{a; 1 i € I} is a finite set subordinated tg, we consideny (o, A?), the mapping which
maps each measurable corresponddgncé — D to a simple measurable correspondence
Y(o, A%)(F), defined by

Yo, A%)(F):= Y Fla)xa,

iel

6 That is, for every: € A, xa4;(@) =1ifa € A; andy,, (a) = 0 elsewhere.



874 V. Filipe Martins-da-Rocha/ Journal of Mathematical Economics 39 (2003) 863—-889

Definition 4.3. A correspondencd : A — D is called asimple correspondence subor-
dinatedto a correspondence if there exists a couplés, A?), whereo is a measurable
partition of A, and A is a finite set subordinated tg such thatS = v/(a, A?)(F).

Remark 4.1. If fis a function fromA to D, let{f(-)} be the correspondence fraginto
D, defined for everyr € A by { f(1)}(a) := { f(a)}. We check that

Yo, A {fOD) = {¢(a, A7) (N}

The space of all non-empty subsetduis denoted byP* (D). We letry, be the Wisjman
topology onP*(D), i.e., the weak topology of** (D) generated by the family of distance
functions(d(x, -))xep.

4.2. Approximation of measurable correspondences

Hereafter we assert that for a countable set of graph measurable correspondences, there
exists a sequence of measurable partitigpgroximatingeach correspondence. The proof
of the following theorem is given iMartins-da-Rocha (2002)

Theorem 4.1. We consideKA, A, 1) a complete finite measure space aial d) a sep-
arable metric spacd_et F be a countable set of graph measurable correspondences with
non-empty values from into D and letg be a finite set of integrable functions frofrinto

R. There exists a sequen@e?), of finer and finer measurable partition$ = (A});c of

A, satisfying the following properties

(a) Let(A™), be asequence offinite set$ subordinated to the measurable partitighand
let F € F. For everyn € N, we define the simple corresponderi¢e= v(c", A")(F)
subordinated ta”. Then foreaclr € A, the setF(a) is the Wijsman limit of the sequence
(F"(a))n, i.e.

Yaec A Vx € A, limd(x, F'(a)) = d(x, F(a)).

(b) There exists a sequen¢ga™), of finite setsA” subordinated to the measurable par-
tition o, such that for each, if we let /" := ¢(c”, A")(f) be the simple function
subordinated to eaclf € G, then

VfeGYae A | (@ <1+ Ig@)l.

geg

In particular, for eachf € G,
nli_)mOOA |f"(a) — fla)| du(a) = O.

Remark 4.2. The property (a) implies in particular that, ("), is a sequence oD,
d-converging tax € D, then

Ya € A, Ii’r1n d(x", F"(a)) = d(x, F(a)).
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It follows that if F is non-empty closed valued, then property (a) implies that
Va € A,IsF"(a) C F(a).

Moreover, if F = {f(-)}, wheref: A — D is a function, then it: € A, F(a) = {f(a)} is
the Wisjman limit of the sequent&F” (a) = {f"(a)}), if and only if f(a) is thed-limit
of the sequencef” (a)),.

5. Proof of main theorem
5.1. Free-disposal satiation equilibria

Hereafter, we introduce an auxiliary concept of quasi-equilibrium.
Definition 5.1. An element(x*, y*, p*) € S1(X) x S1(¥) x L is afree-disposal satiation
quasi-equilibriumof the economy if p* > 0 and if the following properties are satisfied.

(i) For almost every: € A,
(x, y) € Pa(x™(@) x Y(a) = p*(x) = p*(y) + p*(e(a)).

(i) [y x*@du(a) < [, e(@) du(@ + [, y* (@) du(a).

If (x*, y*, p*) is a free-disposal quasi-equilibrium of an econafiishen(x*, y*, p*) is
clearly a free-disposal satiation quasi-equilibriun€of

Remark 5.1. Under Assumption LNS, each free-disposal satiation quasi-equilibrium
(x*, y*, p*) of an economy, is in fact a free-disposal quasi-equilibrium&f

Following Remarks 3.1, 3.2 and 5.fb prove the existence of a Walrasian equilibrium,
it is sufficient (under Assumptions C, SS, LNS and FD) to prove the following lemma.

Lemmal. If £isaneconomy satisfyimgssumptionsC, M, P, SandB, then a free-disposal
satiation quasi-equilibrium of exists

5.2. Existence of free-disposal satiation equilibria for polytope economies

We propose first to prove an auxiliary existence result (the followiaghma 3 for
polytopeeconomies, i.e., economies satisfying the following Assumption K. This first step
allows us to isolate the crucial aspect of the new approach, which is the approximation of
economies with a measure space of agents (measurable correspondences) by a sequence
of economies with a finite set of agents (resp. simple correspondences). Moreover, the
framework ofpolytopeeconomies allows us to deal with non-ordered but convex preference
relations, as well as, ordered but non-convex preference relations.

Theref” =", AM)(f).
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Assumption (K). There exist a finite s&k = {0, ..., r} and Bochner integrable functions
(xkek, (Vo)rex from A to L such that for almost every agent A,

X(a) = co{xo(a),...,x (@)} and Y(a) =co{yo(a),..., y(a@)}.

Lemma?2. If £isaneconomy satisfyimgssumptions C, M, P, 8ndK, then a free-disposal
satiation quasi-equilibrium of exists

Proof. We can suppose (considering a translation if necessary) that for almostevety
e(a) = 0. FollowingProposition A.1there exist a sequen¢g; ), of measurable selections
of X and a sequenagy ), of measurable selections Bfsuch that for every € A,

X(a) = s-cl{fr(a):k e N} and Y(a) = s-cl{gi(a):k € N}.

Assumption S implies that the correspondexce Y defined bya — X(a) N Y(a) has
non-empty values. Sincg andY are graph measurable, then we can checkXhaty is
graph measurable. It follows (appealing once agaRrtposition A.) that without any loss
of generality, we can suppose for everg A, xo(a) = fo(a) = go(a) = yo(a). We let for
everyk, Ry : A — IL be the correspondence defineditia) := {x € X(a): fr(a) ¢ P,(x)}.
Then for almost every agente A, for everyx € L,

d(x,X(@) =0 x€ X(a and d(x, Y@)=0<% x < Y),
and for everyc € X (a),

Vk € N, d(x, Ri(a)) > 0< fi(a) € P,(x).
Following Assumption K, we let for eache A,

h(a):= maX|lxc @, ly@]l :0 < k < r}.

Itfollows that the correspondencEsandY are integrably bounded iy Applying Theorem
4.1andRemark 4.1o

F={/O} O x;Oh {y; O X, ¥, R i (k, j) € N x K}

andg := {h(-)}, there exists a sequence”), of measurable partitions” = (A});csn
of (4, A), and a sequenced”), of finite setsA” = {a} :i € S"} subordinated to the
measurable partition”, satisfying the following properties.

Fact 5.1. For everya € A,
(i) foreveryn, h(a) < 1+ h(a) and for everyk, j) e N x K,
s-im(f! (@), gi (@) = (fi(a), gk(@))
and

slim () (@), ¥} (@) = (x,(0), ¥ (@);



V. Filipe Martins-da-Rocha/ Journal of Mathematical Economics 39 (2003) 863-889 877

(i) for every sequencg™), of L, s-converging tox € L,
|irr:n d(x", X" (a)) = d(x, X (a)), |i’|:n dix", Y"(a)) = d(x, Y(a))
and
Iiyrln d(x", Ri(a)) = d(x, Ri(a)),
whered is the distance function associated to the ndjrm.

We let, for each: € A,

Ki(a):=00| J{xj(@:n €N} and Ka(a):=co| J{y}(a):n € N}.
keK keK

A direct consequence of Fact 5.1 together with Theorem 1ll.4Qastaing and Valadier
(1977)is the following result.

Fact 5.2. The correspondences; and K> are graph measurab)éntegrably bounded with
non-emptys-compact and convex values

We construct now a sequence of economies with a finite set of consumers. We distin-
guish two cases. In the first cagelgim 5.1 preference relations are possibly non-ordered
but convex, in the second cageldim 5.2 preference relations are ordered but possibly
non-convex.

Claim5.1. If EsatisfiesAssumption C.3(i)then a free-disposal satiation quasi-equilibrium
exists

Proof. For everyn, we denote by” the followingfinite production economy.
gn = ((L/5 L>7 (X:lv Yln - L+a Plﬂ)iel")

wherel” ;= {i € §": u(A}) # 0} is the finite set of consumers. The consumption set of
consumer e I" is given byX” := M(A?)X(a?)8 and the production setis given 5§ —IL., ,
whereY!" := u(A?)Y(a}). The preference relations are given BY.= (A7) P(ay).

We assertthat the econor@y satisfies all the assumptichsf Proposition 4 irFlorenzano
(1990)and thus there exigt”)ic» € [[;c;n X! and(y!)jemm € [ Y/ suchthad ", x <
> " and 0¢ G, where?

G = Q-co U (COP!(x}) —coY! —Ly).
iel”
Applying Proposition A.3there existg” € L’ \ {0} satisfyingp” > 0 and such that for
everyi € I",if (x,y) € P (x}) x Y]' thenp"(x — y) > 0.

8 The consumex! representghe coalitionA?.
9 In particular Assumption S is valid, since for almost every A, fo(a) = go(a).
10 Wwe refer toProposition A.3or the definition of theQ-convex hull.



878 V. Filipe Martins-da-Rocha/ Journal of Mathematical Economics 39 (2003) 863—-889

Let, for everyn,
}.’l n
1

n.__ X n.__ Vi
X = Z /,L(Ar.l)XA? and y = Z /,L(A'-l)XA?.
i i

iel" iel"

For each:, we have defined integrable selectiofise S1(X") andy” e S1(¥") satisfying

[ v@du < [ y@inw (5.1)
Vae | J A} (x.y) € PI(x"(@) x Y"(@) = p"(x) = p" (). (5.2)
el

whereX" andY” are defined by Fact 5.1 and similatf := ", P(a;’)xAg. Note that for
almost every: € A, for eachn, x"*(a) € K1(a) andy”(a) € K2(a). Applying Fact 5.2 and
Theorem A.1* there exist Bochner integrable functiaris y*: A — L such that

/x*du:lim/x" dn and /y*d,u:lim/ y" du, (5.3)
A noJa A noJa

for almost everyr € A™8,

x*(a) € COs-Is{x" (@)} and y*(a) € COs-Is{y" (a)}, (5.4)
for everya € AP,

x*(a) € s-Is{x" (@)} and y*(a) € s-Is{y"(a)}, (5.5)

whereA™is the non-atomic part @f4, A, 1) andAP2is the purely atomic part@fd, A, w).
Since, for every, p" € L', \ {0}, we may supposé that(p"),, w*-converging top*, with
p* e/ \ {0},

We propose to prove th&t*, y*, p*) is a free-disposal satiation quasi-equilibriuméof
We let

Ac=J U A~

nojesm\I

then we easily check that(Ap) = 0. Let nowA’ be a measurable subset4f\ Ag with
u(A\ A") = 0 and such that alllmost every wherassumptions and properties are satisfied
for everya € A’.

To prove condition (i) oDefinition 5.1 we need to prove that*, y*) € S1(X) x SY(1).
Leta € A’, by construction, we have that for everyx" (a) € X" (a), and thus, for every
n, d(x"(a), X"(a)) = 0. We apply Fact 5.1 to conclude that for evére s-Is{x"(a)},

d(&, X (a)) = 0. It follows thats-Is{x" (a)} C X (a). Sincex*(a) € TOs-Is{x" (a)}, applying
Assumption K, we get that*(a) € X (a). We prove similarly thay* e S(¥). Following
(5.1) and (5.3)condition (ii) is thus valid.

1 Since the correspondencEs and K, haves-compact values, we have thatls = s-Is.

12 Indeed, since there exisisc L. andV a || - |-open symmetric neighborhood of zero such that+ vV c L,
then the sequendg™),, may be chosen such that, for eachk N, for eachv € V, |p"(v)| p"(#) = 1. Now since
(L, || - |I) is separable, applying Alaoglu Compactness Theorem, we can exirdetanverging subsequence.
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We will now prove that(x*, y*, p*) satisfies condition (i) oDefinition 5.1 Leta € A’
and(x, y) € P,(x*(a)) x Y(a). We letZ be the set of strictly increasing functions frd¥n
into N. We can suppose that there exigts ) € 72 such thay ot (@) s-converges ta
and that(gyx) (a))x s-converges tg. To prove thap*(x — y) > 0, itis sufficient to prove
that for everyk large enoughp™(few) (@) = p*(gy«) (a)). Following Assumption C, there
existko € N such that for everg > ko, fpr) (@) € Pa(x*(a)). Considerk > kg and let
i:=¢(k) andj:= y(k).

We assert that there exisisc 7 such that

Vi e N, (.ﬁ"(’”(a), gj.‘(”(a)) e pem (x“<”>(a)) x Yo (g), (5.6)

Indeed, by definition o¥” (a), we have thag’]? (@) € Y"(a). Suppose now that for every
a € I, there exisP € 7 such that

VneN,d (xaoﬂ(”)(a), R?Oﬁ(n)(a)> =0.

Applying (i) of Fact 5.1, it follows that for everg € s-Is{x"(a)}, d(§, R;(a)) = O, i.e.,
& € R;(a). Following Assumption CR;(a) is closed convex ifi belongs to the non-atomic
part of (A, A, u). Applying (5.4) and(5.5), we conclude that*(a) € R;(a), i.e., fi(a) ¢
P,(x*(a)).contradiction.

Applying (5.6) together with(5.2), we obtain that, for every,

PO @ - 85" @) 2 0

Applying Fact 5.1, we have thalf;" (a) — g;%(a)),,eN s-converges tof;(a) — g;(a). Since
(p")n w*-converges tp*, we get thap*(fi(a)) = p*(g;(a)). O

We consider now the case of ordered but possibly non-convex preference relations.

Claim 5.2. If £ satisfiesAssumptions C.3(iilpnd A, then a free-disposal satiation quasi-
equilibrium exists

Proof. Following Theorem 2 ilsondermann (1980for almost every: € A, there exists an
s-upper semi-continuous utility functian, representing the binary relatid®a) on X (a),
in the sense that

(x,X) € P(a) = ug(x) < ug(x).

We denote byA"@ c A the non-atomic part ofA, A, u) andAP2the purely atomic part of
(A, A, ). We let, for almost every € A"8,

P(a):={(x,x) € X(a) x X(a):ua(x) < ug(x)}

and for eachu € AP?, P(a)._ P(a). Note that for almost every € A, P(a) C P(a) We
define the correspondendefrom A into L x L by, for almost everyr € A" R(a) :=
{(z,7) € X(a) x X(a):uq(z) < uqa(z)}; and for everyu € AP2 R(a):= R(a).
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In order to use the saniignit argument as ifClaim 5.1, we defineconvexpreference
relatioqs. This construction is borrowed fradildenbrand (1974jproblem 7, p. 94). We
defineP: A — LL x L by, for everya in the non-atomic part™ of (A, A, ),

P(a):={(x,y) € X(a) x X(a):x ¢ TOR,()))

whereR,(y) 1= {x € X(a):uq(x) > uq(y)};**and we define for everyin the purely atomic
par:[Apa, P(a) = P(a). For almost every: € A, for eachy € X(a), X(a) \ P, (y) =
COR,(y) is closed convex.

Claim 5.3. For almost every: € A, P(a) satisfies the following convex property

Vx € X(a), x ¢ cOP,(x).

Proof. If a € Apa,Athe claim is trivial, let thua € A" Suppose that there existss X (a)
such thatx € coP,(x). Then there exists a finite s&t such thatv = )", - xx, where
Xp € i’a(x). The binary relqtiorf?(a) is a complete pre-or@er, then there exigts IC, such
that for everyk € K, xx € Ra(xy,). It follows thatx € coR,(x,), in particular this leads
to xi, ¢ P.(x), a contradiction. O

We are now ready to construct the sequence of economies with a finite set of consumers.
Following the notations of Fact 5.1, for eacltwe denote by” the followingfiniteeconomy
& = (U, L), (X1, Y7, P"icm), wherel" == {i € S": u(A7) # 0} is the finite set of
consumers. The consumption set of the consuneed” is given by X := (A7) X (a})
and the production set is given By — L., where?” := u(A")[Y(a?) + (1/n){u}] andu
is any vector ins-int L. The preference relations are givenﬁy:: M(A?)i’(a?).

We assert that the econoréiy satisfies all the assumptions of Propositioq Elorenzano
(1990} It follows that there exist$x);cin € Hij’” X, YDierm € [liepq Y!' such that
S iem X1 < Yo y' and such that @ G, wheré

G:=Q-co [ J(coP () — cof} —Ls).

iel"

Applying Proposition A.3here existg" € L’ \ {0} satisfyingp" > 0,'° and such that for
everyi € I",if (x,y) € P'(x}) x Y]' thenp"(x — y) > 0.
We let for everyn,

Xt= Z X? XA and yn,= Z y:’l _ Eu X an
T LAt ' w(Ah ) A

iel" iel"

13 Sinceu, is s-upper semi-continuous, thet),(y) is s-closed. Moreover, iR, (y) is convex, therP(a) = P(a).
14 We refer toProposition A.%or the definition of theQ-convex hull.

15 Sinceu is ans-interior point ofL., , there existd a symmetric-open neighborhood of 0 such tHa + V ¢
L. In particular, without any loss of generality, we can choose the pricguch that for each € V, |p" (v)|

ptw =1
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For each:, we have defined integrable selectiofise S1(X”) andy” e S1(¥") satisfying

1

| ¥@du@ < [ ¥@du@ + 2 5.7)
A A n

Vae | J A}, (x,y) € Pi(x"(@) x Y"(a) = p"(x) > p"(3), (5.8)

iel"
where X", Y" are defined by Fact 5.1 and similary” := ), Q(a;) xan, whereQ €

{P, P, P, R}. Since, for every, sup,.y|p"(v)| < p"(u) = 1, there exists a subsequence
of (p™), w*-converging top*, with p*(u) = 1.
For eachp € I, for each correspondencgs W: A — L. and for eacl: € A, we let

B(a, p, Z, W) = {z € Z(a): p(z) < supp(W(a))}

and

pla,p, Z, W) = {z € Z(a): p(z) < supp(W(a))}.

We let B(a) := B(a, p*, X, Y) andB(a) = B(a, p*, X, Y). Moreover, for eaclh € N, we

let B"(a):= B(a, p", X", Y") andB"(a):= B(a, p", X", Y").

Now we define the correspondenbeG andH by, for each correspondence of preference
relationsQ in Z and for eactu € A,

D(a, p, Z, W, Q):={z € Ba, p, Z, W): Qu(z) N B(a, p, Z, W) = I},
Ga, p, Z, W, Q):={z € Z(a): Qa(z) N Ba, p, Z, W) =¥},

and

H((l, pv Zv "V, Q): {Z S Z(a)Qa(Z) ﬂﬂ(a, pv Z7 W) = w}

We define D*(a, Q) = D(a, p*, X, Y, Q), G*(a, Q) = G(A, p* X,Y, Q) and
H*(a, Q) := H(a, p*, X, Y, Q). Moreover, for eaclh € N, we defineD"(a, Q) =
D(a, P", X", Y", Q), GN(a, Q) := G(a, p", X", Y", Q) and H"(a, Q) := H(a, p",
X" Y", Q).

Claim 5.4. For eachn € N and for eachu € A",
G"(a, P") c ©0G"(a, P") C TO0G"(a, P") (5.9)

and for everys € AP& G"(a, P") = G"(a, P") = G"(a, P").

Proof. Indeed, ifa € AP2then P"(a) = P"(a) = P"(a) and the result follows. Now let

a € AMandx € G"(a, P"). The sefX" (a) is s-compact, the strict-preference relatiBh(a)

is irreflexive, transitive withs-open lower sections. Hence, following a classical maximal
argument, the sé¥"(a, P") is non- empty. Lek € D"(a, P") thenx € B(a, p "y and since

x € G"(a, P"), we have thatx, %) ¢ P'(a),i.e.,x € coR”(x) SlnceR"(a) is transitive
and complete, it is straightforward to verify thRg(x) c G"(a, P") C G"(a, P"), and
thusx € t0G" (a, P"). O
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Since(x", p") satisfieg5.8), it follows'® that for a.ea € A, x"(a) € G"(a, P"). Apply-
ing the previous claim, it follows that' (a) € T0G"(a). Note that for almost every € A,
for eachn, x"(a) € K1(a) andy”(a) € Kz(a). Applying Fact 5.2 and@’heorem A.lthere
exist Bochner integrable functions, y*: A — L such that

/ x*du = lim / x"du and / y du = lim / y' du, (5.10)
A noJA A nJa
for almost everyr € A™8,

x*(a) € COs-Is{x" (@)} and y*(a) € COs-Is{y" (a)}, (5.11)

for everya € AP,

x*(a) € s-Is{x" (@)} and y*(a) € s-Is{y"(a)}. (5.12)
Following verbatim the arguments 6laim 5.1,

s-IsX"(a) C X(a@) and s-IsY"(a) C Y(a).

With Assumption K0 X (a) = X (a) andcoY(a) = Y(a), it follows thatx* € S1(X) and
y* € S(Y). Applying (5.7),

_/A x*(a) du(a) < /A y*(a) du(a). (5.13)

Once again, following verbatim the argumentddim 5.1, we prove that for almost every
ac A,

s-Is(H" (a, P")) C H*(a, P).

Applying Carathéodory Convexity Theorem, for almost every A,
s-Is(ccoH" (a, P")) C cos-Is(H" (a, P")) C coH*(a, P).

It follows?’ that for almost every € A,

aec A= x*(a) eCOH*(a, P) and a e AP*= x*(a) € H*(a, P).
Claim 5.5. The correspondenc8*(-, P):a — H*(a, P) is graph measurable

Proof. Inthis proof, we denotg(a):= B(a, p*, P) andH(a) := H*(a, P).Indeed letA? :=

{a € A: B(a) # ¥}. SinceX andY are graph measurable, thgris graph measurable and
AP e A. Applying Proposition A.]there exists a sequengé"), of measurable selections
of B satisfying, for every: € AP, (h*(a)); is dense inB(a). We let, for eactk, z*(a) =
h*(a) if a € AP andzF(a) = Xo(a) elsewhere. It follows that

Va € AP, H(a) = ﬂ R.(a) and Vae A\ AP, H(a) = X(a),
v
16 This is the reason why we introdugen the construction of!".

17 Recall that for everyt, x" (a) € T0G" (a, P") C TOH" (a, P"). But H" (a, P") is as-closed subset of" (a) =
co{xp(a, ..., x!(a)}, hencecOH" (a, P") = cOH" (a, P").
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whereR v (a) = {x € X(a) : (x,z") ¢ P(a)}. Applying AssumptionM, for eachk, R is
graph measurable arfd is then graph measurable. O

We apply now Assumption A,
/X*(a)du(a) 6/ Co[H"(a, P)]du(a)+/ H*(a, P)du(a)
A Ana Apa
=/ H*(a, P)du(a).
A

That is, there exists € S1(X) such that for almost every agemte A, ¥(a) belongs to
H*(a, P) and following (5.13) [, x < [, e(a)du(a) + [, y*(a) du(a). It follows that
(x, ¥*, p*) is a free-disposal satiation quasi-equilibrium of the econémy O

The proof ofLemma 2is a direct consequence Gfaims 5.1 and 5.2 O

5.3. Proof ofLemma 1
We now applyL.emma 2to proveLemma 1

Proof. Let& be an economy satisfying Assumptions C, M, P, S and B. FolloRiegark
3.15andProposition A.2 we can suppose without any loss of generality that for almost
everya € A, Y(a) is a closed convex subsetbfand that for almost evewy € A, e(a) = 0.
From Assumption S, the correspondetce Y defined bya > X (a) N Y(a) has non-empty
values. Applying Theorem l11.40 i€astaing and Valadier (197 he correspondencény

is graph measurable. Now applyiRgoposition A.1there existfp € S1(X) andgo € S1(Y)
suchthatforalmosteveeye A, fo(a) = go(a). Once again applyinBroposition A.1there
exist a sequencefy); of measurable selections &fand a sequenagy); of measurable
selections of such that for every € A,

X(a) = s-cl{fx(a) : ke N} and Y(a) = s-cl{gr(a): k € N}.

Foreachv € N, let& = ((A, A, n), (L', L), (X*, Y", P")), where for each agentc A,
the consumption and production sets are defined by

X"(a):= co{ fo(a), ..., fi(a)} C X(a)

and

Y"(a):= co{go(a), g1(a), ..., gy (a)} C Y(a),

where for each 1< k < v, g/(a) = gi(a) if |lgr(@)] < v andg(a) = go(a) either.
The preference relations are defined®a) := P(a) N (X"(a) x X"(a)). For eachy, the
economyé” satisfies Assumptions C, M, P, S and K. Applyibgmma 2 we obtain the
following fact.
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Fact 5.3. For eachv, there exists® (x, p”) € SY(X") x I/, with p” # 0 and such that
there existsA” € A, with u(A \ A”) = 0 and satisfying the following properties

(i) Foreverya e A", (x,y) € P)(x"(a)) x Y¥(a) = p'(x —y) > 0.

(i) [,x"(a)du(a) € Yz — L.

Applying Theorem A.1there exists a Bochner integrable functidne S1(X) such that

/ x*(a) du(a) = IimU/ x"(a) du(a). (5.14)
A A

foraeae A" x*(a) € Cow-Is{x"(a)} (5.15)
foralla € AP2  x*(a) € w-ls{x"(a)}. (5.16)

For everyy, p” > 0. Sinces-intIL,. # @, we can choose the sequerigé), such thai(p”),
w*-converges tp*, with p* > 0. Following Assumption B5.14)and (ii) of Fact 5.3, there
existsy* e S1(Y) such that

Ax*(a) du(a) g/;‘y*(a) du(a). (5.17)

For the rest of the proof, we distinguish two cases. In the first €2lséng 5.6 preference
relations are possibly non-ordered but convex, in the second Céaien(5.7) preference
relations are ordered but possibly non-convex.

Claim5.6. If £satisfieAssumption C.3(i)then afree-disposal satiation quasi-equilibrium
exists

Proof. We propose to prove that*, y*, p*) is a free-disposal satiation quasi-equilibrium
of £. Following (5.17)it suffices to prove that for almost evetye A,

(x,y) € Py(x* (@) x Y(a) = p*(x) = p*(y).

Leta € A\ (UyAY) and let(x, y) € P,(x*(a)) x Y(a). We letZ be the set of strictly
increasing functions fronlW into N. We can suppose that there exiéfs ) € 72 such
that ( fsx) (@) s-converges toc and that(gyx) (a))x s-converges toy. Moreover, we can
suppose that for everylarge enough,

k
gy (@) = gh) (@) € Y(a).

To prove thatp*(x — y) > 0, it is sufficient to prove that for every large enough,
P (fow (@) = p*(gyw (@)). Following Assumption C, there exisky € N such that
for everyk > ko, fpr)(a) € Pa(x*(a)). Letk > ko and leti:= ¢ (k) and j:= (k).

We can suppose that there exigte Z such that for every,

(fi@), gj(@) € P2V (a)) x Y*¥)(a).

18 Recall that for every, S1(X") c S1(X).



V. Filipe Martins-da-Rocha/ Journal of Mathematical Economics 39 (2003) 863—-889 885

Indeed, for every > k, (fi(a), gj(a)) € X"(a) x Y"(a). Suppose that for every € T,
there exist$ € Z such that

Vv e N, x*PV () € Ri(a):= X(a) \ P, (fi(a)).

Applying Assumption C, it follows thatv-Is {x"(a)} C R;(a). But R;(a) is closed con-
vex if a € A", Applying (5.15)and(5.16), we conclude that*(a) € Ri(a), i.e., fi(a) ¢
P,(x*(a)): Contradiction. It follows that there existe8 € Z such that for every,

(fi(a). gj(@)) € Pi (x*V (@) x Y4V (a).
Thus applying (i) of Fact 5.3, we obtain that, for every

PV (fia) — gj(a@) = 0.

Since(p"), w*-converges te*, it follows that p*(fi(a)) = p*(g;(a)). O
We consider now the case of ordered but possibly non-convex preference relations.

Claim 5.7. If & satisfiesAssumptions C.3(iilpnd A, then a free-disposal satiation quasi-
equilibrium exists

Proof. Following notations introduced in the proofloémma 2 we letH" (a) := H(a, p*,
XV, YV, P’y andH*(a) .= H(a, p*, X, Y, P). Fact 5.3 implies that for almost evetyc A,
for everyv, x"(a) € H"(a).

Claim 5.8. We assert that for everye A \ (U,A"), w-IsH"(a) C H*(a).
Proof. Indeed, leta € A\ (U,AY) andz*(a) € w-IsH"(a). Since X (a) is w-closed,
7*(a) € w-IsX"(a) C X(a). To prove that*(a) € H*(a), it is sufficient to prove that

(z, ) € Pa(Z* (@) x Y(a) = p*(2) = p* ().

We letZ be the set of strictly increasing function frafinto N. We can suppose that there
exists(¢, ¥) € Z? such tha( fom (@)x s-converges ta and that(gy«) (@)« s-converges to
y. Moreover, we can suppose that for everarge enough,

k
gy (@) = g (@) € Y¥(a).

To prove thatp*(z — y) > 0, it is sufficient to prove that for every large enough,
P*(fom (@) = p*(gyr)(a)). Following Assumption C.3(ii), there existg € N such that
for everyk > ko, fpi)(a) € Pa(z"(a)). Considerk > ko and leti:= ¢ (k) and j := (k).
Sincez*(a) € w-Is H"(a), for eachv, there existg’ € H"(a) such that*(a) € w-Is{z"}.
We assert that there exisise Z, such that for every,

(fi@), gj(@) € P2V (z*W) x YV (a).

Indeed, for every > k, (fi(a), gj(a)) € X"(a) x Y"(a). Suppose that for every € T,
there exis8 € Z such that

vv e N, 220 ¢ Ri(a).
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Applying Assumption C.3(ii), it follows thatv-Is{z"} C R;(a) and thenz*(a) € R;(a),
i.e., fi(a) ¢ P,(z*(a)): contradiction. It follows that there existse Z, such that for every
v, (fi(@). gj(@) € P (20 x Y40 (a).

Thus applying (i) of Fact 5.3, we obtain that, for everlarge enough,

PV (fi(a) — gj(@) = 0.

Since(p”), w*-converges tQ*, it follows that p*( fi(a)) > p*(g;(a)). O
We proved inLemma 2that H* is graph measurable. With Assumption A we get that
/x*(a) di(a) e/ COH™(a) du(a) +/ H*(a)du(a) = / H*(a) du(a).
A AP2 Anha A

It follows that there exists an integrable selectioof H* such that(, x = [, x*, i.e.,
(x, ¥*, p*) is a free-disposal satiation quasi-equilibriuméof d

The proof ofLemma 1is a direct consequence Gfaims 5.6 and 5.7 O
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Appendix A. Mathematical auxiliary results
A.1. Integration of correspondences

We consider(A, A, n) a finite complete positive measure space ébdd) a complete
separable metric space.
Following Aumann (1969)graph measurable correspondences have measurable selections.

Proposition A.1. ConsiderF a graph measurable correspondence frairinto D with
non-empty values'hen there exists a sequeneg), of measurable selections &% such
that for everyu € A, (z,(a)), is dense inF(a).

If F: A — L is a correspondence from into L, the set of integrable selections
of F is denoted bys1(F). We denote byFs, the following (possibly empty) sefs :=
[y Fl@du(a):={velL:3xe SHFv= [, x@du@}

Proposition A.2. ConsiderF : A — IL a graph measurable correspondente Fy is
non-emptywe letG : A — L be the correspondence defined by

Va € A, G(a):= s-cl[COF(a) + A(Fs)].
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If Fx is non-empty and closed convex theég = F5, and for everyp € I, if there exists
an integrable selectiog* of G such thatfora.ez € A, p(g*(a)) = supp(G(a)), thenthere
exists an integrable selectiofi* of F satisfying for a.ea € A, p(f*(a)) = supp(F(a))

andf, f*=[,¢"

Proof. Following Theorem I11.40 irCastaing and Valadier (197 Zne correspondencgis
graph measurable arf; C Gyx. Moreover ifp € I’ then for every: € A, supp(G(a)) =
supp(F(a)) + supp(A(Fy)). Note that, sinced (Fy) is a cone containing zero,

supp(A(Fx)) € {0, oo}.

Suppose now thaFy is closed convex and that there exist& Gy such thatv ¢ Fy.
SinceFsy is closed convex, by a separation argument there epigtd.” with p # 0 such
that p(v) > supp(Fx). It follows that supp(A(Fx)) = 0 and following Proposition® in
Hildenbrand (197Q)

supp(Fx) = [ASUPP(F(a))dM(a) = /ASUDP(G(a)) du(a) = supp(Gx).

Thus p(v) > supp(Gyx) and this contradicts the fact thate Gyx. The second part of
Proposition A.2s a direct consequence of the previous result. O

Theorem A.l. SupposeF is an integrably bounded correspondeneéth non-empty
w-compact and convex valuds ("), is a sequence of integrable selectionsFyfthen
there exist an increasing functiah: N — N and f* € S1(F) an integrable selection of
F, such that

/ f*(@) du(a) = lim / 120 (a) dua),
A n A
and
fora.e.a e A™  f*(a) € COw-Is{ " (a)}

foralla e AP2  f*(a) € w-Is{f*™ ()},

whereA™@is the non-atomic partafd, A, 1) andAP2is the purely atomic partafd, A, w).

Proof. For each:, we letv":= [, f” du. Following Corollary 2.6 irDiestel et al. (1993)
and Theorem 15 (p. 422) ibunford and Schwartz (1968he sequenc@™),, is relatively
compact. Applying Lemma 6.6 iRodczeck (19979r Corollary 4.4 inBalder and Hess
(1995) we get the desired result. Note that a more general result is givéarinelis
(1988) O

For more precisions about measurability and integration of correspondences, we refer to
papersvannelis (1991a,b)

19 This latter result is stated in terms &f -valued correspondences. However, as can be seen from its proof, it
generalizes directly to the context of a separable Banach space.
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A.2. Separation df)-convex sets

Let(IL, 7) be a topological vector space. A gets calledQ-convex if for every, y € G,
foreveryr € [0,1]NQ, tx+ (1 — 1)y € G. TheQ-convex hull of a se is the smallest
Q-convex set containing. We present hereafter a result of decentralization f@ra@nvex
set.

Proposition A.3. Let (L, t) be a topological vector space ar@ be aQ-convex subset
with a c-interior point and such thad ¢ G. Then there exists a non-zero continuous linear
functionalp € (L, t)’ such that

Vx € G, p(x) = 0.

Proof. The interior intG of G is a non-empty an@-convex subset df.. Letx € G, for
eachh € [0,1]NQ, Ax + (1 — Mu € intG, if u € intG. It follows that

intG c G cclintG.

Since intG is t-open, it is in fact convex. Now & intG and we can apply a Convex
Separation Theorem to provide the existence of a non-zero continuous linear functional
p € (L, )’ such that for every € intG, p(x) > 0. With a limit argument, we prove that

for everyx € G, p(x) > 0. O
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