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EXISTENCE AND UNIQUENESS OF A FIXED POINT
FOR LOCAL CONTRACTIONS

BY V. FILIPE MARTINS-DA-ROCHA AND YIANNIS VAILAKIS1

This paper proves the existence and uniqueness of a fixed point for local contractions
without assuming the family of contraction coefficients to be uniformly bounded away
from 1. More importantly it shows how this fixed-point result can apply to study the ex-
istence and uniqueness of solutions to some recursive equations that arise in economic
dynamics.

KEYWORDS: Fixed-point theorem, local contraction, Bellman operator, Koopmans
operator, Thompson aggregator, recursive utility.

1. INTRODUCTION

FIXED-POINT RESULTS for local contractions turned out to be useful to solve
recursive equations in economic dynamics. Many applications in dynamic pro-
gramming are presented in Rincón-Zapatero and Rodríguez-Palmero (2003)
for the deterministic case and in Matkowski and Nowak (2008) for the sto-
chastic case. Applications to recursive utility problems can be found in Rincón-
Zapatero and Rodríguez-Palmero (2007). Previous fixed-point results for local
contractions rely on a metric approach.2 The idea underlying this approach is
based on the construction of a metric that makes the local contraction a global
contraction in a specific subspace. The construction of an appropriate metric
is achieved at the cost of restricting the family of contraction coefficients to
be uniformly bounded away from 1. Contrary to the previous literature, we
prove a fixed-point result using direct arguments that do not require the appli-
cation of the Banach contraction theorem for a specific metric. The advantage
of following this strategy of proof is that it allows us to deal with a family of
contraction coefficients that has a supremum equal to 1. In that respect, the
proposed fixed-point result generalizes the fixed-point results for local con-
tractions stated in the literature. An additional benefit is that the stated fixed-

1The financial support of the GIP ANR (project “croyances”) and of the Fondation du Risque
(chaire Groupama) is gratefully acknowledged. Yiannis Vailakis acknowledges the financial sup-
port of a Marie Curie fellowship (FP6 Intra-European Marie Curie fellowships 2004–2006). We
would like to thank one anonymous referee for pointing out the fixed-point results in Hadžić
(1979) and two other anonymous referees for their constructive criticism and suggestions which
further helped us to improve the scope and clarity of the paper. We are grateful to Roko Alipran-
tis, Bob Anderson, Robert A. Becker, Manjira Datta, Felix Kubler, Cuong Le Van, Kevin Reffet,
Robert Molzon, Janusz Matkowski, Paulo K. Monteiro, Andrzej Nowak, Juan Pablo Rincón-
Zapatero, and Carlos Rodríguez-Palmero for valuable discussions and comments.

2See Rincón-Zapatero and Rodríguez-Palmero (2003), Matkowski and Nowak (2008), and
Rincón-Zapatero and Rodríguez-Palmero (2009).
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point theorem applies to operators that are local contractions with respect to
an uncountable family of semidistances.3

We exhibit two applications to illustrate that, from an economic perspective,
it is important to have a fixed-point result that encompasses local contractions
associated with a family of contraction coefficients that are arbitrarily close
to 1. The first application deals with the existence and uniqueness of solu-
tions to the Bellman equation in the unbounded case, while the second one
addresses the existence and uniqueness of a recursive utility function derived
from Thompson aggregators.4

The paper is organized as follows. Section 2 defines local contractions and
states a fixed-point theorem. Sections 3 and 4 show how the fixed-point result
can apply to the issue of existence and uniqueness of solutions to the Bellman
and Koopmans equations, respectively. The proof of the fixed-point theorem
is postponed to the Appendix, where we also discuss its relation with a fixed-
point result established by Hadžić (1979). The proofs of all additional results
can be found in Martins-da-Rocha and Vailakis (2008).

2. AN ABSTRACT FIXED-POINT THEOREM

In the spirit of Rincón-Zapatero and Rodríguez-Palmero (2007), we state
a fixed-point theorem for operators that are local contractions in an abstract
space.5 Let F be a set and let D = (dj)j∈J be a family of semidistances defined
on F . We let σ be the weak topology on F defined by the family D. A sequence
(fn)n∈N is said to be σ-Cauchy if it is dj-Cauchy for each j ∈ J. A subset A
of F is said to be sequentially σ-complete if every σ-Cauchy sequence in A
converges in A for the σ-topology. A subset A ⊂ F is said to be σ-bounded if
diamj(A) ≡ sup{dj(f�g) : f�g ∈A} is finite for every j ∈ J.

DEFINITION 2.1: Let r be a function from J to J. An operator T :F → F is
a local contraction with respect to (D� r) if, for every j, there exists βj ∈ [0�1)
such that

∀f�g ∈ F� dj(Tf�Tg) ≤ βjdr(j)(f� g)�

The main technical contribution of this paper is the following existence and
uniqueness result of a fixed point for local contractions.

THEOREM 2.1: Assume that the space F is σ-Hausdorff.6 Consider a function
r :J → J and let T :F → F be a local contraction with respect to (D� r). Consider

3In Martins-da-Rocha and Vailakis (2008) two applications are presented to illustrate that, in
some circumstances, it is relevant not to restrict the cardinality of the family of semidistances.

4Contrary to Blackwell aggregators, Thompson aggregators may not satisfy a uniform contrac-
tion property. See Marinacci and Montrucchio (2007) for details.

5From now on, we write RZ-RP for Rincón-Zapatero and Rodríguez-Palmero.
6That is, for each pair f�g ∈ F , if f �= g, then there exists j ∈ J such that dj(f�g) > 0.
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a nonempty, σ-bounded, sequentially σ-complete, and T -invariant subset A ⊂ F .
(E) If the condition

∀j ∈ J� lim
n→∞

βjβr(j) · · ·βrn(j) diamrn+1(j)(A) = 0(1)

is satisfied, then the operator T admits a fixed point f � in A.
(S) Moreover, if h ∈ F satisfies

∀j ∈ J� lim
n→∞

βjβr(j) · · ·βrn(j)drn+1(j)(h�A) = 0�(2)

then the sequence (T nh)n∈N is σ-convergent to f �.7

The arguments of the proof of Theorem 2.1 are very simple and straightfor-
ward. The details are postponed to the Appendix.

REMARK 2.1: Theorem 2.1 generalizes an existence result proposed in
Hadžić (1979).8 To be precise, Hadžić (1979) imposed the additional require-
ment that each semidistance dj is the restriction of a seminorm defined on a
vector space E containing F such that E is a locally convex topological vector
space. Under such conditions the existence result cannot be used for the two
applications proposed in Sections 3 and 4. Moreover, Hadžić (1979) did not
provide any criteria of stability similar to condition (2). A detailed comparison
of Theorem 2.1 with the result established in Hadžić (1979) is presented in the
Appendix.

REMARK 2.2: If h is a function in A, then condition (2) is automatically
satisfied, implying that the fixed point f � is unique in A. Actually f � is the
unique fixed point on the set B ⊂ F defined by

B ≡
{
h ∈ F :∀j ∈ J� lim

n→∞
βjβr(j) · · ·βrn(j)drn+1(j)(h�A)= 0

}
�

REMARK 2.3: If the function r is the identity (i.e., r(j) = j), then the opera-
tor T is said to be a 0-local contraction and, in that case, conditions (1) and (2)
are automatically satisfied. In particular, if a fixed point exists, it is unique on
the whole space F .

REMARK 2.4: Assume that the space F is sequentially σ-complete and
choose an arbitrary f ∈ F . As in RZ-RP (2007), we can show that the set F(f )
defined by

F(f ) ≡ {
g ∈ F :∀j ∈ J�dj(g� f ) ≤ [1/(1 −βj)]dj(Tf� f )

}
7If A is a nonempty subset of F , then for each h in F , we let dj(h�A)≡ inf{dj(h�g) :g ∈A}.
8We are grateful to a referee for pointing out this reference.
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is nonempty, σ-bounded, σ-closed, and T -invariant. Applying Theorem 2.1 by
choosing A ≡ F(f ), we obtain the following corollary.

COROLLARY 2.1: Let T :F → F be a 0-local contraction with respect to a
family D = (dj)j∈J of semidistances. Assume that the space F is sequentially σ-
complete. Then the operator T admits a unique fixed point f � in F . Moreover, for
any arbitrary f ∈ F , the sequence (T nf )n∈N is σ-convergent to f �.

Corollary 2.1 is a generalization of a result first stated in RZ-RP (2003)
(see Theorem 1).9 Unfortunately, the proposed proof in RZ-RP (2003) is not
correct. As Matkowski and Nowak (2008) have shown, an intermediate step
(Proposition 1b) used in their method of proof is false. RZ-RP (2009) have
provided a corrigendum of their fixed-point result, but at the cost of assuming
that the family (βj)j∈J of contraction coefficients is uniformly bounded away
from 1, that is, supj∈J βj < 1.10

From an economic perspective, the main contribution of this paper is to show
that it is important to establish a fixed-point theorem that allows the contrac-
tion coefficients to be arbitrarily closed to 1. The economic applications pre-
sented in Sections 3 and 4 aim to illustrate this fact.

An additional difference in Theorem 2.1 with respect to the fixed-point re-
sults of Matkowski and Nowak (2008) and RZ-RP (2009) is that the family J is
not assumed to be countable. Although in many applications it is sufficient to
consider a countable family of semidistances, in some circumstances, it may be
helpful not to restrict the cardinality of the family of semidistances. The inter-
ested reader may refer to Section 5 in Martins-da-Rocha and Vailakis (2008),
where two applications are presented.

REMARK 2.5: An interesting observation about Theorem 2.1 is that its proof
only requires each βj to be nonnegative. The requirement that βj belongs to
[0�1) is used only in the proof of Corollary 2.1.

3. DYNAMIC PROGRAMMING: UNBOUNDED BELOW CASE

We propose to consider the framework of Section 3.3 in RZ-RP (2003). The
state space is X ≡ R

�
+, there is a technological correspondence Γ :X → X , a

return function U : gphΓ → Z ≡ [−∞�∞), where gphΓ is the graph of Γ , and
β ∈ (0�1) is the discounting factor. Given x0 ∈ X , we denote by Π(x0) the set
of all admissible paths x̃= (xt)t≥0 defined by

Π(x0)≡ {x̃= (xt)t≥0 :∀t ≥ 0�xt+1 ∈ Γ (xt)}�
9If the family J is assumed to be countable, then Corollary 2.1 coincides with Theorem 1 in

RZ-RP (2007).
10Matkowski and Nowak (2008) also proved a similar fixed-point result under this additional

assumption.
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The dynamic optimization problem consists of solving the maximization prob-
lem

v�(x0)≡ sup{S(x̃) : x̃ ∈Π(x0)}� where S(x̃) ≡
∑
t≥0

βtU(xt�xt+1)�

We denote by C(X�Z) the space of continuous functions from X to Z, and
we let C�(X) be the space of functions f in C(X�Z) such that the restriction
of f to X� ≡ X \ {0} takes values in R. Among others, we make the following
assumptions.

DP1. The correspondence Γ is continuous with nonempty and compact val-
ues.

DP2. The function U : gph(Γ )→ [−∞�∞) is continuous on gph(Γ ).
DP3. There is a continuous function q :X� → X� with (x�q(x)) ∈ gphΓ and

U(x�q(x)) > −∞ for all x ∈X�.
We denote by B the Bellman operator defined on C(X�Z) as

Bf (x) ≡ sup{U(x�y)+βf(y) : y ∈ Γ (x)}�
Under the previous assumptions, the function Bf belongs to C(X�Y).11

Moreover, for every f ∈ C�(X), we have Bf (x) ≥ U(x�q(x)) + βf(q(x)) >
−∞ for all x ∈X�. This implies that B maps C�(X) into C�(X). Under suitable
conditions, the value function v� coincides with the fixed point of the Bellman
operator B. To establish this relationship, we introduce the following assump-
tions.12

DP4. There exist three functions w−, w+, and w in C�(X) such that

w− ≤w+ <w and
w− −w

w+ −w
=O(1) at 0

together with
(a) Bw<w, Bw− ≥w−, Bw+ ≤ w+,
(b) (w+ −w)/(Bw −w) =O(1) at 0,
(c) for any x0 ∈ X�, the set Π0(x0) is nonempty13 and for each admissible

path (xt)t≥0 in Π0(x0), it follows that

lim
t→∞

βtw−(xt)= 0 and lim
t→∞

βtw+(xt)= 0�

11We cannot apply the classical Berge maximum theorem since the range of the function U
includes −∞. We use Lemma 2 in Alvarez and Stokey (1998).

12Given two functions f and g in C�(X) with g(x) �= 0 in a neighborhood of 0, we say that
f/g =O(1) at 0 if there exists a neighborhood V of 0 in X such that f/g is bounded in V \ {0}.

13Π0(x0) is the subset of Π(x0) of all admissible paths x̃ in Π(x0) such that S(x̃) exists and
satisfies S(x̃) >−∞.
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DP5. There exists a countable increasing family (Kj)j∈N of nonempty and
compact subsets of X such that for any compact subset K of X , there exists j
with K ⊂ Kj and such that Γ (Kj)⊂Kj for all j ∈ N.

We denote by [w−�w+] the order interval in C�(X), that is, the space of all
functions f ∈ C�(X) satisfying w− ≤ f ≤ w+. The following theorem is analo-
gous to the main result in Section 3.3 (see Theorem 6) of RZ-RP (2003).14

THEOREM 3.1: Assume DP1–DP5. Then the following statements hold:
(a) The Bellman equation has a unique solution f in [w−�w+] ⊂ C�(X).
(b) The value function v� is continuous in X� and coincides with the fixed

point f .
(c) For any function g in [w−�w+], the sequence (Bng)n∈N converges to v�

for the topology associated with the family (dj)j∈N of semidistances defined on
[w−�w+] by

dj(f�g) ≡ sup
x∈K�

j

∣∣∣∣ln(
f −w

w+ −w
(x)

)
− ln

(
g −w

w+ −w
(x)

)∣∣∣∣�
where K�

j =Kj \ {0}.
Using the convexity property of the Bellman operator, RZ-RP (2003,

p. 1553) proved that the operator B is a 0-local contraction with respect to
the family (dj)j∈N where the contraction coefficient βj is defined by

βj ≡ 1 − exp{−μj} with μj ≡ sup{dj(f� Bw) : f ∈ [w−�w+]}�
Observe that for each j and each pair of functions f , g in [w−�w+] we have

dj(f�g) = sup
x∈K�

j

∣∣∣∣ln(
f −w

g −w
(x)

)∣∣∣∣�
implying that

μj = max
{‖ lnθ+‖K�

j
�‖ lnθ−‖K�

j

}
�

where θ+ ≡ (w − w+)/(w − Bw) and θ− ≡ (w − w−)/(w − Bw).15 Since the
family (Kj)j∈N covers the space X , we get

sup
j∈J

μj = max{‖ lnθ+‖X��‖ lnθ−‖X�}�

14Our set of assumptions is slightly different from the one used by RZ-RP (2003). In particular,
condition DP4(b) is not imposed in RZ-RP (2003). We make this assumption to ensure that the
distance dj(f� Bw) is well defined. See Appendix C in Martins-da-Rocha and Vailakis (2008) for
details.

15If f is a function in C(X�Y) and K is a subset of X , we let ‖f‖K ≡ sup{|f (x)| :x ∈ K}.
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If either the function lnθ+ or the function lnθ− is unbounded, then the supre-
mum supj∈J βj of the contraction coefficients is 1. In this case, the fixed-point
results of Matkowski and Nowak (2008) and RZ-RP (2009) cannot apply to
prove Theorem 3.1. In contrast, Theorem 2.1 makes it possible to provide a
straightforward proof of Theorem 3.1. We can find in RZ-RP (2003) two ex-
amples that give rise to an unbounded sequence (μj)j∈J . In both examples the
production technology has decreasing returns, while the return function is log-
arithmic in the first example (Example 10 in RZ-RP (2003)) and homogeneous
in the second (Example 11 in RZ-RP (2003)).16

4. RECURSIVE PREFERENCES FOR THOMPSON AGGREGATORS

Consider a model where an agent chooses consumption streams in the
space �∞

+ of nonnegative and bounded sequences x = (xt)t∈N with xt ≥ 0. The
space �∞ is endowed with the sup-norm ‖x‖∞ ≡ sup{|xt | : t ∈ N}. We propose to
investigate whether it is possible to represent the agent’s preference relation
on �∞

+ by a recursive utility function derived from an aggregator

W :X ×Y → Y�

where X = R+ and Y = R+. The answer obviously depends on the assumed
properties of the aggregator function W .17

After the seminal contribution of Lucas and Stokey (1984), a wide literature
has dealt with the issue of the existence and uniqueness of a recursive utility
function derived from aggregators that satisfy a uniform contraction property
(Blackwell aggregators). We refer to Becker and Boyd (1997) for an excellent
exposition of this literature.18 In what follows, we explore whether a unique
recursive utility function can be derived from Thompson aggregators.

Throughout this section, we assume that W satisfies the following conditions:

ASSUMPTION 4.1: W is a Thompson aggregator as defined by Marinacci and
Montrucchio (2007), that is, the following conditions are satisfied:

W1. The function W is continuous, nonnegative, nondecreasing, and satisfies
W (0�0)= 0.

W2. There exists a continuous function f :X → Y such that W (x�f (x)) ≤
f (x).19

16Refer to Sections 3.1 and 3.2 in Martins-da-Rocha and Vailakis (2008) for details.
17Throughout this section, some arguments are omitted. We refer to Appendix D in Martins-

da-Rocha and Vailakis (2008) for details.
18See also Epstein and Zin (1989), Boyd (1990), Duran (2000, 2003), Le Van and Vailakis

(2005), and Rincón-Zapatero and Rodríguez-Palmero (2007).
19Marinacci and Montrucchio (2007) assumed that there is a sequence (xn� yn)n∈N in R

2
+ with

(xn)n∈N increasing to infinity and W (xn� yn) ≤ yn for each n. This assumption, together with the
others, implies that for each x ∈ X , there exists yx ∈ Y such that W (x�yx) ≤ yx. We require that
x �→ yx can be chosen to be continuous.
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W3. The function W is concave in the second variable at 0.20

W4. For every x > 0 we have W (x�0) > 0.

REMARK 4.1: Marinacci and Montrucchio (2007) proposed a list of exam-
ples of Thompson aggregators that do not satisfy a uniform contraction prop-
erty. For instance, consider W (x�y) = (xη + βyσ)1/ρ, where η, σ , ρ, β > 0
together with the following conditions: σ < 1 and either σ < ρ or σ = ρ and
β< 1. Another example is the aggregator introduced by Koopmans, Diamond,
and Williamson (1964): W (x�y) = (1/θ) ln(1 +ηxδ +βy) with θ, β, δ, η> 0.
This aggregator is always Thompson, but it is Blackwell only if β< θ.

To define formally the concept of a recursive utility function, we need to
introduce some notations. We denote by π the linear functional from �∞ to R

defined by πx = x0 for every x = (xt)t∈N in �∞. We denote by σ the operator of
�∞ defined by σx = (xt+1)t∈N.

DEFINITION 4.1: Let X be a subset of �∞ that is stable under the shift oper-
ator σ .21 A function u : X → R is a recursive utility function on X if

∀x ∈ X� u(x)=W (πx�u(σx))�

We propose to show that we can use the Thompson metric introduced by
Thompson (1963) to prove the existence of a continuous recursive utility func-
tion when the space X is the subset of all sequences in �∞

+ which are uniformly
bounded away from 0, that is, X ≡ {x ∈ �∞ : inft∈N xt > 0}.22 The topology on X

derived from the sup-norm is denoted by τ. This space of feasible consumption
patterns also appears in Boyd (1990).

4.1. The Operator

In the spirit of Marinacci and Montrucchio (2007) we introduce the follow-
ing operator. First, denote by V the space of sequences V = (vt)t∈N, where vt
is a τ-continuous function from X to R+. The real number vt(x) is interpreted
as the utility at time t derived from the consumption stream x ∈ X. For each
sequence of functions V = (vs)s∈N and each period t, we denote by [TV ]t the
function from X to R+ defined by

∀x ∈ X� [TV ]t(x)≡W (xt� vt+1(x))�

Since W and vt+1 are continuous, the function [TV ]t is continuous. In particu-
lar, the mapping T is an operator on V , that is, T(V)⊂ V .

20In the sense that W (x�αy) ≥ αW (x� y) + (1 − α)W (x�0) for each α ∈ [0�1] and each x�
y ∈ R+.

21That is, for every x ∈ X we have that σx still belongs to X.
22See also Montrucchio (1998) for another reference where the Thompson metric is used.
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We denote by K the family of all sets K = [a1� b1] with 0 < a < b < ∞.23

We consider the subspace F of V composed of all sequences V such that on
every set K, the family V = (vt)t∈N is uniformly bounded from above and away
from 0, that is, V = (vt)t∈N belongs to F if for every 0 < a < b < ∞ there exist
v and v such that

∀t ∈ N�∀x ∈ [a1� b1]� 0 < v ≤ vt(x)≤ v <∞�

Observe that T maps F into F since W is monotone with respect to both vari-
ables.24 The objective is to show that T admits a unique fixed point V � in F .
The reason is that if V � = (v�t )t∈N is a fixed point of T , then the function v�0
is a recursive utility function. Indeed, we will show that for each consump-
tion stream x ∈ X and every time t, we have limn→∞[Tn0]t(x) = v�t (x). Since
[Tn0]t(σx)= [Tn0]t+1(x) and

[Tn0]t(x)= W
(
xt�W (xt+1� � � � �W (xt+n�0) � � �)

)
�

passing to the limit we get that v�t (σx) = v�t+1(x). This property is crucial to
proving that v�0 is a recursive utility on X. Indeed, we have v�0(x)= [TV �]0(x)=
W (x0� v

�
1(x))=W (x0� v

�
0(σx)).25

4.2. The Thompson Metric

Fix a set K in K. We propose to introduce the semidistance dK on F defined
as

dK(V �V
′)≡ max{lnMK(V |V ′)� lnMK(V

′|V )}�
where

MK(V |V ′)≡ inf{α> 0 :∀x ∈ K�∀t ∈ N� vt(x)≤ αv′
t(x)}�

Let V ∞ ∈ V be the sequence of functions (v∞
t )t∈N defined by v∞

t (x)≡ f (‖x‖∞).
Observe that [TV ∞]t(x) ≤ v∞

t (x) for every t ∈ N and every x in X. We de-
note by V 0 the sequence of functions T0 = ([T0]t)t∈N, that is, V 0 = (v0

t )t∈N with
v0
t (x) = W (xt�0). The monotonicity of T then implies that T maps the order

interval [V 0� V ∞] into [V 0� V ∞]. Moreover, both V 0 and V ∞ belong to F . We
can then adapt the arguments of Theorem 9 in Marinacci and Montrucchio

23We denote by 1 the sequence x = (xt)t∈N in �∞ defined by xt = 1 for every t. The order
interval [a1� b1] is the set {x ∈ �∞

+ :a ≤ xt ≤ b�∀t ∈ N}.
24We can easily check that for every V = (vt)t∈N in F and for every K ≡ [a1� b1], we have

W (a�v)≤ [TV ]t (x) ≤ W (b�v).
25Observe that the time t utility v�t (x) of the consumption stream x does not depend on the

past consumption since v�t (x) = v�t−1(σx) = · · · = v�0(σ
tx).
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(2007, Appendix B) to show that T is a 0-local contraction on [V 0� V ∞] with
respect to the family D = (dK)K∈K. More precisely, we can prove that

dK(TV �TV
′)≤ βKdK(V �V

′)�

where βK ≡ 1 − [μK]−1 and μK ≡ MK(V
∞|V 0). Recall that

MK(V
∞|V 0)≡ inf

{
α> 0 :∀x ∈ K�∀t ∈ N� f (‖x‖∞)≤ αW (xt�0)

}
�

implying that

μK = sup
x∈K

sup
t∈N

f (‖x‖∞)

W (xt�0)
= sup

x∈K

f (‖x‖∞)

inft∈N W (xt�0)
= f (b)

W (a�0)
�

The set [V 0� V ∞] is sequentially complete with respect to the family D. There-
fore, we can apply Corollary 2.1 to get the existence of a unique fixed point
V � = (v�t )t∈N of T in [V 0� V ∞].26 The function u� ≡ v�0 : X → R+ is then a re-
cursive utility function associated with the aggregator W and continuous for
the sup-norm topology.27 We have thus provided a sketch of the proof of the
following result.28

THEOREM 4.1: Given a Thompson aggregator W , there exists a recursive utility
function u� : X → R which is continuous on X for the sup-norm. Moreover, this
function is unique among all continuous functions which are bounded on every
order interval of K.

REMARK 4.2: In the spirit of Kreps and Porteus (1978), Epstein and Zin
(1989), Ma (1998), Marinacci and Montrucchio (2007), and Klibanoff, Mari-
nacci, and Mukerji (2009), we can adapt the arguments above so as to deal with
uncertainty.

REMARK 4.3: Consider the Koopmans–Diamond–Williamson (KDW) ag-
gregator

W (x�y)= (1/θ) ln(1 +ηxδ +βy)

for any θ�β�δ�η > 0. Applying Theorem 4.1, we get the existence of a re-
cursive utility function defined on X and continuous for the sup-norm. When

26Observe that the family of contraction coefficients is such that sup
K∈K βK = 1. Actually,

uniqueness is obtained on the whole set F . See Appendix D in Martins-da-Rocha and Vailakis
(2008) for details.

27Since u�(x) = limn→∞ W (x0�W (x1� � � � �W (xn�0) � � �)) we can deduce that u� is non-
decreasing.

28See Appendix D in Martins-da-Rocha and Vailakis (2008) for details.
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β < θ, the aggregator W is Blackwell and the existence of a continuous re-
cursive utility function can be established by applying the continuous existence
theorem in Boyd (1990) or Becker and Boyd (1997). We propose to show that
the case β ≥ θ is not covered by the continuous existence theorem. Observe
first that the lowest α> 0 that satisfies the uniform Lipschitz condition

|W (x�y)−W (x�y ′)| ≤ α|y − y ′|
for all x > 0 and y� y ′ ≥ 0 is α = β/θ. Assume by way of contradiction that the
conditions of the continuous existence theorem are met. Then there exists a
positive continuous function ϕ : X → (0�∞) such that

M ≡ sup
x∈X

W (πx�0)
ϕ(x)

< ∞ and χ≡ sup
x∈X

α
ϕ(σx)
ϕ(x)

< 1�

For every x ∈ X and every n ≥ 1, we obtain

αnW (xn�0) ≤ Mαnϕ(σnx)

≤ M

[
α

ϕ(σnx)
ϕ(σn−1x)

× · · · × α
ϕ(σx)
ϕ(x)

]
ϕ(x)

≤ Mχnϕ(x)�

Choosing x = a1 for any a > 0, we get

∀n≥ 1� αnW (a�0)≤Mχnϕ(a1)�

Since α ≥ 1 and χ < 1, it follows that W (a�0) = 0 for every a > 0—a contra-
diction.

APPENDIX

PROOF OF THEOREM 2.1: Consider a set F and a family D = (dj)j∈J of semi-
distances on F such that F is σ-Hausdorff, where we recall that σ is the weak
topology defined by the family D. Fix r :J → J and let T :F → F be a local Lip-
schitz function with respect to (D� r) in the sense that for every j, there exists
βj ≥ 0 such that29

∀f�g ∈ F� dj(Tf�Tg) ≤ βjdr(j)(f� g)�

Consider a nonempty, σ-bounded, sequentially σ-complete, and T -invariant
subset A ⊂ F . We recall the two results presented in Theorem 2.1:

29If βj ∈ [0�1) for each j, then F is a local contraction. The concept of a local Lipschitz function
was first introduced by Hadžić (1979) in a more specific framework.
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(E) If the condition

∀j ∈ J� lim
n→∞

βjβr(j) · · ·βrn+1(j) diamrn+1(j)(A)= 0(2.1)

is satisfied, then the operator T admits a fixed point f � in A.
(S) Moreover, if h ∈ F satisfies

∀j ∈ J� lim
n→∞

βjβr(j) · · ·βrn+1(j)drn+1(j)(h�A)= 0�(2.2)

then the sequence (T nh)n∈N is σ-convergent to f �.
We first prove the existence (E) of the fixed point.
(E) Fix an element g in A. Since T is a local contraction, for every pair of

integers q > n> 0, we have

dj(T
qg�T ng) ≤ βjdr(j)(T

q−1g�T n−1g) ≤ · · ·
≤ βjβr(j) · · ·βrn−1(j)drn(j)(T

q−ng�g)�

Since A is T -invariant, Tq−ng belongs to A and we get

dj(T
qg�T ng) ≤ βjβr(j) · · ·βrn−1(j) diamrn(j)(A)�

It follows from condition (2.1) that the sequence (T ng)n∈N is dj-Cauchy for
each j. Since A is assumed to be sequentially σ-complete, there exists f � in A
such that (T ng)n∈N is σ-convergent to f �. Since the sequence (T ng)n∈N con-
verges for the topology σ to f �, we have

∀j ∈ J� dj(Tf
�� f �)= lim

n→∞
dj(Tf

��T n+1g)�

Recall that the operator T is a local contraction with respect to (D� r). This
implies that

∀j ∈ J� dj(Tf
�� f �)≤ βj lim

n→∞
dr(j)(f

��T ng)�

Since convergence for the σ-topology implies convergence for the semidis-
tance dr(j), we get that dj(Tf

�� f �) = 0 for every j ∈ J. This in turn implies that
Tf � = f � since σ is Hausdorff. Hence, (E) is proved.

Now we prove the stability (S) criterion.
(S) Fix an arbitrary h ∈ F . For each j ∈ J and every n ≥ 1, we have

dj(T
n+1h�T n+1f �) ≤ βjdr(j)(T

nh�T nf �)

≤ βjβr(j) · · ·βrn(j)drn+1(j)(h� f
�)

≤ βjβr(j) · · ·βrn(j)

[
drn+1(j)(h�A)+ diamrn+1(j)(A)

]
�



FIXED POINT FOR LOCAL CONTRACTIONS 1139

Since Tf � = f �, it follows from conditions (2.1) and (2.2) that (T nh)n∈N is
dj-convergent to f �. Since this is true for every j, we have thus proved that
(T nh)n∈N is σ-convergent to f �. Q.E.D.

Assume now that F is sequentially σ-complete. We propose to apply The-
orem 2.1 for a specific set A. Assume that there exists f in F such that the
series

∞∑
n=0

βjβr(j) · · ·βrn(j)drn+1(j)(f�Tf )(A.1)

is convergent for every j ∈ J. Denote by O(f ) the orbit of f and let A be the
σ-closure of O(f ).30

CLAIM A.1: The set A is T -invariant and sequentially σ-complete.

PROOF: We first prove that A is σ-bounded. Fix j ∈ J and observe that

diamj(A) ≡ sup{dj(f�g) : f�g ∈ A}
= diamj(O(f ))≤ 2 sup

n∈N

dj(T
n+1f� f )�

Since T is a local Lipschitz function with respect to (D� r), we get that for every
n ≥ 1,

dj(T
n+1f� f ) ≤ dj(Tf� f )+βjdr(j)(Tf� f )+ · · ·

+βjβr(j) · · ·βrn−1(j)drn(j)(Tf� f )�

This implies that

diamj(A) ≤ 2

[
dj(f�Tf )+

∞∑
n=0

βjβr(j) · · ·βrn(j)drn+1(j)(f�Tf )

]
< ∞(A.2)

and the set A is σ-bounded. From (A.2) we have that for each n≥ 1,

βjβr(j) · · ·βrn(j) diamrn+1(j)(A) ≤ 2
∞∑
k=0

βjβr(j) · · ·βrk+n(j)drk+n+1(j)(f�Tf )

implying that (1) follows from (A.1). Q.E.D.

We can thus apply Theorem 2.1 to get the following corollary which gener-
alizes Lemma 2 in Hadžić (1979).31

30The orbit of f is the set O(f )≡ {Tnf :n ∈ N}.
31Hadžić (1979) allowed the operator T to be multivalued. The arguments of the proof of

Theorem 2.1 can easily be adapted to deal with multivalued operators.
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COROLLARY A.1: Consider a family D = (dj)j∈J of semidistances defined on
a set F such that F is Hausdorff and sequentially complete with respect to the
associated topology σ . Let T :F → F be a locally Lipschitz operator with respect
to (D� r) for some r :J → J. Assume that there exists f in F satisfying (A.1).
Then T admits a unique fixed point in the closure of the orbit of f .

REMARK A.1: Hadžić (1979) assumed that each semidistance dj is the re-
striction of a semi-norm defined on a vector space E containing F such that E
is a locally convex topological vector space. We have proved that this assump-
tion is superfluous. Moreover, Hadžić (1979) did not provide any criteria of
stability similar to condition (2.2).

REFERENCES

ALVAREZ, F., AND N. L. STOKEY (1998): “Dynamic Programming With Homogeneous Func-
tions,” Journal of Economic Theory, 82, 167–189. [1131]

BECKER, R. A., AND J. H. BOYD III (1997): Capital Theory, Equilibrium Analysis and Recursive
Utility. Oxford: Basil Blackwell Publisher. [1133,1137]

BOYD III, J. H. (1990): “Recursive Utility and the Ramsey Problem,” Journal of Economic Theory,
50, 326–345. [1133,1134,1137]

DURAN, J. (2000): “On Dynamic Programming With Unbounded Returns,” Economic Theory,
15, 339–352. [1133]

(2003): “Discounting Long Run Average Growth in Stochastic Dynamic Programs,”
Economic Theory, 22, 395–413. [1133]

EPSTEIN, L. G., AND S. E. ZIN (1989): “Substitution, Risk Aversion, and the Temporal Behavior
of Consumption and Asset Returns: A Theoretical Framework,” Econometrica, 57, 937–969.
[1133,1136]
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