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Abstract

In the usual framework of continuum games with externalities, we substantially generalize Cournot–Nash
existence results [Balder, A unifying approach to existence of Nash equilibria, Int. J.Game Theory 24 (1995)
79–94; On the existence of Cournot–Nash equilibria in continuum games, J. Math. Econ. 32 (1999) 207–223;
A unifying pair of Cournot–Nash equilibrium existence results, J. Econ. Theory 102 (2002) 437–470] to
games with possibly non-ordered preferences, providing a continuum analogue of the seminal existence
results by Mas-Colell [An equilibrium existence theorem without complete or transitive preferences, J.
Math. Econ. 1 (1974) 237–246], Gale and Mas-Colell [An equilibrium existence theorem for a general
model without ordered preferences, J. Math. Econ. 2 (1975) 9–15], Shafer and Sonnenschein [Equilibrium
in abstract economies without ordered preferences, J. Math. Econ. 2 (1975) 345–348], Borglin and Keiding
[Existence of equilibrium actions and of equilibrium: a note on the “new” existence theorems, J. Math.
Econ. 3 (1976) 313–316] and Yannelis and Prabhakar [Existence of maximal elements and equilibria in
linear topological spaces, J. Math. Econ. 12 (1983) 233–245].
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

For games with finitely many players and payoff/utility functions, Debreu [13] was the first
to generalize the non-cooperative equilibrium notion of Nash (and Cournot) by introducing the
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concept of a social system (also called generalized game or abstract economy). The social equilib-
rium existence result established in Debreu [13] was subsequently used by Arrow and Debreu [1]
to prove the existence of Walrasian equilibrium in economies with preference relations rep-
resented by utility functions. Following their pioneer work, new existence results have been
proposed in the literature based on weaker assumptions than those initially imposed by Arrow
and Debreu [1]. Among them, a significant contribution was made by Mas-Colell [30] who pro-
vided an equilibrium existence result relaxing the assumption of completeness and transitivity
of preference relations. Mas-Colell pointed out, that dropping transitivity or completeness (i.e.
having non-ordered preferences), the standard existence arguments through demand correspon-
dences were not anymore applicable. He identified two major difficulties. First, in order to prove
that individual demand sets are non-empty, a Weierstrass-type argument is no longer sufficient. 1

Second, when preferences are non-ordered the demand set may not be convex. To circumvent
these problems he developed a new approach. In subsequent years, alternative and simpler proofs
were also proposed by Gale and Mas-Colell [15], Shafer and Sonnenschein [43] and Borglin and
Keiding [10]. Yannelis and Prabhakar [46] generalized these results by allowing for a countably
infinite number of agents and an infinite number of commodities.

For continuum games, i.e. games with a non-atomic measure space of agents, Schmeidler [41]
proved the existence of pure Nash equilibrium in games where each player’s payoff function
depends on his own action as well as on the mean of the other players’ actions. Mas-Colell
[31] presented a reformulated version of Schmeidler’s result in distributional terms rather than
in function-theoretic terms (see also among others, Khan [17], Khan and Rustichini [20,21],
Khan and Sun [22], Balder [3,5] and Rath [37]). Those existence results for games with payoff
functions were extended in several directions by Balder [2,4,6], Rath [36], Kim and Yannelis [26]
and recently by Balder [8]. A common characteristic of that part of the literature is that, due to
the convexifying effect of aggregation, they all dispense with the convexity assumptions on both
action sets and preferences.

Following the contributions of Schmeidler [41] and Mas-Colell [30], a new literature emerged 2

attempting to model non-ordered preferences in continuum games/economies with externalities.
This literature suffers from many drawbacks. First, despite the convexifying effect on aggregation
due to the continuum of agents, those existence results require convex assumptions on both action
sets and preferences. The second and more important problem has to do with the incompatibility
of the proposed conditions used to establish existence of equilibria. Grodal 3 and Balder [7]
showed that many of the required conditions force the preferred to correspondence to be empty-
valued almost everywhere on the non-atomic part of the measure space. Yet, at the same time,
existence results are well known to hold in continuum economies with non-ordered preferences
but without externalities (see e.g. Schmeidler [40] and Martins-da-Rocha [27,28]). This is not
in contradiction with the inconsistency problem raised by Balder. Indeed the modeling of non-
ordered preferences with externalities proposed in the above cited literature does not encompass
the traditional modeling of non-ordered preferences without externalities as in Schmeidler [40]
and Martins-da-Rocha [27,28].

1 This difficulty can be solved by using a fixed-point argument.
2 See e.g. Khan and Vohra [24], Balder and Yannelis [9], Khan and Papageorgiou [18,19], Kim et al. [25], Noguchi

[32–34].
3 Grodal proposed a proof for a finite-dimensional action space. Her proof was adapted to separable Banach spaces by

Khan and Papageorgiou [19].
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The paper builds on this literature. Its primary aim is to propose an alternative formulation of
non-ordered preferences and prove a Cournot–Nash equilibrium existence result that does not
suffer from the drawbacks cited in Balder [7]. Our result generalizes in a unified way the previous
existence results for: atomic games 4 (or abstract economies) with non-ordered preferences as in
Shafer and Sonnenschein [43], Borglin and Keiding [10] and Yannelis and Prabhakar [46], and
continuum games with ordered preferences as in Schmeidler [41] and Balder [6,8].

For games with a finite set of players and non-ordered preferences, each preferred to corre-
spondence is usually defined on the space of strategy profiles. For each agent t ∈ T , the set of
actions strictly preferred to an action st ∈ St , given the actions (s�, � �= t) ∈ ∏

��=t S� of the other
agents, is represented by a subset Pt(fs) of agent t’s action set St , where fs : � �→ fs(�) = s�
is the action profile associated to the family s = (s�) ∈ ∏

�∈T S�. In the existing literature 5 it is
claimed that the natural extension of this modeling to games with a continuum space of players,
is to define in a similar manner each preferred to correspondence on the space S of action profiles
which now consists on measurable functions f : t � T �−→ f (t) � St . For an agent t, the subset
Pt(f ) ⊂ St represents the set of actions strictly preferred by agent t to the action f (t). In this
modeling, the joint evaluation mapping ev : (t, f ) �→ f (t) appears to play a central role. As
shown by Balder [7], when the set of players is non-atomic, this mapping has non-standard mea-
surability and topological properties which do not seem to be adequate for standard arguments to
prove existence of equilibrium by means of measure theory and functional analysis. Observe that
when the space of agents is atomic, then the set of action profiles coincides with the product over
all agents of action sets, i.e. S := ∏

�∈T S�. We may then see the preferred to correspondence Pt

of agent t as a correspondence defined on the space St × ∏
��=t S�, or equivalently on the space

St × S. Following this observation, we propose, as a natural extension to a measure space of
agents, to model preferences of an agent t by a correspondence Pt defined on the product space
St ×S and not solely on the space S of action profiles. The set Pt(st , f ) ⊂ St then represents the
set of actions strictly preferred to st by agent t given the actions of the other agents, represented
by the action profile f ∈ S. This modeling of non-ordered preferences (see Remark 2.2) does not
suffer from the serious inconsistency pointed out in Balder [7]. Moreover it encompasses both the
modeling of payoff/utility functions with externalities as in Schmeidler [41] and Balder [6,8], and
the modeling of non-ordered preferences but without externalities as in Schmeidler [40], Cornet
et al. [12] and Martins-da-Rocha [27,28].

Our main result is the existence of pure Cournot–Nash equilibrium for continuum games with
possibly non-ordered preferences. We prove that this new existence result follows as a simple
corollary of well-known existence results established for games with payoff/utility functions.
Starting from a game where players have non-ordered preferences, the underlying idea is to
define an auxiliary game with payoff functions such that the sets of optimal actions for both
games coincide. To get existence of pure Cournot–Nash equilibrium, it is then sufficient to apply
to the auxiliary game the existence results in Balder [6,8]. Balder’s results are proved by means of
Young measure theory. In a companion working paper [29] we propose an independent proof based
on a direct application of Kakutani’s fixed-point theorem on the space of pure action profiles.

In order to benefit from the convexifying effect of aggregation, we assume that externalities
are modeled through finitely many statistics of the aggregate strategy profile. Consequently, if
preference relations are transitive (but not necessarily complete), we do not need to assume

4 That is games with at most countably many agents.
5 See e.g. Balder [7], Balder and Yannelis [9], Khan and Papageorgiou [18,19], Khan and Vohra [24], Kim et al. [25],

Noguchi [32–34] and Yannelis [44,45].
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convexity of action sets or preferences. 6 However, when externalities in preferences are modeled
by general statistics of the strategy profile, we need 7 to assume convexity assumptions even if
preference relations are transitive.

The paper is organized as follows. The model and the main existence result (Theorem 2.1) are
presented in Section 2. In Section 3 we provide sufficient conditions on the primitives of a game
in order to satisfy the conditions required in Theorem 2.1. Some definitions and technical results
are postponed to the Appendix.

2. The model and the main result

We consider the model presented in Balder [6,8]. Let (T , T , �) be an abstract finite measure
space. The set T is the set of players, which may be a finite set or a continuum such as the unit
interval or a mixture of both. For technical reasons we make the following assumption.

Assumption 2.1. The measure space (T , T , �) is complete and separable.

Remark 2.1. This is a working hypothesis and we refer to Balder [6, Remark 4.2] and Balder
[8, Remarks 2.1.1(iii) and 2.2.1(iv)] for details on arguments and stronger measurability conditions
that can be used to remove this additional hypothesis from the final results.

Let S be Hausdorff locally convex topological vector space that is a Suslin space, i.e. S is the
continuous image of a Polish space. The space S is the action space. Examples of such spaces
include separable Banach spaces, equipped with their norm or weak topology, duals of separable
Banach spaces, equipped with their weak star topology, separable Fréchet spaces, such as C(R),
equipped with the compact-open topology, or the space of all bounded, signed measures on a
completely regular Suslin space. We denote by S� the topological dual of S. For each t in T, let
St ⊂ S denote the action set of player t. We denote by � the correspondence from T into S defined
by �(t) := St .

We let T in T be some fixed measurable subset of players that contains the purely atomic part
of (T , T , �). The set T is the set of players that will satisfy additional convexity assumptions. We
let T̂ denote the set T \ T and we let T (resp. T̂ ) be the trace �-algebra of T on T (resp. T̂ ). We
suppose that the following holds.

Assumption 2.2. For every t ∈ T , the set St is non-empty and compact, and the graph

gph � := {(t, s) ∈ T × S : s ∈ St }
of the correspondence � belongs 8 to T ⊗ B(S). Moreover, for every t ∈ T , the set St is convex.

6 We need conditions on primitives to ensure that each preference relation has a maximal element on any non-empty
compact set. Either we assume that the preference relation is transitive and we apply a Weierstrass-type argument, or we
assume that the preference relation is convex and we apply a fixed-point argument.

7 See Rath et al. [38] for a counterexample. We also refer to Khan and Sun [23] where the convexifying effect of
aggregation is restored when the space of players is modeled by a hyperfinite Loeb measure space. In a very recent
preprint Podczeck [35] has shown that no recourse to non-standard measure theory is needed for purification as practiced
in [23].

8 The symbol B(S) refers to the Borel �-algebra on S.
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The trace �-algebra of T ⊗ B(S) on gph � is denoted by D. An action profile is a function
f : T → S that is measurable with respect to T and B(S) or, equivalently 9 that is scalarly
measurable, i.e. for all s� ∈ S�, the scalar functions t �→ 〈f (t), s�〉 is T -measurable. Let S
denote the set of all action profiles. An action profile f is feasible if f (t) belongs to St for a.e.
t ∈ T . The set of all feasible action profiles is denoted by S�. Also, let S� be the set of all
restrictions to T of functions in S�; it is only this set that needs to be topologized. We endow
S� with the feeble topology introduced by Balder [6,8] and defined as the coarsest topology for
which all functionals

Jg : f �→
∫

T

g(t, f (t))�(dt), g ∈ GLC,�

are continuous. Here GLC,� is the collection of all T ⊗B(S)-measurable functions g : T ×S → R

for which g(t, .) is linear and continuous on S (i.e. belongs to S�) for every t ∈ T and for which
there is an integrable function �g in L1

R(T , T , �) with sups∈St
|g(t, s)|��g(t) for all t ∈ T . The

feeble topology can simultaneously subsume the two customary topologies that have been used
in the literature on games with a measure space of players (we refer to Balder [6,8] for precisions
and examples). Following Balder [8, Remark 4.3.1] the feeble topology on S� is semimetrizable.

Let us now define as the externality of each player t ∈ T the mapping d := (d̄, d̂) : S� →
S� × Rm, which is defined by

d̄(f ) := f |T and d̂(f ) :=
(∫

T̂

gi(t, f (t))�(dt), i ∈ {1, . . . , m}
)

.

Here f |T ∈ S� stands for the restriction to T of f. Also, for each i ∈ {1, . . . , m}, the function
gi : gph � ∩ (T̂ × S) → R is given and satisfies the following condition.

Assumption 2.3. For each i ∈ {1, . . . , m}, the function gi belongs to ĜC,�.

Here ĜC,� is the collection of all T̂ ⊗ B(S)-measurable functions g : T̂ × S → R for which
g(t, .) is continuous on S for every t ∈ T̂ and for which there is an integrable function �g in

L1
R(T̂ , T̂ , �) with sups∈St

|g(t, s)|��g(t) for all t ∈ T̂ . The externality d(f ) depends on the

action f (t) of almost every player t in T and depends only on the aggregate d̂(f ) over all T̂ .
Each player t ∈ T must choose her actions in accordance with the other players as follows:

given the action profile f ∈ S�, player t’s socially feasible actions constitute a given subset
At(d(f )) ⊂ St .

Now we depart from the model presented in Balder [6,8] by considering a more general frame-
work to model the preference of each player. 10 Every player t ∈ T has a preferred to correspon-
dence

Pt : St × S� × Rm → 2St .

Given the action profile f̄ ∈ S�, the externality vector y ∈ Rm and an action s ∈ St , the set
Pt(s, f̄ , y) represents the set of actions s′ ∈ St that agent t strictly prefers to action s.

9 The equivalence is not an easy matter and we refer to Schwartz [42] for details.
10 Actually the model with non-ordered preferences is more general only in appearance since we will prove that it can

be reduced to the standard one with ordered preferences.
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Example 2.1. In Balder [6,8], each agent t is endowed with a payoff functionUt : St×S�×Rm →
[−∞, +∞]. In that case, the correspondence Pt is defined by

Pt(s, f̄ , y) := {s′ ∈ St : Ut(s
′, f̄ , y) > Ut(s, f̄ , y)}.

Remark 2.2. Observe that given an agent t ∈ T , the preferred to correspondence Pt is defined
on St × S� × Rm. In the literature (see Balder and Yannelis [9], Khan and Papageorgiou [18,19],
Khan and Vohra [24], Kim et al. [25], Noguchi [32–34] and Yannelis [44,45]), the preferred
to correspondence is defined only on S� × Rm. Moreover it is claimed in Balder [7] that for
a game with payoff functions Ut : St × S� × Rm → [−∞, +∞], the canonical preferred to
correspondence for an agent t ∈ T is defined by

Pt(f̄ , y) := {s ∈ St : Ut(s, f̄ , y) > Ut(f̄ (t), f̄ , y)}.
We claim that this modeling of preferences is not relevant. First, because it is proved in Balder [7]
that the usual conditions used in the literature for this model force the preferred to correspon-
dences to be empty valued almost everywhere in the non-atomic part of the measure space of
agents. Second, because this model does not encompass the literature dealing with games or ab-
stract economies with a measure space of agents but without externalities: in Schmeidler [40],
Cornet et al. [12] and Martins-da-Rocha [27,28] the preferred to correspondence Pt is defined on
St . We propose an alternative modeling of non-ordered preferences with externalities by consid-
ering a preferred to correspondence Pt defined on the space St × S� × Rm. We refer to Balder
[8, Section 2.4] for a discussion about the consistency question regarding to our modeling of
preferences.

Definition 2.1. For each t ∈ T , f̄ ∈ S� and y ∈ Rm, we denote by Mt(f̄ , y) the set of optimal
actions in the socially feasible set At(f̄ , y), i.e.

Mt(f̄ , y) = {s ∈ At(f̄ , y) : Pt(s, f̄ , y) ∩ At(f̄ , y) = ∅}.

Example 2.2. If agent t is endowed with a payoff function Ut : St × S� × Rm → [−∞, +∞]
such that the correspondence Pt is defined as in Example 2.1, then Mt(f̄ , y) coincides with the
set argmaxs∈At (f̄ ,y)Ut (s, f̄ , y).

We present hereafter the list of assumptions the optimal actions correspondence will be required
to satisfy.

Assumption 2.4 (convexity). For each player t ∈ T , the correspondence Mt has convex values.

Assumption 2.5 (continuity). For each player t ∈ T , the correspondence (f̄ , y) �→ Mt(f̄ , y) is
upper-semicontinuous with non-empty closed values.

Assumption 2.6 (measurability). For every (f̄ , y)∈S�×Rm, the correspondence t �→Mt(f̄ , y)

has a measurable graph, i.e.

{(t, s) ∈ gph �: s ∈ Mt(f̄ , y)} ∈ D.

Remark 2.3. Assumption 2.4 is satisfied if for every player t ∈ T , for every (f̄ , y) ∈ S�×Rm and
every action s ∈ St , the sets At(f̄ , y) and {s′ ∈ St : s �∈ Pt(s

′, f̄ , y)} are convex. In particular, if
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the preferred to correspondence is defined by a payoff function Ut : St ×S�×Rm → [−∞, +∞]
then the last property is satisfied if s �→ Ut(s, f̄ , y) is quasi-concave.

We provide in Section 3 conditions on the primitives A and P of a game such that
Assumptions 2.5 and 2.6 are satisfied.

Theorem 2.1. Under Assumptions 2.1–2.6, the game � := (T , �, A, P ) has a pure Cournot–
Nash equilibrium, that is, there exists an action profile f� ∈ S� such that for almost every player
t ∈ T ,

f�(t) ∈ At(d(f�)) and Pt(f�(t), d(f�)) ∩ At(d(f�)) = ∅.

The outline of the proof is as follows. We consider a game � satisfying Assumptions 2.1–2.6.
We define an auxiliary game �′ with payoff functions such that optimal action profiles for �′
and optimal action profiles for � coincide. We check that the auxiliary game �′ satisfies the
set of assumptions needed to apply Theorem 2.2.1 in Balder [8]. We then get the existence of a
Cournot–Nash equilibrium for �′ which is also a Cournot–Nash equilibrium for the initial game �.
Following this approach, our existence result for non-ordered preferences appears to be a simple
by-product of the existence results for ordered preferences in Balder [6,8].

Proof of Theorem 2.1. Let � := (T , �, A, P ) be a game satisfying Assumptions 2.1–2.6. Since
S is Suslin there exists a metric d on S which is weaker than the original topology. Hence on
compact subsets of S the original topology and the d-topology coincide. Observe that each Borel
�-algebra corresponding to the d-topology coincides with B(S), because S is Suslin (Corollary 2
of Theorem II.10 of Schwartz [42]).

For each player t ∈ T , consider the payoff function Vt : St × S� × Rm → [−∞, +∞],
defined by

∀(s, f̄ , y) ∈ St × S� × Rm, Vt (s, f̄ , y) := −d(s, Mt(f̄ , y)).11

Claim 1. For every t ∈ T , the function Vt is upper-semicontinuous.

Proof of Claim 1. Let t ∈ T and c ∈ R, we have to prove that

L := {(s, f̄ , y) ∈ St × S� × Rm: d(s, Mt(f̄ , y))�c}
is closed. Let (sn, f̄n, yn) be a sequence in L which converges to (s, f̄ , y) ∈ St × S� × Rm.
For each n > 0, there exists s̃n in Mt(f̄n, yn) such that d(sn, s̃n)�c + 1/n. Since St is compact,
passing to a subsequence if necessary, we can suppose that (s̃n) is convergent to some s̃ in St .
From Assumption 2.5, the graph of the correspondence Mt is closed,12 which implies that s̃

belongs to Mt(f̄ , y). Hence we have

d(s, Mt(f̄ , y))�d(s, s̃) = lim
n

d(sn, s̃n)�c. �

11If A is a subset of S and s ∈ S then d(s, A) := inf{d(s, a) : a ∈ A}.
12From Assumptions 2.2 and 2.5, the correspondence Mt is upper-semicontinuous with non-empty closed values in

the compact set St . It is well known (see Florenzano [14, Appendix A]) that this condition is sufficient and necessary for
the graph of the correspondence Mt to be closed.
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Claim 2. For each (f̄ , y) ∈ S� × Rm, the restriction of the function (t, s) �→ Vt (s, f̄ , y) to
gph � is D-measurable.

Proof of Claim 2. Let (f̄ , y) ∈ S� × Rm, we let F : T → 2S be the correspondence defined
by F(t) := Mt(f̄ , y). From Assumption 2.6 the correspondence F has a measurable graph. From
Castaing–Valadier [11, Theorem III.22] (see also Sainte Beuve [39]), there exists a sequence (�n)

of measurable functions �n : T → S such that (�n(t)) is dense in F(t) for every t ∈ T . It follows
that for each s ∈ S,

d(s, F (t)) = inf{d(s, �n(t)) : n ∈ N}.
Hence for each s ∈ S the function t �→ d(s, F (t)) is measurable, and for each t ∈ T , the function
s �→ d(s, F (t)) is continuous. Applying Lemma III.14 in Castaing–Valadier [11], we get that
(t, s) �→ d(s, F (t)) is T ⊗ B(S)-measurable. Since F(t) is a subset of St , it follows that the
restriction of (t, s) �→ d(s, F (t)) to gph � is D-measurable. �

Claim 3. For every t ∈ T , for every (f̄ , y) ∈ S� × Rm,

argmaxs∈St
Vt (s, f̄ , y) = Mt(f̄ , y).

Proof of Claim 3. Let t ∈ T and (f̄ , y) ∈ S� × Rm be fixed. From Assumption 2.5, the
set Mt(f̄ , y) is non-empty, hence there exists � ∈ St such that Vt (�, f̄ , y) = 0. Now since
Vt (s, f̄ , y)�0 for each s ∈ St , we have that

argmaxs∈St
Vt (s, f̄ , y) = {s ∈ St : d(s, Mt(f̄ , y)) = 0}.

From Assumption 2.5, the set Mt(f̄ , y) is closed. Hence the claim follows. �

We consider now the truly non-cooperative game �′ := (T , �, A′, P ′) defined by

∀(f̄ , y) ∈ S� × Rm, A′
t (f̄ , y) := St

and

∀s ∈ St , P ′
t (s, f̄ , y) := {s′ ∈ St : Vt (s

′, f̄ , y) > Vt (s, f̄ , y)}.
We claim that the game �′ satisfies Assumptions 2.2.5–2.2.7 in Balder [8]. Indeed, the game �′
is truly non-cooperative, in the sense that for each (f̄ , y) ∈ S� × Rm, for every t ∈ T , one
has A′

t (f̄ , y) = St . Then Assumption 2.2.5 in [8] is trivially satisfied. From Claims 1 and 2,
Assumption 2.2.6 in [8] is satisfied. Observe that for every t ∈ T , the function

(f̄ , y) �−→ sup{Vt (s, f̄ , y): s ∈ St }
is identical to zero, so Assumption 2.2.7(i) in [8] is trivially satisfied. Assumption 2.2.7(ii) in [8]
follows from Claim 3 and Assumption 2.4.

Now we can apply Theorem 2.2.1 in Balder [8] to get the existence of a Cournot–Nash equi-
librium f� ∈ S� for the game �′, i.e. for almost every t ∈ T ,

f�(t) ∈ argmaxs∈St
Vt (s, d(f�)).
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From Claim 3, one has f�(t) ∈ Mt(d(f�)) for a.e. t ∈ T . This means that f� is a Cournot–Nash
equilibrium for the game �. �

Remark 2.4. Following the arguments in Balder [8, Section 4.3] we may prove, as a corollary of
our pure Cournot–Nash equilibrium existence result (Theorem 2.1), a generalization of the mixed
Cournot–Nash equilibrium existence result by Balder [8, Theorem 2.1] to games with non-ordered
preferences.

Remark 2.5. The proof of Theorem 2.1 proposed in this paper relies on Theorem 2.2.1 in
Balder [8] which is proved by means of Young measure theory. An independent proof purely
by means of the feeble topology is possible (see e.g. Martins-da-Rocha and Topuzu [29]). It was
already announced in Balder [6, Section 5] and Balder [8, Remark 4.3.1] that such a proof was
possible for ordered preferences. However, the proof we propose in [29] deals not only with
ordered preferences but also with non-ordered preferences.

3. Assumptions on primitives

Let � = (T , �, A, P ) be a game. We provide in this section conditions on the primitives A and
P under which Assumptions 2.5 and 2.6 are satisfied. We first consider a list of assumptions on
the correspondence A of socially feasible actions.

Assumption 3.1. For every (t, f̄ , y) ∈ T × S� × Rm,

(i) the set At(f̄ , y) is a non-empty and closed subset of St ;
(ii) the correspondence At : S� × Rm → 2St is upper-semicontinuous;

(iii) the set {(t, s) ∈ gph � : s ∈ At(f̄ , y)} belongs to D.

Remark 3.1. Assumption 3.1 coincides with Assumption 2.2.5 in Balder [8].

We consider now a list of assumptions on the preferred to correspondence P.

Assumption 3.2. For every (t, f̄ , y) ∈ T × S� × Rm,

(i) for every s ∈ St , one has s �∈ Pt(s, f̄ , y) and one of the two following conditions is satisfied:
a. the correspondence s �→ Pt(s, f̄ , y) is transitive, 13

b. At(f̄ , y) is convex and s /∈ coPt(s, f̄ , y) for each s ∈ St ;
(ii) the correspondence s �→ Pt(s, f̄ , y) has open lower-sections;

(iii) the set {(s, ḡ, z) ∈ St × S� × Rm : Pt(s, ḡ, z) ∩ At(ḡ, z) �= ∅} is open;
(iv) the graph of the correspondence (�, s) �→ P�(s, f̄ , y) belongs to T ⊗ B(S) ⊗ B(S);
(v) the correspondence s �→ Pt(s, f̄ , y) has open upper-sections.

Remark 3.2. Following Proposition A.1 in Appendix A, condition (iii) in Assumption 3.2 may
be replaced by one of the three following conditions:

(iii.1) the lower-sections and upper-sections of the correspondence Pt are open, and At(f̄ , y) is
the closure of Bt(f̄ , y) where Bt : S� × Rm → 2St has open lower-sections;

13 The correspondence s �→ Pt (s, f̄ , y) is transitive if for each (s, s′, s′′) in S3
t , [s′ ∈ Pt (s, f̄ , y) and s′′ ∈ Pt (s

′, f̄ , y)]
implies s′′ ∈ Pt (s, f̄ , y).
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(iii.2) the graph of the correspondence Pt : St ×S� ×Rm → 2St is open and the correspondence
At is lower-semicontinuous;

(iii.3) the correspondence Pt is lower-semicontinuous and At(f̄ , y) = St .

Conditions similar to (iv) and (v) in Assumption 3.2 also appear in Hildenbrand [16], Cornet
et al. [12] and Martins-da-Rocha [27,28].

We provide a corollary of Theorem 2.1 for games with possibly non-ordered preferences sat-
isfying a list of conditions on primitives.

Corollary 3.1. Let � = (T , �, A, P ) be a game satisfying Assumptions 2.1–2.4, 3.1 and 3.2.
Then the game � has a pure Cournot–Nash equilibrium.

Proof. We can check that under Assumptions 2.1 and 2.2, Assumptions 3.1 and 3.2 imply
Assumptions 2.5 and 2.6.

First, we prove that Assumption 3.1(iii) and Assumptions 3.2(iv–v) imply Assumption 2.6.
Indeed, let (f̄ , y) ∈ S�×Rm be fixed. For simplicity, the sets At(f̄ , y), Pt(s, f̄ , y) and Mt(f̄ , y)

are denoted by At , Pt(s) and Mt . From Castaing–Valadier [11, Theorem III.22], there exists a
sequence (gn) of measurable functions gn : T → S such that (gn(t)) is dense in At for every
t ∈ T . From Assumption 3.2(v) the set Pt(s) is open in St for each (t, s) ∈ gph �. This implies
that the set

G :=
{
(t, s) ∈ gph �: Pt(s)

⋂
At �= ∅

}

coincides with the set

⋃
n∈N

{(t, s) ∈ gph �: gn(t) ∈ Pt(s)}.

As a consequence of Assumption 3.2(iv), the set G belongs to D. Observing that gph A\gph M =
(gph A) ∩ G, it follows from Assumption 3.1(iii) that gph M belongs to D.

Second, following standard arguments (see e.g. Yannelis and Prabhakar [46]), Assumption 3.1(i)
and Assumption 3.2(i–ii) imply that for each (f̄ , y) ∈ S� × Rm, the set Mt(f̄ , y) is a non-empty
closed subset of St .

Finally, Assumption 3.1(ii) and Assumption 3.2(iii) imply that the correspondence Mt is upper-
semicontinuous. �

Remark 3.3. Corollary 3.1 generalizes the equilibrium existence results for games with count-
ably many agents and non-ordered preferences provided in Yannelis and Prabhakar
[46, Theorem 6.1]. In [46] it is only assumed that each action set St is a non-empty compact
convex metrizable subset of a locally convex topological vector space S. Observe that an obvious
extension, inspired by the place where the Suslin property of the action set is used in the proof of
Theorem 2.2.1 in Balder [8], is as follows. One could introduce two separate action universes, viz.
Sna (for players in the non-atomic part of (T , T , �)) and Spa (for players in the pure atomic part
of (T , T , �)). In such a setup, only Sna would have to satisfy the Suslin property, and Spa could
be any locally convex topological vector space S such that each action set St , for each t ∈ T pa ,
is a non-empty compact convex metrizable subset of S.



324 V. Filipe Martins-da-Rocha, M. Topuzu / Journal of Economic Theory 140 (2008) 314–327

Remark 3.4. In the proof of Corollary 3.1, Assumption 3.2(v) was only used to prove the validity
of Assumption 2.6. Actually when each agent is endowed with a payoff function,
Assumption 3.2(v) is superfluous. 14

We provide now a corollary of Corollary 3.1 for games with payoff functions.

Assumption 3.3. For each t ∈ T , agent t is endowed with a payoff function Ut : St ×S�×Rm →
[−∞, +∞] such that

(i) the function Ut is continuous;
(ii) for every (f̄ , y) ∈ S� × Rm, the function (�, s) �→ U�(s, f̄ , y) is D-measurable.

Corollary 3.2. Let � = (T , �, A, P ) be a game satisfying Assumptions 2.1–2.4, 3.1 and 3.3.
Then the game � has a pure Cournot–Nash equilibrium.

Proof. We can check that under Assumptions 2.1–2.4 and Assumption 3.1, Assumption 3.3
implies Assumption 3.2. Indeed, since the preferred to correspondences are defined by payoff
functions, Assumption 3.2(i) is automatically satisfied. Assumptions 3.2(ii) and 3.2(v) are a di-
rect consequence of Assumption 3.3(i). Assumption 3.2(iv) follows from Assumption 3.3(ii).
Assumption 3.2(iii) follows from Assumptions 3.3(i) and 3.1.

Remark 3.5. Corollary 3.2 coincides with Theorem 2.1 in Balder [6]. In particular, Corollary 3.1
generalizes Theorem 2.1 in Balder [6] to games with possibly non-ordered preferences.

Remark 3.6. Following Remark 3.4 we can replace condition (i) of Assumption 3.3 by the
following weaker condition

(i′) the function Ut is upper-semicontinuous and the function

(f̄ , y) �→ sup
s∈At (f̄ ,y)

Ut (s, f̄ , y)

is lower-semicontinuous on S� × Rm.

Then we also obtain Theorem 2.2.1 in Balder [8] as a corollary of Theorem 2.1.
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At }. Assumption 3.2(iv) implies that the function U is D-measurable. Applying Lemma III.39 in Castaing–Valadier [11]
the function V is A-measurable (the completeness of A plays a crucial role for this result). It then follows that gph M ∈ D.
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Appendix A. Continuous correspondences

Let X and Y two semimetrizable topological vector spaces and F a correspondence from X to Y.

Definition A.1. The correspondence F is said: to be upper-semicontinuous if for each open set
V ⊂ Y the set {x ∈ X: F(x) ⊂ V } is open; to have a closed graph if the set {(x, y) ∈ X ×Y : y ∈
F(x)} is closed.

Remark A.1. We recall the following well-known equivalence result (see e.g. Florenzano
[14, Appendix A]). If there exists a compact set K ⊂ Y such that for each x ∈ X, F(x) ⊂ K then
the correspondence F is upper-semicontinuous with closed values if and only if it has a closed
graph.

Definition A.2. The correspondence F is said: to have an open graph if {(x, y) ∈ X × Y : y ∈
F(x)} is open; to have open lower-sections if for each y ∈ Y , the set {x ∈ X: F(x) � y} is open; to
have open upper-sections if for each x ∈ Y , the set F(x) is open; and to be lower-semicontinuous
if for each non-empty open set V ⊂ Y the set {x ∈ X: F(x) ∩ V �= ∅} is open.

Proposition A.1. Let S and � be Hausdorff topological spaces and consider a correspondence
P from S × � to S and A from � to S. Consider the following conditions:

(iii.1) the correspondence P has open lower-sections and open upper-sections and for each � ∈ �,
A(�) is the closure of B(�) where the correspondence B : � → S has open lower-sections;

(iii.2) the graph of the correspondence P : S × � → S is open and the correspondence A is
lower-semicontinuous;

(iii.3) the correspondence P is lower-semicontinuous and A(�) = S for each � ∈ �.

Then each one of the above conditions imply the following one:

(iii) the set {(s, �) ∈ S × � : P(s, �) ∩ A(�) �= ∅} is open.

The proof of Proposition A.1 is mostly inspired by Yannelis and Prabhakar [46].

Proof of: (iii.1) implies (iii). For each (s, �) ∈ S ×�, P(s, �) is open hence P(s, �)∩A(�) �= ∅
if and only if P(s, �) ∩ B(�) �= ∅. Let (s, �) ∈ S × � such that P(s, �) ∩ B(�) �= ∅ and let � ∈ S

be such that � ∈ P(s, �) ∩ B(�). Since P has open lower-sections there exist open sets U and
V in S and � such that (s, �) ∈ U × V and for each (s′, �′) ∈ U × V , P(s′, �′) � �. Since B
has open lower-sections there exists an open set W in � such that � ∈ W and for each �′ ∈ W ,
B(�′) � �. It then follows that (s, �) ∈ U × (V ∩ W) and for each (s′, �′) ∈ U × (V ∩ W),
P(s′, �′) ∩ B(�′) �= ∅. �

Proof of: (iii.2) implies (iii). Let (s, �) ∈ S×� such that P(s, �)∩A(�) �= ∅. Let � ∈ S be such
that � ∈ P(s, �)∩A(�). Since P has an open graph, there exists two open sets U, V in S and an open
set W in � such that (s, �, �) ∈ U ×W ×V and for each (s′, �′, �′) ∈ U ×W ×V , P(s′, �′) � �′.
The correspondence A is lower semi-continuous hence the set {�′ ∈ � : A(�′) ∩ V �= ∅} is
open. Therefore there exists an open set W ′ in � such that � ∈ W ′ and for each �′ ∈ W ′,
A(�′)∩V �= ∅. It then follows that (s, �) ∈ U × (W ∩W ′) and for each (s′, �′) ∈ U × (W ∩W ′),
P(s′, �′) ∩ A(�′) �= ∅. �
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Proof of: (iii.3) implies (iii). For each (s, �) ∈ S × �, P(s, �) ∩ A(�) �= ∅ if and only if
P(s, �) ∩ S �= ∅. The set S is open, hence (iii) follows from the lower semi-continuity of the
correspondence P. �
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