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The paper shows how fixed‐point results for local contractions apply to the study of the existence
and uniqueness of recursive utility functions defined on subsets of ‘1þ and being continuous for a
specific topology. Two particular applications are presented that give rise to local contractions
associated with an uncountable family of semi‐distances.
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1 Introduction

Many dynamic economic models rely on the assumption that preferences are represented by a
functional which is additive over time and discounts future rewards at a constant rate. This basic
representation is analytically very tractable and has the following main behavioral feature: it is
dynamically consistent and independent of unrealized alternatives. It has, however, some important
drawbacks: (i) it implies a constant rate of impatience; (ii) with heterogeneous agents it gives rise to a
degenerate long‐run distribution: unless all agents have the same discount factor, only the most
patient one ends upwith a positive consumption level; and (iii) in stochastic environments it is unable
to disentangle risk attitudes from the intertemporal elasticity of substitution. The class of recursive
utility functions is a generalization of the additive utility family that preserves the nice characteristics
of the additive class (time consistency property) and overcomes the aforementioned drawbacks. The
idea underlying the construction of recursive preferences is to impose a weak separability between
present and future alternatives. This leads to a representation of the utility function in terms of an
aggregator function expressing current utility as a function of current choices and future utility
derived from future choices.

Two approaches have been followed to construct recursive utility functions. The first one builds
on the early work of Koopmans (1960) and is concerned with the axiomatization of preferences
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leading to a recursive representation of utilities. The second approach, due to Lucas and Stokey (1984)
and Boyd (1990), treats an aggregator function as the fundamental expression of tastes and then tries
to recover the utility function from the assumed properties of the aggregator.1

An aggregator function defines a recursion operator over all extended real‐valued functions. The
aggregator approach explores the connection between a recursive utility function and an aggregator
through the study of fixed points of this operator. Therefore, fixed‐point results have been very useful
to explore thoroughly this link (see Boyd 1990; Durán 2000).

Inspired by the work of Rincón‐Zapatero and Rodríguez‐Palmero (2003)2 and Matkowski and
Nowak (2011), Martins‐da‐Rocha and Vailakis (2010) proved a fixed‐point result for local
contractions without assuming the family of contraction coefficients to be uniformly bounded away
from 1. Martins‐da‐Rocha and Vailakis (2010) exhibit two applications to illustrate that, from an
economic perspective, it is important to have a fixed‐point result that encompasses local contractions
associated with a family of contraction coefficients that are arbitrarily close to 1.

An additional benefit of this fixed‐point theorem is that it applies to operators that are local
contractions with respect to an uncountable family of semi‐distances. This paper aims to illustrate
that, in some circumstances, it is relevant not to restrict the cardinality of the family of semi‐distances.
In particular, we show how the applicability of this fixed‐point result for local contractions associated
with an uncountable family of semi‐distances allows us to address problems of existence and
uniqueness of recursive utility functions defined on subsets of ‘1þ . Two applications are presented to
illustrate the power of our approach. The first one considers the case of Blackwell aggregators that are
unbounded frombelow and establishes existence and uniqueness of recursive utility functions that are
continuous for the product topology. The second application deals with bounded Blackwell
aggregators and addresses existence and uniqueness of recursive utility functions that are continuous
for the absolute weak topology (and consequently for the Mackey topology).

The paper is organized as follows: Section 2 defines local contractions and states the fixed‐point
theorem proved in Martins‐da‐Rocha and Vailakis (2010). Section 3 shows how the fixed‐point result
can apply to study existence and uniqueness of solutions to the equation of Koopmans (1960). Section
4 concludes.

2 Definitions and the fixed‐point result

In this section we recall the fixed‐point result stated in Martins‐da‐Rocha and Vailakis (2010) for
operators that are local contractions in an abstract space. Let F be a set andD ¼ ðdjÞj2J be a family of
semi‐distances defined on F.3 We let s be the weak topology on F defined by the familyD. A sequence
ð f nÞn2N is said to be s‐Cauchy if it is dj‐Cauchy for each j 2 J. A subset A of F is said to be sequentially
s‐complete if every s‐Cauchy sequence in A converges in A for the s‐topology. A subset A � F is said
to be s‐bounded if diamjðAÞ � supfdjðf ; gÞ : f ; g 2 Ag is finite for every j 2 J.

Definition 1 Let r be a function from J to J. An operator T : F ! F is a local contraction with respect to (D, r) if
for every j there exists bj 2 ½0; 1Þ such that

8f ; g 2 F; djðTf ; TgÞ � bjdrðjÞðf ; gÞ:

1 See Becker and Boyd (1997) for an excellent exposition of these two approaches.
2 See also Rincón‐Zapatero and Rodríguez‐Palmero (2007) and Rincón‐Zapatero and Rodríguez‐Palmero (2009).
3 A semi‐distance d on a space X is a real‐valued function on X � X that is non‐negative, symmetric, satisfies the triangle

inequality and in addition dðx; xÞ ¼ 0 for every x 2 X.
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The main technical contribution of Martins‐da‐Rocha and Vailakis (2010) is the following
existence and uniqueness result of a fixed point for local contractions.

Theorem 1 Assume that the space F is s‐Hausdorff.4 Consider a function r : J ! J and let T : F ! F be a local
contraction with respect to (D, r). Consider a non‐empty, s‐bounded, sequentially s‐complete and T‐invariant
subset A � F. If the following condition is satisfied

8j 2 J; lim
n!1 bjbrðjÞ…brnðjÞdiamrnþ1ðjÞðAÞ ¼ 0 ð1Þ

then the operator T admits a fixed point f � in A. Moreover, if h 2 F satisfies

8j 2 J; lim
n!1 bjbrðjÞ…brnðjÞdrnþ1ðjÞðh;AÞ ¼ 0 ð2Þ

then the sequence ðTnhÞn2N is s‐convergent to f �.5

Consider the particular case where F is sequentially s‐complete. We propose to apply Theorem 1
for a specific set A. Assume that there exists f in F such that the series

X1
n¼0

bjbrðjÞ…brnðjÞdrnþ1ðjÞðf ; Tf Þ ð3Þ

is convergent for every j 2 J. Denote by Oðf Þ the orbit of f and let A be the s‐closure of Oðf Þ.6
As a by‐product of Theorem 1 we get a generalization of a fixed‐point result proposed in Hadžić

(1979).7

Corollary 1 Consider a family D ¼ ðdjÞj2J of semi‐distances defined on a set F such that F is Hausdorff and
sequentially complete with respect to the associated topology s. Let T : F ! F be a local contraction with respect to
(D, r) for some r : J ! J. Assume that there exists f in F satisfying (3). Then Tadmits a unique fixed point in the
closure of the orbit of f.

3 Applications to recursive utility

Consider a model where an agent chooses consumption streams in the space ‘1þ of non‐negative and
bounded sequences x ¼ ðxtÞt2N with xt � 0. The space ‘1 is endowed with the sup‐norm
jjxjj1 � supfjxt j : t 2 Ng. We propose to investigate whether it is possible to represent the agent’s
preference relation on ‘1þ by a recursive utility function derived from an aggregator

W : X � Y ! Y

where X ¼ Rþ and Y is a subset of ½�1;1Þ containing 0. The answer obviously depends on the
assumed properties of the aggregator function W.

4 That is, for each pair f ; g 2 F, if f 6¼ g then there exists j 2 J such that djðf ; gÞ > 0.
5 If A is a non‐empty subset of F then for each h in F, we let djðh;AÞ � inffdjðh; gÞ : g 2 Ag.
6 The orbit of f is the set Oðf Þ � fTnf : n 2 Ng.
7 A detailed comparison of the result in Hadži�c (1979) and Theorem 1 is given in Martins‐da‐Rocha and Vailakis (2010).
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Since the seminal contribution of Lucas and Stokey (1984), there has been a wide literature8

dealing with the issue of existence and uniqueness of a recursive utility function derived from
aggregators that satisfy a uniform contraction property (Blackwell aggregators), that is, W is
continuous on X � Y , non‐decreasing on X � Y and satisfies a Lipschitz condition with respect to its
second argument, in the sense that there exists d 2 ð0; 1Þ such that

jWðx; yÞ �Wðx; y0Þj � djy� y0j; 8x 2 X; 8y; y0 2 Y :

The objective is to find a subspaceX � ‘1þ such thatWadmits a recursive utility function fromX

to R . In order to define formally the concept of a recursive utility function we need to introduce some
notations. We denote by p the linear functional from ‘1 to R defined by px ¼ x0 for every
x ¼ ðxtÞt2N in ‘1. We denote by S the operator of ‘1 defined by Sx ¼ ðxtþ1Þt2N.

Definition 2 Let X be a subset of ‘1 stable under the shift operator S.9 A function u : X ! R is a recursive
utility function on X if it verifies the equation of Koopmans (1960):

8x 2 X; uðxÞ ¼ Wðpx; uðSxÞÞ:

Taking ‘1 as the commodity space is a choice that is made in many intertemporal models.10 The
advantage of ‘1 with respect to other spaces (for instance ‘p with 1 � p < 1) is that it does not
impose severe restrictions on the kind of dynamics that can be considered.11 In addition, the fact that
‘1þ has a non‐empty interior (for the sup‐norm) simplifies considerably the application of a
separation theorem that underlies the theorems of welfare economics in an intertemporal setting
(Lucas and Prescott 1971).

However, the choice of ‘1 as a commodity space introduces some complications on the choice of
the appropriate topology. One may consider several topologies on ‘1. There is the topology derived
from the sup‐norm and the product topology. There are also the weak topology sð‘1; ‘1Þ, theMackey
topology tð‘1; ‘1Þ defined as the strongest locally convex topology on ‘1 consistent with the duality
h‘1; ‘1i and the absolute weak topology jsjð‘1; ‘1Þ defined as the smallest locally convex‐solid
topology on ‘1 consistent with the duality h‘1; ‘1i.12 In particular we have13

sð‘1; ‘1Þ � jsjð‘1; ‘1Þ � tð‘1; ‘1Þ:

Assuming continuity of preference orderings with respect to one of the aforementioned
topologies plays a crucial role in establishing existence of equilibrium in intertemporal models. As
shown by Brown and Lewis (1981), assigning to ‘1 one of these topologies is an abstract way of

8 See Epstein and Zin (1989), Boyd (1990), Durán (2000), Durán (2003), Le Van and Vailakis (2005), Rincón‐Zapatero and
Rodríguez‐Palmero (2007), and Marinacci and Montrucchio (2010).

9 That is, for every x 2 X we have Sx still belongs to X.
10 See among others Lucas and Prescott (1971), Bewley (1972), Kehoe, Levine, and Romer (1990), Dana and Le Van (1991),

Magill and Quinzii (1994), Levine and Zame (1996), and Alipranits, Border, and Burkinshaw (1997). In some models this
choice is imposed directly while in some others it is implied by the assumptions made on the production activity.

11 See Chapter 15 in Stockey, Lucas, and Prescott (1989) for a discussion.
12 The Mackey topology is the topology generated by the family of semi‐norms fk	kq : q 2 ‘1g where kxkq ¼ supt jxtqt j for

every x 2 ‘1. The absolute weak topology is the topology generated by the family of semi‐norms fhq : q 2 ‘1g where
hqðxÞ ¼ hjxj; jqji ¼ P

t2N jxtqt j for all x 2 ‘1.
13 See Aliprantis and Border (1999), p. 292.
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formalizing the idea that agents are impatient. In particular, continuity of preference orders with
respect to the Mackey topology permits equilibria of finite horizon economies to approximate the
equilibria of infinite horizon economies since it implies that consumption in the very distant future is
unimportant.

In what follows we show how our fixed‐point result can apply to prove existence of recursive
utility functions, defined on subsets of ‘1þ endowed with a specific topology, in two particular
frameworks.

3.1 Aggregators unbounded from below

In this subsection we allow for Blackwell aggregators that are unbounded from below. More precisely,
we assume thatWðx; yÞ 2 R for every x 6¼ 0 and y 2 R but we allow forWð0; yÞ ¼ �1. In particular
we have Y ¼ ½�1;1Þ.

Let A be the space of sequences a 2 ‘1þ such that

X
t2N

dt jWðat ; 0Þj < 1:

Let alsoK be the set of all order intervalsK � ½a; b1
 where a 2 A and b > kak1.14 Observe that if
K belongs toK then SK ¼ fSx:x 2 Kg also belongs toK. We takeX to be the union of all intervals
K. Obviously, X is a subset of ‘1þ stable under S.

Let F be the space of functions V : X ! R which are bounded and continuous for the product
topology on every K 2 K. For every set K 2 K we let dK be the semi‐distance on F defined by

dKðU ;VÞ � supfjUðxÞ � VðxÞj : x 2 Kg ¼ kU � VkK:

The space F is sequentially complete with respect to the topology defined by the familyD � ðdKÞK2K.
We let r : K ! K be the mapping defined by rðKÞ ¼ SK. Given U 2 F we let TU : X ! R be the
function defined by ½TU 
ðxÞ ¼ Wðpx;UðSxÞÞ. Since W is continuous and non‐decreasing, the
mapping T is an operator on F, that is, it maps F into F. We have the following result.

Proposition 1 There exists a recursive utility function U : X ! R bounded and continuous for the product
topology on every order interval K in K . Moreover, U is the unique fixed point of T on the set of all functions
V : X ! R bounded and continuous for the product topology on every order interval K in K satisfying

8K 2 K ; lim
t!1 dt sup

x2K
jVðStxÞj ¼ 0: ð4Þ

The proof of Proposition 1 is based on an application of Corollary 1 with an uncountable family of
semi‐distances.

PROOF: Since W satisfies a Lipschitz contraction property, we get that T is a local contraction with
respect to (D, r). More precisely, we have

dKðU ;VÞ � ddrðKÞðU ;VÞ:

14 We denote by 1 the sequence x ¼ ðxtÞt2N in ‘1 defined by xt ¼ 1 for every t. The order interval ½a; b1
 is the set
fx 2 ‘1 : at � xt � b; 8t 2 Ng.
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For each t � 1 we have

jjT0jjrtðKÞ ¼ sup
x2K

jWðxt ; 0Þj:

Since K belongs to K, it follows that the series

X1
t¼0

dt jjT0jjrtðKÞ

is convergent. We can then apply Corollary 1 to get the existence of a fixed point U of the operator T
which is unique in A, the closure of the orbit Oð0Þ of 0.

Now, fix a function V : X ! R continuous for the product topology on every order intervalK in
K satisfying (4). We have to prove that for every K 2 K,

lim
t!1 sup

x2K
jUðxÞ �Wðx0;Wðx1;…;Wðxt ;VðStþ1xÞÞ…ÞÞj ¼ 0: ð5Þ

In other words, we should prove that

8K 2 K ; lim
t!1 dKðTtV ;UÞ ¼ 0:

According to Theorem 1, it is sufficient to prove that

8K 2 K ; lim
t!1 dtdrtðKÞðV ;AÞ ¼ 0:

Since 0 belongs to A, we have

drtðKÞðV ;AÞ � drtðKÞðV; 0Þ ¼ jjVjjStK
and the desired result follows from (4). &

3.2 Weak absolute continuous utility function

In this subsection we restrict our attention to aggregators that are bounded from below. More
precisely, we assume that Y ¼ ½0;1Þ and for simplicity we impose Wð0; 0Þ ¼ 0. We will also assume
that for any y 2 Y, the function x 7!Wðx; yÞ is concave. This class of aggregators has been studied by
Koopmans, Diamond, and Williamson (1964). We show that under our assumptions, there exists a
recursive utility function defined on ‘1þ that is continuous for the Mackey topology.15 More precisely,
we have the following result.

Proposition 2 There exists a recursive utility function U : ‘1þ ! Rþ which is continuous for the absolute weak
topology. Moreover, the function U is the unique recursive utility function among all functions V : ‘1þ ! Rþ
continuous for the absolute weak topology and satisfying

lim
t!1 dt sup

x2K
fVðStxÞg ¼ 0 ð6Þ

for every non‐empty set K � ‘1þ compact for the absolute weak topology.

15 Stroyan (1983) also proves existence and uniqueness of a Mackey continuous recursive utility function. However, the
arguments of his proof rely on non‐standard analysis.

28 International Journal of Economic Theory 9 (2013) 23–33 © IAET

Fixed point for local contractions Martins‐da‐Rocha and Vailakis



The proof of Proposition 2 is based on an application of Corollary 1 with an uncountable family of
semi‐distances. It proceeds in several steps. Claims 1 and 2 are devoted to the construction of an
uncountable family of compact (for the absolute weak topology) sets that is stable under the shift
operator and covers ‘1þ . Claim 3 identifies a subset of real‐valued functions that are continuous (for
the absolute weak topology) on ‘1þ . This space of functions constitutes the space F in Corollary 1.
Given a compact set, we subsequently define a semi‐distance on F by taking the uniformmetric on the
fixed compact set. The family of all aforementioned semi‐distances makes F sequentially complete. As
in the previous proposition, Corollary 1 gives existence of a fixed point U of the operator T which is
unique in A, the closure of the orbit Oð0Þ of the null function. The last step involves to establish
uniqueness on the whole space of continuous (for the absolute weak topology) functions defined on
‘1þ and satisfying (6).

PROOF: We now denote by K the set of all subsets K of ‘1þ such that

X
t2N

dt sup
x2K

fWðxt ; 0Þg < 1:

Let x be any element in ‘1þ . Observe that 0 � xt � jjxjj1 for all t 2 N . Since W is non‐decreasing we
get 0 � Wðxt ; 0Þ � Wðjjxjj1; 0Þ for all t 2 N , implying that

X
t2N

dtWðxt ; 0Þ < 1:

In particular, for every x 2 ‘1þ , the set {x} belongs to K.
Choose h > 0 such that

X
t2N

dtWðh; 0Þ < 1: ð7Þ

We denote byKðhÞ the family of all non‐empty setsK � ‘1þ such that there exists x 2 K satisfying

sup
z2K

X
t2N

dtWðxt ; 0Þjzt � xt j < 1 and sup
z2K

X
t2N

dtWðh; 0Þjzt � xt j < 1:

Claim 1 The familyKðhÞ is stable under S, contains all non‐empty subsets of ‘1þ that are compact for
the absolute weak topology, and covers ‘1þ .

Proof of Claim 1 Let x be any consumption stream in ‘1þ . The set {x} belongs toKðhÞ. This implies
thatKðhÞ is non‐empty and covers ‘1þ . The stability ofKðhÞ is obvious. Now, letK be a non‐empty
set of ‘1þ that is compact for the absolute weak topology. SinceK is non‐empty, we let x be any element
of K. We have already proved that

X
t2N

dtWðxt ; 0Þ < 1:

Therefore, the sequence q belongs to ‘1þ where qt ¼ dtWðxt ; 0Þ for every t 2 N. Observe that the
sequence r ¼ ðrtÞt2N defined by rt ¼ dtWðh; 0Þ also belongs to ‘1þ. Since K� fxg is compact for
jsjð‘1; ‘1Þ, there exists M > 0 such that

International Journal of Economic Theory 9 (2013) 23–33 © IAET 29

Martins‐da‐Rocha and Vailakis Fixed point for local contractions



sup
z2K

X
t2N

dtWðxt ; 0Þjzt � xt j ¼ sup
z2K

hjz� xj; qi < M

and

sup
z2K

X
t2N

dtWðh; 0Þjzt � xt j ¼ sup
z2K

hjz� xj; qi < M:

This implies that K belongs to KðhÞ. &

Claim 2 The family KðhÞ is a subset of K .

Proof of Claim 2 Let K be a set in KðhÞ and let x be any element of K and M > 0 such
that

sup
z2K

X
t2N

dtWðxt ; 0Þjzt � xt j < M and sup
z2K

X
t2N

dtWðh; 0Þjzt � xt j < M:

We denote by Nh the subset of all t 2 N such that xt � h. Let t 2 Nh. If zt � h then by concavity of
Wð	; 0Þ we have

jWðzt ; 0Þ �Wðxt ; 0Þj � Wðh; 0Þ
h

jzt � xt j:

If zt < h then

jWðzt ; 0Þ �Wðxt ; 0Þj � 2Wðh; 0Þ:

It follows that for every z 2 K we have

X
t2Nh

dt jWðzt ; 0Þ �Wðxt ; 0Þj �
X
t2Nh

dt
Wðh; 0Þ

h
jzt � xt j þ 2Wðh; 0Þ

� �

� M=hþ 2:

Now if t =2 Nh then xt > h > 0 and by concavity of Wð	; 0Þ we have for every z 2 K

jWðzt ; 0Þ �Wðxt ; 0Þj � Wðxt ; 0Þ
xt

jzt � xt j � Wðxt ; 0Þ
h

jzt � xt j:

This implies that for every z 2 KX
t2N

dt jWðzt ; 0Þ �Wðxt ; 0Þj �
X
t2Nh

dt jWðzt ; 0Þ �Wðxt ; 0Þj

þ
X
t =2Nh

dt jWðzt ; 0Þ �Wðxt ; 0Þj

�
X
t2Nh

dt jWðzt ; 0Þ �Wðxt ; 0Þj

þ
X
t =2Nh

dt
Wðxt ; 0Þ

h
jzt � xt j

� ðM=hþ 2Þ þ M=h ¼ 2ðM=hþ 1Þ:

30 International Journal of Economic Theory 9 (2013) 23–33 © IAET
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We have shown that X
t2N

dt sup
z2K

fWðzt ; 0Þg �
X
t2N

dtWðxt ; 0Þ

þ sup
z2K

X
t2N

dt jWðzt ; 0Þ �Wðxt ; 0Þj

�
X
t2N

dtWðxt ; 0Þ þ 2ðM=hþ 1Þ < 1:

This implies that the set K belongs to K. &

We let H be the space of functions U : ‘1þ ! R which are continuous on ‘1þ for the absolute weak
topology and we let F be the space of functions U : ‘1þ ! R which are bounded and continuous for
the product topology on every set K of KðhÞ.
Claim 3. Any function in F is also continuous on ‘1þ for the absolute weak topology, that is, F is a
subset of H.

Proof of Claim 3 Let V : X ! R be function in F. Let ðxaÞa2A be a net in ‘1þ converging to x in ‘1þ for
the absolute weak topology. Recall that we have

X
t2N

dtWðxt ; 0Þ < 1

implying that the sequences q and r defined in the proof of Claim 1 also belong to ‘1þ. The
convergence of ðxaÞa2A to x for the absolute weak topology implies that

lim
a2A

hq; jxa � xji ¼ 0 and lim
a2A

hr; jxa � xji ¼ 0:

Therefore, there exists a0 2 A such that for all a � a0 we have

X
t2N

dtWðxt ; 0Þjxat � xt j � 1 and
X
t2N

dtWðh; 0Þjxat � xt j � 1:

It follows that the set

K � fxg [ fxa : a � a0g
belongs toKðhÞ.16 Since ðxaÞa�a0

converges for the absolute weak topology, it also converges for the
product topology.17 Since the restriction of V toK is continuous for the product topology, we get that

lim
a�a0

VðxaÞ ¼ VðxÞ:

For each K 2 KðhÞ we let dK be the semi‐distance on F defined by

dKðU ;VÞ � sup
x2K

jUðxÞ � VðxÞj:

&

16 The familyKðhÞ was introduced because we do not know if the set fxg [ fxa : a � a0g is compact for the absolute weak
topology.

17 Fix any s 2 N and let q be defined by qt ¼ 0 if t 6¼ s and qs ¼ 1. The sequence q belongs to ‘1þ.
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The space F is sequentially complete for the topology defined by the familyD � ðdKÞK2KðhÞ. For any
function U in F, we let TU be the function defined on ‘1þ by ½TU 
ðxÞ ¼ Wðpx;UðSxÞÞ. We can show
that Tmaps F into F and is a local contraction with respect to (D, r) where rðKÞ ¼ SK. Let A be the
closure of the orbit Oð0Þ of the null function. As in the proof of Proposition 1 (this is because of
Claim 1) the series

X1
t¼0

dt jjT0jjrtðKÞ

is convergent. We can then apply Corollary 1 to get the existence of a fixed point U of the operator T
which is unique in A. Claim 3 implies that U is continuous on ‘1þ for the absolute weak topology.

Denote by CðjsjÞ the set of all non‐empty subset of ‘1þ which are compact for the absolute weak
topology. We already proved (see Claim 2) that CðjsjÞ is a subset ofKðhÞ. IfK belongs to CðjsjÞ then
we can extend the definition of dK to the larger space H. Indeed, every function in H is continuous for
the absolute weak topology and therefore must be bounded on K. Moreover, the mapping T can be
extended to H and satisfies TðHÞ � H.

Now fix a function V : ‘1þ ! R continuous for the absolute weak topology, that is, V 2 H and
satisfying

lim
t!1 dt sup

x2K
jVðStxÞj ¼ 0

for every non‐empty set K 2 CðjsjÞ. To show that V must coincide with U it suffices that

8K 2 CðjsjÞ; lim
t!1 dtdrtðKÞðV ;AÞ ¼ 0:

The argument to prove this result is the same as in Proposition 1. &

4 Conclusion

The paper exploits the applicability of a fixed‐point result for local contractions associated with an
uncountable family of semi‐distances to provide new insights on the existence and uniqueness of
recursive utility functions derived from aggregator functions. Two applications are presented to
illustrate the power of this approach: the first one considers the case of unbounded Blackwell
aggregators while the second one tackles the case of aggregators bounded from below. Existence and
uniqueness of recursive utility functions is established among all functions defined on subsets of ‘1

that are continuous for the product topology (the unbounded form below case) and for the Mackey
topology (the bounded from below case).
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