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Abstract We consider the model of a stochastic pure exchange economy with a
finite set of agents whose preferences exhibit local substitution in the sense of Hindy
and Huang (1992). In order to prove the existence of Arrow–Debreu equilibria, it is
assumed in Bank and Riedel (2001) that smooth subgradients exist (Assumption 1
in Bank and Riedel (2001)) and that they are uniformly bounded from above and
away from zero (Assumption 2 in Bank and Riedel 2001).

In this paper, we prove that the existence of smooth subgradients implies local
properness of preferences. By a slight improvement of classical existence results of
the literature, we prove that the local properness of preferences is a sufficient con-
dition for the existence of equilibria, rendering Assumption 2 in Bank and Riedel
(2001) superfluous.
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1 Introduction

Continuous trading of long lived securities allows rational agents to finance rich
varieties of consumption plans: from continuous and smooth pension plans to more
risk–loving plans that prescribe gulps in good times and pauses in bad times to even
fancier plans that might be related to all–time highs of some indices. Given all these
possibilities, one naturally asks what are the economically sensible restrictions for
preferences over these consumption plans? To what kind of state prices in the sense
of Arrow and Debreu do these preferences lead in equilibrium? More fundamen-
tally, does an equilibrium exist at all? If it exists, can it be implemented by trading
in securities?

An intriguing approach to all these questions has been put forward by Hindy
and Huang (1992) (see also Hindy, Huang, and Kreps 1992, for the deterministic
case). In addition to the usual rationality axioms for preferences, they convincingly
argue that continuity of preferences has an eminent role to play in continuous time
models. If you get your chocolate bar now or an instant from now does somehow
matter (and the younger you are the more you might suffer), but before you can
start crying, the instant has passed and you get the chocolate bar — so your overall
sufferings from the instant delay remain negligible after all. In a broader and more
adult perspective, it seems most natural to assume that a rational agent is almost
indifferent if his plans for the next year are shifted slightly by, say, a second or a
minute, or even a day. Economically, consumption of a good at one point in time
is a close substitute for consumption of the same good an instant later or earlier.
In other words, preferences exhibit local substitution in time. Hindy and Huang
(1992) thus impose the strong continuity requirement that preferences be continu-
ous with respect to small time shifts. As Hindy and Huang identify the commodity
space with the space of all finite signed random measures on the time axis, mathe-
matically, a small shift in time corresponds to a small variation with respect to the
weak topology for random measures. This approach, economically natural as it is,
has led to deep and difficult problems for General Equilibrium Theory. This paper
studies the existence problem and aims to identify the weakest assumptions on the
primitives that allow to prove existence of an equilibrium.

We consider the model of a stochastic pure exchange economy with a finite set
of agents whose preferences exhibit local substitution in the sense of Hindy and
Huang (1992) (see also Hindy, Huang, and Kreps 1992, for the case of certainty). In
the case of certainty, the problem of existence of an Arrow–Debreu equilibrium is
solved by Mas-Colell and Richard (1991) (see Aliprantis 1997, which corrects two
critical steps in the proof of Mas-Colell and Richard 1991) for norm-proper econo-
mies. The Mas-Colell–Richard theorem does not apply to the uncertain framework
since the space of norm-continuous price functionals in the Hindy–Huang model
(which consists of semimartingales with absolutely continuous compensator) is
not a lattice. The existence of an Arrow-equilibrium with a norm-continuous price
functional for norm-proper economies, is left as an open question in Hindy and
Huang (1992).

In the case with uncertainty Bank and Riedel (2001) proposed a solution. Their
approach consists on first proving the existence of a weak equilibrium in the sense
that the price functional is a bounded and optional process, which is not neces-
sarily continuous for the norm-topology introduced in Hindy and Huang (1992).



Stochastic equilibria with intertemporal substitution 103

Then, under additional assumptions on the information flow and the utility sub-
gradients, they prove that any price functional of a weak equilibrium is in fact
continuous on the consumption set (but not necessarily on the commodity space)
for the Hindy–Huang norm.

To prove the existence of a weak equilibrium, Bank and Riedel follow the
abstract Mas-Colell–Richard approach by using a disaggregated version of the
Negishi approach. However they do not assume that the economy is norm-proper,
but they assume that smooth subgradients exist for the utility functions and that
these subgradients are bounded above and away from zero on the set of feasible
allocations. Since the properness assumption is a condition on the marginal rates
of substitution, the smoothness assumption on utility functions in Bank–Riedel
seems to be related to the uniform properness assumption on preferences used in
Mas-Colell and Richard (1991). Moreover, it was proved in Araujo and Monteiro
(1989) (for topological vector lattices) and Podczeck (1996) (for more general
commodity-price pairings) that, in order to prove the existence of an equilibrium,
the uniform properness assumption on preferences can be weakened into a local
properness assumption. Regarding to these existence results, there are two ques-
tions: What is the exact relation between the existence of smooth subgradients and
the norm-properness assumption? Is it possible to prove the existence of stochastic
equilibria for economies with locally norm-proper preferences as in the classical
literature?

We prove (Propositions 3 and 5) that the existence of smooth subgradients
(Assumptions 1 and 4 in Bank and Riedel 2001) implies that preferences are locally
proper for suitable topologies. Moreover we slightly improve Mas-Colell–Rich-
ard’s existence result to prove (Theorem 2) the existence of equilibria for economies
with locally norm-proper preferences. Therefore both existence results Theorems 1
and 2 in Bank and Riedel (2001) follow from a slight improvement of the Mas-Col-
ell–Richard’s existence result. In particular the uniform boundedness assumption
on subgradients introduced in Bank and Riedel (2001, Assumption 2) is super-
fluous. We provide in the last section an example of Hindy–Huang–Kreps utility
functions that are locally proper but for which smooth subgradients may not exist.
Some proofs are referred to the Appendix.

2 The model

We consider a stochastic pure exchange economy where a finite set I of agents
live in a world of uncertainty from time 0 to time T . There is a single consumption
good available for consumption at any time t ∈ [0, T ]. Uncertainty is modelled
by a complete probability space (�,F,P). Each ω ∈ � is a state of nature which
is a complete description of one possible realization of all exogenous sources of
uncertainty from time 0 to time T . The sigma-field F is the collection of events
which are distinguishable at time T and P is a probability measure on (�,F).

The probability space (�,F,P) is endowed with a filtration F = {F(t) : t ∈
[0, T ]} which represents the time evolution of the agents’ knowledge about the
states of nature. We assume that F(0) is P-almost surely trivial and that F satisfies
the usual conditions of right-continuity and completeness.

The set of positive, increasing and right-continuous functions from [0, T ] to R+
is denoted by M+. We represent the consumption bundle of an agent by a process
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x : (ω, t) �→ x(ω, t), where x(ω, t) represents the cumulative consumption from
time 0 to time T and satisfies

(a) for each ω ∈ �, x(ω) : t �→ x(ω, t) belongs to M+,
(b) for each t ∈ [0, T ], x(t) : ω �→ x(ω, t) is F(t)-measurable and x(T ) belongs

to L1(P).

The set of (P-equivalent classes of) mappings x : � → M+ such that the process
(ω, t) �→ x(ω, t) satisfies (a) and (b) is denoted by E+ and the linear span of E+
will be denoted by E and is called the commodity space. If z belongs to E then
there exists x, y in E+ such that z = x − y. In particular z is an F-adapted process
having right-continuous and bounded variation sample paths. We can endow E
with the linear order � defined by the cone E+ in the sense that y � x if y − x
belongs to E+. If y belongs to E+ then the order interval [0, y] is defined by
[0, y] := {x ∈ E : x ∈ E+ and y − x ∈ E+}.
Remark 1 Observe that if x, y are vectors in E such that y � x then there exists
�∗ ∈ F with P�∗ = 1 and such that for each ω ∈ �∗, the function t �−→
y(ω, t)− x(ω, t) is increasing with y(ω, 0)− x(ω, 0) � 0. In particular we have
for each ω ∈ �∗,

y(ω, t) � x(ω, t) ∀t ∈ [0, T ].

IfB(T ) denotes the space of bounded functions defined on [0, T ] and B denotes
the Borelian sigma-algebra on [0, T ], then we let L∞(P, B(T )) denote the space
(up to P-indistinguishability) of all bounded and F ⊗ B-measurable processes
ψ : �× [0, T ] → R in the sense that the function

ω �→ sup
t∈[0,T ]

|ψ(ω, t)|

is essentially bounded, i.e. belongs to L∞(P). There is a natural duality 〈., .〉 on
L∞(P, B(T ))× E defined by

∀(ψ, x) ∈ L∞(P, B(T ))× E, 〈ψ, x〉 = E

∫
[0,T ]

ψ(t)dx(t).

A process is said optional if it is O-measurable where O is the sigma-field on
� × [0, T ] generated by right-continuous F-adapted processes with left-limits.
The space of bounded processes ψ ∈ L∞(P, B(T )) that are optional is denoted by
F and we denote by F+ the order dual cone, i.e.

F+ := {ψ ∈ F : 〈ψ, x〉 � 0, ∀x ∈ E+}.
If ψ ∈ F+ then ψ is called a price process. The duality product 〈ψ, x〉 is the value
of the consumption bundle x ∈ E+ under the price ψ where ψ(ω, t) is interpreted
to be the time 0 price of one unit of consumption at time t in state ω, per unit of
probability.

We prove (see Appendix A.1 for the proof) in the following proposition that the
framework of stochastic pure exchange economies with intertemporal substitution
fits the structural conditions widely used in the literature dealing with the lattice
theoretical framework (see Florenzano 2003, Section 5.3.2).
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Proposition 1 The pair 〈F,E〉 is a Riesz dual pair, i.e.

(i) 〈F,E〉 is a dual pair,1

(ii) the space E endowed with the partial order defined by E+ is a linear vector
lattice,

(iii) the space F endowed with the partial order defined by F+ is a linear vector
lattice.

Moreover if ψ• = (ψi, i ∈ I ) is a finite family in F+ then the Riesz-Kantorovich
functional Rψ• defined by

∀x ∈ E+, Rψ•(x) := sup

{∑
i∈I

〈ψi, xi〉 :
∑
i∈I

xi = x and xi ∈ E+

}

satisfies

∀x ∈ E+, Rψ•(x) = 〈supψ•, x〉
where supψ• is the bounded optional process in F defined by

∀t ∈ [0, T ], [supψ•](t) := max{ψi(t) : i ∈ I }.
In particular a bounded optional process ψ belongs to F+ if and only if for every
t ∈ [0, T ], we have ψ(t) � 0.

Definition 1 An economy E is a family E = (V •, e•) where V • = (V i, i ∈ I ) with
V i : E+ −→ R and e• = (ei, i ∈ I ) with ei ∈ E+.

For each i ∈ I , the functional V i : E+ −→ R represents the utility function
of agent i, and ei represents the cumulative income stream (initial endowment) of
agent i. We let e = ∑

i∈I e
i denote the aggregate endowment and if x ∈ E+ the

set {y ∈ E+ : V i(y) > V i(x)} is denoted by P i(x). An allocation is a vector
x• = (xi, i ∈ I ) where xi ∈ E+. It is said feasible or attainable if

∑
i∈I x

i = e.
The set of attainable allocations is denoted by A. We define hereafter the standard
notion of Arrow–Debreu equilibrium.

Definition 2 The pair (ψ, x•) of a price process ψ ∈ F+ and an allocation x• is
called an Arrow–Debreu equilibrium if

(a) the price process ψ belongs to F+ and 〈ψ, e〉 > 0,
(b) the allocation x• is feasible, and
(c) for each i ∈ I , the consumption plan xi maximizes agent i’s utility over all

consumption plans y satisfying the budget constraint 〈ψ, y〉 � 〈ψ, ei〉, i.e.

xi ∈ argmax{V i(y) : y ∈ E+ and 〈ψ, y〉 � 〈ψ, ei〉}.
Remark 2 Observe that if (ψ, x•) is an equilibrium then the budget constraints are
binding, i.e. for each i ∈ I , 〈ψ, xi〉 = 〈ψ, ei〉.

1 That is, if 〈ψ, x〉 = 0 for each x ∈ E then ψ = 0, and if 〈ψ, x〉 = 0 for each ψ ∈ F , then
x = 0.
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3 Assumptions on primitives

Since 0 � x(t) � x(T ) and x(T ) ∈ L1(P) for every x ∈ E+, the space E is a
subspace of L1(O,P ⊗ κ) where κ = λ+ δT with λ the Lebesgue measure on B.
Following Hindy and Huang (1992) (see also Hindy, Huang, and Kreps 1992) we
consider on E the restriction of the L1(O, P ⊗ κ)-norm, i.e. we consider the norm
‖.‖ defined by

∀x ∈ E, ‖x‖ = E

∫
[0,T ]

|x(t)|κ(dt) = E

∫
[0,T ]

|x(t)|dt + E|x(T )|.

It is argued in Hindy and Huang (1992) that this norm induces a topology on the
set of consumption bundles that exhibits intuitive economic properties, in partic-
ular it captures the notion that consumption at adjacent dates are almost perfect
substitutes. If (xn, n ∈ N) is a sequence in E+ norm-converging to x ∈ E+, then
there exists a subsequence (xnk , k ∈ N) and �∗ ∈ F such that P�∗ = 1 and

∀ω ∈ �∗, lim
k→+∞

∫
[0,T ]

|x(ω, t)− xnk (ω, t)|dt + |x(ω, T )− xnk (ω, T )| = 0.(1)

On the linear spanM ofM+ we may consider the weak-star topology defined by the
family of semi-norms (pf , f ∈ C) where C is the space of continuous functions
from [0, T ] to R and

pf (z) =
∫

[0,T ]
f (t)dz(t), ∀z ∈ M.

Following Hindy, Huang, and Kreps (1992, Proposition 5), (1) implies the weak-
star convergence of (xnk (ω), k ∈ N) to x(ω), for each ω ∈ �∗. The weak-star
topology restricted to M+ is metrizable by the Prohorov distance dP . Following
Bank and Riedel (2001), we let d be the distance defined on E+ by

∀(x, y) ∈ E2
+, d(x, y) = E min{dP (x, y), 1} + E|x(T )− y(T )|.

Therefore, we have the following result.

Lemma 1 If (xn, n ∈ N) is a sequence inE+ which is norm-converging to x ∈ E+,
then there exists a subsequence (xnk , k ∈ N) which is d-convergent to x.

In order to prove the existence of an Arrow–Debreu equilibrium, we consider
the following list of assumptions that an economy can satisfy.

Assumption (C) For each i ∈ I ,

(C.1) the initial endowment ei belongs to E+ and is not zero, i.e. ei > 0,
(C.2) the utility function V i : E+ −→ R is concave,
(C.3) the utility function V i is norm-upper semicontinuous on the order interval

[0, e].2

2 That is, if (xn, n ∈ N) is a sequence in [0, e] which norm-converges to x in [0, e], then

lim sup
n→∞

V i(xn) � V i(x).
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Assumption (U) For each i ∈ I , for every x ∈ E+, there exists a positive bounded
optional process ∇V i(x) ∈ F+ with

(U.1) for each j ∈ I , we have 〈∇V i(x), ej 〉 > 0,
(U.2) the vector ∇V i(x) satisfies the subgradient property

∀y ∈ E+, V i(y)− V i(x) � 〈∇V i(x), y − x〉
(U.3) this subgradient is continuous in the sense that,

∀y ∈ E+, lim
ε↓0

〈∇V i(εy + (1 − ε)x), y − x〉 = 〈∇V i(x), y − x〉.

We will prove in Subsection 4.3 that Assumption U is stronger than the usual
local properness assumption on preferences widely used in the general equilibrium
literature.

Remark 3 Let E = (V •, e•) be an economy. Preferences of agent i are said
increasing if V i(x + y) � V i(x) for every x, y in E+; strictly increasing if
V i(x + y) > V i(x) for every x, y in E+ with y = 0. Note that if E satisfies
Assumption U, then preferences of agent i are increasing; they are strictly increas-
ing if and only if ∇V i(x) is strictly positive for every x ∈ E+.

Remark 4 Let (V •, e•) be an economy satisfying Assumption U, then for each i,
j in I , the initial endowment ej is strongly desirable for agent i in the sense that

∀x ∈ E+, ∀t > 0, V i(x + tej ) > V i(x).

Remark 5 Assume that Assumption U.2 is satisfied,

(a) if preferences of agent i are strictly increasing and ej > 0 for each j ∈ J , then
Assumption U.1 is satisfied,

(b) if preferences of agent i are increasing and for each j ∈ I , there exists a
strictly positive integrable adapted process ξ j such that dej (t) = ξ j (t)dt , then
Assumption U.1 is satisfied.

The following theorem is the main result of the paper for utility functions with
smooth subgradients.

Theorem 1 If an economy E = (V •, e•) satisfies Assumptions C and U then there
exists an Arrow–Debreu equilibrium (ψ, x•) such that for each i ∈ I , there exists
λi > 0 satisfying

ψ = sup{λi∇V i(xi) : i ∈ I }.
We prove in Subsection 4.3 that Theorem 1 is a corollary of an existence result

(Corollary 1) for economies with proper preferences.

Remark 6 Theorem 1 generalizes the main result in Bank and Riedel (2001, The-
orem 1). Assumption 1 in Bank and Riedel (2001) implies Assumptions C and U.
Indeed, it is assumed in Bank and Riedel (2001) that

• utility functions V i are strictly concave: we only assume concavity,
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• utility functions V i are d-continuous on the whole set E+: we only assume
norm-upper semicontinuity on the order interval [0, e],3

• utility functions are strictly increasing: we only assume that utility functions
are increasing and that every initial endowment is strongly desirable for each
agent.

But the main improvement of this theorem is to prove that we do not need to
assume neither that subgradients are uniformly bounded from above nor that they
are uniformly bounded away from zero. More precisely, we prove that the following
assumption (Bank and Riedel 2001, Assumption 2) is superfluous:

(U.4) there exists positive optional processes b and B in L1
+(P ⊗ de) \ {0} such

that

b � ∇V i(z) � B [P ⊗ de]−a.e.

for all z ∈ [0, e].

4 Existence of equilibria under properness

To prove existence of an Arrow–Debreu equilibrium we follow the approach intro-
duced by Peleg and Yaari (1970). First we prove the existence of an Edgeworth
equilibrium x• and then we decentralize this allocation by a price process ψ to get
an Arrow–Debreu equilibrium (ψ, x•).

4.1 Existence of Edgeworth equilibria

We recall well-known properties of optimality for allocations.

Definition 3 An attainable allocation x• ∈ A is said to be:

1. an Edgeworth equilibrium if there is no 0 = λ• ∈ (Q ∩ [0, 1])I and some allo-
cation y• such that V i(yi) > V i(xi) for each i ∈ I with λi > 0 and satisfying∑

i∈I λ
iyi = ∑

i∈I λ
iei ,

2. an Aubin (or fuzzy) equilibrium if there is no 0 = λ• ∈ [0, 1]I and some allo-
cation y• such that V i(yi) > V i(xi) for each i ∈ I with λi > 0 and satisfying∑

i∈I λ
iyi = ∑

i∈I λ
iei .

The reader should observe that these concepts are "price free" in the sense that
they are intrinsic properties of the commodity space. Recall4 that if utility functions
are concave then the set of Aubin equilibria and the set of Edgeworth equilibria
coincide.

Proposition 2 If an economy satisfies Assumption C then the set of Edgeworth
equilibria is non-empty.

3 If V i is d-continuous on E+, then it is d-upper semicontinuous on E+ and then, from
Lemma 1, it is norm-upper semicontinuous on E+.

4 See Proposition 4.2.6 in Florenzano (2003).
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Proof In order to apply Theorem 3.1 in Allouch and Florenzano (2004), it is suffi-
cient to prove that the following set

V := {
v• = (vi, i ∈ I ) ∈ R

I : ∃x• ∈ A, ∀i ∈ I, V i(ei) � vi � V i(xi)
}

is a compact subset of R
I . Let (v•

n, n ∈ N) be a sequence in V , then there exists
(x•
n, n ∈ N) a sequence of attainable allocations x•

n ∈ A such that

∀n ∈ N, ∀i ∈ I, V i(ei) � vin � V i(xin). (2)

Fix i ∈ I , we claim that the sequence (vin, n ∈ N) is bounded. Observe that if
each utility function V i is increasing then V i(xin) � V i(e) which implies that the
sequence (vin, n ∈ N) is bounded. Now for the general case, assume by way of con-
tradiction that there exists a subsequence, still denoted by (vin, n ∈ N), converging
to +∞. For each n ∈ N, the vector xin belongs to [0, e]. It then follows that

sup
n∈N

∫
�×[0,T ]

|xin(ω, t)|[P ⊗ κ](dω, dt) � ‖e‖ < +∞.

Applying Komlós (1967) there exists a subsequence, still denoted by (xin, n ∈ N),
such that the sequence (yin, n ∈ N) defined by

yin = 1

n+ 1

n∑
k=0

xik

is convergent to yi ∈ L1(O,P⊗κ) for [P⊗κ]-almost every (ω, t). Therefore yi is
positive, increasing and right-continuous, i.e. yi ∈ E+. Moreover since yin belongs
to [0, e], it follows that yi belongs to [0, e]. In particular,

∀n ∈ N, |yin(ω, t)− yi(ω, t)| � 2e(ω, t) [P ⊗ λ]−a.e.

and applying the Lebesgue Dominated Convergence Theorem we get that the se-
quence (yin, n ∈ N) is norm convergent to yi . Since V i is upper semicontinuous
and concave we get

+∞ = lim sup
n→∞

1

n+ 1

n∑
k=0

vik � lim sup
n→∞

1

n+ 1

n∑
k=0

V i(xik)

� lim sup
n→∞

V i(yin) � V i(yi),

which yields a contradiction. Passing to a subsequence if necessary we get that the
sequence (vin, n ∈ N) is convergent to some vi ∈ R satisfying

vi = lim sup
n→∞

1

n+ 1

n∑
k=0

vin � lim sup
n→∞

1

n+ 1

n∑
k=0

V i(xik)

� lim sup
n→∞

V i(yin) � V i(yi).

Moreover the allocation y• = (yi, i ∈ I ) belongs to A. It then follows that the
vector (vi, i ∈ I ) belongs to V . ��
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4.2 Decentralizing Edgeworth equilibria

It is straightforward to check that everyArrow–Debreu equilibrium is an Edgeworth
equilibrium. The main difficulty consists in proving the converse. We propose to
follow the classical literature5 dealing with infinite dimensional commodity-price
spaces by introducing the concept of proper economies.

Definition 4 (τ -properness) Let τ be a Hausdorff locally convex linear topology
on E. An economy (V •, e•) is τ -proper if for every Edgeworth equilibrium x•, for
each i ∈ I , there is a set P̂ i(xi) such that

(i) the vector xi + e is a τ -interior point of P̂ i(xi),
(ii) the set P̂ i(xi) is convex and satisfies the following additional convexity prop-

erty

∀z ∈ P̂ i(xi) ∩ E+, ∀t ∈ (0, 1), tz+ (1 − t)xi ∈ P̂ i(xi) ∩ E+

(iii) we can extend preferences in the following way

P̂ i(xi) ∩ E+ ∩ Axi ⊂ P i(xi) ⊂ P̂ i(xi) ∩ E+

where Axi ⊂ E is a radial set at xi .6

Remark 7 We say that an economy is strongly τ -proper if condition (iii) in Defi-
nition 4 is replaced by the following condition (iii’):

(iii’) we can extend preferences in the following way

P̂ i(xi) ∩ E+ = P i(xi).

Strong τ -properness was introduced by Tourky (1999) and is used, among others,
by Aliprantis, Tourky, and Yannelis (2001) and Aliprantis, Florenzano, and Tourky
(2004, 2005). We refer to Aliprantis, Tourky, and Yannelis (2000) for a compar-
ison of the different notions of properness used in the literature. Observe that if
E = (V •, e•) is an economy (satisfying the following monotonicityAssumption M)
such that for each i ∈ I , it is possible to extend V i to a τ -continuous and concave
function V̂ i : E −→ R, then the economy is τ -proper.7 Moreover, τ -properness is
slightly weaker than strong τ -properness. However this slight difference is crucial
in order to compare properness with the existence of smooth subgradients (see
Proposition 3).

Definition 5 (H -properness) Given a subspace H of F , an economy (V •, e•) is
H -proper if there exists a Hausdorff locally convex linear topology τ on E such
that

(a) the economy (V •, e•) is τ -proper,
(b) the τ -topological dual (E, τ)′ is a subspace of H ,

5 We refer, among others, to Deghdak and Florenzano (1999), Florenzano (2003), Mas-Colell
and Richard (1991), Podczeck (1996), Tourky (1999), Aliprantis, Tourky, and Yannelis (2001),
and Aliprantis, Florenzano, and Tourky (2004, 2005).

6 A subset A of E is radial at x ∈ A if for each y ∈ E, there exists ᾱ ∈ (0, 1] such that
(1 − α)x + αy belongs to A for every α ∈ [0, ᾱ].

7 Take P̂ i (x) := {y ∈ E : V̂ i (y) > V̂ i(x)}.
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(c) for every family π• = (πi, i ∈ I ) of τ -continuous linear functionals πi ∈
(E, τ)′ the supremum supψ• still belongs to H .

If H is a linear subspace of F then the cone H ∩ F+ is denoted by H+.

Remark 8 Given a dual pair 〈H,E〉 and an economy E , we consider the following
requirements:

(i) the economy E is σ(E,H)-proper,
(ii) the economy E is τ(E,H)-proper,
(iii) the economy E is H -proper,

where τ(E,H) is the Mackey topology on E relatively to the dual pair 〈H,E〉.
The topology σ(E,H) is the weakest Hausdorff locally convex topology com-
patible with the dual pair 〈H,E〉 and τ(E,H) is the strongest Hausdorff locally
convex topology compatible with the dual pair 〈H,E〉. Therefore condition (i)
implies condition (ii). If the spaceH is stable under the supremum operation8 then
condition (ii) implies condition (iii).

We consider the following monotonicity assumption.

Assumption (M) For every Edgeworth equilibrium x•, for each i ∈ I , the follow-
ing property is satisfied:

∀j ∈ I, ∀t > 0, xi + tej + E+ ⊂ P i(xi).

Remark 9 From Remarks 3-4, Assumptions C and U imply Assumption M.

For decentralizing Edgeworth equilibria when the commodity space is infinite
dimensional, Mas-Colell (1986) introduces the properness assumption on prefer-
ences in order to compensate for the fact that the consumption sets may have empty
interior. Mas-Colell’s work was extended in various important directions; one of
them is the following existence result which is closely related to existence results
in Podczeck (1996) and Deghdak and Florenzano (1999).

Theorem 2 Let E be an economy satisfying Assumptions C and M and let H be a
subspace ofF . If the economy E isH -proper then for every Edgeworth equilibrium
x• there exists a price ψ ∈ H+ such that (ψ, x•) is an Arrow–Debreu equilibrium.

The proof of Theorem 2 is postponed to Appendix A.2. The approach is based
on a convexity result due to Podczeck (1996) and the proof follows almost verbatim
Deghdak and Florenzano (1999). Following Propositions 1 and 2 and Remark 8,
we have the following corollary to Theorem 2.

Corollary 1 Consider an economy E = (V •, e•) satisfying Assumptions C and M.
If E is τ(E, F )-proper then there exists an Arrow-Debreu equilibrium (ψ, x•) with
a price process in F+.

8 Or equivalently if the ordered vector space (H,H+) is a vector lattice.
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4.3 Properness vs existence of subgradients

In order to prove that the main result in Bank and Riedel (2001) is a special case of
Corollary 1, we have to check that Assumptions C.2 and U imply σ(E, F )-prop-
erness.

Proposition 3 If E = (V •, e•) is an economy satisfying Assumptions C.2 and U
then E is σ(E, F )-proper.

Proof Let E = (V •, e•) be an economy satisfying Assumptions C.2 and U. We
denote by τ the weak topology σ(E, F ) on E. Let x ∈ E+, we pose

P̂ i(x) = {
y ∈ E : 〈∇V i(x), y − x〉 > 0

}
.

This set is τ -open, convex and from Assumption U.1, we have x + e ∈ P̂ i(x). Let
y ∈ P i(x) then y ∈ E+ and from Assumption U.2,

0 < V i(y)− V i(x) � 〈∇V i(x), y − x〉
which implies that y ∈ P̂ i(x). We have thus proved that P i(x) ⊂ P̂ i(x) ∩ E+.
Now let y ∈ P̂ i(x) ∩ E+ and let t ∈ (0, 1). From Assumption U.2

1

t

[
V i(ty + (1 − t)x)− V i(x)

]
� 〈∇V i(ty + (1 − t)x), y − x〉.

From Assumption U.3

lim
t↓0

〈∇V i(ty + (1 − t)x), y − x〉 = 〈∇V i(x), y − x〉 > 0.

It then follows that there exists ty ∈ (0, 1) such that

∀t ∈ (0, ty], V i(x + t (y − x)) > V i(x).

Let Ax = {x + t (y − x) : y ∈ E, t ∈ (0, ty]} where ty = 1 if y ∈ E+. The set
Ax is radial at x and P̂ i(x) ∩ Ax ∩ E+ ⊂ P i(x). ��
Remark 10 Following the previous proof, the existence of smooth subgradients
(Assumptions C.2 and U) implies that each setP i(x) can be extended by aσ(E, F )-
open half space P̂ i(x). This is a more restrictive assumption than σ(E, F )-proper-
ness and a much more restrictive assumption than τ(E, F )-properness. In particular
Corollary 1 is a substantial generalization of Theorem 1 (and thus of Theorem 1 in
Bank and Riedel 2001).

5 Structure of equilibrium prices

Following Hindy and Huang (1992) and Bank and Riedel (2001), we propose now
to provide sufficient conditions in order to prove the existence of an Arrow–Debreu
equilibrium (ψ, x•) such that given the price processψ , the linear value functional
〈ψ, .〉 : E → R is norm continuous on the consumption set E+.

LetG be the subspace ofF of all bounded semimartingales with a compensator
of bounded variation with almost surely continuous paths, i.e. a process ψ ∈ F
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belongs to G if there exists a local martingale M and a process A of bounded
variation with almost surely continuous paths such that ψ = A +M . In order to
prove the existence of a price equilibrium inGwe need to assume that the filtration
F is quasi left-continuous. This is an assumption on the way new information is
revealed to the agents. Economically, an information flow corresponds to a quasi
left-continuous filtration9 if information surprises (in the sense of Hindy and Huang
1992) occur only at times which cannot be predicted. The announcement of a pol-
icy change of the Federal reserve is an example for an information surprise which
occurs at a time known in advance.

Proposition 4 If the filtration F is quasi left-continuous then the price-commodity
pairing 〈G,E〉 is a Riesz dual pair (in particular the subspace G is stable under
the supremum operation). Moreover for every ψ ∈ G, the linear value functional
〈ψ, .〉 : E → R is norm continuous on the consumption set E+.

Proof Since the norm dual E′ is a subspace of G, it is straightforward to check
that 〈G,E〉 is a dual pair. The lattice property of G follows from points 1 and 2
in the proof of Theorem 2 in Bank and Riedel (2001), where it is proved that the
supremum of two processes in G still lies in G. The norm continuity of the linear
functional 〈ψ, .〉 follows from Lemma 1 and point 3 in the proof of Theorem 2 in
Bank and Riedel (2001).

It is proved in Bank and Riedel (2001, Theorem 2) that under quasi left-con-
tinuity of the filtration, there exists an equilibrium with a value functional norm-
continuous on E+ if every utility gradient ∇V i(x) in Assumption U belongs toG.
We propose to generalize this result to G-proper economies. According to Propo-
sition 4, we have the following corollary to Theorem 2.

Corollary 2 Assume that the filtration F is quasi left-continuous. Consider an
economy E = (V •, e•) satisfying Assumption C. If E is G-proper then there exists
an Arrow-Debreu equilibrium (ψ, x•) with ψ ∈ G+. In particular the value func-
tional 〈ψ, .〉 is norm-continuous on E+.

Assumption (U’) Assumption U is satisfied and for each i ∈ I , for every x ∈ E+
the subgradient ∇V i(x) belongs to G.

The main result of this section is the following proposition. We prove that
Assumptions 1 and 4 in Bank and Riedel (2001) imply σ(E,G)-properness. In
particular it follows that Corollary 2 is a strict improvement of Theorem 2 in Bank
and Riedel (2001).

Proposition 5 If E = (V •, e•) is an economy satisfying Assumptions C.2 and U’
then E is σ(E,G)-proper.

Proof The proof follows almost verbatim the proof of Proposition 3 since

P̂ i(x) = {y ∈ E : 〈∇V i(x), y − x〉 > 0}
is σ(E,G)-open when ∇V i(x) belongs to G. ��

9 See Hindy and Huang (1992) for a precise definition. An information flow generated by a
Brownian motion or a Poisson process is quasi left-continuous.
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6 Example

We consider Hindy–Huang–Kreps preferences, i.e. preferences given by utility
functionals of the form

V i(x) = E

∫
[0,T ]

ui(t, Y (x)(t))κ(dt)

where ui : [0, T ]×R+ → R denotes a felicity function for agent i, and the quantity

Y (x)(t) =
∫

[0,t]
βe−β(t−s)dx(s)

describes the investor’s level of satisfaction obtained from his consumption up to
time t ∈ [0, T ]. The constant β > 0 measures how fast satisfaction decays.

We consider the linear mapping φ : E → E defined by

∀t ∈ [0, T ], φ(x)(t) =
∫

[0,t]
exp{βs}dx(s).

For each x ∈ E, the vector φ(x) is defined by the optional random measure
d[φ(x)](t) = exp{βt}dx(t). The linear mapping φ is bijective and the inverse
mapping φ−1 is given by

∀t ∈ [0, T ], φ−1(x)(t) =
∫

[0,t]
exp{−βs}dx(s).

We introduce on E the following norm ρ:

∀x ∈ E, ρ(x) := ‖φ(x)‖ = E

∫
[0,T ]

|φ(x)(t)|κ(dt).

The proof of the following lemma is postponed to Appendix A.3.

Lemma 2 The following properties are satisfied:

(a) the norm-topology and the ρ-topology coincide on E+,
(b) the ρ-topological dual (E, ρ)′ consists of functionals 〈ψ, .〉 withψ an optional

process of the form

ψ(t) = [A(t)+M(t)], ∀t ∈ [0, T ]

where M is a bounded martingale and A is an absolutely continuous process
(with A(0) = 0) whose derivative A′ is bounded. In particular the ρ-topologi-
cal dual (E, ρ)′ coincides with the norm-topological dual (E, ‖.‖)′.
In order to apply Theorem 2 we consider the following list of assumptions.

Assumption (V) For each i ∈ I ,

V i(x) = E

∫
[0,T ]

ui(t, Y (x)(t))κ(dt), ∀x ∈ E+

where ui : [0, T ] × R+ → R satisfies
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(V.1) for each t ∈ [0, T ], the function ui(t, .) : R+ → R is continuous, strictly
increasing and concave,

(V.2) for each y ∈ R+, the function ui(., y) : [0, T ] → R is B-measurable and
the function ui(., 0) belongs to L1(B, κ),

(V.3) for each t ∈ [0, T ] the right-derivative ∂yui(t, 0+) exists and the function
∂yu

i(., 0+) belongs to L∞
+ (B, κ).

Theorem 3 If E = (V •, e•) is an economy satisfying Assumption V then

(a) for each i ∈ I , the utility function V i is concave, strictly increasing and norm-
continuous on E+,

(b) if moreover e = 0 then the economy E is ρ-proper.

Proof Let E = (V •, e•) be an economy satisfying Assumption V. Concavity and
strict-monotonicity of V i is inherited from concavity and strict-monotonicity of
ui . We let ûi be the function from [0, T ] × R to R defined by

ûi(t, y) =


ui(t, y) if y � 0

ui(t, 0)+ yθi(t) if y < 0

where θ i(t) = ∂yu
i(t, 0+). Note that

∀(t, y) ∈ [0, T ] × R, |̂ui(t, y)| � ui(t, 0)+ |y|θ i(t). (3)

For each i ∈ I , we let V̂ i : E → R be defined by

V̂ i(x) = E

∫
[0,T ]

ûi(t, Y (x)(t))κ(dt).

The function V̂ i is concave and coincide with V i on E+. In particular

∀x ∈ E+, P i(x) = P̂ i(x) ∩ E+ where P̂ i(x) = {y ∈ E : V̂ i(y) > V̂ i(x)}.
Claim 1 For each i ∈ I , the function V̂ i is ρ-continuous on E.

Proof Let (xn, n ∈ N) be a sequence in E which is ρ-converging to x ∈ E. Since

∀t ∈ [0, T ], |Y (xn − x)(t)| = βe−βt |φ(xn − x)(t)| � β|φ(xn − x)(t)|
the sequence (Y (xn), n ∈ N) is norm-converging to Y (x). Then there exists a sub-
sequence (Y (xnk ), k ∈ N) which converges [P ⊗ κ]-a.e. to Y (x). Since ûi(t, .) is
continuous, we have that [P ⊗ κ]-a.e.

lim
k→∞

ûi(t, Y (xnk )(t)) = ûi(t, Y (x)(t)). (4)

Moreover, applying (3) we have that

|̂ui(t, Y (xnk )(t))| � ui(t, 0)+ θ i(t)|Y (xnk )(t)|, [P ⊗ κ]−a.e. (5)

Since the sequence (Y (xnk ), k ∈ N) is norm-convergent, it is [P ⊗ κ]-uniformly
integrable. It then follows from (5) and (4) that the sequence (ηk, k ∈ N) defined
by

∀k ∈ N, ∀t ∈ [0, T ], ηk(t) = ûi(t, Y (xnk )(t))
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is [P⊗κ]-uniformly integrable and converges [P⊗κ]-a.e. toη(t) = ûi(t, Y (x)(t)).
Therefore the sequence (ηk, k ∈ N) is norm-convergent to η and

lim
k→∞

V̂ i(xnk ) = lim
k→∞

E

∫
[0,T ]

ηk(t)κ(dt) = E

∫
[0,T ]

η(t)κ(dt) = V̂ i(x).

Following the standard subsequence argument, we get the ρ-continuity of V̂ i on
E. ��
Part (a) of the theorem follows from Claim 1 and Lemma 2. Let x ∈ E+. Since V̂ i

is concave and ρ-continuous on E, the set P̂ i(x) is convex and ρ-open. Since V̂ i

is strictly-increasing, V̂ i(x + e) > V̂ i(x) and xi + e belongs to P̂ i(x). We have
thus proved part (b). ��

Applying Theorems 2 and 3, we get the following corollary.

Corollary 3 Assume that the filtration F is quasi-left continuous and let E =
(V •, e•) be an economy satisfying assumption V. If for each i ∈ I the initial
endowment ei = 0 then there exists an Arrow–Debreu equilibrium (ψ, x•) such
that the value functional 〈ψ, .〉 is norm-continuous on E+.

Proof Let E = (V •, e•) be an economy satisfying assumption V. We claim that
the economy E is G-proper.10 Indeed, we know from Theorem 3 that the econ-
omy is ρ-proper. From Lemma 2 the ρ-topological dual (E, ρ)′ coincides with
the norm-topological dual (E, ‖.‖)′. In particular, (E, ρ)′ is a subspace ofG. Now
let ψ• = (ψi, i ∈ I ) be a family of processes in (E, ρ)′. From Lemma 2, each
ψi belongs to G. From Proposition 4, the pair 〈G,E〉 is a Riesz dual pair. In par-
ticular, if we let ψ = sup{ψi : i ∈ I } then ψ still belongs to G. We have thus
proved that the economy isG-proper. Applying Theorem 2 there exists (ψ, x•) an
Arrow–Debreu equilibrium with ψ ∈ G+. Applying Proposition 4 the functional
〈ψ, .〉 is norm-continuous on E+. ��
Remark 11 In Bank and Riedel (2001) (see also Duffie and Skiadas 1994; and
Bank and Riedel 2001b), it is assumed that the felicity function ui is twice contin-
uously differentiable in its second argument. Since we do not need to require the
existence of smooth subgradients, we only need to assume right-differentiability
of the felicity function at the origin (Assumption V.3).

A Appendix

A.1 Proof of Proposition 1

When the space E is endowed with the norm

∀x ∈ E, ‖x‖ := E

∫
[0,T ]

|x(t)|κ(dt)
10 Recall that G is the subspace of F of all bounded semimartingales with a compensator of

bounded variation with almost surely continuous paths.
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then following Hindy and Huang (1992), for every ‖.‖-continuous linear functional
π ∈ (E, ‖.‖)′ there exists a bounded semimartingale ψ with an absolutely con-
tinuous compensator such that π = 〈ψ, .〉. In particular (E, ‖.‖)′ is a subset of
F .

When the space E is endowed with the total variation norm

∀x ∈ E, ‖x‖V := E

∫
[0,T ]

d|x|(t)

then F is a subset of (E, ‖.‖V )′, i.e. for every ψ ∈ F , the linear function 〈ψ, .〉 is
‖.‖V -continuous. Indeed for every ψ ∈ F ,

|〈ψ, x〉| � E

∫
[0,T ]

|ψ(t)|d|x|(t) � ‖ψ‖∞ ‖x‖V

where

‖ψ‖∞ := P−ess sup sup
t∈[0,T ]

|ψ(t)|.

Since the space F satisfies

(E, ‖.‖)′ ⊂ F ⊂ (E, ‖.‖V )′

it is now straightforward to prove that 〈F,E〉 is a dual pair.
Condition (ii) of Proposition 1 follows from the fact that (M,M+) is a linear

vector lattice.

Claim 2 If ψ• = (ψi, i ∈ I ) is a finite family in F+ then

∀x ∈ E+, Rψ•(x) = 〈supψ•, x〉.
Proof The vector supψ• in F+ is denoted by ψ . Fix x ∈ E+. Since for every
z ∈ E+

〈ψ, z〉 = E

∫
[0,T ]

ψ(t)dz(t),

we have that 〈ψ, z〉 � 〈ψi, z〉. It then follows that Rψ•(x) � 〈ψ, x〉. We propose
now to prove that 〈ψ, x〉 � Rψ•(x). For each i ∈ I , we consider the bounded
measurable process ξ i := 1{ψi=ψ} and we let n := ∑

i ξ
i . Note that n � 1. We let

xi be the optional random measure in E+ defined by

dxi(t) = χi(t)dx(t) where χi = ξ in−1.

It is straightforward to check that 〈ψi, xi〉 = 〈ψ, xi〉. Since
∑

i x
i = x we have

that

Rψ•(x) �
∑
i∈I

〈ψi, xi〉 =
∑
i∈I

〈ψ, xi〉 = 〈ψ, x〉,

which implies that Rψ•(x) = 〈ψ, x〉. ��
Condition (iii) of Proposition 1 follows from Claim 2.
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A.2 Proof of Theorem 2

LetH be a linear subspace of F and let (V •, e•) be aH -proper economy satisfying
Assumptions C and M. Then there exists a Hausdorff locally convex topology τ
such that

(a) the economy (V •, e•) is τ -proper,
(b) the τ -topological dual (E, τ)′ is a subspace of H ,
(c) for every family (πi, i ∈ I ) of τ -continuous linear functionals πi ∈ (E, τ)′

the supremum supψ• still belongs to H .

Let x• be an Edgeworth equilibrium of the economy E . Since utility functions
are concave, the allocation x• is in fact an Aubin equilibrium. In particular

0 ∈ G := co
⋃
i∈I

[
P i(xi)− {ei}] .

We introduce the order ideal E(e) defined by

E(e) =
⋃
λ>0

λ[−e, e] = {x ∈ E : ∃λ > 0, −λe � x � +λe}.

Notice that when E(e) is equipped with the Riesz norm

‖x‖e := inf{λ > 0 : − λe � x � +λe},
the order intervals λ[−e, e], for each λ > 0 form a basis for the 0-neighborhoods of
this topology, thus e is ‖.‖e-interior point of the positive coneE+(e) := E(e)∩E+.
Note that for each i ∈ I , {ei, xi} is a subset of E+(e).

Claim 3 There exists a linear functional p : E(e) → R such that

∀i ∈ I, p(xi) = p(ei) > 0 and p(y) > p(xi), ∀y ∈ E+(e) ∩ P i(xi).(6)

Proof From Assumption M we have that xi + ei +E+ is a subset of P i(xi). Hence
e + E+(e) is a subset of G ∩ E(e) and (2/#I )e is ‖.‖e-interior point of G ∩ E(e).
Applying a convex separation theorem, there exists a non-zero linear functional11

p : E(e) → R such that for every y ∈ G ∩E(e), p(y) � 0 and such that p(e) > 0.
In particular,

∀i ∈ I, ∀y ∈ E(e) ∩ P i(xi), p(y) � p(ei). (7)

From Assumption M we have that for every t > 0, xi + tei ∈ E(e) ∩ P i(xi).
Applying (7) we get that p(ei) � 0 and p(xi) � p(ei). But

∑
i∈I x

i = ∑
i∈I e

i ,
which implies that

∀i ∈ I, p(xi) = p(ei). (8)

Since p(e) = ∑
i∈I p(e

i) there exists j ∈ I such that p(ej ) > 0. Now let i ∈ I .
We know that p(ei) � 0 and we claim that p(ei) > 0. Assume by way of contra-
diction that p(ei) = 0. Then for any α ∈ (0, 1), p(α[xj + ei]) < p(xj ) = p(ej ).

11 In fact p is ‖.‖e-continuous.
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But from strong desirability of ei , V j (xj + ei) > V j (xj ). Hence by concavity of
V j , there exists α ∈ (0, 1) such that V j (α[xj + ei]) > V j (xj ), which yields a
contradiction. Therefore we have proved that

∀i ∈ I, ∀y ∈ E(e) ∩ P i(xi), p(y) � p(xi) and p(xi) = p(ei) > 0. (9)

Let i ∈ I and y ∈ E(e) ∩ P i(x). In order to get (6) we have to prove that
p(y) > p(xi). Assume by way of contradiction that p(y) = p(xi), then

∀α ∈ (0, 1), p(αy) < p(xi). (10)

Since V i(y) > V i(xi) and V i is concave, there exists β ∈ (0, 1) such that

∀α ∈ [β, 1), V i(αy) > V i(xi). (11)

Relations (10) and (11) are in contradiction with (9). ��

Let us recall a convexity result due to Podczeck (1996). For a detailed proof,
see Aliprantis, Florenzano, and Tourky (2004).

Lemma 3 Let (L, τ) be an ordered topological vector space, let M be a vector
subspace of L (endowed with the induced order), let Y be an open and convex
subset ofL such that Y ∩M+ = ∅ and let y ∈ M+ ∩cl Y . If p is a linear functional
on M satisfying

p(y) � p(z), ∀z ∈ Y ∩M+,

then there exists some π ∈ (L, τ)′ such that

∀z ∈ M+, π(z) � p(z) and ∀z ∈ Y, p(y) = π(y) � π(z).

Applying Lemma 3 with L = E, M = E(e), Y the τ -interior of P̂ i(xi), and
y = xi , we obtain12 for each i ∈ I , a τ -continuous linear functional πi = 〈ψi, .〉
in (E, τ)′, where ψi ∈ H and such that

∀z ∈ E+(e), 〈ψi, z〉 � p(z) (12)

and

∀y ∈ P̂ i(xi), 〈ψi, y〉 � 〈ψi, xi〉 = p(xi). (13)

From Assumption M and (13) we get that for each i ∈ I , the individual price
ψi belongs to H+. Let ψ = supψ•, then from condition (c) of the H -properness
property, the price ψ belongs to H+.

12 If z ∈ P̂ i (xi)∩E+(e) then, sinceAxi is radial at xi , there exists t > 0 such that tz+(1− t)xi
belongs to P i(xi). Therefore tp(z)+ (1 − t)p(xi) � p(xi), i.e. p(z) � p(xi).
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Claim 4 The pair (ψ, x•) is an Arrow–Debreu equilibrium of E .

Proof Following Proposition 1 we have the following relation

∀z ∈ E+, 〈ψ, z〉 = sup

{∑
i∈I

〈ψi, zi〉 :
∑
i∈I

zi = z and zi ∈ E+

}
. (14)

From (12) we have that for every z ∈ E+(e), 〈ψ, z〉 � p(z). In particular we
have 〈ψ, xi〉 � p(xi). But from (13) we have that 〈ψ, xi〉 � 〈ψi, xi〉 = p(xi).
Therefore we have

∀i ∈ I, 〈ψ, xi〉 = p(xi).

Moreover since e = ∑
i∈I e

i = ∑
i∈I x

i and p(xi) = p(ei), we get from (14) that

∀i ∈ I, 〈ψ, ei〉 = p(ei) = p(xi) = 〈ψ, xi〉. (15)

Now fix y ∈ P i(xi). From property (iii) of τ -properness the vector y belongs to
P̂ i(xi). Applying (13) we have

〈ψ, y〉 � 〈ψi, y〉 � p(xi) = 〈ψ, ei〉.
Since 〈ψ, ei〉 = p(ei) > 0, following the same argument as in the proof of Claim 3
we actually have that

∀y ∈ P i(xi), 〈ψ, y〉 > 〈ψ, ei〉. (16)

Claim 4 follows from (15) and (16). ��

A.3 Proof of Lemma 2

Proof The proof of part (a) follows almost verbatim Bank and Riedel (2000). Let
(xn, n ∈ N) be a sequence in E+ norm-converging to x ∈ E+. From Lemma 1
there exists a subsequence (xnk , k ∈ N) and �∗ ∈ F with P�∗ = 1 such that for
every ω ∈ �∗, the sequence (xnk (ω), k ∈ N) converges weakly to x(ω) in M+.
Note that, for any fixed t ∈ {�x = 0}, the function

s �−→ eβs1[0,t](s)

is continuous dx-a.e. Hence, the Portemanteau Theorem yields

lim
k→∞

φ(xnk )(t) = φ(x)(t)

for all such t . In particular, we have that the sequence (ηk, k ∈ N) converges
[P ⊗ κ]-a.e. to η where

∀t ∈ [0, T ], ηk(t) = φ(xnk )(t) and η(t) = φ(x)(t).

Moreover

∀t ∈ [0, T ], |ηk(t)| =
∫

[0,t]
eβsdxnk (s) � eβT xnk (t) = eβT |xnk (t)|



Stochastic equilibria with intertemporal substitution 121

which implies that the sequence (ηk, k ∈ N) is [P ⊗ κ]-uniformly integrable.
Therefore

lim
k→∞

ρ(xnk − x) = lim
k→∞

E

∫
[0,T ]

|ηk(t)− η(t)|κ(dt) = 0.

Similarly we can prove that if (xn, n ∈ N) is a sequence in E+ρ-converging to
x ∈ E+ then there exists a subsequence (xnk , k ∈ N) which is norm-converging to
x.

We propose now to prove part (b). Let p ∈ (E, ρ)′. Since ρ(x) = ‖φ(x)‖ the
linear mapping π := p ◦ φ−1 belongs to (E, ‖.‖)′. From Proposition 5 in Hindy
and Huang (1992), there exists an optional process � = A + M where M is a
bounded martingale and A is an absolutely continuous process whose derivative
A′ is bounded and such that π = 〈�, .〉. Therefore for every x ∈ E,

p(x) = π [φ(x)] = 〈�,φ(x)〉 = E

∫
[0,T ]

�(t)eβtdx(t).

It then follows that p = 〈ψ, .〉 where ψ(t) = [A(t)+M(t)] exp{βt}. Apply Itô’s
Lemma to M(t) exp(βt) to get

M(t) exp(βt) = M(0)+
∫ t

0
β exp(βs)M(s)ds +

∫ t

0
exp(βs)dM(s).

Note that the quadratic covariation between a martingale and a smooth process
is always zero. It follows that M(t) exp(βt) is the sum of the bounded martin-
gale N(t) = M(0) + ∫ t

0 exp(βs)dM(s) and the absolutely continuous process
B(t) = ∫ t

0 β exp(βs)M(s)ds with bounded derivative. ��

References

Aliprantis, C. D.: On the Mas-Colell–Richard equilibrium theorem. J Econ Theory 74, 414–424
(1997)

Aliprantis, C. D., Border, K. C.: Infinite dimensional analysis. Berlin Heidelberg New York:
Springer 1999

Aliprantis, C. D., Florenzano, M., Tourky, R.: General equilibrium analysis in ordered topological
vector spaces. J Math Econ 40, 247–269 (2004)

Aliprantis, C. D., Florenzano, M., Tourky, R.: Linear and non-linear price decentralization. J Econ
Theory 121, 51–74 (2005)

Aliprantis, C. D., Tourky, R., Yannelis, N. C.: Cone conditions in general equilibrium theory.
J Econ Theory 92, 96–121 (2000)

Aliprantis, C. D., Tourky, R.,Yannelis, N. C.:A theory of value with non-linear prices: equilibrium
analysis beyond vector lattices. J Econ Theory 100, 22–72 (2001)

Allouch, N., Florenzano, M.: Edgeworth and Walras equilibria of an arbitrage-free exchange
economy. Econ Theory 23, 353–370 (2004)

Araujo, A., Monteiro, P. K.: Equilibrium without uniform conditions. J Econ Theory 48, 416–427
(1989)

Bank, P., Riedel, F.: On intertemporal preferences. Mimeo, Humboldt University Berlin (2000)
Bank, P., Riedel, F.: Existence and structure of stochastic equilibria with intertemporal substitu-

tion. Finance Stoch 5, 487–509 (2001)
Bank, P., Riedel, F.: Optimal consumption choice with intertemporal substitution. Ann Appl

Probab 11, 750–788 (2001b)



122 V. F. Martins-da-Rocha and F. Riedel

Deghdak, M., Florenzano, M.: Decentralizing Edgeworth equilibria in economies with many
commodities. Econ Theory 14, 297–310 (1999)

Duffie, D., Skiadas, C.: Continuous-time security pricing, a utility gradient approach. J Math
Econ 23, 107–131 (1994)

Florenzano, M.: General equilibrium analysis: existence and optimality poperties of equilibria.
Boston Dordrecht London: Kluwer 2003

Hindy, A., Huang, C. F.: Intertemporal preferences for uncertain consumption: a continuous-time
approach. Econometrica 60, 781–801 (1992)

Hindy, A., Huang, C. F., Kreps, D.: On intertemporal preferences in continuous time–the case of
certainty. J Math Econ 21, 401–440 (1992)

Komlós, J.: A generalisation of a problem of Steinhaus. Acta Mathematica Academiae Scientia-
rum Hungaricae 18, 217–229 (1967)

Mas-Colell, A.: The price equilibrium existence problem in topological vector lattices. Econome-
trica 54, 1039–1054 (1986)

Mas-Colell, A., Richard, S.: A new approach to the existence of equilibria in vector lattices.
J Econ Theory 53, 1–11 (1991)

Peleg, B., Yaari, M. E.: Markets with countably many commodities. International Econ Rev 11,
369–377 (1970)

Podczeck, K.: Equilibrium in vector lattice without ordered preference or uniform properness.
J Math Econ 25, 465–485 (1996)

Tourky, R.: A new approach to the limit theorem on the core of an economy in vector lattices.
J Econ Theory 78, 321–328 (1998)


