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Abstract

The purpose of this paper is to provide an existence result of equilibria for economies with a
measure space of agents, a non-trivial production sector and an infinite dimensional commodity
space. The commodity space is modeled by an ordered separable Banach space whose positive cone
has a non-empty interior. Thediscretizationapproach proposed in this paper, allows us to extend
the existence results in Khan and Yannelis [Equilibrium in markets with a continuum of agents and
commodities. In: Khan, M.A., Yannelis, N.C. (Eds.), Equilibrium Theory in Infinite Dimensional
Spaces. Springer, Berlin, 1991] and Podczeck [Economic Theory 9 (1997) 585] to economies with
a non-trivial production sector and with possibly non-ordered but convex preferences as well as
partially ordered (possibly incomplete) but non-convex preferences.
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1. Introduction

For economies with a measure space of agents and an ordered separable1 Banach com-
modity space, there exist many Walrasian equilibria existence results for exchange economies
with ordered preference relations. InKhan and Yannelis (1991), the preference relations are

E-mail address:victor.martins-da-rocha@univ-paris1.fr (V. Filipe Martins-da-Rocha).
1 In Tourky and Yannelis (2001), they proved that equilibria existence results inKhan and Yannelis (1991)and

Rustichini and Yannelis (1991)do not extend to non-separable commodity spaces.
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ordered and convex. InAumann (1966), Hildenbrand (1970)and Rustichini and Yannelis
(1991) or inPodczeck (1997), the preference relations are ordered but non-convex.

In both papersKhan and Yannelis (1991)andPodczeck (1997), the Gale-Nikaido–Debreu
lemma is applied to the excess demand correspondence. This approach does not cover
non-ordered preference relations. Thediscretizationapproach proposed in this paper, al-
lows us to extend the existence results inKhan and Yannelis (1991)andPodczeck (1997)
to economies with a non-trivial production sector and with possibly non-ordered but con-
vex preference relations as well as partially ordered (possibly incomplete) but non-convex
preference relations.

Thediscretizationapproach consists of considering an economy with a measure space of
agents as thelimit of a sequence of economies with a finite, but larger and larger, set of agents.
Applying the measurability properties of the different characteristics of the economy (initial
endowments, consumption sets, production sets and preference relations), we construct an
increasing sequence of finite partitions of the measure space. To each partition we define
a subordinated simpleeconomy. Eachsimpleeconomy will be identified as an economy
with a finite set of agents. Then we apply a classical Edgeworth equilibria existence result
(for which we do not need to suppose that preference relations are ordered) for economies
with a finite set of agents, e.g. inFlorenzano (1990). By a separation argument we obtain a
sequence of allocations and prices, which will converge to a Walrasian quasi-equilibrium
for the original economy.

The paper is organized as follows. InSection 2we set out the main definitions and
notations. InSection 3we define the model of large square economies, we introduce the
concepts of equilibria, we give the list of assumptions that economies will be required
to satisfy and finally, we present the existence result (Theorem 3.1). Section 4is devoted
to the mathematicaldiscretizationof measurable correspondences. The proof of the main
theorem (Theorem 3.1) is then given inSection 5. The last section is devoted to mathematical
auxiliary results.

2. Notations and definitions

Consider(E, τ) a topological vector space. IfX ⊂ E is a subset, then theτ-interior ofX is
denoted byτ-intX, theτ-closure ofX is denoted byτ-clX. The convex hull ofX is denoted
by coX and theτ-closed convex hull ofX is denoted byτ-coX. We letA(X) = {v ∈ L :
X + {v} ⊂ X} be the asymptotic cone ofX. If (Cn)n is a sequence of subsets ofE, the
τ-sequential upper limitof (Cn)n, is denoted byτ-lsCn and is the set of all cluster point of
the sequence(Cn)n, i.e.x belongs toτ-lsCn if there exists a sequence(xn)n in E satisfying

x = τ-lim
n

xn and xn ∈ Cϕ(n)

whereϕ :N→ N is an increasing application.
Let(L, ‖·‖,�)be an ordered separable Banach space.2 The topology induced by the norm

is denoted bys (strong). Thes-dual ofL, i.e., the space ofs-continuous linear functionals

2 That is,(L, ‖ · ‖) is a separable Banach space and there exists a pointed (C ∩ −C = {0}) closed convex cone
C ⊂ L such that is the order induced byC, i.e.x y wheneverx− y ∈ C.
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on L, is denoted byL′. The natural dual pairing〈L′,L〉 is defined by〈p, x〉 := p(x), for
every (p, x) ∈ L′ × L. The weak topologyσ(L,L′) is denoted byw and the weak star
topologyσ(L′,L) is denoted byw∗. The spaceL is thus endowed with two topologiess
andw. Following Podczeck (1997), the Borelσ-algebra of(L, w) and of(L, s) coincide
and is denoted byB(L). The positive cone ofL is denoted byL+ := {x ∈ L : x � 0}. We
write L′+ for the set{p ∈ L′ :∀x ∈ L+p(x) � 0}. If x ∈ L thenx > 0 meansx � 0 and
x �= 0. If p ∈ L′ thenp > 0 meansp � 0 andp �= 0. If X is a subset ofL andp belongs
to L′, then sup{p(x) :x ∈ X} is denoted by supp(x).

We consider(A,A, µ) a finite complete measure space, i.e.A is a set,A is aσ-algebra of
subsets ofA andµ is a finite measure onA. The measure space(A,A, µ) is complete ifA
contains allµ-negligible3 subsets ofA. A functionf fromA to L is measurableif for each
B ∈ B(L), f−1(B) := {a ∈ A :f(a) ∈ B} ∈ A. A functionf from A to L is Bochner mea-
surableif there exists a sequence of simple functions(fn)n pointwises-converging tof , i.e.,

∀a ∈ A, lim
n
‖fn(a)− f(a)‖ = 0.

Since(L, ‖ · ‖) is separable then following Theorem III.36 inCastaing and Valadier (1977),
f is measurable if and only iff is Bochner measurable. A measurable functionf from A

to L is Bochner integrableif the real-valued function‖f(·)‖ : a �→ ‖f(a)‖ is integrable.
Following Diestel and Uhl (1977), a measurable functionf is Bochner integrable if and
only if there exists a sequence of simple functions(fn)n such that

lim
n

∫
A

‖fn(a)− f(a)‖dµ(a) = 0.

For eachE ∈ A, the integral off overE is defined by∫
E

f(a)dµ(a) := lim
n

∫
E

fn(a)dµ(a).

Let (D, d) be a separable metric space. A correspondence (or a multifunction)F :A �
D is graph measurableif {(a, x) ∈ A × D : x ∈ F(a)} belongs toA ⊗ B(D). A function
f : A → D is a measurable selectionof F if f is measurable and if, for almost every
a ∈ A, f(a) ∈ F(a). If f is a measurable function fromA toD, then we denote by{f(·)} the
correspondence defined bya �→ {f(a)}. Following Theorem III.30 inCastaing and Valadier
(1977), the functionf is measurable if and only if{f(·)} is graph measurable. The set of
measurable selections ofF is denoted byS(F). WhenD ⊂ L, the set of Bochner integrable
selections ofF is denoted byS1(F) and we denote byF� the following (possibly empty)
setF� := ∫

A
F(a)dµ(a) := {v ∈ D :∃x ∈ S1(F), v = ∫

A
x(a)dµ(a)}. The correspondence

F is said to beintegrably boundedif there exists an integrable functionh from A to R+
such that for a.e.a ∈ A, for everyx ∈ F(a), ‖x‖ � h(a).

Let X be a space andP ⊂ X × X be a binary relation onX. The relationP is ir-
reflexive if (x, x) /∈ P , for everyx ∈ X. The relationP is transitive if [(x, y) ∈ P and
(y, z) ∈ P ] implies (x, z) ∈ P , for every (x, y, z) ∈ X3. The relationP is negatively
transitive if [(x, y) /∈ P and(y, z) /∈ P ] implies (x, z) /∈ P , for every(x, y, z) ∈ X3. The

3 A setN is µ-negligible if there existsE ∈ A such thatN ⊂ E andµ(E) = 0.
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relationP is a partial order it is irreflexive and transitive. The relationP is an order if it
is irreflexive, transitive and negatively transitive. WhenP is an order, it is usually denoted
by � andX2 \ P is denoted by�. Note that whenP is an order, then� is transitive,
reflexive (x � x for everyx ∈ X) and complete (for every(x, y) ∈ X2 eitherx � y

or y � x).

3. The model and the result

3.1. The model

We consider an ordered separable Banach space(L, ‖ · ‖,�) such that the positive cone
L+ := {x ∈ L : x � 0} is closed and has a non-emptys-interior. Moreover, we consider a
complete finite measure space(A,A, µ), a Bochner integrable functione fromA to L, two
correspondencesXandY fromA intoL and a correspondence of preference relationsP inX,
i.e.,P is a correspondence fromA intoL×L such that for everya ∈ A,P(a) ⊂ X(a)×X(a)

andP(a) is an irreflexive relation onX(a).
An economyE is a list

E = ((A,A, µ), 〈L′,L〉, (X, Y, P, e)).

The commodity space is represented byL. The natural dual pairing〈L′,L〉 is interpreted
as theprice-commoditypairing.

The set of agents (or consumers) is represented byA, the setA represents the set of
admissible coalitions, and the numberµ(E) represents the fraction of consumers which are
in the coalitionE ∈ A.
For each agenta ∈ A, the consumption set is represented byX(a) ⊂ L and the preference
relation byP(a) ⊂ X(a) × X(a). We define the correspondence4 Pa : X(a) � X(a) by
Pa(x) = {x′ ∈ X(a) : (x, x′) ∈ P(a)}. In particular, ifx ∈ X(a) is a consumption bundle,
Pa(x) is the set of consumption bundles strictly preferred tox by the agenta. The set of
consumption allocations (or plans) of the economy is the setS1(X) of Bochner integrable
selections ofX. The aggregate consumption setX� is defined by

X� :=
∫
A

X(a)dµ(a) :=
{
v ∈ L :∃x ∈ S1(X), v =

∫
A

x(a)dµ(a)

}
.

The initial endowment of the consumera ∈ A is represented by the commodity bundle
e(a) ∈ L. We denote byω := ∫

A
e(a)dµ(a) the aggregate initial endowment. The produc-

tion possibilities available to the consumera ∈ A are represented by the setY(a) ⊂ L.
The set of production allocations (or plans) of the economy is the setS1(Y) of Bochner
integrable selections ofY . The aggregate production setY� is defined by

Y� :=
∫
A

Y(a)dµ(a) :=
{
u ∈ L :∃y ∈ S1(Y), u =

∫
A

y(a)dµ(a)

}
.

4 Note that the binary relationP(a) coincide with the graph of the correspondencePa.
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3.2. The equilibrium concepts

We present hereafter different concepts of (quasi-)equilibrium: Walrasian, free-disposal
and competitive equilibrium.

Definition 3.1. A Walrasian equilibriumof an economyE is an element(x∗, y∗, p∗) of
S1(X)× S1(Y)× L′ such thatp∗ �= 0 and satisfying the following properties.

(a) For almost everya ∈ A,

p∗(x∗(a)) = p∗(e(a))+ p∗(y∗(a))

and

x ∈ Pa(x
∗(a))⇒ p∗(x) > p∗(x∗(a)).

(b) For almost everya ∈ A,

y ∈ Y(a)⇒ p∗(y) � p∗(y∗(a)).

(c)
∫
A
x∗(a)dµ(a) = ∫

A
e(a)dµ(a)+ ∫

A
y∗(a)dµ(a).

An element(x∗, y∗, p∗) ∈ S1(X) × S1(Y) × L′ with p∗ �= 0 is a Walrasian quasi-
equilibriumof an economyE if the conditions (b) and (c) together with

(a′) for almost everya ∈ A,

p∗(x∗(a)) = p∗(e(a))+ p∗(y∗(a))

and

x ∈ Pa(x
∗(a))⇒ p∗(x) � p∗(x∗(a)),

are satisfied.

FollowingDebreu (1982), we introduce the concept of free-disposal equilibria.

Definition 3.2. A free-disposal equilibriumof an economyE is an element(x∗, y∗, p∗) ∈
S1(X) × S1(Y) × L′ such thatp∗ > 0 and which satisfies conditions (a) and (b) together
with

(c′)
∫
A
x∗(a)dµ(a) �

∫
A
e(a)dµ(a)+ ∫

A
y∗(a)dµ(a).

An element(x∗, y∗, p∗) ∈ S1(X) × S1(Y) × L′ with p∗ > 0 is a free-disposal quasi-
equilibriumof an economyE if the conditions (a′), (b) and (c′) are satisfied.

A (free-disposal) Walrasian equilibrium of a production economyE is clearly a (resp. free-
disposal) Walrasian quasi-equilibrium ofE. We provide in the following remark, a classi-
cal condition onE under which a (free-disposal) Walrasian quasi-equilibrium is in fact a
(resp. free-disposal) Walrasian equilibrium.
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Remark 3.1. Each (free-disposal) Walrasian quasi-equilibrium(x∗, y∗, p∗) of an economy
E, is a (resp. free-disposal) Walrasian equilibrium, if we assume that, for almost every agent
a ∈ A, X(a) is convex, the strict-preferred setPa(x

∗(a)) is s-open inX(a) and

inf p∗(X(a)) < p∗(e(a))+ supp∗(Y(a)). (3.1)

In particular, ifp∗ > 0 then the condition (3.1) is automatically valid if for almost every
agenta ∈ A,

({e(a)} + Y(a)−X(a)) ∩ s-int L+ �= ∅.

A Walrasian equilibrium (quasi-equilibrium) of a production economyE is clearly a
free-disposal equilibrium (resp. quasi-equilibrium) ofE. We provide in the following remark,
a classical condition onE under which a free-disposal equilibrium (quasi-equilibrium) is in
fact an equilibrium (resp. quasi-equilibrium).

Remark 3.2. If the aggregate production setY� is free-disposal, i.e.,Y� − L+ ⊂ Y�,
then each free-disposal equilibrium (quasi-equilibrium) is in fact a Walrasian (resp. quasi-
equilibrium) equilibrium.

Remark 3.3. We can find in the literature a third concept of equilibrium. InKhan
and Yannelis (1991)andRustichini and Yannelis (1991), (x∗, y∗, p∗) with p∗ > 0, is a
competitive equilibriumof E if it satisfies conditions (b), (c′) together with the following
condition:

(a′′) For almost everya ∈ A,

p∗(x∗(a)) � p∗(e(a))+ p∗(y∗(a))

and

x ∈ Pa(x
∗(a))⇒ p∗(x) > p∗(e(a))+ p∗(y∗(a)).

The free-disposal property on the aggregate production set is no more sufficient to prove
that a competitive equilibrium is in fact a Walrasian equilibrium. However, under a suitable
local non-satiationproperty and together with the free-disposal property on the aggregate
production set, we can prove that a competitive equilibrium is in fact a Walrasian equilib-
rium. Note moreover that if(x∗, y∗, p∗) is a free-disposal equilibrium then the value of the
excess of demand is zero, i.e.,p∗(

∫
A
y∗(a)dµ(a)+ ω − ∫

A
x∗(a)dµ(a)) = 0. This is not

automatically the case if(x∗, y∗, p∗) is a competitive equilibrium.

The model of production economies defined above encompasses the model of aprivate
ownership economypresented inHildenbrand (1970). In a private ownership economy

E = ((A,A, µ), 〈L′,L〉, (X, P, e), (Yj, θj)j∈J ),

the production sector is represented by a finite setJ of firms with production sets(Yj)j∈J ,
where for everyj ∈ J , Yj ⊂ L. The profit made by the firmj ∈ J is distributed among the
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consumers following a share functionθj : A → R+. The share functions are supposed to
be integrable and to satisfy for eachj ∈ J ,

∫
A
θj(a)dµ(a) = 1. If we let for eacha ∈ A,

Y(a) :=
∑
j∈J

θj(a)coYj

then we define an economyE′ := ((A,A, µ), 〈L′,L〉, (X, Y, P, e)). If the production sector
of the private ownership economy satisfies

∑
j∈J Yj is closed and convex, then for every

p ∈ L′ and for almost everya ∈ A,
∫
A

Y(a)dµ(a) =
∑
j∈J

Yj and supp(Y(a)) =
∑
j∈J

θj(a)supp(Yj).

It follows that we can apply an equilibria existence result corresponding to the economyE′,
to provide a result corresponding to the private ownership economyE.

3.3. The assumptions

We present the list of assumptions that the economyE will be required to satisfy. On the
consumption side we consider both non-ordered but convex preference relations (Assump-
tion C.3(i)) and partially ordered (possibly incomplete) but non-convex preference relations
(Assumption C.3(ii)).

Assumption C.1 (continuity). For almost every agenta ∈ A, the consumption setX(a) is
closed convex andPa is continuous, i.e., for each bundlex ∈ X(a), Pa(x) is s-open inX(a)

andP−1
a (x) := {y ∈ X(a) :y ∈ Pa(x)} is w-open inX(a).

Assumption C.2 (atomic part). Ifa belongs to an atom5 of (A,A, µ) then the relationP(a)
is convex, i.e., for each bundlex ∈ X(a), x /∈ coPa(x).

Assumption C.3 (non-atomic part). One of the two following properties is satisfied:

(i) For almost everya on the non-atomic part of(A,A, µ), the preference relationP(a) is
convex andX(a) \ P−1

a (x) is convex.
(ii) For almost everya on the non-atomic part of(A,A, µ), the preference relationP(a) is

a partial order onX(a).

Remark 3.4. WhenX(a) \ P−1
a (x) is supposed to be convex, the setP−1

a (x) is w-open in
X(a) if and only if it is s-open inX(a).

Remark 3.5. Note that ifP(a) is partially ordered, then assuming that for everyx ∈ X(a),
X(a) \ P−1

a (x) is convex, implies that for everyx ∈ X(a), x /∈ coPa(x). In particular,

5 An elementE ∈ A is an atom of(A,A, µ) if µ(E) �= 0 and [B ∈ A andB ⊂ E] implies µ(B) = 0 or
µ(E \ B) = 0.
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Assumptions C.1, C.2 and C.3(i) are automatically valid under Assumptions A1–A4 in
Podczeck (2001)and under Assumptions 3.1 and 3.2 inKhan and Yannelis (1991).

Remark 3.6. Following the notations ofSection 2, when preference relations are ordered,
we have

X(a) \ P−1
a (x) = {y ∈ X(a)|y �a x}.

If {y ∈ X(a) : y �a x} is supposed to be convex then the relationP(a) is automatically
convex. In particular, Assumptions C.1, C.2 and C.3(ii) are implied by Assumptions E1–E3
and B1–B2 inPodczeck (1997), by Assumptions a2 and a3 inRustichini and Yannelis
(1991)and by Assumptions 3.1 and 3.2 inKhan and Yannelis (1991). In these three papers,
preference relations are supposed to be ordered, but in Assumption C.3(ii), preference
relations are only required to be partially ordered.

We say that two agentsa andb are equivalent, denoted bya ∼ b, if µ({a}) = µ({b}),
X(a) = X(b), e(a) = e(b) andP(a) = P(b). Two equivalent agents play the same role in
the economy. The binary relation∼ is an equivalence. Each equivalence class represents a
typeof consumers. We letAna be the non-atomic part ofA. To deal with partially ordered
but non-convex preference relations, we need the following assumption.

Assumption (A). If F : Ana � L is a graph measurable and integrably bounded corre-
spondence with non-empty andw-compact values, such that for every(b, c) ∈ Ana, b ∼ c

impliesF(b) = F(c), then
∫
Ana

coF(a)dµ(a) =
∫
Ana

F(a)dµ(a).

Remark 3.7. Following Theorem 3.1 inPodczeck (1997), Assumption A is implied by
Assumptions A1–A2 inPodczeck (1997)which formulate that there are many agents of
(almost) every type. If there exists a fixedw-compact setK such that for everya ∈ Ana,
F(a) ⊂ K then Assumption A1 (many more agents than commodities) inRustichini and
Yannelis (1991)implies Assumption A. For several refinements of the Lyapunov Theorem,
we refer toTourky and Yannelis (2001).

Assumption (C) (consumption side). Assumptions C.1 and C.2 are valid and either As-
sumptions C.3(ii) and A are valid or Assumption C.3 (i) is valid.

Assumption (M) (measurability). The correspondencesX andY are graph measurable,
i.e.,

{(a, x) ∈ A× L :x ∈ X(a)} ∈ A⊗ B(L)

and

{(a, y) ∈ A× L :y ∈ Y(a)} ∈ A⊗ B(L),
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and the correspondence of preference relationsP is lower graph measurable, i.e.,

∀y ∈ S(X), {(a, x) ∈ A× L :(x, y(a)) ∈ P(a)} ∈ A⊗ B(L).

Remark 3.8. In Khan and Yannelis (1991)andPodczeck (1997), the correspondencesX
andP are supposed to be graph measurable. It can be proved (seeMartins-da-Rocha, 2002)
that in the framework ofKhan and Yannelis (1991)andPodczeck (1997), graph measura-
bility of the correspondence of preference relations implies lower graph measurability, in
particular Assumption M is valid.

Remark 3.9. In Podczeck (2001), it is assumed that preference relations are Aumann mea-
surable. It can be proved (seeMartins-da-Rocha, 2002) that in the framework ofPodczeck
(2001), Aumann measurability of the correspondence of preference relations implies lower
graph measurability, in particular Assumption M is valid.

Assumption (P) (production side). The aggregate production setY� and the setY� − L+
are closed convex subsets ofL.

Assumption (S) (survival). For almost everya ∈ A,

0 ∈ ({e(a)} +X(a)− Y(a)) �= ∅.

Remark 3.10. Assumption S means that we have compatibility between individual needs
and resources. InKhan and Yannelis (1991)andPodczeck (2001), the initial endowment
is supposed to lie in the consumption set, i.e., for almost everya ∈ A, e(a) ∈ X(a) and
inaction is a possible production plan.

Assumption (B) (bounded). The correspondenceX is integrably bounded withw-compact
values.

Remark 3.11. We can find Assumption B inKhan and Yannelis (1991), Podczeck
(1997, 2001)and Rustichini and Yannelis (1991). In order to applyTheorem A.1, this
assumption is the natural framework to deal with general Banach commodity spaces.
Note that under Assumptions M, S and B, the aggregate consumption setX� is non-
empty.

Assumption (LNS) (local non-satiation). For almost every agenta ∈ A, for every bundle
x ∈ X(a):

(i) if x is a satiation point, i.e.Pa(x) = ∅, then for everyy ∈ Y(a), x � e(a)+ y;
(ii) if x is not a satiation point, thenx ∈ coPa(x).

Remark 3.12. In Podczeck (1997, 2001), economies in consideration are free-disposal
exchange economies, i.e., for everya ∈ A, Y(a) = −L+. It follows that Assumptions
B4–B5 inPodczeck (1997)and C5–C6 inPodczeck (2001)imply Assumption LNS.
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Assumption (SS) (strong survival). For almost every agenta ∈ A,

({e(a)} + Y(a)−X(a)) ∩ s−int L+ �= ∅.

Remark 3.13. In the framework of exchange economies (Y(a) = {0} or Y(a) = −L+),
Podczeck (1997, 2001)andKhan and Yannelis (1991)supposed that for almost every agent
a ∈ A, [{e(a)} − X(a)] ∩ s−int L+ �= ∅. This obviously implies that Assumption SS is
valid.

Assumption (FD) (free disposal). The aggregate production set is free-disposal, i.e.,
Y� − L+ ⊂ Y�.

3.4. Existence result

We shall now state the main result of the paper.

Theorem 3.1. If E is an economy satisfyingAssumptionsC, M, P, S, B and LNS, then
there exists a free-disposal quasi-equilibrium(x∗, y∗, p∗). If moreoverE satisfiesSS, then
(x∗, y∗, p∗) is a free-disposal Walrasian equilibrium. If moreoverE satisfiesSS and FD,
then(x∗, y∗, p∗) is a Walrasian equilibrium.

Remark 3.14. Under Assumption LNS,Theorem 3.1extends Theorem 5.1 inPodczeck
(1997), Theorem 6.1 inRustichini and Yannelis (1991)and the main theorem inKhan
and Yannelis (1991), to economies with a non-trivial production sector. Moreover, for
economies with convex preference relationsTheorem 3.1extends Theorem 5.1 inPodczeck
(1997) and the main theorem inKhan and Yannelis (1991), to economies with non-
ordered preference relations. And for economies with possibly non-convex preference
relations,Theorem 3.1extends Theorem 5.1 inPodczeck (1997)and Theorem 6.1 in
Rustichini and Yannelis (1991)to economies with possibly incomplete preference
relations.

Although Khan–Yannelis and Rustichini–Yannelis succeed in proving the existence of
a competitive equilibrium without Assumption LNS, but they assume that for somes-
compact subset of the commodity space, sayK, the endowment of each agent belongs
to K.

Remark 3.15. If we let Ỹ :A � L be the correspondence defined for everya ∈ A by

Ỹ (a) := cl(coY(a)+ A(Y�)),

then following Theorem III.40 inCastaing and Valadier (1977), Assumption M is valid.
Moreover, followingProposition A.2, Ỹ satisfies Assumption P andE has a free-disposal
satiation quasi-equilibrium if and only if

Ẽ = ((A,A, µ), 〈L,L′〉, (X, Ỹ , P, e))

has a free-disposal satiation quasi-equilibrium.
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It follows that in Theorem 3.1, we can replace Assumptions S and SS by the weaker
Assumptions S′ and SS′ defined by

Assumption (S′). For almost everya ∈ A,

e(a) ∈ X(a)− Ỹ (a).

Assumption (SS′). For almost every agenta ∈ A,

({e(a)} + Ỹ (a)−X(a)) ∩ s−int L+ �= ∅.

4. Discretization of measurable correspondences

4.1. Notations and definitions

We consider(A,A, µ) a complete finite measure space and(D, d) a separable metric
space.

Definition 4.1. A partition σ = (Ai)i∈I of A is ameasurable partitionif I is a finite set
and for everyi ∈ I, the setAi is non-empty and belongs toA. A finite subsetAσ of
A is subordinated to the partitionσ if there exists a family(ai)i∈I ∈

∏
i∈I Ai such that

Aσ = {ai : i ∈ I}.

Given a couple(σ,Aσ), whereσ = (Ai)i∈I is a measurable partition ofA, andAσ =
{ai : i ∈ I} is a finite set subordinated toσ, we considerφ(σ,Aσ) the mapping which maps
each measurable functionf to a simple measurable functionφ(σ,Aσ)(f), defined by

φ(σ,Aσ)(f) :=
∑
i∈I

f(ai)χAi,

whereχAi is the characteristic6 function associated withAi. Note that the sum is well
defined since there exists at most one non-zero factor.

Definition 4.2. A function s : A → D is calleda simple function subordinatedto f if
there exists a couple(σ,Aσ), whereσ is a measurable partition ofA, andAσ is a finite set
subordinated toσ, such thats = φ(σ,Aσ)(f).

Given a couple(σ,Aσ), whereσ = (Ai)i∈I is a measurable partition ofA, andAσ =
{ai : i ∈ I} is a finite set subordinated toσ, we considerψ(σ,Aσ), the mapping which
maps each measurable correspondenceF :A � D to a simple measurable correspondence
ψ(σ,Aσ)(F), defined by

ψ(σ,Aσ)(F) :=
∑
i∈I

F(ai)χAi .

6 That is, for everya ∈ A, χAi
(a) = 1 if a ∈ Ai andχAi

(a) = 0 elsewhere.



874 V. Filipe Martins-da-Rocha / Journal of Mathematical Economics 39 (2003) 863–889

Definition 4.3. A correspondenceS : A → D is called asimple correspondence subor-
dinatedto a correspondenceF if there exists a couple(σ,Aσ), whereσ is a measurable
partition ofA, andAσ is a finite set subordinated toσ, such thatS = ψ(σ,Aσ)(F).

Remark 4.1. If f is a function fromA to D, let {f(·)} be the correspondence fromA into
D, defined for everya ∈ A by {f(·)}(a) := {f(a)}. We check that

ψ(σ,Aσ)({f(·)}) = {φ(σ,Aσ)(f)}.

The space of all non-empty subsets ofD is denoted byP∗(D). We letτWd
be the Wisjman

topology onP∗(D), i.e., the weak topology onP∗(D) generated by the family of distance
functions(d(x, ·))x∈D.

4.2. Approximation of measurable correspondences

Hereafter we assert that for a countable set of graph measurable correspondences, there
exists a sequence of measurable partitionsapproximatingeach correspondence. The proof
of the following theorem is given inMartins-da-Rocha (2002).

Theorem 4.1. We consider(A,A, µ) a complete finite measure space and(D, d) a sep-
arable metric space. LetF be a countable set of graph measurable correspondences with
non-empty values fromA intoD and letG be a finite set of integrable functions fromA into
R. There exists a sequence(σn)n of finer and finer measurable partitionsσn = (An

i )i∈In of
A, satisfying the following properties.

(a) Let(An)n be a sequence of finite setsAn subordinated to the measurable partitionσn and
letF ∈ F. For everyn ∈ N, we define the simple correspondenceFn := ψ(σn,An)(F)

subordinated toF .Then for eacha ∈ A, the setF(a) is the Wijsman limit of the sequence
(Fn(a))n, i.e.

∀a ∈ A ∀x ∈ A, lim
n

d(x, Fn(a)) = d(x, F(a)).

(b) There exists a sequence(An)n of finite setsAn subordinated to the measurable par-
tition σn, such that for eachn, if we letfn := φ(σn,An)(f ) be the simple function
subordinated to eachf ∈ G, then

∀f ∈ G ∀a ∈ A, |fn(a)| � 1+
∑
g∈G
|g(a)|.

In particular, for eachf ∈ G,

lim
n→∞

∫
A

|fn(a)− f(a)|dµ(a) = 0.

Remark 4.2. The property (a) implies in particular that, if(xn)n is a sequence ofD,
d-converging tox ∈ D, then

∀a ∈ A, lim
n

d(xn, Fn(a)) = d(x, F(a)).
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It follows that if F is non-empty closed valued, then property (a) implies that

∀a ∈ A, lsFn(a) ⊂ F(a).

Moreover, ifF = {f(·)}, wheref :A→ D is a function, then ifa ∈ A, F(a) = {f(a)} is
the Wisjman limit of the sequence7 (Fn(a) = {fn(a)})n if and only if f(a) is thed-limit
of the sequence(f n(a))n.

5. Proof of main theorem

5.1. Free-disposal satiation equilibria

Hereafter, we introduce an auxiliary concept of quasi-equilibrium.

Definition 5.1. An element(x∗, y∗, p∗) ∈ S1(X)× S1(Y)×L′ is afree-disposal satiation
quasi-equilibriumof the economyE if p∗ > 0 and if the following properties are satisfied.

(i) For almost everya ∈ A,

(x, y) ∈ Pa(x
∗(a))× Y(a)⇒ p∗(x) � p∗(y)+ p∗(e(a)).

(ii)
∫
A
x∗(a)dµ(a) �

∫
A
e(a)dµ(a)+ ∫

A
y∗(a)dµ(a).

If (x∗, y∗, p∗) is a free-disposal quasi-equilibrium of an economyE, then(x∗, y∗, p∗) is
clearly a free-disposal satiation quasi-equilibrium ofE.

Remark 5.1. Under Assumption LNS, each free-disposal satiation quasi-equilibrium
(x∗, y∗, p∗) of an economyE, is in fact a free-disposal quasi-equilibrium ofE.

Following Remarks 3.1, 3.2 and 5.1, to prove the existence of a Walrasian equilibrium,
it is sufficient (under Assumptions C, SS, LNS and FD) to prove the following lemma.

Lemma 1. If E is an economy satisfyingAssumptionsC, M, P, S andB, then a free-disposal
satiation quasi-equilibrium ofE exists.

5.2. Existence of free-disposal satiation equilibria for polytope economies

We propose first to prove an auxiliary existence result (the followingLemma 2) for
polytopeeconomies, i.e., economies satisfying the following Assumption K. This first step
allows us to isolate the crucial aspect of the new approach, which is the approximation of
economies with a measure space of agents (measurable correspondences) by a sequence
of economies with a finite set of agents (resp. simple correspondences). Moreover, the
framework ofpolytopeeconomies allows us to deal with non-ordered but convex preference
relations, as well as, ordered but non-convex preference relations.

7 Wherefn := ϕ(σn,An)(f ).
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Assumption (K). There exist a finite setK = {0, . . . , r} and Bochner integrable functions
(xk)k∈K, (yk)k∈K from A to L such that for almost every agenta ∈ A,

X(a) = co{x0(a), . . . , xr(a)} and Y(a) = co{y0(a), . . . , yr(a)}.

Lemma 2. If E is an economy satisfyingAssumptions C, M, P, SandK, then a free-disposal
satiation quasi-equilibrium ofE exists.

Proof. We can suppose (considering a translation if necessary) that for almost everya ∈ A,
e(a) = 0. FollowingProposition A.1, there exist a sequence(fk)k of measurable selections
of X and a sequence(gk)k of measurable selections ofY such that for everya ∈ A,

X(a) = s-cl {fk(a) :k ∈ N} and Y(a) = s-cl {gk(a) :k ∈ N}.
Assumption S implies that the correspondenceX ∩ Y defined bya �→ X(a) ∩ Y(a) has
non-empty values. SinceX andY are graph measurable, then we can check thatX ∩ Y is
graph measurable. It follows (appealing once again toProposition A.1) that without any loss
of generality, we can suppose for everya ∈ A, x0(a) = f0(a) = g0(a) = y0(a). We let for
everyk,Rk :A � L be the correspondence defined byRk(a) := {x ∈ X(a) :fk(a) /∈ Pa(x)}.
Then for almost every agenta ∈ A, for everyx ∈ L,

d(x,X(a)) = 0⇔ x ∈ X(a) and d(x, Y(a)) = 0⇔ x ∈ Y(a),

and for everyx ∈ X(a),

∀k ∈ N, d(x, Rk(a)) > 0⇔ fk(a) ∈ Pa(x).

Following Assumption K, we let for eacha ∈ A,

h(a) := max{‖xk(a)‖, ‖yk(a)‖ :0 � k � r}.
It follows that the correspondencesXandY are integrably bounded byh. ApplyingTheorem
4.1andRemark 4.1to

F := {{fk(·)}, {gk(·)}, {xj(·)}, {yj(·)}, X, Y,Rk :(k, j) ∈ N×K}
andG := {h(·)}, there exists a sequence(σn)n of measurable partitionsσn = (An

i )i∈Sn

of (A,A), and a sequence(An)n of finite setsAn = {ani : i ∈ Sn} subordinated to the
measurable partitionσn, satisfying the following properties.

Fact 5.1. For everya ∈ A,

(i) for everyn, hn(a) � 1+ h(a) and for every(k, j) ∈ N×K,

s-lim
n
(f n

k (a), g
n
k(a)) = (fk(a), gk(a))

and

s-lim
n
(xnj (a), y

n
j (a)) = (xj(a), yj(a));
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(ii) for every sequence(xn)n of L, s-converging tox ∈ L,

lim
n

d(xn,Xn(a)) = d(x,X(a)), lim
n

d(xn, Yn(a)) = d(x, Y(a))

and

lim
n

d(xn, Rn
k(a)) = d(x, Rk(a)),

whered is the distance function associated to the norm‖ · ‖.

We let, for eacha ∈ A,

K1(a) := co
⋃
k∈K
{xnk(a) :n ∈ N} and K2(a) := co

⋃
k∈K
{ynk (a) :n ∈ N}.

A direct consequence of Fact 5.1 together with Theorem III.40 inCastaing and Valadier
(1977)is the following result.

Fact 5.2. The correspondencesK1 andK2 are graph measurable, integrably bounded with
non-empty, s-compact and convex values.

We construct now a sequence of economies with a finite set of consumers. We distin-
guish two cases. In the first case (Claim 5.1) preference relations are possibly non-ordered
but convex, in the second case (Claim 5.2) preference relations are ordered but possibly
non-convex.

Claim 5.1. If E satisfiesAssumption C.3(i),then a free-disposal satiation quasi-equilibrium
exists.

Proof. For everyn, we denote byGn the followingfiniteproduction economy:

Gn = (〈L′,L〉, (Xn
i , Y

n
i − L+, Pn

i )i∈In)

whereIn := {i ∈ Sn : µ(An
i ) �= 0} is the finite set of consumers. The consumption set of

consumeri ∈ In is given byXn
i := µ(An

i )X(ani )
8 and the production set is given byYn

i −L+,
whereYn

i := µ(An
i )Y(a

n
i ). The preference relations are given byPn

i := µ(An
i )P(a

n
i ).

We assert that the economyGn satisfies all the assumptions9 of Proposition 4 inFlorenzano
(1990)and thus there exist(xni )i∈In ∈

∏
i∈In Xn

i and(yni )i∈In ∈
∏

i∈In Yn
i such that

∑
i x

n
i �∑

i y
n
i and 0/∈ G, where10

G := Q-co
⋃
i∈In

(coPn
i (x

n
i )− coYn

i − L+).

Applying Proposition A.3there existspn ∈ L′ \ {0} satisfyingpn > 0 and such that for
everyi ∈ In, if (x, y) ∈ Pn

i (x
n
i )× Yn

i thenpn(x− y) � 0.

8 The consumerani representsthe coalitionAn
i .

9 In particular Assumption S is valid, since for almost everya ∈ A, f0(a) = g0(a).
10 We refer toProposition A.3for the definition of theQ-convex hull.
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Let, for everyn,

xn :=
∑
i∈In

xni

µ(An
i )

χAn
i

and yn :=
∑
i∈In

yni

µ(An
i )

χAn
i
.

For eachn, we have defined integrable selectionsxn ∈ S1(Xn) andyn ∈ S1(Yn) satisfying∫
A

xn(a)dµ(a) �
∫
A

yn(a)dµ(a) (5.1)

∀a ∈
⋃
i∈In

An
i , (x, y) ∈ Pn

a (x
n(a))× Yn(a)⇒ pn(x) � pn(y), (5.2)

whereXn andYn are defined by Fact 5.1 and similarlyPn :=∑
i P(a

n
i )χAn

i
. Note that for

almost everya ∈ A, for eachn, xn(a) ∈ K1(a) andyn(a) ∈ K2(a). Applying Fact 5.2 and
Theorem A.1,11 there exist Bochner integrable functionsx∗, y∗ :A→ L such that∫

A

x∗ dµ = lim
n

∫
A

xn dµ and
∫
A

y∗ dµ = lim
n

∫
A

yn dµ, (5.3)

for almost everya ∈ Ana,

x∗(a) ∈ cos-ls {xn(a)} and y∗(a) ∈ cos-ls {yn(a)}, (5.4)

for everya ∈ Apa,

x∗(a) ∈ s-ls {xn(a)} and y∗(a) ∈ s-ls {yn(a)}, (5.5)

whereAna is the non-atomic part of(A,A, µ)andApa is the purely atomic part of(A,A, µ).
Since, for everyn, pn ∈ L′+ \ {0}, we may suppose12 that(pn)n w

∗-converging top∗, with
p∗ ∈ L′+ \ {0}.

We propose to prove that(x∗, y∗, p∗) is a free-disposal satiation quasi-equilibrium ofE.
We let

A0 :=
⋃
n

⋃
i∈Sn\In

An
i ,

then we easily check thatµ(A0) = 0. Let nowA′ be a measurable subset ofA \ A0 with
µ(A\A′) = 0 and such that allalmost every whereassumptions and properties are satisfied
for everya ∈ A′.

To prove condition (ii) ofDefinition 5.1, we need to prove that(x∗, y∗) ∈ S1(X)×S1(Y).
Let a ∈ A′, by construction, we have that for everyn, xn(a) ∈ Xn(a), and thus, for every
n, d(xn(a),Xn(a)) = 0. We apply Fact 5.1 to conclude that for everyξ ∈ s-ls {xn(a)},
d(ξ,X(a)) = 0. It follows thats-ls {xn(a)} ⊂ X(a). Sincex∗(a) ∈ cos-ls {xn(a)}, applying
Assumption K, we get thatx∗(a) ∈ X(a). We prove similarly thaty∗ ∈ S1(Y). Following
(5.1) and (5.3), condition (ii) is thus valid.

11 Since the correspondencesK1 andK2 haves-compact values, we have thatw-ls= s-ls.
12 Indeed, since there existsu ∈ L+ andV a‖ ·‖-open symmetric neighborhood of zero such that{u}+V ⊂ L+,

then the sequence(pn)n may be chosen such that, for eachn ∈ N, for eachv ∈ V , |pn(v)| pn(u) = 1. Now since
(L, ‖ · ‖) is separable, applying Alaoglu Compactness Theorem, we can extract aw∗-converging subsequence.
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We will now prove that(x∗, y∗, p∗) satisfies condition (i) ofDefinition 5.1. Let a ∈ A′
and(x, y) ∈ Pa(x

∗(a)) × Y(a). We letI be the set of strictly increasing functions fromN
into N. We can suppose that there exists(φ, ψ) ∈ I2 such that(fφ(k)(a))k s-converges tox
and that(gψ(k)(a))k s-converges toy. To prove thatp∗(x− y) � 0, it is sufficient to prove
that for everyk large enough,p∗(fφ(k)(a)) � p∗(gψ(k)(a)). Following Assumption C, there
exist k0 ∈ N such that for everyk � k0, fφ(k)(a) ∈ Pa(x

∗(a)). Considerk ≥ k0 and let
i := φ(k) andj := ψ(k).

We assert that there existsα ∈ I such that

∀n ∈ N,
(
f
α(n)
i (a), g

α(n)
j (a)

)
∈ Pα(n)

a

(
xα(n)(a)

)
× Yα(n)(a). (5.6)

Indeed, by definition ofYn(a), we have thatgnj (a) ∈ Yn(a). Suppose now that for every
α ∈ I, there existβ ∈ I such that

∀n ∈ N, d
(
xα◦β(n)(a), Rα◦β(n)

i (a)
)
= 0.

Applying (ii) of Fact 5.1, it follows that for everyξ ∈ s-ls {xn(a)}, d(ξ, Ri(a)) = 0, i.e.,
ξ ∈ Ri(a). Following Assumption C,Ri(a) is closed convex ifa belongs to the non-atomic
part of(A,A, µ). Applying (5.4)and(5.5), we conclude thatx∗(a) ∈ Ri(a), i.e.,fi(a) /∈
Pa(x

∗(a)):contradiction.
Applying (5.6) together with(5.2), we obtain that, for everyn,

pα(n)(f
α(n)
i (a)− g

α(n)
j (a)) � 0.

Applying Fact 5.1, we have that(f n
i (a) − gnj (a))n∈N s-converges tofi(a) − gj(a). Since

(pn)n w∗-converges top∗, we get thatp∗(fi(a)) � p∗(gj(a)). �

We consider now the case of ordered but possibly non-convex preference relations.

Claim 5.2. If E satisfiesAssumptions C.3(ii)andA, then a free-disposal satiation quasi-
equilibrium exists.

Proof. Following Theorem 2 inSondermann (1980), for almost everya ∈ A, there exists an
s-upper semi-continuous utility functionua representing the binary relationP(a) onX(a),
in the sense that

(x, x′) ∈ P(a)⇒ ua(x) < ua(x
′).

We denote byAna⊂ A the non-atomic part of(A,A, µ) andApa the purely atomic part of
(A,A, µ). We let, for almost everya ∈ Ana,

P̃(a) := {(x, x′) ∈ X(a)×X(a) :ua(x) < ua(x
′)}

and for eacha ∈ Apa, P̃(a):= P(a). Note that for almost everya ∈ A, P(a) ⊂ P̃(a). We
define the correspondenceR̃ from A into L × L by, for almost everya ∈ Ana, R̃(a) :=
{(z, z′) ∈ X(a)×X(a) :ua(z) � ua(z

′)}; and for everya ∈ Apa, R̃(a) := R(a).
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In order to use the samelimit argument as inClaim 5.1, we defineconvexpreference
relations. This construction is borrowed fromHildenbrand (1974)(problem 7, p. 94). We
defineP̂ :A � L× L by, for everya in the non-atomic partAna of (A,A, µ),

P̂(a) := {(x, y) ∈ X(a)×X(a) :x /∈ coR̃a(y)}
whereR̃a(y) := {x ∈ X(a) :ua(x) � ua(y)};13and we define for everya in the purely atomic
partApa, P̂(a) = P(a). For almost everya ∈ A, for eachy ∈ X(a), X(a) \ P̂−1

a (y) :=
coR̃a(y) is closed convex.

Claim 5.3. For almost everya ∈ A, P̂(a) satisfies the following convex property,

∀x ∈ X(a), x /∈ coP̂a(x).

Proof. If a ∈ Apa, the claim is trivial, let thusa ∈ Ana. Suppose that there existsx ∈ X(a)

such thatx ∈ coP̂a(x). Then there exists a finite setK such thatx = ∑
k∈K xk, where

xk ∈ P̂a(x). The binary relatioñR(a) is a complete pre-order, then there existsk0 ∈ K, such
that for everyk ∈ K, xk ∈ R̃a(xk0). It follows thatx ∈ coR̃a(xk0), in particular this leads
to xk0 /∈ P̂a(x), a contradiction. �

We are now ready to construct the sequence of economies with a finite set of consumers.
Following the notations of Fact 5.1, for eachn, we denote byEn the followingfiniteeconomy
En = (〈L′,L〉, (Xn

i , Ŷ
n
i , P̂

n
i )i∈In), whereIn := {i ∈ Sn : µ(An

i ) �= 0} is the finite set of
consumers. The consumption set of the consumeri ∈ In is given byXn

i := µ(An
i )X(ani )

and the production set is given byŶ n
i − L+, whereŶ n

i := µ(An
i )[Y(a

n
i )+ (1/n){u}] andu

is any vector ins-int L+. The preference relations are given byP̂n
i := µ(An

i )P̂(ani ).
We assert that the economyEn satisfies all the assumptions of Proposition 4 inFlorenzano

(1990). It follows that there exists(xni )i∈In ∈
∏

i∈In Xn
i , (yni )i∈In ∈

∏
i∈In Ŷn

i such that∑
i∈In xni �

∑
i∈In yni and such that 0/∈ G, where14

G := Q-co
⋃
i∈In

(coP̂n
i (x

n
i )− coŶ n

i − L+).

Applying Proposition A.3there existspn ∈ L′ \ {0} satisfyingpn > 0,15 and such that for
everyi ∈ In, if (x, y) ∈ P̂n

i (x
n
i )× Ŷ n

i thenpn(x− y) � 0.
We let for everyn,

xn :=
∑
i∈In

xni

µ(An
i )

χAn
i

and yn :=
∑
i∈In

(
yni

µ(An
i )
− 1

n
u

)
χAn

i
.

13 Sinceua is s-upper semi-continuous, theñRa(y) is s-closed. Moreover, if̃Ra(y) is convex, then̂P(a) = P̃(a).
14 We refer toProposition A.3for the definition of theQ-convex hull.
15 Sinceu is ans-interior point ofL+, there existsV a symmetrics-open neighborhood of 0 such that{u}+V ⊂
L+. In particular, without any loss of generality, we can choose the pricepn such that for eachv ∈ V , |pn(v)|
pn(u) = 1.
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For eachn, we have defined integrable selectionsxn ∈ S1(Xn) andyn ∈ S1(Yn) satisfying∫
A

xn(a)dµ(a) �
∫
A

yn(a)dµ(a)+ 1

n
u (5.7)

∀a ∈
⋃
i∈In

An
i , (x, y) ∈ P̂n

a (x
n(a))× Yn(a)⇒ pn(x) > pn(y), (5.8)

whereXn, Yn are defined by Fact 5.1 and similarlyQn := ∑
i Q(ani )χAn

i
, whereQ ∈

{P, P̃, P̂, R̃}. Since, for everyn, supv∈V |pn(v)| � pn(u) = 1, there exists a subsequence
of (pn)n w∗-converging top∗, with p∗(u) = 1.

For eachp ∈ L′, for each correspondencesZ,W :A→ L and for eacha ∈ A, we let

B(a, p,Z,W) = {z ∈ Z(a) :p(z) � supp(W(a))}
and

β(a, p,Z,W) = {z ∈ Z(a) :p(z) < supp(W(a))}.
We letB(a) := B(a, p∗, X, Y) andβ(a) = β(a, p∗, X, Y). Moreover, for eachn ∈ N, we
let Bn(a) := B(a, pn,Xn, Yn) andβn(a) := β(a, pn,Xn, Yn).
Now we define the correspondenceD, G andH by, for each correspondence of preference
relationsQ in Z and for eacha ∈ A,

D(a, p,Z,W,Q) := {z ∈ B(a, p,Z,W) :Qa(z) ∩ B(a, p,Z,W) = ∅},
G(a, p,Z,W,Q) := {z ∈ Z(a) :Qa(z) ∩ B(a, p,Z,W) = ∅},

and

H(a, p,Z,W,Q) := {z ∈ Z(a) :Qa(z) ∩ β(a, p,Z,W) = ∅}.
We defineD∗(a,Q) := D(a, p∗, X, Y,Q), G∗(a,Q) := G(A,p∗, X, Y,Q) and

H∗(a,Q) := H(a, p∗, X, Y,Q). Moreover, for eachn ∈ N, we defineDn(a,Q) :=
D(a, Pn,Xn, Yn,Q), GN(a,Q) := G(a, pn,Xn, Yn,Q) and HN(a,Q) := H(a, pn,

Xn, Yn,Q).

Claim 5.4. For eachn ∈ N and for eacha ∈ Ana,

Gn(a, P̂n) ⊂ coGn(a, P̃n) ⊂ coGn(a, Pn) (5.9)

and for everya ∈ Apa, Gn(a, P̂n) = Gn(a, P̃n) = Gn(a, Pn).

Proof. Indeed, ifa ∈ Apa thenP̂n(a) = P̃n(a) = Pn(a) and the result follows. Now let
a ∈ Anaandx ∈ Gn(a, P̂n). The setXn(a) iss-compact, the strict-preference relationP̃n(a)

is irreflexive, transitive withs-open lower sections. Hence, following a classical maximal
argument, the setDn(a, P̃n) is non-empty. Let̃x ∈ Dn(a, P̃n), thenx̃ ∈ B(a, pn) and since
x ∈ Gn(a, P̂n), we have that(x, x̃) /∈ P̂n(a), i.e.,x ∈ coR̃n

a(x̃). SinceR̃n(a) is transitive
and complete, it is straightforward to verify thatR̃n

a(x̃) ⊂ Gn(a, P̃n) ⊂ Gn(a, Pn), and
thusx ∈ coGn(a, Pn). �
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Since(xn, pn) satisfies(5.8), it follows16 that for a.e.a ∈ A, xn(a) ∈ Gn(a, P̂n). Apply-
ing the previous claim, it follows thatxn(a) ∈ coGn(a). Note that for almost everya ∈ A,
for eachn, xn(a) ∈ K1(a) andyn(a) ∈ K2(a). Applying Fact 5.2 andTheorem A.1, there
exist Bochner integrable functionsx∗, y∗ :A→ L such that∫

A

x∗ dµ = lim
n

∫
A

xn dµ and
∫
A

y∗ dµ = lim
n

∫
A

yn dµ, (5.10)

for almost everya ∈ Ana,

x∗(a) ∈ cos-ls {xn(a)} and y∗(a) ∈ cos-ls {yn(a)}, (5.11)

for everya ∈ Apa,

x∗(a) ∈ s-ls {xn(a)} and y∗(a) ∈ s-ls {yn(a)}. (5.12)

Following verbatim the arguments ofClaim 5.1,

s-lsXn(a) ⊂ X(a) and s-lsYn(a) ⊂ Y(a).

With Assumption K,coX(a) = X(a) andcoY(a) = Y(a), it follows thatx∗ ∈ S1(X) and
y∗ ∈ S1(Y). Applying (5.7),∫

A

x∗(a)dµ(a) �
∫
A

y∗(a)dµ(a). (5.13)

Once again, following verbatim the arguments ofClaim 5.1, we prove that for almost every
a ∈ A,

s-ls(Hn(a, Pn)) ⊂ H∗(a, P).

Applying Carathéodory Convexity Theorem, for almost everya ∈ A,

s-ls(coHn(a, Pn)) ⊂ cos-ls(Hn(a, Pn)) ⊂ coH∗(a, P).

It follows17 that for almost everya ∈ A,

a ∈ Ana⇒ x∗(a) ∈ coH∗(a, P) and a ∈ Apa⇒ x∗(a) ∈ H∗(a, P).

Claim 5.5. The correspondenceH∗(·, P) :a �→ H∗(a, P) is graph measurable.

Proof. In this proof, we denoteβ(a) := β(a, p∗, P)andH(a) := H∗(a, P). Indeed letAβ :=
{a ∈ A : β(a) �= ∅}. SinceX andY are graph measurable, thenβ is graph measurable and
Aβ ∈ A. Applying Proposition A.1, there exists a sequence(hk)k of measurable selections
of β|Aβ satisfying, for everya ∈ Aβ, (hk(a))k is dense inβ(a). We let, for eachk, zk(a) =
hk(a) if a ∈ Aβ andzk(a) = X0(a) elsewhere. It follows that

∀a ∈ Aβ,H(a) =
⋂
ν

Rzν(a) and ∀a ∈ A \ Aβ,H(a) = X(a),

16 This is the reason why we introduceu in the construction of̂Yn
i .

17 Recall that for everyn, xn(a) ∈ coGn(a, Pn) ⊂ coHn(a, Pn). ButHn(a, Pn) is as-closed subset ofXn(a) =
co{xn0(a), . . . , xnr (a)}, hencecoHn(a, Pn) = coHn(a, Pn).
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whereRzν(a) = {x ∈ X(a) : (x, zν) /∈ P(a)}. Applying AssumptionM, for eachk, Rzk is
graph measurable andH is then graph measurable. �

We apply now Assumption A,

∫
A

x∗(a)dµ(a) ∈
∫
Ana

co [H∗(a, P)] dµ(a)+
∫
Apa

H∗(a, P)dµ(a)

=
∫
A

H∗(a, P)dµ(a).

That is, there exists̄x ∈ S1(X) such that for almost every agenta ∈ A, x̄(a) belongs to
H∗(a, P) and following (5.13),

∫
A
x̄ �

∫
A
e(a)dµ(a) + ∫

A
y∗(a)dµ(a). It follows that

(x̄, y∗, p∗) is a free-disposal satiation quasi-equilibrium of the economyE. �

The proof ofLemma 2is a direct consequence ofClaims 5.1 and 5.2. �

5.3. Proof ofLemma 1

We now applyLemma 2to proveLemma 1.

Proof. Let E be an economy satisfying Assumptions C, M, P, S and B. FollowingRemark
3.15andProposition A.2, we can suppose without any loss of generality that for almost
everya ∈ A, Y(a) is a closed convex subset ofL and that for almost everya ∈ A, e(a) = 0.
From Assumption S, the correspondenceX∩Y defined bya �→ X(a)∩Y(a) has non-empty
values. Applying Theorem III.40 inCastaing and Valadier (1977), the correspondenceX∩Y
is graph measurable. Now applyingProposition A.1, there existf0 ∈ S1(X) andg0 ∈ S1(Y)

such that for almost everya ∈ A,f0(a) = g0(a). Once again applyingProposition A.1, there
exist a sequence(fk)k of measurable selections ofX and a sequence(gk)k of measurable
selections ofY such that for everya ∈ A,

X(a) = s-cl {fk(a) : k ∈ N} and Y(a) = s-cl {gk(a) : k ∈ N}.

For eachν ∈ N, let Eν = ((A,A, µ), 〈L′,L〉, (Xν, Yν, Pν)), where for each agenta ∈ A,
the consumption and production sets are defined by

Xν(a) := co{f0(a), . . . , fν(a)} ⊂ X(a)

and

Yν(a) := co{g0(a), g
ν
1(a), . . . , g

ν
ν(a)} ⊂ Y(a),

where for each 1� k � ν, gνk(a) = gk(a) if ‖gk(a)‖ � ν andgνk(a) = g0(a) either.
The preference relations are defined byPν(a) := P(a) ∩ (Xν(a)×Xν(a)). For eachν, the
economyEν satisfies Assumptions C, M, P, S and K. ApplyingLemma 2, we obtain the
following fact.
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Fact 5.3. For eachν, there exists18 (xν, pν) ∈ S1(Xν) × L′+ with pν �= 0 and such that
there existsAν ∈ A, with µ(A \ Aν) = 0 and satisfying the following properties.

(i) For everya ∈ Aν, (x, y) ∈ Pν
a (x

ν(a))× Yν(a)⇒ pν(x− y) � 0.
(ii)

∫
A
xν(a)dµ(a) ∈ Y� − L+.

Applying Theorem A.1, there exists a Bochner integrable functionx∗ ∈ S1(X) such that∫
A

x∗(a)dµ(a) = limν

∫
A

xν(a)dµ(a). (5.14)

for a.e. a ∈ Ana, x∗(a) ∈ cow-ls {xν(a)} (5.15)

for all a ∈ Apa, x∗(a) ∈ w-ls {xν(a)}. (5.16)

For everyν, pν > 0. Sinces-int L+ �= ∅, we can choose the sequence(pν)ν such that(pν)ν
w∗-converges top∗, withp∗ > 0. Following Assumption P,(5.14)and (ii) of Fact 5.3, there
existsy∗ ∈ S1(Y) such that∫

A

x∗(a)dµ(a) �
∫
A

y∗(a)dµ(a). (5.17)

For the rest of the proof, we distinguish two cases. In the first case (Claim 5.6) preference
relations are possibly non-ordered but convex, in the second case (Claim 5.7) preference
relations are ordered but possibly non-convex.

Claim 5.6. If E satisfiesAssumption C.3(i),then a free-disposal satiation quasi-equilibrium
exists.

Proof. We propose to prove that(x∗, y∗, p∗) is a free-disposal satiation quasi-equilibrium
of E. Following(5.17)it suffices to prove that for almost everya ∈ A,

(x, y) ∈ Pa(x
∗(a))× Y(a)⇒ p∗(x) � p∗(y).

Let a ∈ A \ (∪νAν) and let(x, y) ∈ Pa(x
∗(a)) × Y(a). We let I be the set of strictly

increasing functions fromN into N. We can suppose that there exists(φ, ψ) ∈ I2 such
that (fφ(k)(a))k s-converges tox and that(gψ(k)(a))k s-converges toy. Moreover, we can
suppose that for everyk large enough,

gψ(k)(a) = g
ψ(k)

ψ(k)(a) ∈ Yk(a).

To prove thatp∗(x − y) � 0, it is sufficient to prove that for everyk large enough,
p∗(fφ(k)(a)) � p∗(gψ(k)(a)). Following Assumption C, there existsk0 ∈ N such that
for everyk � k0, fφ(k)(a) ∈ Pa(x

∗(a)). Let k � k0 and leti := φ(k) andj := ψ(k).
We can suppose that there existsα ∈ I such that for everyν,

(fi(a), gj(a)) ∈ Pα(ν)
a (xα(ν)(a))× Yα(ν)(a).

18 Recall that for everyν, S1(Xν) ⊂ S1(X).
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Indeed, for everyν � k, (fi(a), gj(a)) ∈ Xν(a) × Yν(a). Suppose that for everyα ∈ I,
there existsβ ∈ I such that

∀ν ∈ N, xα◦β(ν)(a) ∈ Ri(a) := X(a) \ P−1
a (fi(a)).

Applying Assumption C, it follows thatw-ls {xν(a)} ⊂ Ri(a). But Ri(a) is closed con-
vex if a ∈ Ana. Applying (5.15)and(5.16), we conclude thatx∗(a) ∈ Ri(a), i.e.,fi(a) /∈
Pa(x

∗(a)): Contradiction. It follows that there existsα ∈ I such that for everyν,
(fi(a), gj(a)) ∈ P

α(ν)
a (xα(ν)(a))× Yα(ν)(a).

Thus applying (i) of Fact 5.3, we obtain that, for everyν,

pα(ν)(fi(a)− gj(a)) � 0.

Since(pν)ν w∗-converges top∗, it follows thatp∗(fi(a)) � p∗(gj(a)). �

We consider now the case of ordered but possibly non-convex preference relations.

Claim 5.7. If E satisfiesAssumptions C.3(ii)andA, then a free-disposal satiation quasi-
equilibrium exists.

Proof. Following notations introduced in the proof ofLemma 2, we letHν(a) := H(a, pν,

Xν, Yν, Pν) andH∗(a) := H(a, p∗, X, Y, P). Fact 5.3 implies that for almost everya ∈ A,
for everyν, xν(a) ∈ Hν(a).

Claim 5.8. We assert that for everya ∈ A \ (∪νAν), w-lsHν(a) ⊂ H∗(a).

Proof. Indeed, leta ∈ A \ (∪nAν) and z∗(a) ∈ w-lsHν(a). SinceX(a) is w-closed,
z∗(a) ∈ w-lsXν(a) ⊂ X(a). To prove thatz∗(a) ∈ H∗(a), it is sufficient to prove that

(z, y) ∈ Pa(z
∗(a))× Y(a)⇒ p∗(z) � p∗(y).

We letI be the set of strictly increasing function fromN into N. We can suppose that there
exists(φ, ψ) ∈ I2 such that(fφ(k)(a))k s-converges toz and that(gψ(k)(a))k s-converges to
y. Moreover, we can suppose that for everyk large enough,

gψ(k)(a) = g
ψ(k)

ψ(k)(a) ∈ Yk(a).

To prove thatp∗(z − y) � 0, it is sufficient to prove that for everyk large enough,
p∗(fφ(k)(a)) � p∗(gψ(k)(a)). Following Assumption C.3(ii), there existsk0 ∈ N such that
for everyk � k0, fφ(k)(a) ∈ Pa(z

∗(a)). Considerk � k0 and leti := φ(k) andj := ψ(k).
Sincez∗(a) ∈ w-lsHν(a), for eachν, there existszν ∈ Hν(a) such thatz∗(a) ∈ w-ls {zν}.
We assert that there existsα ∈ I, such that for everyν,

(fi(a), gj(a)) ∈ Pα(ν)
a (zα(ν))× Yα(ν)(a).

Indeed, for everyν � k, (fi(a), gj(a)) ∈ Xν(a) × Yν(a). Suppose that for everyα ∈ I,
there existβ ∈ I such that

∀ν ∈ N, zα◦β(ν) ∈ Ri(a).
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Applying Assumption C.3(ii), it follows thatw-ls {zν} ⊂ Ri(a) and thenz∗(a) ∈ Ri(a),
i.e.,fi(a) /∈ Pa(z

∗(a)): contradiction. It follows that there existsα ∈ I, such that for every
ν, (fi(a), gj(a)) ∈ P

α(ν)
a (zα(ν))× Yα(ν)(a).

Thus applying (i) of Fact 5.3, we obtain that, for everyν large enough,

pα(ν)(fi(a)− gj(a)) � 0.

Since(pν)ν w∗-converges top∗, it follows thatp∗(fi(a)) � p∗(gj(a)). �

We proved inLemma 2thatH∗ is graph measurable. With Assumption A we get that∫
A

x∗(a)dµ(a) ∈
∫
Apa

coH∗(a)dµ(a)+
∫
Ana

H∗(a)dµ(a) =
∫
A

H∗(a)dµ(a).

It follows that there exists an integrable selectionx̄ of H∗ such that
∫
A
x̄ = ∫

A
x∗, i.e.,

(x̄, y∗, p∗) is a free-disposal satiation quasi-equilibrium ofE. �

The proof ofLemma 1is a direct consequence ofClaims 5.6 and 5.7. �
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Appendix A. Mathematical auxiliary results

A.1. Integration of correspondences

We consider(A,A, µ) a finite complete positive measure space and(D, d) a complete
separable metric space.
FollowingAumann (1969), graph measurable correspondences have measurable selections.

Proposition A.1. ConsiderF a graph measurable correspondence fromA into D with
non-empty values. Then there exists a sequence(zn)n of measurable selections ofF , such
that for everya ∈ A, (zn(a))n is dense inF(a).

If F : A � L is a correspondence fromA into L, the set of integrable selections
of F is denoted byS1(F). We denote byF� the following (possibly empty) setF� :=∫
A
F(a)dµ(a) := {v ∈ L : ∃x ∈ S1(F) v = ∫

A
x(a)dµ(a)}.

Proposition A.2. ConsiderF : A � L a graph measurable correspondence. If FΣ is
non-empty, we letG : A � L be the correspondence defined by

∀a ∈ A,G(a) := s-cl[coF(a)+ A(F�)].
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If FΣ is non-empty and closed convex thenGΣ = FΣ, and for everyp ∈ L′, if there exists
an integrable selectiong∗ ofG such that for a.e.a ∈ A,p(g∗(a)) = supp(G(a)), then there
exists an integrable selectionf ∗ of F satisfying for a.e.a ∈ A, p(f ∗(a)) = supp(F(a))
and

∫
A
f ∗ = ∫

A
g∗.

Proof. Following Theorem III.40 inCastaing and Valadier (1977), the correspondenceG is
graph measurable andF� ⊂ G�. Moreover ifp ∈ L′ then for everya ∈ A, supp(G(a)) =
supp(F(a))+ supp(A(F�)). Note that, sinceA(F�) is a cone containing zero,

supp(A(F�)) ∈ {0,∞}.
Suppose now thatF� is closed convex and that there existsv ∈ G� such thatv /∈ F�.
SinceF� is closed convex, by a separation argument there existsp ∈ L′ with p �= 0 such
thatp(v) > supp(F�). It follows that supp(A(F�)) = 0 and following Proposition 619 in
Hildenbrand (1970),

supp(F�) =
∫
A

supp(F(a))dµ(a) =
∫
A

supp(G(a))dµ(a) = supp(G�).

Thusp(v) > supp(G�) and this contradicts the fact thatv ∈ G�. The second part of
Proposition A.2is a direct consequence of the previous result. �

Theorem A.1. SupposeF is an integrably bounded correspondence, with non-empty,
w-compact and convex values. If (f n)n is a sequence of integrable selections ofF , then
there exist an increasing functionφ : N → N andf ∗ ∈ S1(F) an integrable selection of
F , such that∫

A

f ∗(a)dµ(a) = lim
n

∫
A

fφ(n)(a)dµ(a),

and

for a.e. a ∈ Ana, f ∗(a) ∈ cow-ls {fφ(n)(a)}
for all a ∈ Apa, f ∗(a) ∈ w-ls {fφ(n)(a)},

whereAna is the non-atomic part of(A,A, µ)andApa is the purely atomic part of(A,A, µ).

Proof. For eachn, we letvn := ∫
A
fn dµ. Following Corollary 2.6 inDiestel et al. (1993)

and Theorem 15 (p. 422) inDunford and Schwartz (1966), the sequence(vn)n is relatively
compact. Applying Lemma 6.6 inPodczeck (1997)or Corollary 4.4 inBalder and Hess
(1995), we get the desired result. Note that a more general result is given inYannelis
(1988). �

For more precisions about measurability and integration of correspondences, we refer to
papersYannelis (1991a,b).

19 This latter result is stated in terms ofRn-valued correspondences. However, as can be seen from its proof, it
generalizes directly to the context of a separable Banach space.
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A.2. Separation ofQ-convex sets

Let (L, τ) be a topological vector space. A setG is calledQ-convex if for everyx, y ∈ G,
for everyt ∈ [0,1] ∩ Q, tx+ (1− t)y ∈ G. TheQ-convex hull of a setG is the smallest
Q-convex set containingG. We present hereafter a result of decentralization for aQ-convex
set.

Proposition A.3. Let (L, τ) be a topological vector space andG be aQ-convex subset
with aτ-interior point and such that0 /∈ G. Then there exists a non-zero continuous linear
functionalp ∈ (L, τ)′ such that

∀x ∈ G,p(x) � 0.

Proof. The interior intG of G is a non-empty andQ-convex subset ofL. Let x ∈ G, for
eachλ ∈ [0,1] ∩Q, λx+ (1− λ)u ∈ intG, if u ∈ intG. It follows that

intG ⊂ G ⊂ cl intG.

Since intG is τ-open, it is in fact convex. Now 0/∈ intG and we can apply a Convex
Separation Theorem to provide the existence of a non-zero continuous linear functional
p ∈ (L, τ)′ such that for everyx ∈ intG, p(x) � 0. With a limit argument, we prove that
for everyx ∈ G, p(x) � 0. �
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