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Abstract We show, by means of an example, that in models where default is subject
to both collateral repossession and utility punishments, opportunities for doing Ponzi
schemes are not always ruled out and (refined) equilibria may fail to exist. This is true
even if default penalties are moderate as defined in Páscoa and Seghir (Game Econ
Behav 65:270–286, 2009). In our example, asset promises and default penalties are
chosen such that, if an equilibrium does exist, agents never default on their promises. At
the same time collateral bundles and utility functions are such that the full repayment
of debts implies that the asset price should be strictly larger than the cost of collateral
requirements. This is sufficient to induce agents to run Ponzi schemes and destroy
equilibrium existence.

Keywords Collateral · Default penalties · Ponzi schemes

JEL Classification D52 · D91

1 Introduction

In infinite horizon competitive economies with full commitment, it is well-known that
Ponzi schemes must be ruled out in order to guarantee the existence of equilibria. In an
environment without commitment, Araujo et al. (2002) showed that Ponzi schemes
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are ruled out (and therefore an equilibrium always exists) if agents are forced to hold
collateral when they take debt positions. Páscoa and Seghir (2009) subsequently pre-
sented two examples to show that if, in addition to collateral repossession, agents
suffer harsh utility penalties when they default, then Ponzi schemes may reappear and
equilibria fail to exist. Martins-da Rocha and Vailakis (2012) provided a counterexam-
ple to this claim by showing that the economies considered in those examples do have
an equilibrium with no trade. This is because the standard equilibrium concept leaves
room for spurious inactivity on asset markets when agents have unduly pessimistic
expectations about asset deliveries. In particular, in the definition of the competitive
equilibrium, the market clearing equation defining the expected delivery rate leaves
its value undeterminate when there is no trade.

The finding in Martins-da Rocha and Vailakis (2012) suggests that in models where
default is subject to both collateral repossession and utility punishments the equilib-
rium concept has to be refined to eliminate “undesirable” no-trade equilibria. The
paper proposes to adapt the refinement concept of Dubey et al. (2005) to the setting
studied by Páscoa and Seghir (2009).

Ferreira and Torres-Martínez (2010) showed that equilibria may fail to exist in the
presence of additional (to collateral) enforcement mechanisms, provided that those
mechanisms are effective, i.e., they induce payments besides the value of the collateral.
When payments exceed the value of the collateral requirements, by non-arbitrage,
lenders lend more than the value of those guarantees and, therefore, borrowers may
run Ponzi schemes.

Páscoa and Seghir (2009) claimed that moderate default penalties are compatible
with equilibrium existence. Our contribution amounts to show that this is not the
case. We prove our claim by presenting an example in which, due to moderate default
penalties, opportunities for doing Ponzi schemes are not always ruled out and refined
equilibria fail to exist.1 In our example, the default penalties, although moderate, they
are severe enough to induce borrowers (at any candidate refined equilibrium) to pay
fully their debt at every period.2

Choosing the asset promises to be greater than the value of depreciated collateral,
we get that lenders always expect to receive more than the value of the depreciated
collateral (actually they expect to get fully repaid).3 For the borrowers, the joint oper-
ation of selling the asset and buying the collateral generates utility gains due to the
consumption of the collateral good, but also yields negative returns since what they
have to repay exceeds the value of depreciated collateral they already posses. We show
that it is possible to specify the preference relations and collateral levels in a way that
the loss in utility due to the realization of those negative returns is not compensated

1 In that respect, we provide a counterexample to the existence result claimed in Páscoa and Seghir (2009).
If the arguments in the Proof of Theorem 4.1 in Páscoa and Seghir (2009) were correct, then we would get
existence of a refined equilibrium when default penalties are moderate.
2 In other words, we show that moderate penalties can be an effective mechanism (as defined in Ferreira
and Torres-Martínez (2010)).
3 This is not true for equilibria that are not refined since lenders may expect the asset to deliver nothing
above the depreciated value of the collateral, despite the fact that default penalties would induce agents to
repay fully their debt in case of trade.
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Infinite horizon collateralized economies with default penalties 457

by the gains in utility due to the consumption of collateral. Therefore, if a refined
equilibrium has to exist asset prices must exceed the price of collateral costs. In this
case, as Páscoa and Seghir (2009) already explained, agents are induced to run Ponzi
schemes that are not consistent with optimality of plans in a refined equilibrium.
Therefore, refined equilibria cannot exist.

Once we know that moderate penalties are effective, a possible route to show that
Ponzi schemes reappear consists of looking for restrictions on collateral levels and
endowments such that the condition of Theorem 1 in Ferreira and Torres-Martínez
(2010) is satisfied. In particular, we would need to assume either that collateral require-
ments or aggregate endowments vanish in the long run. We opt for a different and direct
approach that allows for collateral bundles and aggregate endowments to be uniformly
bounded away from zero. A detailed discussion on this issue is provided in Remark 4.4.

The paper is structured as follows. In Sect. 2 we present a simplified version of the
model proposed by Páscoa and Seghir (2009) and define the associated equilibrium
concept. In Sect. 3 we explain why unduly pessimistic expectations may render the
asset market inactive, therefore make it necessary to refine the standard equilibrium
concept. A refinement of equilibrium is subsequently proposed in the spirit of Dubey
et al. (2005). Section 4 contains our main contribution. It presents an example of an
economy with moderate default penalties in which agents are induced to run Ponzi
schemes and a refined equilibrium fails to exist. Section 5 concludes in Appendix A we
propose a sufficient condition on penalties that rules out Ponzi schemes and we provide
a sketch of the proof of the corresponding equilibrium existence result. Appendix B
presents necessary and sufficient conditions for the existence of Lagrange multipliers.

2 The model

Páscoa and Seghir (2009) considered an extension of the model developed by Araujo
et al. (2002) to allow for the possibility of linear default penalties. Since our aim is to
provide an example of non-existence of a refined equilibrium we abstract from a full
presentation of their setting and rather consider a specific infinite horizon economy E
without uncertainty and with one short-lived asset. The set {0, 1, . . . , t, . . .} of time
periods is denoted by T .

2.1 Agents and commodities

There exists a finite set L of commodities available for trade at every period. We
interpret xt ∈ R

L+ as a claim to consumption at period t . We also write 1{�} ∈ R
L+ for

the commodity bundle consisting of one unit of commodity � ∈ L and nothing else.
We allow for some commodities to be non-perishable, that is, we allow for storable
and durable goods. Transformation of commodities is represented by a family (Yt )t∈T
of linear functionals Yt from R

L+ to R
L+. The bundle Yt zt−1 represents what is obtained

at period t � 1 if the bundle zt−1 ∈ R
L+ is purchased at period t − 1. At each period

there are spot markets for trading every commodity. We let p = (pt )t∈T denote the
sequence of spot prices where pt = (pt (�))�∈L ∈ R

L+ is the price vector at period t .
There is a finite set I of infinitely lived agents. Each agent i ∈ I is characterized

by an endowment sequence ωi = (ωi
t )t∈T where ωi

t = (ωi
t (�))�∈L ∈ R

L+ denotes the
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endowment bundle available at period t . Each agent chooses a consumption sequence
x = (xt )t∈T where xt ∈ R

L+. We denote by X the set of consumption sequences. The
utility function Ui : X −→ [0,+∞] is assumed to be time-additively separable, i.e.,

Ui (x) =
∑

t∈T
[βi ]tvi

t (xt )

where vi
t : R

L+ −→ [0,∞) represents the instantaneous utility function at period t
and βi ∈ (0, 1) is the discount factor.

2.2 Assets and collateral

There is a single asset which is a short-lived real security available for trade at each
period t , paying the dividend pt+1 At+1 that corresponds to the value of a bundle
At+1 ∈ R

L+ under the spot price vector pt+1. We let q = (qt )t∈T be the asset price
sequence where qt ∈ R+ represents the asset price at period t . For each agent i , we
denote by θ i

t ∈ R+ the purchases and by ϕi
t ∈ R+ the short-sales of the asset at each

period t .
The asset is collateralized in the sense that for every unit of asset sold at a period t ,

agents should buy a collateral Ct ∈ R
L+ that protects lenders in case of default. Implic-

itly we assume that payments can be enforced through the seizure of the collateral. At
a period t � 1, agent i should deliver the promise Vt (p)ϕi

t−1 where Vt (p) = pt At .
However, agent i may decide to default and choose a delivery di

t in units of account.
Since the collateral can be seized, this delivery must satisfy di

t � Dt (p)ϕi
t−1 where

Dt (p) = min{pt At , pt Yt Ct−1}.

Following Dubey et al. (2005); Páscoa and Seghir (2009) assume that each agent i
feels at period t a disutility from defaulting which is represented by a linear function
of the extent of default. More precisely, if agent i decides to deliver di

t at period t
given promises ϕi

t−1 made at t − 1, then he suffers at the initial date, the disutility

[βi ]tμi
t

[
Vt (p)ϕi

t−1 − di
t

]+

ptwt
,

where μi
t ∈ [0,∞] and ptwt is the market value of an exogenously given bundle wt .4

In that case, agent i may have an incentive to deliver more than the minimum between
his debt and the depreciated value of his collateral, i.e., we may have di

t > Dt (p)ϕi
t−1.

The asset is thought as a pool, i.e., at each period t there is a delivery rate κt ∈ [0, 1]
that summarizes all different sellers’ deliveries. By purchasing one unit of the asset,

4 The unitary default penalty μi
t represents the instantaneous disutility from defaulting in real terms the

market value of the bundle wt .
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Infinite horizon collateralized economies with default penalties 459

the lenders correctly anticipate to receive the fraction Vt (κ, p) defined by5

Vt (κ, p) = κt Vt (p) + (1 − κt )Dt (p).

Along the paper we will use repeatedly the following notations. We let A be the
space of sequences a = (at )t∈T with6

at = (xt , θt , ϕt , dt ) ∈ R
L+ × R+ × R+ × R+.

For each period t , we denote by At the set of plans a ∈ A such that aτ = (0, 0, 0, 0)

for each τ > t . If a is a plan in A and t is a period, we denote by a1[0,t] the plan in
At which coincides with a for every period τ ∈ {0, . . . , t}. We denote by Bt the set
of plans a in At satisfying ϕt = 0.

2.3 Budget constraints

In each decision period t ∈ T , agent i’s choice ai = (xi , θ i , ϕi , di ) ∈ A must satisfy
the following constraints:

(a) solvency constraint:

pt x
i
t + di

t + qtθ
i
t � pt [ωi

t + Yt x
i
t−1] + Vt (κ, p)θ i

t−1 + qtϕ
i
t ; (2.1)

(b) collateral requirement:

Ctϕ
i
t � xi

t ; (2.2)

(c) minimum delivery:

Dt (p)ϕi
t−1 � di

t . (2.3)

2.4 The payoff function

Assume that π = (p, q, κ) is a sequence of prices and delivery rates. Consider that
agent i has chosen the plan a = (x, θ, ϕ, d) ∈ A. He gets the utility Ui (x) ∈ [0,∞]
defined by

Ui (x) =
∑

t∈T
[βi ]tvi

t (xt )

5 One of the equilibrium conditions will require that lenders’ expected return Vt (κ, p) coincides with the
actual deliveries of the borrowers in the sense that

∑

i∈I

Vt (κ, p)θ i
t−1 =

∑

i∈I

di
t .

6 By convention we let a−1 = (x−1, θ−1, ϕ−1, d−1) = (0, 0, 0, 0).
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but he suffers the disutility W i (p, a) ∈ [0,∞] defined by

W i (p, a) =
∑

t�1

[βi ]tμi
t

[
Vt (p)ϕt−1 − dt

]+

ptwt
.

We would like to define the payoff Π i (p, a) of the plan a as Ui (x) − W i (p, a).
Unfortunately, this difference may not be well-defined if Ui (x) and W i (p, a) are both
infinite.7 We propose to consider the binary relation �i,p defined on A by

ã �i,p a ⇐⇒ ∃ε > 0, ∃T ∈ T , ∀t � T, Π i,t (p, ã) � Π i,t (p, a) + ε

where

Π i,t (p, a) = Ui,t (x) − W i,t (p, a), Ui,t (x) =
∑

0�τ�t

[βi ]τ vi
τ (xτ )

and

W i,t (p, a) =
∑

1�τ�t

[βi ]τμi
τ

[
Vτ (p)ϕτ−1 − dτ

]+

pτwτ

.

Observe that if Π i (p, ã) and Π i (p, a) exist in R then ã �i,p a if and only if
Π i (p, ã) > Π i (p, a). The set Prefi (p, a) of plans strictly preferred to plan a by
agent i is defined by Prefi (p, a) = {̃a ∈ A : ã �i,p a}.

2.5 The equilibrium concept

We denote by � the set of sequences of prices and delivery rates (p, q, κ) satisfying
for all t ∈ T

(pt , qt , κt ) ∈ R
L++ × R+ × [0, 1] and

∑

�∈L

pt (�) + qt = 1. (2.4)

Given a sequence (p, q, κ) of commodity prices, asset prices and delivery rates, we
denote by Bi (p, q, κ) the set of plans a = (x, θ, ϕ, d) ∈ A satisfying constraints (2.1),
(2.2) and (2.3).

Definition 2.1 A competitive equilibrium for the economy E is a family of prices and
delivery rates (p, q, κ) ∈ � and an allocation a = (ai )i∈I with ai ∈ A such that

(a) for every agent i , the plan ai is optimal among the budget feasible plans, i.e.,

ai ∈ Bi (p, q, κ) and Prefi (p, ai ) ∩ Bi (p, q, κ) = ∅; (2.5)

7 This issue is ignored by Páscoa and Seghir (2009).
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(b) commodity markets clear at every period, i.e.,8

∀t ∈ T ,
∑

i∈I

xi
t =

∑

i∈I

[
ωi

t + Yt x
i
t−1

]
; (2.6)

(c) the asset market clears at every period, i.e.,

∀t ∈ T ,
∑

i∈I

θ i
t =

∑

i∈I

ϕi
t ; (2.7)

(d) aggregate borrowers’ deliveries match lenders’ expectations, i.e.,

∀t � 1,
∑

i∈I

Vt (κ, p)θ i
t−1 =

∑

i∈I

di
t . (2.8)

The set of allocations a = (ai )i∈I in A satisfying the market clearing conditions
(2.6) and (2.7) is denoted by F. Each allocation in F is called physically feasible. A
plan ai ∈ A is called physically feasible if there exists a physically feasible allocation
b ∈ F such that ai = bi .

2.6 Assumptions

For each agent i , we denote by Ω i = (Ω i
t )t∈T the sequence of accumulated endow-

ments, defined recursively by Ω i
t = YtΩ

i
t−1 + ωi

t with Ω i
0 = ωi

0. The sequence∑
i∈I Ω i of accumulated aggregate endowments is denoted by Ω . This section

describes the assumptions imposed on the characteristics of the economy. It should be
clear that these assumptions always hold throughout the paper.

Assumption 2.1 (Agents). For every agent i ,

(A.1) the sequence of accumulated endowments is strictly positive and uniformly
bounded from above, i.e.,

∃Ω
i ∈ R

L++, ∀t ∈ T , Ω i
t ∈ R

L++ and Ω i
t � Ω

i ;

(A.2) for every period t , the utility function vi
t is concave, continuous and strictly

increasing on R
L+ with vi

t (0) = 0;
(A.3) the infinite sum Ui (Ω) is finite.9

8 By convention xi−1 = 0 and Y−1 = 0.
9 This assumption is automatically satisfied if the sequence of functions (vi

t )t∈T is uniformly bounded
from above by an increasing function vi . Indeed, in that case we have

Ui (Ω) � vi (Ω)
∑

t�0

[βi ]t < ∞

where Ω = ∑
i∈I Ω

i
.
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Assumption 2.2 (Collateral). For every period t , the collateral bundle Ct is not
zero.

Remark 2.1 Let (π, a) be a competitive equilibrium with π = (p, q, κ) ∈ �. Since
xi is physically feasible, we have 0 � xi

t � Ωt . Following Assumption (A.2) and
(A.3) we have

0 � Ui (xi ) � Ui (Ω) < ∞.

This implies that Π i (p, ai ) belongs to [−∞,∞). Each agent can choose to survive
in autarky, i.e., the plan auti = (Ω i , 0, 0, 0) belongs to the budget set Bi (π). This
implies that we cannot have auti �i,p ai . Since W i (p, auti ) = 0, we must have
W i (p, ai ) > −∞, implying that the payoff Π i (p, ai ) belongs to R.

3 Equilibrium refinement

3.1 Indeterminacy of delivery rates and overpessimistic expectations

Let (π, (ai )i∈I ) be a competitive equilibrium with π = (p, q, κ) ∈ � and ai =
(xi , θ i , ϕi , di ). Fix a period t � 1. Since agent i delivers in period t at least the
amount Dt (p)ϕi

t−1, we let σ i
t ∈ [0, 1] be the individual delivery rate defined by the

equation

di
t =

[
σ i

t Vt (p) + (1 − σ i
t )Dt (p)

]
ϕi

t−1 =
[
σ i

t {Vt (p) − Dt (p)} + Dt (p)
]
ϕi

t−1

if agent i has a debt ϕi
t−1 > 0, and we pose σ i

t = 0 elsewhere. If there is trade in period
t − 1, i.e., ϕi

t−1 > 0 for some agent i , then Eq. (2.8) in the definition of a competitive
equilibrium can be restated as follows

κt

∑

i∈I

ϕi
t−1 =

∑

i∈I

σ i
t ϕ

i
t−1

and κt can be interpreted as the average delivery rate (per unit of asset sold) above the
minimum delivery Dt (p). If there is no trade in period t −1 then the delivery rate κt is
undeterminate. That is, when the asset is not traded, our equilibrium concept makes no
assumption about the expected delivery rate. We claim that pessimistic expectations
about delivery (i.e., low values of κt ) may by itself render the asset market inactive in
period t − 1 if default penalties are large enough. Our finding shares some similarities
with the issue of trivial equilibria pointed out by Dubey et al. (2005). To clarify this
link we recall some notations. In Dubey et al. (2005) assets are not collateralized. The
repayment rate, denoted by Kt , is defined by the equation

Kt Vt (p)
∑

i∈I

ϕi
t−1 =

∑

i∈I

di
t .
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As explained in Páscoa and Seghir (2009) (see Remark 3.1), when assets are
collateralized agents deliver at least Dt (p) per unit of asset sold. In this case, if
Dt (p) and Vt (p) are not zero, rational agents expect Kt to be greater than the ratio
Dt (p)/Vt (p), and in particular it must be non-null.10 This is the reason why in our
model we have chosen to parameterize agents’ expectations about delivery by the
average delivery rate above the minimum delivery, denoted by κt . In other words,
when there is trade in period t − 1 we have the relation

Kt Vt (p) = κt {Vt (p) − Dt (p)} + Dt (p).

In Dubey et al. (2005) it is easy to support equilibria with no trade in the asset
on account of absurdly pessimistic expectations about repayment rates. However, in
a model with collateral requirements, it is not clear whether such equilibria can be
supported.11

Martins-da Rocha and Vailakis (2012) presented two examples to argue that the
unrefined equilibrium concept introduced by Páscoa and Seghir (2009) is not satisfac-
tory since unreasonable pessimism may render the asset market inactive. The prob-
lem comes from Eq. (2.8) that leaves undeterminate agents’ expectations about the
delivery rate κt when there is no trade at equilibrium. What drives the existence of the
no trade equilibrium outcome is a simultaneous wedge at autarky between the asset
price and the values of the short and long positions. More precisely, in the proposed
examples, it is possible to choose the asset price to lie between the value of the long
position evaluated using the most pessimistic expectations about deliveries and the
value of the short position in the presence of harsh default penalties. The loss of util-
ity when defaulting is so severe that borrowers would fully repay their debts if the
asset were traded. This seems to be inconsistent with lenders’ pessimistic expecta-
tions about deliveries. However, the definition of an (unrefined) equilibrium does not
impose any consistency condition on out of equilibrium paths. In particular, under no
trade, expectations become indeterminate and the inconsistency is formally absent.

3.2 Removing overpessimistic expectations

It is thus important to refine the equilibrium concept in order to rule out spurious
inactivity in asset markets. To address this issue, we follow Dubey et al. (2005)
and introduce an equilibrium refinement in which the government intervenes to sell
infinitesimal quantities ε > 0 of the asset at each period and fully delivers on its
promises. Since the government does not default, it does not need to constitute col-
lateral bundles. However, since it delivers fully εVt (p) but it gets delivered only
εVt (κ, p), on net the government injects the vector of commodities εbt (κ, p)wt where
bt (κ, p) � 0 is defined by the equation

10 If the promise bundle At and the depreciated collateral bundle Yt Ct−1 are not zero then Dt (p) (and
consequently Vt (p)) are not zero since pt is strictly positive.
11 See Dubey et al. (2005) and the discussion in Martins-da Rocha and Vailakis (2012).
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bt (κ, p)ptwt = Vt (p) − Vt (κ, p).

This touch of honesty banishes whimsical pessimism and rules out spurious inacti-
vity on asset markets. We adapt the definition of a competitive equilibrium with the
government intervention proposed by Dubey et al. (2005) to our framework.

Definition 3.1 An ε-equilibrium is a family π = (p, q, κ) ∈ � of prices and delivery
rates and an allocation (ai )i∈I such that

(i) as in the standard competitive equilibrium concept, for every agent i the plan ai

is optimal among the budget feasible plans and the asset market clears at every
period;

(ii) different to the standard competitive equilibrium, commodity markets ε-clear,
i.e.,12

∀t ∈ T ,
∑

i∈I

xi
t =

∑

i∈I

[ωi
t + Yt x

i
t−1] + εbt (κ, p)wt (3.1)

and delivery rates are boosted by the external agent, i.e.,

∀t � 1, Vt (κ, p)

[
ε +

∑

i∈I

θ i
t−1

]
= εVt (p) +

∑

i∈I

di
t . (3.2)

Equation (3.2) defining the delivery rate κt can be restated as follows

∀t � 1, κt

[
ε +

∑

i∈I

θ i
t−1

]
= ε +

∑

i∈I

σ i
t ϕ

i
t−1

where σ i
t is agent i’s individual delivery rate as defined in Sect. 3.1. The delivery rate

κt is the weighted average of individual rates and is boosted due to the fact that the
government delivers fully on its promises. As the government intervention disappears,
i.e., ε tends to 0, this boost disappears for periods where the asset is positively traded
in the limit.

Definition 3.2 A competitive equilibrium (π, (ai )i∈I ) is called a refined equilibrium
if for every ε > 0 small enough there exists an ε-equilibrium (π(ε), (ai (ε))i∈I ) such
that

lim
ε→0

(π(ε), (ai (ε))i∈I ) = (π, (ai )i∈I ).

4 Ponzi schemes and non-existence of refined equilibrium

It is now natural to investigate under which conditions a refined equilibrium exists.
To answer this question we should find first conditions under which an ε-equilibrium

12 By convention we let a−1 = (x−1, θ−1, ϕ−1, d−1) = (0, 0, 0, 0) and b0(κ, p) = 0.
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exists. It is straightforward to adapt the arguments in Araujo et al. (2002); Dubey et
al. (2005); Páscoa and Seghir (2009) to get existence (under standard assumptions)
of an ε-equilibrium for economies with a finite horizon. One may then consider a
sequence of finite-horizon ε-equilibria (πT , (ai,T )i∈I )T ∈T where the horizon T tends
to infinite. Following the arguments in Páscoa and Seghir (2009) it is straightforward
to prove that there exists a subsequence converging to some (π, (ai )i∈I ). In order to
prove that the limit (π, (ai )i∈I ) is an ε-equilibrium, the only difficulty is to show that
the plan ai is optimal in the budget set defined by the price sequence π .

Páscoa and Seghir (2009) claimed that a sufficient condition for optimality of the
limiting plan ai (and consequently for existence of an equilibrium) is to assume that
default penalties are moderate, in the sense that, for infinitely many periods, the penalty
associated with the maximal default for a physically feasible plan is less than the utility
from consuming the current endowment.13 This statement appears to be very intuitive:
if default penalties are moderate then default does not hurt much and nothing prevent
agents to fully default in the long run. Ponzi schemes should be avoided, since, after
a while, the joint operation of short-selling an asset and purchasing the collateral
bundle should not allow to transfer wealth between periods. In what follows we show,
by means of a specific example, that although intuitive, the condition proposed by
Páscoa and Seghir (2009) is not sufficient to ensure existence.14 In the proposed
example default penalties are moderate but severe enough to induce all agents (at an
ε-equilibrium) to never default on their promises. At the same time collateral bundles
and utility functions are such that the full repayment of debts implies that the asset
price should be strictly larger than the cost of collateral requirements. This is sufficient
to induce agents to run Ponzi schemes which are not compatible with the existence of
an ε-equilibrium.

4.1 Moderate default penalties

Fix some ε > 0. We start by introducing some notation and making additional assump-
tions. We assume that there exists b � 0 such that for every period t � 1 we have
At � bwt + Yt Ct−1. This implies that the maximal default bt per unit of asset is
bounded from above by b, i.e.,15

13 Páscoa and Seghir (2009) assumed that default penalties are moderate and claimed in Theorem 4.1 that
an equilibrium exists. Actually, the only difficult step (which is also the only step where the assumption of
moderate penalties is used) of their proof consists of proving that if a sequence of finite horizon equilibria
converges then for every agent, the limiting plan is optimal for the infinite horizon budget set. If their
arguments were correct we would also get existence of an ε-equilibrium when default penalties are moderate
since optimality of a plan among budget feasible plans is independent of whether we consider equilibria or
ε-equilibria (individual demand sets coincide for both concepts).
14 The mistake in the intuitive argument we provide (and in the proof proposed by Páscoa and Seghir
(2009)) is that when contemplating an alternative budget feasible plan, an agent does not restrict his choices
to be physically feasible. In particular, depending on the sequence of prices, a budget feasible plan may have
a sequence of asset short-sales that is inconsistent with the scarcity of goods (recall that when short-selling
an agent should constitute collateral in terms of goods).
15 The set �(L) is the simplex in R

L+, i.e., �(L) = {p ∈ R
L+ : ∑

�∈L p(�) = 1}.

123



466 V. F. Martins-da-Rocha, Y. Vailakis

bt ≡ sup
p∈�(L)

[
p At − pYt Ct−1

]+

pwt
� b.

We denote by W = (Wt )t�1 the sequence defined recursively by Wt = wt + Yt Wt−1
where W1 = w1. We assume that there exists an upper bound W of the sequence W .
For each period t , we denote by Mt the real number

min
�∈L

Ωε
t (�)

Ct (�)

where Ωε
t is an upper bound on aggregate resources at period t defined recursively

by16

Ωε
t = ωt + εbtwt + YtΩ

ε
t−1 and Ωε

0 = ω0

where ωt = ∑
i∈I ωi

t . We let Ω
ε

be the uniform upper bound on aggregate resources
defined by

Ω
ε ≡ Ω + εbW .

Observe that under Assumption 2.2, we have Mt < ∞. Finally, for every period
t � 1 we let

Ht = Mt−1bt .

The quantity Ht is an upper bound of the amount in real terms that an agent may
default if his plan is feasible in the ε-economy. The proof of the following proposition
is straightforward and omitted.

Proposition 4.1 If a in A is a plan physically feasible in the ε-economy and (p, q, κ)

in � is a sequence of prices and delivery rates, then for each period t, we have

ϕt � Mt and

[
Vt (p)ϕt−1 − dt

]+

ptwt
� Ht .

Páscoa and Seghir (2009) introduced the concept of α-moderate default penalties
that is adapted here to ε-economies. Fix a sequence α = (αt )t∈T with αt ∈ (1,∞).

Definition 4.1 Default penalties are said to be α-moderate with respect to utility
functions, if for every agent i there exists an infinite subset Modi of T such that

∀t ∈ Modi , αtμ
i
t Ht � vi

t (ω
i
t ). (4.1)

Default penalties are said moderate with respect to utility functions, if they are
α-moderate for some α ∈ (1,∞)T .

16 Observe that the term bt (κ, p) appearing in the market clearing condition (3.1) satisfies bt (κ, p) � bt .
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In other words, when default penalties are α-moderate, then for infinitely many
periods the penalty associated with the maximal default for a feasible plan, is less than
the utility from consuming the current endowment.

4.2 Lagrange multipliers when default penalties are moderate

Throughout this subsection we fix an economy E with moderate default penalties and
provide necessary conditions (in particular first order conditions) for the existence
of an ε-equilibrium. Our conditions rely on a technical existence result of Lagrange
multipliers that is presented in Appendix B. While standard, the arguments are delicate.
For instance, the fact that default penalties are moderate plays a crucial role.17 It is not
clear to us whether the first order conditions that we provide are still valid if default
penalties are not moderate.

Assume that (π, a) is an ε-equilibrium where π ∈ � is a sequence π = (πt )t∈T of
prices and delivery rates with πt = (pt , qt , κt ) and a = (ai )i∈I is an allocation of plans
ai = (ai

t )t∈T in A with ai
t = (xi

t , θ
i
t , ϕ

i
t , di

t ). Applying the theorem of Appendix B,18

we can prove that for each agent i there exist,19

(i) a sequence of non-negative Lagrange multipliers (γ i
t )t∈T corresponding to the

sequence of budget constraints (2.1);
(ii) for each commodity �, a sequence (χ i

t (�))t∈T of non-negative Lagrange multi-
pliers corresponding to the sequence of collateral requirements (2.2);

(iii) a sequence of non-negative Lagrange multipliers (ρi
t )t∈T corresponding to the

sequence of minimum delivery constraints (2.3);20

(iv) two sequences of non-negative Lagrange multipliers (αi
θ,t )t∈T and (αi

ϕ,t )t∈T
corresponding to the non-negative constraints on portfolio purchases and sales

such that for any period τ � 1 and each finite sequence a = (at )t∈T ∈ Ãτ ,

∑

0�t�τ+1

Li
t (at , at−1) ≤

∑

t∈T
Π i

t (a
i
t , ai

t−1) (4.2)

where Ã is the set of sequences (at )t∈T with at = (xt , θt , ϕt , dt ) satisfying21

xt ∈ R
L , θt ∈ R, ϕt ∈ R and dt ∈ R

17 The fact that default penalties are moderate is used in Claim 4.1 which is essential in order to get
condition (d) in the Theorem of Appendix B.
18 We thank Juan Pablo Torres–Martínez for pointing out that this issue is delicate and deserves some
attention.
19 One should apply the theorem in Appendix B by choosing Lt = L ∪ {1, 2, 3} or equivalently R

Lt =
R

L × R
3. Condition (L.3) in Appendix B follows from Assumptions (A.1) and (A.2). Condition (b) in the

theorem of Appendix B follows from Remark 2.1. For more details, we refer to Appendix B.
20 We let ρi

0 = 0 since there is no delivery at the initial period t = 0.
21 By convention, we let a−1 = (0, 0, 0, 0).
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and Ãτ the set of sequences (at )t∈T ∈ Ã with horizon τ , i.e., at = 0 for each period
t > τ . The Lagrangian Li

t (at , at−1) is defined by

Li
t (at , at−1) = Π i

t (at , at−1) +
∑

�∈L

χ i
t (�){xt (�) − Ct (�)ϕt }

+γ i
t gi

t (at , at−1) + ρi
t hi

t (at , at−1) + αi
θ,tθt + αi

ϕ,tϕt

where

Π i
t (at , at−1)

[βi ]t
= vi

t (xt ) − μi
t

[
Vt (p)ϕt−1 − dt

]+

ptwt
,

with

gi
t (at , at−1) = pt {ωi

t + Yt xt−1} − pt xt + qt [ϕt − θt ] + Vt (κ, p)θt−1 − dt

and

hi
t (at , at−1) = dt − Dt (p)ϕt−1.

Remark 4.1 Because of the minimum delivery constraint we do not need to restrict
the delivery to be non-negative, and because of the collateral requirement constraint
we do not need to restrict the consumption plan to be non-negative. This is the reason
why there are no Lagrange multipliers corresponding to the non-negative constraints
on consumption bundles and deliveries.

Since default penalties are moderate, the ε-equilibrium (π, a) should satisfy the
following property.

Claim 4.1 For every agent i and any period t � 1, there exist τ � t and a budget
feasible (τ + 1)-period sequence ǎi in Bi (p, q, κ) ∩ Bτ+1 such that

Π i (p, ǎi ) � Π i,τ (p, ai ) and ǎi 1[0,τ ] = ai 1[0,τ ]. (4.3)

Proof Fix an agent i and a period t � 1. Since Modi is infinite, there exists T ∈ Modi

satisfying T > t . We pose τ = T −1. It is straightforward to check that we can choose
ǎi defined as follows

∀s ∈ T , ǎi
s =

⎧
⎨

⎩

ai
s if s � τ

(ωi
τ+1, 0, 0, dτ+1) if s = τ + 1
(0, 0, 0, 0) if s > τ + 1

where dτ+1 = Dτ+1(p)ϕi
τ . In other words, when choosing the plan ǎi , agent i decides

to fully default on his debt at period T = τ + 1 and consume his initial endowment.
Because τ + 1 belongs to Modi , the utility from consuming his endowment compen-
sates the disutility from defaulting and we get Eq. (4.3). ��
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Now, we can apply Claim 4.1 to show that condition (d) in the theorem of Appen-
dix B is satisfied. Therefore, for any period t ∈ T and every commodity �, we have

γ i
t gi

t (a
i
t , ai

t−1) = 0, χ i
t (�){xi

t (�) − Ct (�)ϕ
i
t } = 0

together with

ρi
t hi

t (a
i
t , ai

t−1) = 0, αi
θ,tθ

i
t = 0 and αi

ϕ,tϕ
i
t = 0.

It follows that

∑

0�t�τ+1

Li
t (at , at−1) �

∑

t∈T
Π i

t (a
i
t , ai

t−1) =
∑

t∈T
Li

t (a
i
t , ai

t−1). (4.4)

In particular, we can deduce that there exist for each agent i ,22

(i) a family of super-gradients (∇vi
t )t∈T where ∇vi

t belongs to ∂vi
t (xi

t ) the super-
differential of vi

t at xi
t ;

(ii) a family of super-gradients (δi
t )t�1 where δi

t is a super-gradient of � �→ [�]+
at �i

t = Vt (p)ϕi
t−1 − di

t ,

such that

(a) first order condition for consumption:

∀t ∈ T , [βi ]t∇vi
t + γ i

t+1 pt+1Yt+1 + χ i
t = γ i

t pt ; (4.5)

(b) first order condition for asset purchases:

∀t ∈ T , γ i
t qt = αi

θ,t + γ i
t+1Vt+1(κ, p); (4.6)

(c) first order condition for deliveries:

∀t � 1, [βi ]tμi
t

δi
t

ptwt
+ ρi

t = γ i
t ; (4.7)

(d) first order condition for asset sales:

∀t � 1, γ i
t qt +αi

ϕ,t =ρi
t+1 Dt+1(p) + χ i

t Ct + [βi ]t+1μi
t+1

δi
t+1

pt+1wt+1
Vt+1(p).

(4.8)

Based on the above necessary conditions, we will prove two results. First, we will
show that, for any sequence of collateral bundles and utility functions (among a certain
class), we can choose asset promises and moderate default penalties such that default

22 See Statement 2 in the theorem of Appendix B.
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is incompatible with equilibrium. Second, given the asset promises and moderate
default penalties suitably chosen, we will show that we can choose a specific sequence
of collateral bundles and utility functions such that the full repayment of debt in a non-
trivial equilibrium implies that the asset price qt is strictly larger than the cost pt Ct of
constituting the collateral requirement. Páscoa and Seghir (2009) already explained
that this condition induce agents to run Ponzi schemes which are not not consistent
with optimality of plans in an ε-equilibrium.

In order to understand why moderate default penalties may induce agents to fully
repay their debt, we need to present the following important intermediary step.

Proposition 4.2 For every agent i and every period τ ∈ Modi , the “discounted”
market value γ i

τ+1 pτ+1ω
i
τ+1 of the initial endowment is bounded by the maximum

discounted continuation value
∑

t�τ [βi ]tvi
t (Ω

ε
) < ∞.

Proof Fix an agent i and a period τ ∈ Modi . Let a in Ã be defined by

∀t � 0, at =
⎧
⎨

⎩

ai
t if t < τ

(ωi
τ , 0, 0, dτ ) if t = τ

(0, 0, 0, 0) if t > τ

where dτ = Dτ (p)ϕi
τ−1. In other words, choosing the plan a, agent i is following the

optimal plan ai up to period τ , defaulting fully on his debt at period τ and consuming
his initial endowment. Since the plan a belongs to Ãτ , we can apply Eq. (4.4) to get23

Li
τ (aτ , aτ−1) + Li

τ+1(aτ+1, aτ ) �
∑

t�τ

Π i
t (a

i
t , ai

t−1).

Since

Li
τ (aτ , aτ−1) � Π i

τ (aτ , aτ−1) � (βi )
τ
[
vi (ωi

τ ) − μi
τ Hτ

]

and

Li
τ+1(aτ+1, aτ ) = γ i

τ+1gi
τ+1(aτ+1, aτ ) � γ i

τ+1 pτ+1ω
i
τ+1

we get

[βi ]τ vi
τ (ω

i
τ ) − [βi ]τμi

τ Hτ + γ i
τ+1 pτ+1ω

i
τ+1 �

∑

t�τ

[βi ]tvi
t (xi

t ).

23 Observe that for any period t < τ , we have Li
t (at , at−1) = Li

t (a
i
t , ai

t−1) = Π i
t (ai

t , ai
t−1); and for any

period t > τ + 1 we have Li
t (at , at−1) = Li

t (0, 0) � 0.
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Since default penalties are moderate at period τ , i.e., τ ∈ Modi , we have μi
τ Hτ �

vi
τ (ω

i
τ ) implying the desired result:

γ i
τ+1 pτ+1ω

i
τ+1 �

∑

t�τ

[βi ]tvi
t (xi

t ) �
∑

t�τ

[βi ]tvi
t (Ω

ε
) < ∞.

��
Remark 4.2 We obtain a bound on the marginal utility of wealth at period τ + 1 when
τ belongs to Modi , i.e., when default penalties are moderate. If default penalties are
not moderate we do not know if it is possible to exhibit a similar bound.

4.3 Moderate default penalties precluding default

We are now ready to show that moderate default penalties may induce agents to
optimally decide to make full payments. In order to clarify the presentation, we assume
from now on that the economy satisfies the following list of additional assumptions.

Assumption 4.1 There exist a function vi : R
L+ → R+, a strictly positive bundle

ω ∈ R
L++ and a uniformly bounded sequence (bt )t�1 with bt > 0 such that for every

agent i and every period t ,

(A.4) the endowment bundle ωi
t is bounded from below by ω;

(A.5) the “normalization” bundle wt coincides with ω;
(A.6) the promise At of the asset satisfies At = btω + Yt Ct−1;
(A.7) the utility function vi

t coincides with vi .

Observe that Assumption (A.2) implies that vi is concave, continuous, strictly
increasing with vi (0) = 0. Moreover, under Assumptions (A.5) and (A.6) we have
bt = bt and the maximum amount Ht in real terms that an agent may default if his
plan is feasible, satisfies Ht = Mt−1bt . Since (bt )t�1 is uniformly bounded, we can
let b be the least upper bound supt�1 bt .

We claim that we can choose default penalties such that they are moderate but at
the same time severe enough to preclude default at equilibrium. To find such default
penalties we make use of the bound obtained in Proposition 4.2.24 Our aim is to show
that restricting default penalties to be moderate does not prevent us to choose them
severe enough to preclude default at equilibrium. The intuition is very simple. Default
penalties are moderate if the disutility μi

t Ht felt at period t for defaulting the amount
Ht is compensated by the utility vi

t (ω
i
t ) of consuming the initial endowment. However,

the maximum amount Ht that an agent may default if his plan is feasible can be made as
small as desired independently of the utility vi

t (ω
i
t ) and the unitary default penalty μi

t .

24 We borrowed from Páscoa and Seghir (2009) the idea that we can choose exogenously the default penalty
such that, endogenously at equilibrium, no agent will decide to default. This is possible due to the bound
on marginal wealth obtained in Proposition 4.2. We only succeeded to find such a bound when default
penalties are moderate. In particular, we do not know for the examples proposed by Páscoa and Seghir
(2009) whether Ponzi schemes reappear when unduly pessimistic expectations on asset deliveries are ruled
out.
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Under the simplifying assumptions made above, we have Ht = Mt−1bt . We can always
choose the promise At close enough to the depreciated collateral Yt Ct−1 (by choosing
bt close enough to 0) such that Ht is as small as desired. This implies that given any
sequence of default penalties, we can always choose the sequence of promises such
that penalties are moderate. Then, as shown below, we can use Proposition 4.2 to find
default penalties μi

t severe enough to preclude default.

Proposition 4.3 Fix α > 1 and choose default penalties as follows

∀t � 1, μi
t = μi where μi = α

vi (Ω
ε
)

βi (1 − βi )

and the promises’ coefficients bt as follows

∀t � 1, bt = 1

α
min
i∈I

vi (ωi
t )

μi
× max�∈L Ct−1(�)

max�∈L Ω
ε
(�)

.

Default penalties are α-moderate, more precisely, for every agent i we have Modi = T .
Moreover, if there is a competitive equilibrium for E then every agent pays his debt at
any period t � 1.

Proof It is straightforward to check that Modi = T for every agent i . Indeed, under
Assumptions (A.5) and (A.6) we have

Ht = Mt−1bt and Mt−1 � max�∈L Ω
ε
(�)

max�∈L Ct−1(�)
.

It follows that

∀i ∈ I, ∀t � 1, αμi
t Ht = αμi Mt−1bt � vi

t (ω
i
t ). (4.9)

We propose now to prove that if (π, a) is a competitive equilibrium then every
agent pays his debt at any period. Fix t � 1 and assume by way of contradiction that
agent i is not paying his debt at date t . The super-gradient δi

t associated to the default
penalty must then satisfy δi

t = 1. From the first order condition for deliveries (4.7) we
get

[βi ]tμi
t � γ i

t ptω � γ i
t ptω

i
t . (4.10)

Combining Proposition 4.2 and Eq. (4.10) we get the following contradiction

μi
t = μi � vi (Ω

ε
)

βi (1 − βi )
.

��
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4.4 Moderate default penalties leading to Ponzi schemes

Given the choices of promises and default penalties made in Proposition 4.3, if (π, a)

is an ε-equilibrium then every agent fully repays his debt at every period. Since the
government always pays his debt, we get that κt = 1 for every period t .25 We would
like to compare the asset price qt and the cost pt Ct of constituting the collateral bundle.
When a lender wants to transfer wealth from period t to period t + 1, two strategies
are available. The first one consists of purchasing the asset in period t : the lender
accepts to pay qt in exchange of the future wealth pt+1 At+1. As a second strategy,
the lender may prefer to purchase the collateral Ct , paying pt Ct , in exchange of the
future wealth pt+1Yt+1Ct . Following the second strategy, the lender will also enjoy
utility from consuming the collateral bundle in period t .

Our aim is to show that we can choose the collateral bundle Ct and the utility
function vi such that the marginal utility from consuming the collateral bundle in
period t does not compensate the marginal consumption corresponding to the dif-
ference pt+1bt+1 = pt+1[At+1 − Yt+1Ct ] of the payoffs associated to the above
strategies. As a consequence we will have qt > pt Ct for every period t which is
inconsistent with optimality of individual plans.26

Theorem 4.1 Choose default penalties and promises coefficients as in Proposition 4.3
(implying that default penalties are moderate). Moreover, assume that

(i) there are two goods, L = {�, g};
(ii) for every t , the collateral bundle Ct is only in terms of good g, more precisely,

∃c > 0, ∀t � 0, Ct = c1{g};

(iii) the utility function vi is separable in goods, i.e., there exist two functions vi
� and

vi
g defined on [0,∞), concave, differentiable, strictly increasing with vi

�(0) =
vi

g(0) = 0 such that

∀x = (x(�), x(g)) ∈ R
L+, vi (x) = vi

�(x(�)) + vi
g(x(g)).

Let ω̂ = (1/#I )ω and choose the functions vi
� and vi

g satisfying27

c∇vi
g(ω̂(g)) < βi b∇vi (Ω)ω, (4.11)

25 If we do not consider an ε-equilibrium, then one may have κt < 1 and no trade in period t . In that case,
our argument does not apply.
26 In that respect, we show that the arguments in (Páscoa and Seghir, 2009, Theorem 4.1) are not correct.
27 As usual ∇vi (x) = (∇vi

�
(x(�)), ∇vi

g(x(g))) is the gradient of vi at x where ∇vi
�

and ∇vi
g are the

differential of vi
�

and vi
g respectively.
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where28

b = ℵ min
i∈I

β i (1 − β i )vi (ω)

vi (Ω
ε
)

and ℵ = 1

α2 × c

max{Ωε
(�),Ω

ε
(g)} .

Then Ponzi schemes are not ruled out, i.e., an ε-equilibrium cannot exist, despite
default penalties being moderate.

Remark 4.3 It is straightforward to provide examples of utility functions satisfying
Eq. (4.11). Indeed, fix any pair of functions f i , vi

� : [0,∞) → [0,∞) concave,
differentiable, strictly increasing satisfying f i (0) = vi

�(0) = 0 and for ξ > 0, pose

v
i,ξ
g = ξ f i , or equivalently

vi,ξ (x) = ξ f i (x(g)) + vi
�(x(�)).

Observe that

c∇vi,ξ
g (ω̂(g)) = ξc∇ f i (ω̂(g))

and

∇vi,ξ (Ω)ω = ω(�)∇vi
�(Ω(�)) + ξω(g)∇ f i (Ω(g)).

Passing to the limit, we get

lim
ξ→0

c∇vi,ξ
g (ω̂(g)) = 0 and lim

ξ→0
∇vi,ξ (Ω)ω = ω(�)∇vi

�(Ω(�)) > 0.

It follows that there exists ξ > 0 small enough such that

c∇vi,ξ
g (ω̂(g)) < βi b∇vi,ξ (Ω)ω.

We have thus exhibited a non-empty class of utility functions satisfying Eq. (4.11).

Proof of Theorem 4.1 Assume by way of contradiction that there exists an ε-
equilibrium (π, a) with π = (p, q, κ). Following Proposition 4.3, every agent i pays
his debt at every period t � 1. Since the government always pays his debt, this implies
that κt = 1 for every period t . It follows that (p, q, a) is also a competitive equilibrium
of the economy E ′ with perfect commitment (the government plays no role in E ′ since
it does not need to inject goods, i.e., bt (κ, p) = 0.) in the sense that each agent i
maximizes the utility Ui (x) among the actions (x, θ, ϕ) satisfying, for each period
t � 0, the following budget constraint

pt xt + qtθt + Vt (p)ϕt−1 � qtϕt + Vt (p)θt−1 + pt {ωi
t + Yt xt−1} (4.12)

28 Observe that if we replace ωt by ω in the definition of bt given in Proposition 4.3 then we get b. In
particular we have bt � b for every t � 1.
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together with the collateral requirement constraint

Ctϕt � xt . (4.13)

We propose to prove that for every period t we have qt > pt Ct . Assume by way of
contradiction that there exists t ∈ T such that qt � pt Ct . Since markets clear, we
have

∑

i∈I

xi
t =

∑

i∈I

Ω i
t

implying that there exists at least one agent i such that

xi
t (g) � (1/#I )Ωt (g) � (1/#I )ω(g) = ω̂(g) > 0.

Given ν > 0, we consider the alternative choice (̃xν, θ̃ ν, ϕ̃ν) which coincides with
the action (xi , θ i , ϕi ) except for consumption vectors at periods t and t + 1 and asset
purchases at period t . More precisely, we pose

x̃ν
t = xi

t − νc1{g}, θ̃ ν
t = θ i

t + ν and x̃ν
t+1 = xi

t+1 + νbt+1ω

where ν > 0 is chosen small enough to ensure x̃ν
t � 0. The alternative action

(̃xν, θ̃ ν, ϕ̃ν) consists on reducing the consumption of good g by νc units. The gain in
purchasing power is νpt Ct . Since the price qt of the asset is lower than pt Ct , agent i
can purchase ν units of the asset, implying that the budget restriction (4.12) is satisfied
at date t . Consuming x̃ν

t at period t instead of xi
t implies a loss of νpt+1Yt+1Ct units

of account in period t + 1. This loss is more than compensated by the extra return

νpt+1 At+1 = νbt+1 pt+1ω + νpt+1Yt+1Ct

associated to the alternative portfolio θ̃ ν . The extra wealth νbt+1 pt+1ω can be used to
purchase at period t +1 the νbt+1additional units of the bundle ω. We have thus proved
that the budget restriction (4.12) is also satisfied at date t . Therefore the alternative
action (̃xν, θ̃ ν, ϕ̃ν) belongs to the budget set of the perfect commitment economy E ′. In
particular, we must have Ui (xi ) � Ui (̃xν). However, posing �Ui ≡ Ui (xi )−Ui (̃xν),
we have

�Ui

ν[βi ]t
= vi

g(xi
t (g)) − vi

g(xi
t (g) − νc)

ν
+ βi

vi (xi
t+1) − vi (xi

t+1 + νbt+1ω)

ν
.

Since

Ct∇vi (xi
t ) = c∇vi

g(xi
t (g)) � c∇vi

g(ω̂(g))
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and29

bt+1∇vi (xi
t+1)ω � b∇vi (Ω)ω

we get

lim
ν→0

Ui (xi ) − Ui (̃xν)

ν[βi ]t
= Ct∇vi (xi

t ) − βi bt+1∇vi (xi
t+1)ω

� c∇vi
g(ω̂(g)) − βi b∇vi (Ω)ω.

It follows from Eq. (4.11) that there exists ν > 0 small enough such that we obtain
the contradiction Ui (xi ) − Ui (̃xν) < 0. ��
Remark 4.4 In what follows we explain why Theorem 4.1 cannot follow as a simple
corollary of Theorem 1 in Ferreira and Torres-Martínez (2010). In our example, the
collateral bundle Ct is time independent and contains only units of good g, i.e., Ct =
C = c1{g} with c > 0. Translating to our framework the condition (recalling that the
enforcement coefficient λ is equal to 1 in our refined equilibrium) on collateral levels
imposed in Ferreira and Torres-Martínez (2010), we get

c < Ψt ≡ 1

π t
π t+1[bt+1ω + Yt+1C]

where

π t = Ui (Ωε)

min{ωi
t (�), ω

i
t (g)}

and for every good k,

π t+1(k) = 1

2Ωε
t+1(k)

min
0�x�Ωε

t+1

β t [vi (x + 2Ωε
t+1(k)1{k}) − vi (x)].

Under our assumptions (endowments are uniformly bounded from below and above)
we have that π t > π > 0 for all t � 0 while π t+1 → 0, implying that c = 0: a
contradiction.

As it was claimed in the introduction one could modify our economy in such a
way that it would be possible to apply Theorem 1 in Ferreira and Torres-Martínez
(2010). The authors exhibit two examples in which their condition is verified. The
first involves an economy in which the process of collateral constraints converges to
zero while the second involves an economy in which aggregate endowments converge
to zero. We argue in favor of following our route for two reasons: (1) our Theorem 4.1
is rather simple making the paper self-contained; (2) it shows that effectively persistent

29 Recall that bt+1/b = vi (ωi
t )/v

i (ω) � 1.
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mechanisms (moderate penalties) may induce Ponzi schemes even if collateral levels
are constant (or aggregate endowments are uniformly bounded away from 0).30

5 Concluding remarks and related literature

We show that when unduly pessimistic expectations are ruled out, equilibria fail to exist
even if default penalties are moderate. More precisely, we provide a specific example
showing that moderate default penalties can be severe enough to induce agents to pay
fully their debt at every period. This fact can induce agents to run Ponzi schemes and
destroys equilibrium existence.

It will be interesting to study whether there is a (non-trivial) condition relating
default penalties to primitives that precludes agents to run Ponzi schemes, therefore
ensuring that a refined equilibrium always exists. Providing a general condition ensur-
ing existence goes beyond the scope of this paper. However, in Appendix A, we present
such a condition that works for a specific class of models. In particular, we show that
when utility is separable in commodities, Ponzi schemes are ruled out provided that
the marginal utility from consuming the collateral becomes eventually larger than
the marginal default penalty. In a recent paper, Páscoa and Seghir (2011) provide an
existence result that applies to models where there are no collateral utility gains, i.e.,
collateral is a productive asset as in Kubler and Schmedders (2003). In such settings
it is possible to find an upper bound on penalty coefficients that makes the collateral
cost never fall below the promise price.
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Appendix A: Sufficient conditions on primitives to rule out Ponzi schemes

In this section we exhibit a condition relating the marginal utility of consuming the
collateral bundle and the marginal penalty of default which ensures that the limits of
equilibria of truncated economies are competitive equilibria of the infinite horizon
economy.31 Our objective is neither to provide a general existence result nor to give a
rigorous proof.32 We only intend to give a sketch of the proof to illustrate the intuition
behind this condition.

30 This in particular shows that the sufficient condition proposed by Ferreira and Torres-Martínez (2010)
is not necessary.
31 The arguments can easily be adapted to prove existence of an ε-equilibrium and then of a refined
equilibrium.
32 The extension to a model with uncertainty and incomplete markets is only a matter of notation.
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Fix an horizon T > 1 and consider a competitive equilibrium (π, a) of the economy
truncated at period T where π = (p, q, κ) and ai = (xi , θ i , ϕi , di ). Fix an agent i
and a period t < T . Assume that the following inequality is satisfied

∃i ∈ I, dvi
t (xi

t ; Ct ) � βiμ
i
t+1bt+1 (A.1)

where dvi
t (xi

t ; Ct ) is the derivative of vi
t at xi

t in the direction of Ct ,33 and bt+1 is the
maximum default in real terms at date t + 1 defined by

bt+1 = sup
p∈�(L)

[p At+1 − pYt+1Ct ]+
pwt+1

.

We claim that we must have qt � pt Ct . Indeed, assume by contradiction that there
exists α > 0 such qt = pt Ct +αpt 1L .34 Suppose agent i considers deviating from ϕi

t
by “shorting” ε more security, using the receipt qtε to buy ε of the collateral and αε

of the vector 1L (i.e., αε units of each good). This strategy is budget feasible at date
t , but also at date t + 1. Indeed, agent i may decide to pay back Dt+1(p)ε which is
smaller than the value of depreciated collateral Yt+1Ctε constituted at period t . The
decrease in utility at date t due to default penalties at date t + 1 is

εβiμ
i
t+1

[pt+1 At+1 − pt+1Yt+1Ct ]+
pt+1wt+1

� εβiμ
i
t+1bt+1.

Inequality (A.1) implies that the deviation strictly increases agent i’s utility,35 contra-
dicting that ai is optimal.

Inequality (A.1) depends on the consumption allocation (xi
t )i∈I which is an endoge-

nous variable. It is possible to exhibit a stronger condition only in terms of primitives.
Indeed, consider the following property:

∀zt ∈ Ft , ∃i ∈ I, dvi
t (z

i
t ; Ct ) � βiμ

i
t+1bt+1 (A.2)

33 If f : R
n → [−∞,∞) is a concave function with f (x) > −∞, then the derivative of f at x in the

direction of y ∈ R
n is

d f (x; y) = lim
λ↓0

f (x + λy) − f (x)

λ
.

34 We must have pt 1L > 0 since vi
t is strictly increasing.

35 Observe that

lim
ε↓0

vi
t (xi

t + ε(Ct + α1L )) − vi
t (xi

t )

ε
= dvi

t (xi
t ; Ct + α1L ) > dvi

t (xi
t ; Ct ).
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where Ft is the set of consumption bundles zt = (zi
t )i∈I physically feasible at date t ,

i.e.,

∑

i∈I

zi
t = Ωt .

Under Eq. (A.2) condition (A.1) is automatically satisfied since xi
t is physically feasible

for any competitive equilibrium.36

Consider now that there is an infinite set Barr ⊂ T such that Eq. (A.2) is sat-
isfied for every date t ∈ Barr. Let (πT , aT ) be a competitive equilibrium for the
truncated economy ET with finite-horizon T . Observe that for every t ∈ Barr with
t < T , we must have qT

t � pT
t Ct . Following the (standard) arguments in Páscoa and

Seghir (2009), passing to a subsequence if necessary, we can assume that the sequence
(πT , aT ) converges to some (π, a) such that all markets clear and each action ai is
budget feasible and optimal among finite-horizon actions in the budget set Bi (π). The
difficulty is to show that ai is optimal among budget feasible infinite horizon actions.
Observe that for every t ∈ Barr one must have qt � pt Ct . If the utility function Ui (x)

is bounded for every consumption sequence x ∈ X , then it is easy to show that a is
optimal among all feasible plans. We can then conclude that (π, a) is a competitive
equilibrium.

Appendix B: Necessary and sufficient conditions for the existence of Langrange
multipliers

In this appendix we consider an abstract infinite dimensional maximization problem
and we present some necessary and sufficient conditions for optimality. Necessary
conditions for optimality by means of Lagrange multipliers are first presented (see
Sect. B.1). We then provide sufficient conditions in Sect. B.2. In the last section we
restate the previous results for the specific economic model of the associated paper.

For each period t ∈ T , we fix a finite set Lt of “types of action”.37 We denote
by C(L) the space of all sequencees c = (ct )t∈T where ct is a vector in R

Lt . By

36 Condition (A.2) is satisfied if

∀i ∈ I, inf
y∈[0,Ωt ]

dvi
t (y; Ct ) � βi μ

i
t+1bt+1.

Observe that by concavity we have dvi
t (y; Ct ) � vi

t (y + Ct ) − vi
t (y). Since [0, Ωt ] is a compact set and

vi
t is continuous, there exists yi

t ∈ [0, Ωt ] such that

inf
y∈[0,Ωt ]

dvi
t (y; Ct ) � vi

t (yi
t + Ct ) − vi

t (yi
t ).

Since the function vi
t is strictly increasing, we have vi

t (yi
t + Ct ) > vi

t (yi
t ) implying that the infimum is not

0. It follows that Condition (A.2) can be satisfied for strictly positive default penalties.
37 In the economic model of this paper, an action at is a vector (xt , θt , ϕt , dt ) called a plan where xt ∈ R

L ,
θt ∈ R, ϕt ∈ R, and dt ∈ R. For this case, we have Lt = L ∪ {1, 2, 3}.
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convention, we pose L−1 = {1} and c−1 = 0 for any sequence c ∈ C(L). For each
period T � 1, we let CT (L) be the subset of C(L) defined by

CT (L) = {c ∈ C(L) : ∀t ∈ T , t > T ⇒ ct = 0}.

Fixing a finite set Kt of “constraints” on actions38 we can define in a similar way the
sets C(K ) and CT (K ) by replacing Lt by Kt . For period t , we fix an objective function
ft : R

Lt ×R
Lt−1 −→ R∪{−∞} and a constraint function gt : R

Lt ×R
Lt−1 −→ R

Kt .
For each period T � 1 and each sequence c ∈ C(L), we let

f T (c) =
∑

0�t�T

ft (ct , ct−1).

When the limit exists, we denote by f (c) the following sum

f (c) = lim
T →∞ f T (c).

Given c ∈ C(L), we denote by g(c) the sequence in C(K ) defined by

∀t ∈ T , [g(c)]t = gt (ct , ct−1) or equivalently g(c) = (gt (ct , ct−1))t∈T .

The vector gt (ct , ct−1) in R
Kt is denoted by (gt,k(ct , ct−1))k∈Kt where gt,k is inter-

preted as the kth constraint function from R
Lt × R

Lt−1 to R.
We assume that

(L.1) for each period t , the functions ft and gt are concave with ft (0, 0) = 0 and
gt (0, 0) � 0;

(L.2) for each period t , the function gt is continuous39 and the function ft , when
restricted to its domain dom( ft ), is continuous;40

(L.3) for each period T � 1, there exists a sequence ĉ ∈ CT (L) such that

f (̂c) � 0, gT +1(0, ĉT ) � 0 and ∀t ∈ {0, . . . , T }, gt (̂ct , ĉt−1) ∈ R
Kt++.

B.1 Necessary conditions

Applying sequentially a finite dimensional convex separation argument, we can prove
the following result.

Theorem Assume that there exists c� ∈ C(L) such that

38 In the economic model of this paper, the constraints are the solvency constraint, the collateral requirement,
the minimum delivery constraint and non-negativity constraints. For this case, we have Kt = {1, 2, 3, 4}∪L .
39 Since the domain dom(gt ) of the function gt is the whole space R

Lt ×R
Lt−1 , concavity already implies

that gt is continuous.
40 We denote by dom( ft ) the set of all points (c1, c2) ∈ R

Lt × R
Lt−1 such that ft (c1, c2) ∈ R. Then,

continuity is in the sense that f̂t : dom( ft ) → R defined by f̂t (c1, c2) = ft (c1, c2) is continuous on
dom( ft ).

123



Infinite horizon collateralized economies with default penalties 481

(a) the sequence c� satisfies the constraints g(c�) � 0;
(b) the sum f (c�) is well defined;
(c) the sequence c� is optimal among finite-horizon sequences, i.e., for any period

τ � 1, for every finite-horizon sequence c ∈ Cτ (L) satisfying the constraints
g(c) � 0, we have f (c�) � f (c).

Then the following properties hold.

1. There exists Ψ ∈ C(K ) with Ψt ∈ R
Kt+ such that for any period τ � 1 and any

finite-horizon sequence c ∈ Cτ (L),

∑

0�t�τ+1

Lt (ct , ct−1) � f (c�) (B.1)

where Lt (ct , ct−1) = ft (ct , ct−1) + Ψt · gt (ct , ct−1).
2. If moreover, we have

(d) for any period t � 1, there exist τ � t and a finite-horizon sequence č ∈
Cτ+1(L) satisfying g(č) � 0, f (č) � f τ (c�) and c�1[0,τ ] = č1[0,τ ]

then41

∀t ∈ T , Ψt · gt (c
�
t , c�

t−1) = 0. (B.2)

In particular we obtain the following variational property: for every sequence c̃
in C(L) and every period T � 1 we have

T∑

t=0

Lt (̃ct , c̃t−1) + LT +1(c
�
T +1, c̃T ) �

T +1∑

t=0

Lt (c
�
t , c�

t−1). (B.3)

Therefore, for every period T � 1, there exist a family of super-gradients42

(∇L�
0, . . . ,∇L�

T ) where ∇L�
t = (∇1L�

t ,∇2L�
t ) ∈ ∂Lt (c

�
t , c�

t−1)

41 Under (a)–(d) we obtain for every finite-horizon sequence c ∈ Cτ (L),

∑

0�t�τ+1

Lt (ct , ct−1) �
∑

t∈T
Lt (c

�
t , c�

t−1) =
∑

t∈T
ft (c

�
t , c�

t−1).

42 If ∇L�
t is a super-gradient of Lt at (c�

t , c�
t−1) there exist two vectors ∇1L�

t ∈ R
Lt and ∇2L�

t ∈ R
Lt−1

such that

Lt (̃ct , c̃t−1) − Lt (c
�
t , c�

t−1) � ∇1L�
t × (̃ct − c�

t ) + ∇2L�
t × (̃ct−1 − c�

t−1)

for every pair (̃ct , c̃t−1) in R
Lt × R

Lt−1 . The super-gradient ∇L�
t is then assimilated with the pair

(∇1L�
t , ∇2L�

t ). Observe that ∇1L�
t belongs to the super-differential of the function x �→ Lt (x, c�

t−1)

at c�
t and ∇2L�

t belongs to the super-differential of the function x �→ Lt (c�
t , x) at c�

t−1.
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and ξT +1 a super-gradient of the function x �→ LT +1(c�
T +1, x) such that

∀t ∈ {0, . . . , T − 1}, ∇1L�
t + ∇2L�

t+1 = 0 and ∇1L�
T + ξT +1 = 0 (B.4)

Proof of the theorem Fix a period T � 1. We let A be the subset of R × CT +1(K )

defined by

A =
{
(α, d) ∈ R × CT +1(K ) : ∃c ∈ CT (L), α � f (c) − f (c�) and d � g(c)

}

and we let B = (0,∞) × CT +1+ (K ) where

CT +1+ (K ) =
∏

0�t≤T +1

R
Kt+ .

Following Assumptions (L.1)–(L.3) and conditions (a)–(c), the sets A and B are dis-
joint non-empty convex subsets of R × CT +1(K ). It follows from the finite dimen-
sional separating hyperplane theorem that there exists a non-zero pair (μT , Ψ T ) ∈
R+ × CT +1+ (K ) such that

∀c ∈ CT (L), μT f (c) +
∑

0≤t≤T +1

Ψ T
t · gt (ct , ct−1) ≤ μT f (c�). (B.5)

Following Assumption (L.3), we can take μT = 1 without any loss of generality.
Fix a period τ ∈ T . The objective is to prove that the sequence (Ψ T

τ )T �1 converges
in R+. Following Assumption (L.3), there exists a process ĉ ∈ Cτ (L) such that

f (̂c) � 0, gτ+1(0, ĉτ ) � 0 and ∀t ∈ {0, . . . , τ }, εt ≡ gt (̂ct , ĉt−1) ∈ R
Kt++.

Observe that for any t > τ + 1 we have gt (̂ct , ĉt−1) = gt (0, 0) � 0. It follows from
Eq. (B.5) that for all k ∈ Kτ ,

Ψ T
τ (k) � f (c�)

ετ (k)
.

Using a diagonal procedure and passing to a subsequence if necessary, we can prove
that there exists Ψ ∈ C+(K ) such that

∀τ ∈ T , Ψτ = lim
T →∞ Ψ T

τ .
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Now we fix a period τ � 1 and a finite-horizon sequence c ∈ Cτ (L). For each T > τ ,
it follows from Eq. (B.5) and Assumption (L.1) that43

f (c) +
∑

0�t�τ+1

Ψ T
t · gt (ct , ct−1) ≤ f (c) +

∑

0�t�T +1

Ψ T
t · gt (ct , ct−1) � f (c�).

Passing to the limit when T goes to infinite, we get the desired result (B.1):

∑

0�t�τ+1

ft (ct , ct−1) + Ψt · gt (ct , ct−1) � f (c�).

Now assume that (d) is satisfied. Fix a period t ∈ T , there exist τ � t and a finite-
horizon sequence č ∈ Cτ+1(L) satisfying g(č) � 0, f (č) � f τ (c�) and č1[0,τ ] =
c�1[0,τ ]. Observe that f τ+2(č) = f (č) � f τ (c�). Choosing c = č in Eq. (B.1), it
follows that

f τ (c�) + Ψt · gt (c
�
t , c�

t−1) � f τ+2(č) +
∑

0�s�τ+2

Ψs · gs(čs, čs−1) � f (c�).

Since

lim
τ→∞ f τ (c�) = f (c�)

we get the desired result (B.2).
Now fix a sequence c̃ in C(L) and a period T � 1. For every τ > T we let c be the

sequence in Cτ (L) defined by

ct =
⎧
⎨

⎩

c̃t if t � T
c�

t if T + 1 � t � τ

0 if τ + 1 � t

It follows from Eqs. (B.1) and (B.2) that

∑

0�t�τ+1

Lt (ct , ct−1) �
∑

t∈T
Lt (c

�
t , c�

t−1).

43 Observe that the horizon of the sequence c is τ . Since T > τ , it follows that c also belongs to CT (L).
From Eq. (B.5) we get

f (c) +
∑

0�t�T +1

Ψ T
t · gt (ct , ct−1) � f (c�).

From Assumption (L.1) we know that gt (ct , ct−1) = gt (0, 0) � 0 for every t > τ + 1. Therefore we get

f (c) +
∑

0�t�τ+1

Ψ T
t · gt (ct , ct−1) � f (c) +

∑

0�t�T +1

Ψ T
t · gt (ct , ct−1) � f (c�).
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Given the construction of the sequence c, we have

T∑

t=0

{Lt (̃ct , c̃t−1) − Lt (c
�
t , c�

t−1)} + {LT +1(c
�
T +1, c̃T ) − LT +1(c

�
T +1, c�

T )}

�
∑

s�τ+2

fs(c
�
s , c�

s−1).

Passing to the limit when τ → ∞ and using the fact that the infinite sum f (c�) is
well-defined, we get the desired result

T∑

t=0

Lt (̃ct , c̃t−1) + LT +1(c
�
T +1, c̃T ) �

T∑

t=0

L(c�
t , c�

t−1) + LT +1(c
�
T +1, c�

T ).

We let H be the function defined on R
L0 × · · · × R

LT by

H(c0, c1, . . . , cT ) =
T∑

t=0

Lt (ct , ct−1) + LT +1(c
�
T +1, cT ).

This is a concave function having a global maximum at (c�
0, . . . , c�

T ). It follows that
the super-differential of H at (c�

0, . . . , c�
T ) is non-empty and contains 0. Observe that

H(c0, . . . , cT ) =
T∑

t=0

Ht (c0, . . . , cT ) + hT +1(c0, . . . , cT )

where

Ht (c0, . . . , cT ) = Lt (ct , ct−1) and hT +1(c0, . . . , cT ) = LT +1(c
�
T +1, cT ).

It follows that

0 ∈
T∑

t=0

∂ Ht (c
�
0, . . . , c�

T ) + ∂hT +1(c
�
0, . . . , c�

T ). (B.6)

Observe that a super-gradient in ∂ Ht (c�
0, . . . , c�

T ) is a vector in R
L0 × · · · × R

LT of
the following form

(0, . . . , 0,∇2L�
t︸ ︷︷ ︸

t−1

,∇1L�
t︸ ︷︷ ︸

t

, 0, . . . , 0) (B.7)

where (∇1L�
t ,∇2L�

t ) is a super-gradient in ∂Lt (c�
t , c�

t−1). Observe moreover that a
super-gradient in ∂hT +1(c�

0, . . . , c�
T ) takes the following form

(0, . . . , 0, ξT +1) (B.8)
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where ξT +1 ∈ R
Lt is a super-gradient of the function x �→ LT +1(c�

T +1, x) at c�
T .

Combining Eqs. (B.6), (B.7) and (B.8) we get the desired result (B.4). ��

B.2 Sufficient conditions

In this subsection, we investigate under which conditions the first-order condi-
tions (B.4) in the theorem are sufficient to obtain optimality. Let c� ∈ C(L) satisfying
the conditions (a) and (b) of the theorem, i.e., the sequence c� satisfies the constraint
g(c�) � 0 and the sum f (c�) is well defined. Let Ψ ∈ C(K ) be a sequence of Lagrange
multipliers Ψt = (Ψt,k)k∈Kt ∈ R

Kt+ such that the first-order conditions (B.4) and the
binding conditions (B.2) are satisfied. Actually we will assume a stronger property:
there exists a sequence of super-gradients

(∇L�
t )t∈T where ∇L�

t = (∇1L�
t ,∇2L�

t ) ∈ ∂Lt (c
�
t , c�

t−1)

such that

∀t ∈ T , ∇1L�
t + ∇2L�

t+1 = 0 (B.9)

where we recall that Lt = ft + Ψt · gt .
Let c be a sequence in C(L) satisfying the constraints g(c) � 0. Given T � 1, we

denote by LT (c) the Lagrangian up to period T defined by

LT (c) =
T∑

t=0

Lt (ct , ct−1).

By concavity and definition of the super-gradients, we have

LT (c) − LT (c�) �
T∑

t=0

[∇1L�
t · (ct − c�

t ) + ∇2L�
t · (ct−1 − c�

t−1)
]
.

Rearranging the previous sum we get

LT (c) − LT (c�) � ∇1L�
T · (cT − c�

T ) +
T −1∑

t=0

[∇1L�
t + ∇2L�

t+1

]
(ct − c�

t ).

Using the Euler Eq. (B.9) we get

LT (c) − LT (c�) � ∇1L�
T · (cT − c�

T ).

Since Lt = ft +Ψ ·gt it follows that there exist a super-gradient ∇ f �
t of ft at (c�

t , c�
t−1)

and for each k ∈ Kt a super-gradient ∇g�
t,k of gt,k at (c�

t , c�
t−1) such that

∇L�
t = ∇ f �

t +
∑

k∈Kt

Ψt∇g�
t,k .
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We can decompose the above super-gradients as follows

∇ f �
t = (∇1 f �

t ,∇2 f �
t ) and ∇g�

t,k = (∇1g�
t,k,∇2g�

t,k)

and ∇1L�
T can be written as follows44

∇1L�
T = ∇1 f �

T + ΨT � ∇1g�
T .

We then get

LT (c) − LT (c�) �
[∇1 f �

T + ΨT � ∇1g�
T

] · (cT − c�
T ).

Since for every period t we have

Ψt · gt (ct , ct−1) � 0 and Ψt · gt (c
�
t , c�

t−1) = 0

it follows that

f T (c) − f T (c�) � LT (c) − LT (c�) �
[∇1 f �

T + ΨT � ∇1g�
T

] · (cT − c�
T ).

We obtain immediately the following properties:

Claim If the sequence c� satisfies the following transversality condition

lim inf
T →∞

[∇1 f �
T + ΨT � ∇1g�

T

] · (−c�
T ) � 0 (B.10)

then c� is optimal among finite-horizon sequences, i.e., if c ∈ Cτ (L) for some τ ∈ T
and satisfies g(c) � 0 then we have f (c) � f (c�).

Now if c is a (possibly infinite) sequence with g(c) � 0 and satisfying the following
transversality condition

lim inf
T →∞

[∇1 f �
T + ΨT � ∇1g�

T

] · (cT − c�
T ) � 0 (B.11)

then we have45

lim inf
T →∞ f T (c) � f (c�).

In particular, if f (c) is well-defined then we get f (c) � f (c�).

44 For simplicity, the sum

∑

k∈Kt

ΨT,k∇1g�
T,k

is denoted by ΨT � ∇1g�
T .

45 Replacing “lim inf” by “lim sup” in Eq. (B.11) we get lim supT →∞ f T (c) � f (c�).
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B.3 The economic model of the paper

In the infinite horizon economy of this paper, every agent solves a maximization
problem that is a particular case of the abstract problem presented above. We fix a
price sequence π = (pt , qt , κt )t∈T and consider a generic agent without specifying
the index i .

Let Lt = L ∪ {1, 2, 3} and identify the choice ct with the plan (xt , θt , ϕt , dt ). We
then have

ft (ct , ct−1) = β t v̂t (xt ) − β tμt
[Vt (p)ϕt−1 − dt ]+

ptwt

where v̂t coincides with vt on R
L+ and is identical to −∞ elsewhere. From now on we

abuse notations and identify vt with v̂t .
Let Kt = {1, 2, 3, 4} ∪ L and choose

gt,1(ct , ct−1) = pt {ωt + Yt xt−1} − pt xt + qt [ϕt − θt ] + Vt (κ, p)θt−1 − dt

together with

gt,2(ct , ct−1) = dt − Dt (p)ϕt−1, gt,3(ct , ct−1) = θt , gt,4(ct , ct−1) = ϕt

and

gt,�(ct , ct−1) = xt (�) − Ct (�)ϕt .

Observe that under the assumptions of our model, Assumptions (L.1)–(L.3) are auto-
matically satisfied. A sequence (Ψt )t∈T with Ψt ∈ R

Kt = R
4 × R

L is denoted by

Ψt = (γt , ρt , αθ,t , αϕ,t , χt ) where χt = (χt (�))�∈L ∈ R
L .

The first order conditions (B.4) translate into the following form:

(a) first order condition for consumption:

∀t ∈ T , β t∇vt + γt+1 pt+1Yt+1 + χt = γt pt ; (B.12)

(b) first order condition for asset purchases:

∀t ∈ T , γt qt = αθ,t + γt+1Vt+1(κ, p); (B.13)

(c) first order condition for deliveries:

∀t � 1, β tμt
δt

ptwt
+ ρt = γt ; (B.14)
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(d) first order conditions for asset sales:

∀t � 1, γt qt + αϕ,t =ρt+1 Dt+1(p)+χt Ct +β t+1μt+1
δt+1

pt+1wt+1
Vt+1(p); (B.15)

where ∇vt is a super-gradient of vt at xt and −δt is a super-gradient of � �→ −[�]+ at
�t = Vt (p)ϕt−1 − dt . The binding conditions (B.2) translate in the following form46

pt xt + qtθt + dt = pt {ωt + Yt xt−1} + qtϕt + Vt (κ, p)θt−1

ρt {dt − Dt (p)ϕt−1} = 0 and αθ,tθt = αϕ,tϕt = 0,

and for every � ∈ L ,

χt (�){xi
t (�) − Ct (�)ϕt } = 0.
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