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I. Optimization in finite dimension

In this first chapter, we are going to dwell on the following type of problems: for a given function
f : Rn → R, does the following problem

min
x∈Ω

f(x)

make sens, i.e is there a solution x∗? If so, can we characterize it through f and its derivatives?

I-A. Necessary conditions

I-A- 1. Fermat’s rule

Functions of one variable Let us first recall the following well-known fact: if a function f : R → R
is differentiable and if it reaches an extremal value (i.e a minimum or a maximum) at some point
x∗ ∈ R, then we have

df

dx
(x∗) = 0.

This condition, sometimes referred to as Fermat’s condition, is a necessary condition, but is clearly
not sufficient, as can be seen by picking f(x) := x3. It is clear that, at x = 0, the derivative of f
vanishes, although 0 is neither a minimum or a maximum of the function.
But this condition is a first order one, that is, we only consider the first term of the Taylor expansion
of f at x∗:

f(x) = f(x∗) +
df

dx
(x∗)(x− x∗) + η1(x− x∗),

where η1(x)
x →

x→0
0.

Let’s giv a quick proof of Fermat’s rule: if f indeed reaches an extremum at x∗, suppose that its
derivative satisfies ∣∣∣∣ dfdx (x∗)

∣∣∣∣ > 0.

For the sake of simplicity, assume x∗ is a point of minimum and that df
dx (x

∗) > 0. The Taylor expansion
then yields, for any x < x∗,

0 ≥ f(x)− f(x∗)

x− x∗

≥ df

dx
(x∗) +

η(x− x∗)

x− x∗

and this last quantity is positive for x− x∗ small enough, since η(x)
x →

x→0
0.

To complement this first order condition, we need a second order condition. In order to derive it,
we need to go a step further in the Taylor expansion, which implies that we are going to need more
regularity on the function f . Henceforth we will assume it to be of class C2. At an extremum point,
say x∗, and since the first order condition is satisfied, we can write the following expansion:

f(x) = f(x∗) +
1

2

d2f

dx2
(x∗)(x− x∗)2 + η2(x− x∗),

where η2(x)
x2 →

x→0
0. Reasoning along the same lines as we did when proving Fermat’s rule, it then

appears that

• If d2f
dx2 (x

∗) > 0, then x∗ is a local minimum,

• If d2f
dx2 (x

∗) < 0, then x∗ is a local maximum.

At this point, two comments should be made: first of all, these conditions rely on a local representation
of the function f as a Taylor series, which is why we only get a characterization of local extrema.
These methods can not help us distinguish between global and local extrema. If we were to do so, we
would need some topological reasoning: for instance, if we can show, through some ad hoc hypothesis

An introduction to optimization and to the Calculus of Variations
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(e.g convexity of the function) that f must assume at least one global minimum, then these conditions
should be enough to characterize them.
The second comment is that we require more and more regularity on the function f , which, at this
level, should not be a major problem. But what happens if, say, f is no longer defined on R but
on some interval I = [a; b]? Then, if f assumes its maximum (or minimum) at x = a or at x = b,
Fermat’s condition could no longer hold. Think for instance of the function f(x) := x2 defined on
[0; 1]. This indicates that Fermat’s rule can only hold on the interior of the domain of definition of
f . In other words, if we want to derive conditions on f at an extremal point x∗, we have to consider
variations of the form

f(x∗ + ϵ)− f(x∗)

ϵ

for small ϵ, so that the domain of definition of f needs to contain an interval of the form (x∗−ϵ;x∗+ϵ).
An useful notion, which can help us circumvent the difficulty, is the notion of concave function. Recall
that a function f : I → R, where I is an interval, say I = [a; b], is said to be concave whenever

∀x, y ∈ I , ∀t ∈ [0; 1] , f
(
(1− t)x+ ty

)
≥ (1− t)f(x) + tf(y).

When f is differentiable, this is equivalent to the requirement that f ′ be non-increasing and, when f
is of class C2, to the requirement that f ′′ be non-positive. In this case, we can quite easily prove that
f reaches its minimum at either x = a or x = b.
To sum up, we have the following theorem:

Theorem I.1. Let f : I → R be a C2-function. If f reaches either a minimum or a maximum at a
point x∗, then, if x∗ lies in the interior of I, we have

df

dx
(x∗) = 0.

Furthermore, if the second derivative d2f
dx2 (x

∗) is positive, x∗ is a local minimum. If it is negative, then
x∗ is a local maximum.

The multi-dimensional case We will usually denote, if x and y are two vectors in Rn, ⟨x, y⟩ :=∑
i=1 xiyi their scalar product. We will also work with the canonical euclidean norm, ||x|| :=

√
⟨x, x⟩.

How can we deal, then, when working with functions of n variables? To simplify matters a bit, we
will work with function f : Rn → R defined on the whole space. If we were to work in domains,
concavity could be of some use,but this would throw us in some technical difficulties we might want
to avoid. First, we are going to give a quick reader’s digest on differentiability for functions of n-
variables. Throughout this section, we will implicitly work with the canonical basis {ei}i=1,...,n, where
ei = (0, . . . , 0, 1

i−th position
, 0, . . . , 0).Pick i ∈ {1, . . . , n}. We say that f admits a partial derivative at a

point x ∈ Rn in the i-th direction whenever the limit ε→ 0 of the quantity

f(x+ εei)− f(x)

ε

exists. When it is the case, we shall denote it by ∂f
∂xi

(x). One should be very careful when dealing
with partial derivatives, for a function can have partial derivatives in every direction without even
being continuous (see Exercise). Still, when f has n-partial derivative, we can define its gradient; it
is the vector

∇f(x) :=


∂f
∂x1

...
∂f
∂xn

 . (I.1)

Hence, we will assume that f is of classe C2 (that is, f has continuous partial derivatives, and each of
these partial derivatives in turn admits continuous partial derivatives). This gradient enables us to give
a Taylor expansion for f : if f has continuous partial derivatives, then, for any h = (h1, . . . , hn) ∈ Rn,
for any x ∈ Rn,

f(x+ h) = f(x) + ⟨∇f(x), h⟩+ η1(h) (I.2)

An introduction to optimization and to the Calculus of Variations
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where η(h)
||h|| →

||h||→0
0. We will not give a rigorous proof of this expansion, but it is heuristically clear: if

you pick any coordinate, say the k-th coordinate, and if you work at a point x = x1, . . . , xn), you can
introduce the function

fk : t ∈ R 7→ f(x1, . . . , xk−1, t, xk+1, . . . , xn)

which is now a function of the real variable. The Taylor expansion then holds for fk, and f ′k(xk) =
∂f
∂xk

(x). Iterating this proceedure for k = 1, . . . , n then the desired expansion should hold.
Let us also mention the chain formula: of x1, . . . , xn are differentiable functions from R to R, you can
define

κ : R → R , t 7→ f(x1(t), . . . , xn(t)).

It is elementary to prove that κ itself is then differentiable, and that

dκ

dt
=

n∑
i=1

dxi
dt

(t)
∂f

∂xi
(x1(t), . . . , xn(t)).

As in the one dimensional case, we have a first-order condition for f to have an extremum at some
point x∗ ∈ Rn:

Theorem I.2. If f reaches an extremum at some point x∗, then ∇f(x∗) = 0.

The proof is elementary: using the same notations as before, the function fk reaches an extremum
at t = x∗k, so that its derivative vanishes.
As was the case before, this first-order condition, the Fermat’s rule, is not enough to fully characterize
extremals, and, if we are to try and give second order conditions, we are going to need a second order
Taylor expansion. The right tool to do that is the hessian matrix of f . We will write ∂2f

∂xi∂xj
for

∂
∂xi

(
∂f
∂xj

)
. The Hessian matrix of f matrice defined by

∇2f(x) :=


∂2f

∂x1∂x1
. . . . . . ∂2f

∂xn∂x1

...
...

∂2f
∂x1∂xn

. . . . . . ∂2f
∂xn∂xn

 .

There is an important theorem, the Schwarz theorem, which is not easy to prove, and wich is asserts
that, provided f is regular (see the previous asumptions), then the hessian matrix of f is symmetric.
In other words, the following commutation rule holds: forall i, j ∈ {1, . . . , n},

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

Then the following expansion holds: forall x ∈ Rn and h ∈ Rn,

f(x+ h) = f(x) + ⟨∇f(x), h⟩+ 1

2

⟨
∇2f(x)h, h

⟩
+ η2(h), (I.3)

where η2(h)
||h||2 →

||h||→0
0. To try and understand why this has a chance of being true, first note that it

holds true in one dimension. Then, for the sake of simplicity, assume n = 2, so that f is a function of
two variables. Choose X = (x, y) ∈ R2 and h = (h1, h2) ∈ R2. Then, we can build a function of the
real variable

g : t 7→ f(X + th) = f(x+ th1, y + th2).

As we have already mentioned, g′(0) = ⟨∇f(X), h⟩. This formula is in fact a particular case of the
following one:

dg

dt
(t) = ⟨∇f(X + th), h⟩ = ∂f

∂x
(X + th)h1 +

∂f

∂y
(X + th)h2,

An introduction to optimization and to the Calculus of Variations
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which follows from the chain formula. Assuming f to be C2, g is also twice differentiable, and its
second derivative is given, once again using the chain formula and Schwarz’s theorem, by

d2g

dt2
(t) =

d

dt

(
∂f

∂x
(X + th)

)
h1 +

d

dt

(
∂f

∂y
(X + th)

)
h2

=
∂2f

∂x2
(X + th)h21 +

∂2f

∂y∂x
(X + th)h1h2 +

∂2f

∂x∂y
(X + th)h1h2 +

∂2f

∂y2
(X + th)h22

=
∂2f

∂x2
(X + th)h21 + 2

∂2f

∂x∂y
(X + th)h1h2 +

∂2f

∂y2
(X + th)h22

=
⟨
∇2f(X + th)h, h

⟩
.

Using the second order Taylor expansion yields the desired result. As is clear, this heuristic is by no
mean specific to the two dimensional case and can easily be used in the general setting.
A quick remark: the function d2f(x) : h 7→

⟨
∇2f(x)h, h

⟩
is a quadratic form, that is, for any h and

any λ ∈ R, d2f(x)(λh) = λ2d2f(h). As is customary with quadratic forms, we can say that d2f(x)
is non-negative if, for any h ∈ Rn, d2f(x)(h) ≥ 0, and the definitions for positive, non-positive... is
straightforward.
Just as was the case in one dimension, it is possible to gain useful informations about extrema x∗ by
studying the hessian matrix. To be more precise, it is possible to show that, if ∇f(x∗) = 0,

• If d2f(x∗) is positive, then x∗ is a local minimum,

• if d2f(x∗) is negative, then x∗ is a local maximum,

• if x∗ is a local maximum, d2f(x∗) is non positive,

• if x∗ is a local minimum, d2f(x∗) is non negative.

To see that, you can use the spectral basis and write the hessian in a basis made of eigenelements.
Thus, in two dimensions, the classification of possible extrema can be read on the determinant and
the trace of the hessian function.
On the other hand, d2f can be neither non-negative nor non-positive: consider for instance

f : (x, y) 7→ x2 − y2.

Then ∇f(0, 0) = (0, 0), and ∇2f(0, 0) =

(
2 0
0 −2

)
, so that, when considering h = (0, 1), we get

d2f(0, 0)(h) = −2 < 0 and, when h = (1, 0), we get d2f(0, 0)(h) = 2 > 0. We have what we call a
saddle point: in the first direction, (0, 0) is indeed a minimum while in the second direction, (0, 0) is
a maximum. The following pictures show the different configurations that we have examined. mettre
les schémas
Some examples will be provided in the exercise sheet.

I-A- 2. The Euler-Lagrange multiplier rule

Let us now consider a different type of problem, that is, the problem of constrained optimization:
say, for instance, you want to maximize the profit you rip from exploiting a harvest, according to the
amount of workforce you use. For a workforce x, the output is f(x), and it will cost you some finite
amount of money, say h(x) to use that workforce. You may not want to pay to much, so it is natural
to impose an inequality condition, say, h(x) ≤ 50. The problem you now want to solve is

min
x ,h(x)≤50

f(x).

That is an inequality constraint. Consider another situation, where the constraint is an euqality
constraint: for instance you may wish, for a reason or another, to solve the following variational
problem:

min
x ,h(x)=0

f(x).

An introduction to optimization and to the Calculus of Variations
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Once again, there may be a problem in defining this problem. A priori, it is only possible to consider
the infimum problem

inf
x ,h(x)=0

f(x),

but we may for the time being suppose that we have shown that the infimum is in fact a minimum.
A case that is often encountered is the case when, for any α ∈ R, the level set hα := {x , h(x) = α}
is compact, so that, whenever f is continuous, a minimum of f over hα is indeed reached.
The question is then: how can we characterize such extremal points? The main difference with the
unconstrained optimization problem is that, while it was previously possible to pick a minimum
x∗ and to then consider variations of the form x∗+ th to derive first order conditions, this is no longer
the case. Take, for instance, h : Rn ∋ x 7→ ||x||2 :=

∑n
i=1 x

2
i . Then, for any α > 0, the level set hα is

the sphere S(0;
√
α), and, whenver x∗ lies on this sphere, x∗ + th /∈ S(0;

√
α), safe if h = 0.

A way to circonvene this difficulty is to use the famous Lagrange multiplier rule. The idea is to
reduce the constrained optimization problem to an unconstrained problem. We will obviously require
the function f to be of class C1. but we will also assume that the function h has the same regularity.
We are going to try and understand the following theorem:

Theorem I.3. Suppose x∗ ∈ Rn satisfies

f(x∗) = min
x ,h(x)=0

f(x) , h(x∗) = 0.

Suppose further
∇h(x∗) ̸= 0.

Then there exists λ ∈ R, wich is called the Lagrange multiplier such that

∇f(x∗) + λh(x∗) = 0.

In this theorem, we have thus added a new unknown, λ, but, as we we shall see in examples, this
may simplify our matters. Let’s first give a geometric interpretation of this theorem. We follow F.
Clarke’s presentation in

ClarkeFunctional
[2], chapter 9.

A geometric approach This approach relies on the understanding of the geometry of the level
sets hα. Assuming that h : Rn → R is C1, yields the fact that, for almost any α ∈ R, hα is a
submanifold of Rn, via Sard’s theorem (which is rather complicated to prove). For those that are not
familiar with the vocabulary of differential geometry, we shall only work in R3. Saying that hα is a
submanifold means, in a loose way, that, for each x = (x1, x2, x3) ∈ hα, there exists a neighbourhood
B(x, δ) of x such that B(x, δ) ∩ hα is homeomorphic to some open subset of R2, along with a further
compatibility condition: if we choose such a neighbourhood and such a homeomorphism φ, and if we
consider another y = (y1, y2, y3) ∈ hα, a neighbourhood of y, say B(y, δ′), and a homeomorphism φ′

from B(y, δ′) ∩ R2, such that B(x, δ) ∩ B(y, δ′) ̸= ∅, then we require φ′ ◦ φ−1 to be a C∞ function
between open sets of R2.
Let’s now work with a fixed α ∈ R, chosen such that hα is a submanifold of R3. It is possible to define
a tangent space to the hypersurface hα, just as it was possible to define a tangent line to a curve ine
the one-dimensional case. To get an intuition of what this tangent space should be, we recall that, in
the one dimensional case, with a function g : R → R, the tangent to the curve of g at a point x1 is
the straight line defined by

{(x, y) , y = g(x1) + (x− x1)g
′(x1)}.

In other words, the directing coefficient of this straight line is g′(x1), that is, the velocity of a particle
traveling along the curve when it passes through x1. The definition of the tangent plane is strongly
analogous. faire schéma.
Consider, for any x1 ∈ hα, the set

Γ(x1) := {γ ∈ C1([−1; 1];R3) , γ(0) = x1 ,∀t ∈ [−1; 1] , γ(t) ∈ hα.}

Then the tangent plane to hα at x1 is defined as

Tx1(hα) := {dγ
dt t=0

, γ ∈ Γ(x1).}

An introduction to optimization and to the Calculus of Variations
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It can be shown that this tangent space is a 2 dimensional affine subspace of R3 (and that it is,
in general, an affine hyperplane of Rn). This enables us to define the normal subspace, Tx1(hα)

⊥,
consisting of vectors orthogonal to all vectors of Tx1(hα).From the very definition of the tangent
subspace, it seems natural that the normal space be equal to R∇h(x1) up to a translation. In other
words, if a surface is given by an equation of the form h(x) = 0, then, if x0 satisfies h(x0) = 0 and
∇h(x0) ̸= 0, a parametric equation for the tangent plane at x0 is

∇h(x0)(x− x0) = 0.

Let’s come back to the constrained optimization problem. Let’s choose a solution, that will be denoted
by x∗, and consider the subsets

Aε := {x , f(x) = f(x∗)− ε}.

In some sense, Aϵ converges, as ε→ 0, to {x , f(x) = f(x∗)}, which intersects hα at x∗. SInce f(x∗) is
a minimum of f on hα, x∗ is in a way the first contact point between hα and A0. It is then necessary
that the normals of these two surfaces at x∗ by parallel (schéma, encore une fois.), meaning that
there exists λ ∈ R such that

∇f(x∗) = −λ∇h(x∗).

This is exactly the multiplier rule. A second heuristic is provided in the exercises.

A proof A comment on the hypothesis ∇h(x∗) ̸= 0: in the previous interpretation of the theorem,
it was assumed that one could define the normal at x∗. If you work in a two dimensional settings, a
sufficient condition is that there exists a curve γ passing through x∗ such that h ◦ γ ≡ 0. Provided
∇h(x∗) ̸= 0, the implicit function theorem ensures that such a curve exists. In n dimensions, the
statement is slightly more complicated, but ensures the same result. The implicit function theorem is
recalled at the end of this section.
Pick once again a solution x∗ to the constrained optimization problem. Chose any curve γ : [−1; 1] →
R3 such that, for any t ∈ [−1; 1], γ(t) ∈ hα. Define

φ(t) := f
(
γ(t)

)
.

The function φ reaches a minimum at t = 0, so that its first derivative must vanish. Using the chain
rule yields

dφ

dt t=0
=

⟨
dγ

dt t=0
,∇f(x∗)

⟩
.

This quantity must be 0 for any γ, so that ∇f(x∗) is in Tx∗(hα), which is exactly R∇h(x∗).

The implicit function theorem We recall, without a proof, the implicit function theorem:

Theorem I.4. [Implicit function theorem] Let Ω ⊂ Rn×R be a neighbourhood of a point (x0, y0).
Let g be a function of class C1 from Rn × R to R such that

∂g

∂y
(x0, y0) ̸= 0.

Then there exists ε > 0 and a differentiable function φ : B(x0; ε) → R such that

• φ(x0) = y0,

• g(x, φ(x)) ≡ 0 in (x0 − ε;x0 + ε).

I-B. An application to the polygonal isoperimetric problem

In this whole paragraph, whenever ℓ is an integer, an ℓ-gon will be a shorthand for "a closed polygon
woth at most ℓ sides". This section draws heavily on

BlasjoIsoperimetric
[1].

We now show how the method of Lagrange multipliers yields a simple proof of the polygonal isoperi-
metric inequality:

An introduction to optimization and to the Calculus of Variations
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Theorem I.5. Let ℓ be an integer and L > 0.
Among all ℓ-gons with fixed perimeter L, the one with maximal area is the regular ℓ-gon of perimeter
L.

Let us first fix some notations: a ℓ-gon is a collection of n points in the plane, and will be denoted
by

{(x1, y1), . . . , (xℓ, yℓ)} .

We will asume that these points are arranged in counterclockwise order.
Its perimeter is, naturally,

P :=
ℓ−1∑
k=1

√
(xk+1 − xk)2 + (yk+1 − yk)2.

For notational convenience, we define

pk+1 :=
√
(xk+1 − xk)2 + (yk+1 − yk)2.

The formula for its area, A, is a tad more tricky, and is in fact given by the following formula:

A =
1

2

ℓ−1∑
k=1

(xkyk+1 − ykxk+1).

To see that, we can either use Green’s theorem, which will be mentioned in the following chapter,
or work first on triangles schéma, befor tackling the more general case, dividing up our polygon in
triangles.
The problem under consideration is now

max
P=L

A.

The difference with the general setting of the previous paragraphs is that we are now dealing with a
maximum. Since a maximum for A is a minimum for −A, all the previous results still hold. Note that
we are now working with 2n variables. The following proof is due to Weierstraß, in his famous 1879
lectures.

Existence of an optimal polygon For any ℓ-gon X = {x1, y1), . . . , (xℓ, yℓ)} with perimeter L, X
has a bounded diameter1:

diam(X) ≤ ℓL.

Up to a translation, we can assume that (x1, y1) = (0, 0), and we can then assume we are working
with ℓ-gons that are subsets of [−ℓL; ℓL]× [−ℓL; ℓL].
Consider now a maximizing sequence {Xα}α∈N where, for each α ∈ N, Xα = {(xα1 , yα1 ), . . . , (xαℓ , yαℓ )},
that is, such that

A(Xα) −→
α→+∞

sup
X ℓ−gon

A(X).

Up to a subsequence, and thanks to the Bolzano-Weierstraßtheorem, there existX∗ := {(x∗1, y∗1), . . . , (x∗ℓ , y∗ℓ )} ∈(
[−ℓL; ℓL]× [−ℓL; ℓL]

)ℓ
such that

∀i ∈ {1, . . . , ℓ} , xαi →
α→+∞

x∗i , y
α
i →

α→+∞
y∗i .

Since P and A are continuous, we conclude that X∗ is an ℓ-gon with perimeter L and with a maximal
area. We will refer to these polygons as extremal polygons.

1Recall that the diameter of a subset Ω, its diameter is

diam(Ω) := sup
x,y∈Ω

||x− y||.
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I. OPTIMIZATION IN FINITE DIMENSION page 8

Analysis of the optimal polygon Now, pick any extremal polygon X∗ = {(x∗1, y∗1), . . . , (x∗ℓ , y∗ℓ )}.
We know there exists a Lagrange multiplier λ such that, at an extremal pointX∗ := {(x∗1, y∗1), . . . , (x∗ℓ , y∗ℓ )},
we have préciser les changements de point de vue

λ∇P(X∗) +∇A(x∗) = 0.

But, for each k ∈ {1, . . . , ℓ}, we have

∂P
∂xk

=
xk − xk+1

pk
+
xk − xk−1

pk−1
,

∂P
∂yk

=
yk − yk+1

pk
+
yk − yk−1

pk−1
,

∂A
∂xk

=
1

2
(yk+1 − yk−1),

∂A
∂yk

=
1

2
(−xk+1 + xk−1).

The Lagrange multiplier rule then boils down to solving the following system of equations:

∀k ∈ {1, . . . , ℓ} ,

 yk+1 − yk + 2λ
(

xk−xk+1

pk
+ xk−xk−1

pk−1

)
= 0,

xk+1 − xk−1 + 2λ
(

−yk+yk+1

pk
− yk−yk−1

pk−1

)
= 0.

In a mind-blowing trick, set
zk+1 := (xk+1 − xk) + i(yk+1 − yk).

Thus, pk+1 =
√
zk+1zk+1. Solving the previous system of equations boils down to solving

zk+1 + zk + 2λi

(
zk
pk

− zk+1

pk+1

)
= 0.

This yields

zk+1

(
1− 2λi

pk+1

)
= −zk

(
1 +

2λi

pk

)
. (I.4) ML

Taking the modulus of each term leads to

pk+1 + 4λ2 = pk + 4λ2,

so that the polygon has sides of the same length, that is, L
ℓ . This is not enough, but equation

ML
I.4 then

becomes
zk+1

zk
= −

L
ℓ + 2λi

L
ℓ + 2λi

=: eiθ.

An immediate recurrence proves that zk = l
ℓe

ikθ (up to a translation and a rotation, z0 = L
ℓ ). This

concludes the proof of the polygonal isoperimetric inequality.

I-C. Exercises

These exercises were drawn from the textbooks listed at the end of these notes, and from Y. Privat’s
webpage.

Exercise I.1. [About partial derivatives]

1. In all of the following example, compute the partial derivatives of f with respect to the two
variables

(a) f(x, y) := x cos(x) sin(y),

(b) f(x, y) := exy
2

,

(c) f(x, y) := (x2 + y2) ln(x2 + y2).

An introduction to optimization and to the Calculus of Variations
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Exercise I.2. [Unconstrained optimization]

1. In this first question, we are going to work with the function defined by

f(x, y) := x4 + y4 − 2(x− y)2.

(a) Prove there exist (a, b) ∈ R+ × R such that

f(x, y) ≥ a(x2 + y2) + b.

(b) Prove the problem
inf
R2

f

has a solution.
(c) What are the possible solutions for the problem?
(d) Analyzing the hessian matrix, classify these points.

2. Consider the function of 4 variable

f(x, y, w, z) := (1 + z)3(x2 + y2 + w2) + z2.

(a) What are the possible extrema for f?
(b) Does f have a global minimum?

3. Compute and classify the critical points for the following functions:

(a) f(x, y) := x2 + xy + y2 + y

(b) f(x, y) = xy(1− x− y).

Exercise I.3. [Minima of functions and stability]
Consider the euclidean space Rn, andowed with its canonical euclidean norm. For a C2 function
F : Rn → R and (x0, v0) ∈ Rn × Rn, we consider the following Cauchy problem:

ẋ(t) = −∇F
(
x(t)

)
, x(t = 0) = x0 , ẋ(t = 0) = v0.

We assume that there exists a unique solution for all times t ∈ R. For those of you who know how to
use the Cauchy-Lipschitz theorem, result follows from the first question.

1. Define, for (x, v) ∈ Rn × Rn,

E(x, v) :=
1

2
||v||2 + F (x)

. Define g(t) := E
(
x(t), ẋ(t)

)
. Prove that g is constant.

2. Assume F reaches a strict global minimum at some point x = a. Prove that a is asymptotically
stable, that is: for all α > 0, there exists ε > 0 such that, for any (x0, v0) ∈ B(a, ε) × B(0; ε),
the solution x associated with these initial conditions satisfies

∀t ∈ R , x(t) ∈ B(a;α).

Exercise I.4. [The maximum principle] In this exercise, we are interested in the maximum prin-
ciple, which is quite useful for studying partial differential equations. We consider the following dif-
ferential operator

L : u 7→ ∆u+

n∑
i=1

bi
∂u

∂xi
.

Recall that ∆u :=
∑n

i=1
∂2u
∂x2

i
is the laplacian of u, when u : Ω ⊂ Rn → R is a C2-function. We now

consider a bounded subset Ω of Rn (think of the ball), and consider a function u of class C2 in Ω such
that

∀x ∈ Ω , Lu(x) ≥ 0.

We want to prove that
max
Ω
u = max

∂Ω
u.

An introduction to optimization and to the Calculus of Variations
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1. First consider the case when Lu > 0. What conditions can you derive if u reaches its maximum
at some interior point x∗?

2. Back to the general case! Consider, for ε > 0, the function

vε(x) := u(x) + εeλx1 .

Prove that, for a suitable choice of λ, vε satisfies the hypothesis of the first question.

3. Prove the maximum principle.

4. Can you prove that, for any f ∈ C0(∂Ω), there exists at most one solution u ∈ C2(Ω) ∩ C0(Ω)
such that

∆u = 0 in Ω , u ≡ f over ∂Ω?

Exercise I.5. [About tangent planes] Compute the tangent plane for a surface Σ defined by
f(x, y, z) = 0 at the considered point in the following cases:

1. f(x, y, z) := x3 − x2y2 + z2 at (2,−3/2, 1). Can we give a parametric representation of the
tangent plane at (0, 0, 0)?

2. f(x, y, z) = x3z + x2y2 + sin(yz) + 3 = 0 at (−1, 0, 3).

Exercise I.6. [Using Lagrange multipliers] Can you solve the following optimization problem
using the Lagrange multiplier rule?

1. Find the extrema (i.e minima and minima) of f(x, y, z) := x+ y + 2z subject to 0 = x2 + y2 +
z2 − 3(= h(x, y, z)).

2. Find the extrema (i.e minima and minima) of f(x, y, z) := x2 − y2 subject to x2 + 2y2 + 3z2 =
1 = (h(x, y, z)).

3. Find the extrema (i.e minima and minima) of f(x, y, z) := z2 subject to x2 + y2 − z = 0(=
h(x, y, z)).

Exercise I.7. [Some classical inequalities via Lagrange multipliers]

1. Arithmetic and geometric means

(a) Our goal is to prove that, for all {ai}i=1,...,n ∈ Rn
+,(

n∏
ℓ=1

aℓ

) 1
n

≤ 1

n

n∑
ℓ=1

aℓ.

Moreover, one has equality if and only if all the ai are equal. Prove that it suffices to prove
this inequality and the equality case when

∑n
ℓ=1 aℓ = N .

(b) Consider the sphere S(0;
√
n). Define

f(x1, . . . , xn) :=
n∏

i=1

xi.

Show that it suffices to study the problem

max
S(0;

√
n)
f.

(c) Show that max
S(0;

√
n)
f = 1 and characterize the points where this maximum is reached.

2. Hölder’s inequality

An introduction to optimization and to the Calculus of Variations



I. OPTIMIZATION IN FINITE DIMENSION page 11

(a) Our goal is to prove that, for any (p, q) ∈ (1;∞)2 such that 1
p + 1

q = 1, for any two n-uples
{ai}i=1,...,n ∈ Rn

+ and {bk}k=1,...,n ∈ Rn
+, the following inequality holds:

n∑
i=1

aibi ≤

(
n∑

i=1

api

) 1
p

·

(
n∑

i=1

bqi

) 1
q

.

Prove that it suffices to show the inequality when
∑
api =

∑
aqk = 1.

(b) Introduce the function g : (x1, . . . , xn) 7→
∑n

i=1 x
2q
i and f : (x1, . . . , xn) 7→

∑n
i=1 aix

2
i .

Prove that it suffices to show
max

x ,g(x)=1
f(x) = 1

and to characterize the points where there is equality.
(c) Use the Lagrange multiplier rule to conclude.

Exercise I.8. [Birkhoff’s theorem] We work in R2. Consider M a bounded, smooth and convex
subset of R2. A billiard is a polygon having its vertices on the boundary ∂M and possessing the property
that two sides going from each vertex form equal angles with the boundary at this vertex. Prove that,
for any n ≥ 3, there exists a n-billiard in M .(Hint: consider a n-gon with maximal perimeter among
the polygons whose vertices lie on the boundary).

I-D. Hints and solutions

Solution I.1. 1. Direct computation yields:

(a) ∂f
∂x = cos(x) sin(y)− x sin(x) sin(y), ∂f

∂y = x cos(x) cos(y).

(b) ∂f
∂x = y2exy

2

, ∂f
∂y = 2xyexy

2

.

(c) ∂f
∂x = 2x+ 2x ln(x2 + y2), ∂f

∂y = 2y ln(x2 + y2) + 2y.

2. We are going to use polar coordinates: write x = r cos(θ) and y = r sin(θ). Then,

lim
(x,y)→(0,0)

f(x, y) = lim
r→0

f(r cos(θ), r sin(θ)).

This last limit is equal to 0, so that f is continuous at (0, 0). It is then easy to show that,
since f(x, 0) = x, ∂f

∂x (0, 0) = 1. The same line of reasoning yields ∂f
∂y (0, 0) = 0, since (0, y) ≡

0. Furthermore, it is easily seen that ∂f
∂y (x, y) is not continuous at (0, 0). Now, if f were

differentiable at (0, 0) that is, if the first order Taylor expansion held, we would have, for x and
y small enough

f(x, y) = x+ η1(
√
x2 + y2),

where η1(r)
r →

r→0
0. But

g(x, y) :=
f(x, y)− x√
x2 + y2

= −2
xy2

(x2 + y2)
3
2

.

The function g does not have a limit as (x, y) → (0, 0), as can be seen by taking, for instance,
x = y.

Solution I.2. 1. Since {h = 0} is compact, extremum points exist. We have ∇f(x, y, z) = (1, 1, 2)
and ∇h(x, y, z) = (2x, 2y, 2z). If (x∗, y∗, z∗) is an extremum, the Lagrange multiplier rule yields
the existence of some real λ such that

2λx∗ = 1 , 2λy∗ = 1, 2λz∗ = 2.

We conclude that λ ̸= 0 and that all critical points have the form ( 1
2λ ,

1
2λ ,

1
λ ), where x ̸= 0.

Furthermore, the condition
x2 + y2 + z2 = 3

must be satisfied. This yields

λ = ± 1√
2
.

It then remains to compute the value of f at these points.
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2. Since {h = 1} is compact, extremum points exist. Once again, ∇f(x, y, z) = (2x,−2y, 0) and
∇h(x, y, z) = (2x, 4y, 6z). The Lagrange multiplier rule implies there exists some real λ such
that

2x∗ = 2λx∗ ,−2y∗ = 4λy∗ and 6λz∗ = 0.

Two cases are to be considered separately:

i) If λ = 0, then the Lagrange mlutiplier rules yields

∇f(x∗, y∗, z∗) = 0

so that x∗ = 0, y∗ = 0 and z∗ must only satisfy the constraint equation

3(z∗)2 = 1.

The only critical points are then (0, 0, ±1√
3
).

ii) If λ ̸= 0 then z∗ = 0. Then, we need to distinguish two sub-cases: if x = 0, then the
constraint h(x∗, y∗, z∗) = 1 yields y∗ = ± 1√

2
. If x ̸= 0, then y∗ = 0, and x∗ = ±1.

We have found all potential critical points.

3. Since the level set {h = 0} is by no mean compact, the existence of extremum points is not
guaranteed. First note that f(x, y, z) ≥ 0. Since h(0, 0, 0) = 0, 0 is a minimum of f on {h = 0}
(and it is in fact a global minimum).
Applying the Lagrange multiplier rule leads to the following set of equation, where λ is the
Lagrange multiplier:

2λx = 0 , 2λy = 0 , 2z = −λ.

If λ ̸= 0, we once again get (0, 0, 0), which has already been ruled as a minimum. If λ = 0,
the same conclusion holds. In this case, the Lagrange mutiplier rule has only provided us with a
minimum.

Solution I.3.

Solution I.4.

Solution I.5.

An introduction to optimization and to the Calculus of Variations
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II. A few comments on the calculus of variations

Now that we have glimpsed at methods enabling us to analyse (and sometimes solve) finite dimensional
optimization problem, the next logical step is the infinite dimensional case, which happens to have
been named the calculuse of variations. The name was given by Euler in response to a letter by the
(then 19 years old) Joseph-Louis Lagrange.

II-A. The principle of least action : the calculus of variations and mechanics

The calculus of variations is, in some sense, the right theoretical setting for classical mechanics.
Namely, the underlying principle is that, whenever we are to analyse a motion (e.g, a moving sphere,
a falling sphere...) that can be described by some reasonable differential equation, some functional is
minimized. This may not seem very clear. Tu put it in other words, nature is lazy, and this laziness
is with respect to some quantity involved in the movement. This is best summed up in a quote by
Maupertuis, who presumably "borrowed" it from Euler: in 1740, he wrote

Nature, in the production of its effects, acts always by the simplest means. The path [followed by a
particle] is that along which the quantity of action is the least.

This is a sharp contrast with Newtonian mechanics. In Newtonian mechanics, the motion is prescribed
by a differential equation, on the form

mγ =
∑

forces

where γ is the acceleration. This needs to be supplemented with an initial position x0, and an initial
speed v0. Describing the motion with a differential equation amounts to asking the particle, at each
and every moment, in which direction its next step is going to be.
The principle of least action is another way of looking at it. Instead of prescribing two initial data,
specify an initial and a final position, say x0 and x1. Suppose also that the sum of forces is of the
form −∇F (x(t)), where F is a C1 function from Rn to R. Consider a path between x0 and x1. By
"path", we mean a C1 function from [0; 1] to Rn such that y(0) = x0 and y(1) = x1. The kinetic
energy along this path is (assuming the particle has mass m = 1)

Ec(y) =
1

2

∫ 1

0

||ẏ(t)||2dt.

In a similar fashion, the potential energy along this path is given by

Ep(y) = −
∫ 1

0

V
(
y(t)

)
dt.

For notational convenience, introduce the set Γ(x0, x1) of all pathes between x0 and x1.
Maupertuis’s principle of least action then states that, when going from x0 to x1, the particle will
naturally pick a path y∗ such that

Ec(y
∗) + Ep(y

∗) = min
y∈Γ(x0,x1)

{
Ec(y) + Ep(y)

}
. (II.1)

Faire un schéma avec plusieurs cchemins reliant deux points.
Let’s first check that the previous equation leads to the differential equation given by Newton’s laws.
Adapting our finite dimensional point of view, we pick a minimum y∗ and try and understand what
happens when it is slightly perturbed. We would then like to consider a new path of the form
y∗ + t(δy), where δy is a function from [0; 1]to R.But y∗ + ε(δy) needs not lie in Γ(x0, x1), unless
(δy)(0) = (δy)(1) = 0.
Let’s compute the total energy associated with this new path:

Ec

(
y∗ + ε(δy)

)
+ Ep

(
y∗ + ε(δy)

)
=

1

2

∫ 1

0

∣∣∣∣∣∣ẏ∗ + ε ˙(δy)
∣∣∣∣∣∣2 − ∫ 1

0

V
(
y∗ + ε(δy)

)
=

1

2

∫ 1

0

∣∣∣∣ẏ∗∣∣∣∣2 + ε

∫ 1

0

⟨
ẏ∗, δ̇y

⟩
+
ε2

2

∫ 1

0

∣∣∣∣∣∣ ˙(δy)
∣∣∣∣∣∣2

−
(∫ 1

0

V
(
y∗
)
+ ε

∫ 1

0

⟨
∇V

(
y∗
)
, (δy)

⟩
+ o

ε→0
(ε)

)
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If you now set
f(ε) := Ec

(
y∗ + ε(δy)

)
+ Ep

(
y∗ + ε(δy)

)
then f is differentiable at ε = 0, and its derivative is given by

df

dε

∣∣∣∣
ε=0

=

∫ 1

0

{⟨
ẏ∗, ˙(δy)

⟩
− ⟨∇V (y∗), (δy)⟩

}
.

Since f must reach a minimum at ε = 0, this derivative must be equal to 0. We are not fully satisfied
with this equation, for it makes use of both δy and ˙(δy). But if you integrate by parts the first half
of the integral quantity, using the fact that (δy)(0) = (δy)(1) = 0, you get∫ 1

0

⟨
ẏ∗, ˙(δy)

⟩
= −

∫ 1

0

⟨
ÿ∗, δy

⟩
.

In other words, the condition for y∗ to be a minimum, in this case, is that, for any (δy) : [0; 1] → Rn

such that (δy)(0) = (δy)(1) = 0 ∫ 1

0

⟨
ÿ∗ +∇V (y∗) , (δy)

⟩
= 0.

We will see that this is enough to ensure that y∗ in fact satisfies the Newton equation.
Why bother doing this? First of, it is a beautiful principle. Second, it is in a way more general: you
need only specify the action along a path to derive the equations of the motion. Third, this principle
and the machinery asociated with it outgrow the field of classical mechanics.

II-B. More general unconstrained minimization problem

II-B- 1. The brachistochrone problem

Although the isoperimetric problem had been around for quite some in the seventeenth century,
the first problem that sparked a strong interest in the mathematical community was that of the
brachistochrone (actually, the problem of building a solid of least resistance while moving in a fluid
had been considered by Newton). This problem, also called the problem of the swifest descent, was
put forth, as a mathematical challenge, by Johannes Bernoulli. The situation is as follows: consider
an initial position x0 = (x10, x

2
0) in the plane and a final position x1 = (x11, x

2
1) ∈ R2. Suppose x21 > x10.

Now, draw a curve joining the two points, that is, γ ∈ Γ(x0, x1), and think of it as a slide. If a
particle, influenced only by gravity, moves along this slide, it will take it a finite amount of time to
travel from x0 to x1. Which path, then, yields the least amount of time? It had been known since
Galileo that the straight line was not a solution, and that a portion of a circle was better than any
polygonal curve. However, it turns out it is not a circle. For further details regarding the history of
the brachistochrone, see Goldstine’s treatise.
Let’s now make a more precise statement of what we mean: we drop a bead on a wire. The first
thing to notice is a geometric property: if we work in the (x, y) plan, then the wire is single valued
in x, and can thus be represented by a function y(x)encore une fois, faire un schéma such that
y(x0) = y0 and y(x1) = y1. To compute the amount of time it would take for this bead to move along
the curve, we use time = velocity×distance. The velocity at height y can be computed explicitly, for
the bead moves under the influence of its own weight only, and is droped without any initial speed.
The conservation of energy (the sum of kinetic and potential energy is constant during the motion)
yields

mgy0 =
1

2
mv2 +mgy,

where v = dy
dx is the velocity, leading to

v =
√

2g(y0 − y).

Up to a translation, take y0 = 0. Between the position y(x) and y(x + dx), the beam moves along a
distance of dy

dxdx, at the first order. Integrating this provides the following definition for the time of
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descent:

T [y] :=

∫ x1

x0

√
1 +

(
dy
dx

)2
√
2gy(x)

dx,

and the brachistochrone problem reduces to the following variational problem:

min
y∈C1([x0;x1];R),y(x0)=0 ,y(x1)=y1

∫ x1

x0

√
1 +

(
dy
dx

)2
√
2gy(x)

dx. (II.2)

II-B- 2. The problem of geodesics

To give one last example of where the calculus of variations may arise in different scientific branches,
we turn to the problem of non-euclidean geometry. We will obviously not dwelve on the theory in its
full generality, since this is not the purpose of these lectures.
It is well-known (but we will see how to prove it)that, in the plane, the shortest path between two
points is the straight line. To do so, we are going to work in the plane in one of the exercises.
The second easiest case to consider is the case of the sphere. First, we would have to define the notion
of length of a curve on a sphere, that will be the object of one of the exercises. It seems natural to
assume that the length of a curve γ : [−1; 1] → R drawn on a sphere is an integral quantity involving γ
and γ̇. If this length is denoted by L[γ], and if, for any two points x0 and x1 on the sphere, ΓS(x0, x1)
is the set of all pathes joining x0 and x1 on the sphere, the problem of finding geodesics boils down
to solving a following variational problem of the form

min
γ∈ΓS(x0,x1)

L[γ]. (II.3)

We will provide an exact form for the length functional once we have tackled the isoperimetric in-
equality.

II-C. The isoperimetric problem: a constrained problem

As was mentioned in the previous paragraph, which dealt with time depending motion, we can try
and use the principle of least action in a time independent setting. Let’s make it a bit more precise:
say, for instance, you want to study one of the most famous variational problems in the history of
mathematics, the isoperimetric problem. We have already encountered it in the previous chapter,
in a polygonal setting. The classical problem, however, requires only that the shape be a C0 curve,
and we can trace its origins back to Virgil’s Eneid : Dido, the founder of Carthage, upon her arrival
on the coast of Tunisia, requested a parcel of land from the local king. He, trying to fool her, gave
her an ox-hide and promised he would give her any piece of land she could possibly encompass with
it. The astute Dido sliced the ox-hide in long, thin strips, and used the strips to encircle a gigantic
area, around the coast (faire un schéma). This coastal constraint is important.

The general isoperimetric problem is slightly different: draw any curve in the plane, and suppose
it is closed. Now fix a perimeter L. The question is then

Among the closed curves of length L, which one yields the largest area? (II.4)

One does not immediately see the connection with the previous section, but, if you can parameterize
the closed curve C by a function y : [−1; 1] → R2, it is reasonable to assume that the perimeter P of
the curve will be a function of the form

P =

∫ 1

−1

L1(y),

and, if its area can be written in the form

A =

∫ 1

−1

L2(y),
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then we are to solve the following constrained optimization problem

max
closed curves y ,P(y)=L

∫ 1

−1

L2(y). (II.5)

In other words, while [0; 1] was previously the space of the time variable, it now becomes the space
through which we parameterize geometrical objects.
Let’s try to find a reasonable definition for the length of a curve that is parameterized by a function
y ∈ C1

(
[−1; 1];R), and that it is closed (that is, y(−1) = y(1)). Our definition of length will a priori

depend on y. Once again, the key feature is Taylor expansion. If you fix some t ∈ [−1; 1], then, at
order 1, the distance between y(t) and y(t+dt) is ||ẏ(t)|| dt. Integrating along the curve kind of makes
us want to propose, as a definition of length

L[γ] :=
∫ 1

−1

||ẏ(t)|| dt.

This is what we are going to use. What sense can we make, then, of the area enclosed by the curve?
Recall the way we had defined the area of a closed ℓ-gon in the first chapter. Denote, by y1 and y2,
the two coordinates of the vector y(t). Passing to the limit enables us to definie the area enclosed
by the curve as

A[y] :=
1

2

∫ 1

−1

(
y1ẏ2 − ẏ1y2

)
. (II.6)

The isoperimetric problem then becomes reminiscent of the finite dimensional case of constrained
optimization. Does the Lagrange multiplier rule apply here? That we shall see.
As for the Dido problem, the coastal constraint is accounted for by fixing the two ends (once again,
a simple geometric argument shows that y is a single value function of x), so that the problem takes
the following form

min
y∈C1([x0;x1];R) ,y(x0)=y(x1)=0,

∫ x1
x0

√
1+( dy

dx )
2
dx=L,y≥0

∫ x1

x0

y(x)dx.

This issue of existence is tricky, and, as Blasjo reminds us in
BlasjoIsoperimetric
[1], the mathematician Perron made fun

of Steiner, who, in his proof of the isoperimetric inequality,had tacitly assumed the existence of an
optimal figure. Steiner had argued that, if a closed curve was not a circle, then there was a way to
modify so as to keep his perimeter fixed and to increase its area, in such a way that any solution of
the isoperimetric problem was necessarily a circle. To Perron, this amounted to saying that, since,
for any integer that was not 1, there was a way to modify it so as to find a larger integer (namely,
squaring it), then we could conclude that 1 was the largest integer. A last remark, that will not
be further explored throughout the rest of this course: seeing, as was done multiple times before,
a smooth curves as being made up of an infinite number of straight lines, would it be possible to
infer, from the polygonal isoperimetric inequality, the general isoperimetric inequality? Furthermore,
a circle is the limiting case of regular ℓ-gons, as ℓ → +∞... This problem is hard, and would require
deep topological notions, if we were to put precise definitions.

II-C- 1. Back to the geodesics problem

In the case of geodesics, the definition of the length of a curve is similar, safe that we now consider
curves y : [−1; 1] → R3, and that the constraint is now: for any t ∈ [−1; 1], y(t) ∈ S. The problem of
geodesics is then

min
y∈ΓS(x0,x1)

∫ 1

−1

||ẏ|| . (II.7)

Many more problems can be studied using the tools we are now going to present;to name but a
few, the catenary problem, the minimal surface problem...
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III. The calculus of variations: first order necessary conditions

III-A. Lagrange’s 1755 paper and the first order condition

III-A- 1. Lagrange’s δ-calculus

In a 1755 letter to Euler, a nineteen years old Lagrange introduces in mathematics the concept of
variation of a function, in order to find maximizing or minimizing curves for functionals having
the following form:

F [y] :=

∫
L
(
x, y(x), ẏ(x)

)
dx,

where x is a real variable and where y lies in a suitable functional space. Here, x denotes either a
time or a space variable, depending on what problem is under consideration. For the integral to make
sense, we are going to assume that y is of class C1, as was required in the previous examples, and that
L = L(x, z, p) is a C1 function in each of its variable. By ∂L

∂p we will simply denote the derivative of
L with respect to the third variable.
In his letter, Lagrang provides us with a general method, of which the reasoning used for dealing with
the principle of least action is a particular case. Let’s see how he proceeds; for a given extremal curve
y∗ minimizing F , choose a variation (δy) such that, for |ε| small enough, y∗ + ε(δy) still lies in the
good functional space (when dealing with the principle of least action, this requirement ammounted
to asking that (δy) be 0 at the extremities of the interval). Such a function is called an admissible
variation at y∗. In the general case, and what we will consider from now on, it is assumed that a
variation is simply any function (δy) ∈ C1([a; b];R), that may be asked to satisfy further boundary
conditions.
Define

f : ε 7→ F
(
y∗ + ε(δy)

)
.

This function reaches its minimum at ε = 0. Assuming y and (δy) are defined on some interval [a; b],
we can write, using a Taylor expansion of the function L,

F
(
y∗ + ε(δy)

)
=

∫ b

a

L
(
x, y∗(x) + ε(δy)(x), ẏ∗(x) + ε ˙(δy)(x)

)
dx

=

∫ b

a

L
(
x, y∗(x), ẏ∗(x)

)
dx+ ε

∫ b

a

(
∂L
∂z

(
x, y∗(x), ẏ∗(x)

))
(δy)(x)dx

+ ε

∫ b

a

˙(δy)(x)

(
∂L
∂p

(
x, y∗(x), ẏ∗(x)

))
dx+ o(ε).

To deal with the last term, we integrate by part, so that it is equal to[
(δy)

∂L
∂p

]b
a

−
∫ b

a

d

dx

(
∂L
∂p

(
x, y∗(x), ẏ∗(x)

))
(δy)(x)dx.

The first order condition, that is, df
dε ε=0

= 0 is then: for any admissible variation (δy),∫ b

a

(δy)

(
d

dx

(
∂L
∂p

)
− ∂L
∂z

)
=

[
(δy)

∂L
∂p

]b
a

. (III.1) EL1

Quick note: the function L is named the Lagrangian of the problem.

III-A- 2. The Euler-Lagrange equation: a first application

In everything that we are going to do now, we will work with a fixed ends constraint, that is, y(a)
and y(b) are fixed. Let’s see what equations we can derive from (

EL1
III.1). The first step is to take

variations (δy) such that (δy)(a) = (δy)(b) = 0. In this case, the first order necessary condition to be
a minimizer, or a maximizer is that, for all functions (δy) : [a; b] → R that are continuous and such
that (δy)(a) = (δy)(b) = 0.We are going to apply the following lemma:

An introduction to optimization and to the Calculus of Variations
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LF Lemme III.1. Let f ∈ C0([a; b];R) such that, for any h ∈ C0([a; b];R) satisfying h(a) = h(b) = 0,∫ b

a

f(x)h(x)dx = 0.

Then f ≡ 0.

The proof is left as an exercise (see exercise
LemmeFondamental
III.1).

Using this lemma then leads us to the fact that, for a curve y to be a maximizer or a minimizer of
the functional F , it needs to satisfy the Euler-Lagrange equation:

− d

dx

(
∂L
∂p

(x, y∗, ẏ∗)

)
+
∂L
∂z

(x, y∗, ẏ∗) = 0. (III.2)

One remark:

Remark. About free boundary conditions: when the variation (δy) is no longer assumed to vanish at
x = a and x = b, the previous Euler-Lagrange equation nees to be supplemented with the boundary
conditions

∂L
∂p

(a, y∗(a), ẏ∗(a)) =
∂L
∂p

(b, y∗(b), ẏ∗(b)) = 0.

As an application, let’s prove the following theorem:

Theorem III.1. In Rn, the shortest path between two points is a straight line.

Proof of the theorem. Consider any two points (x0, y0) and (x1, y1) in R2. Recall that Γ(x0, x1)
is a notation for the set of all pathes between x0 and x1. Up to a translation, we can assume that
x0 = 0. As we have already noted, if we can prove that an optimal path exists, say moving along
x(t), then its second coordinate is single valued in x. In other words, the length of a path y(x) is then
given by

L[y] =

∫ x1

x0

√
1 + y′(x)2dx.

The associated Lagrangian is then
L(x, z, p) =

√
1 + p2.

Its partial derivative can be computed in a straightforward way:

∂L
∂p

(x, z, p) =
2p√
1 + p2

,
∂L
∂z

≡ 0.

Assume you have found an optimal path (we will comment on that later). Then the Euler-Lagrange
equation reads

d

dx

(
y′√

1 + (y′)2

)
= 0

on [x0;x1]. In other words, there exists a constant α such that

(y′)2 = α
(
1 + (y′)2

)
.

Since x0 ̸= x1, α ̸= 0. Since 1 ̸= 0, α ̸= 1. Since (y′)2 ≥ 0, 1 > α > 0. Solving this equation yields

y′ =

√
α√

1− α
,

which is a constant, so that y is an affine function. This concludes the proof.
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With the language of path Note that, in the previous demonstration, we have used another
version of the geodesics problem, but the original was that of solving the following problem:

min
γ∈Γ(x0,x1)

∫ 1

0

||γ̇||.

In this case, perturbations will be pathes ω : [0; 1] → R2 of class C1 satisfying ω(0) = ω(1) = 0, and
the lagrangian function will be

L(x, z, p) := ||p|| =
√
p21 + p22.

In this case,
∂L
∂p

(t, z, p) =
p

||p||
whenever ||p|| ̸= 0. The Euler-Lagrange equation can no longer be used straight away, for what
happens if, say, γ̇ = 0? To avoid this, we only consider curves γ such that γ̇ ̸= 0 on the interval.
Such curves are called regular and will be the only curves under consideration. Since we are
looking for geometric curves, this is not a problem. In this case, the Euler-Lagrange equation becomes

d

dt

(
γ̇⟨γ̇, γ̇⟩− 1

2

)
≡ 0.

Be careful, this time, the derivative ∂L
∂p ∈ R2, and should be thought of as the gradient ∇pL. Now,

you now that, for a regular curve γ, you can find a parameterization of γ such that ||γ̇|| ≡ a, where
a is some constant. Assuming this is the case, you are done, for the Euler-Lagrange equation then
immediately yields

γ̈ ≡ 0.

To parameterize the curve in this way, define φ : [0; 1] → [0; 1] by

φ(τ) :=

∫ τ

0
||γ̇||∫ 1

0
||γ̇||

.

By regularity of γ, this is a bijection. Let ψ := φ−1. Define γ̃ := γ ◦ψ. Note that γ̃([0; 1]) = γ([0; 1]),
so that the geometric curve under consideration is left unchanged by this operation. Furthermore,

dγ̃

dt
=
dψ

dt
γ̇
(
ψ(t)

)
=

1

||γ̇
(
ψ(t)

)
||
∫ 1

0
||γ̇||

γ̇
(
ψ(t)

)
,

which has a constant norm.

What we have shown here is that, provided a minimum exists, it must be a straight line. How
can we prove that a minimum indeed exists? When we proved the polygonal isoperimetric inequality,
compactness, via the Bolzano-Weierstraßtheorem, came in handy. Here, we would need some kind of
compactness argument for curves. This is the content of the Azéla-Ascoli theorem, which we state
here without a proof:

Theorem III.2. [Arzéla-Ascoli theorem] Take a sequence of functions {fk}k∈N in C1([a; b];R2).
Assume that there exists κ ∈ R such that

∀k ∈ N , sup
x∈[a;b]

||f ′k(x)|| ≤ κ.

Then there exists a subsequence that converges uniformly in C0([a; b]; [c; d]).

To apply it to the problem of the shortest path, we take an infimizing sequence {yk}k∈N ∈
C1([y0; y1];R). We would need to prove that it is uniformly bounded and that, up to a reparametriza-
tion, the sequence of derivatives is also uniformly bounded.
What we have done here is find the shortest path when the plane is assumed to be homogeneous, that
is, the Lagrangian is independent of its first variable: the way we measure the length of an arbitrary
element of the curve between y(x) and y(x+ dx) does not depend on the position x. In exercise

GeodesiqueGeneral
??,

we derive the geodesics equation for the inhomogeneous plane.
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III-B. A few examples

III-B- 1. Beltrami’s identity and the brachistochrone problem

In many of the examples we have presented, the Lagrangian function does not depend on the position
x. If this is so, we have access to a simpler form of the Euler-Lagrang equation, the Beltrami
identity:

Theorem III.3. Assume L(x, z, p) = L(z, p). Then, if y∗ is a minimizer, we have the Beltrami
identity: there exists a constant c such that

L
(
y∗(x), ẏ∗(x)

)
− ẏ∗(x)

∂L
∂p

(
y∗(x), ẏ∗(x)

)
≡ c. (III.3) Beltrami

Proof of the theorem. It is a direct computation: define

g : x 7→ L
(
y∗(x), ẏ∗(x)

)
− ẏ∗(x)

∂L
∂p

(
y∗(x), ẏ∗(x)

)
.

Then (once again, without any regard for the regularity of the function y∗), applying the chain rule
leads to

dg

dx
= ẏ∗

∂L
∂z

+ ÿ∗
∂L
∂p

− ÿ∗
∂L
∂p

− ẏ∗
d

dx

(
∂L
∂p

)
≡ 0.

This concludes the proof of the theorem.

Why bother prove another identity? because, in many cases, it simplifies matters a bit. Indeed,
consider the brachystochrone problem:

min
y∈C1([x0;x1];R),y(x0)=0 ,y(x1)=y1

∫ x1

x0

√
1 +

(
dy
dx

)2
√
2gy(x)

dx. (III.4)

Henceforth, we will drop the multiplicative constant 1√
2g
. Let’s try to solve this problem with the help

of the Euler-Lagrange equation: here, the Lagragian is

L(z, p) =
√

1 + p2

z
,

its partial derivatives are directly computable:

∂L
∂z

(z, p) =
−1

2z
√
z

√
1 + p2,

∂L
∂p

(z, p) =
p√

(1 + p2)z
.

The computation is going to be rather steep (if any one of you has the courage to work through it,
let me know!)
On the other hand, using Beltrami’s identity leads to solving the following differential equation:

y(1 + ẏ∗
2
) ≡ α. (III.5)

III-B- 2. Dido’s problem, and how to deal with constraint

Now, for constrained problems: how to deal with? Does the Lagrange multiplier rule hold? In fact it
does: the Dido’s problem can be stated as follow: among the C1 curves y : [−1; 1] → R with length
L = L[y] =

∫ 1

−1

√
1 + (y′)2, which one yields the maximal area

A[y] :=

∫ 1

−1

y(x)dx?
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Now, to settle a more general problem, consider, for two Lagrangian functions L and P, the problem

min
P (y):=

∫
P(x,y(x),ẏ(x))dx=L

∫
L
(
x, y(x), ẏ(x)).

In the finite dimensional case, we were lead to show that a first order condition associated with a
Lagrange multiplier λ held. Adapting it would mean that there exists a Lagrange multiplier λ such
that L+ λP satisfies the first order optimizing condition, that is:

∂
(
L+ λP

)
∂z

− d

dx

∂
(
L+ λP

)
∂p

 = 0. (III.6) equationcontrainte

As was the case in the finite dimensional setting, we have to work wih an extremal y∗ which is not
an extremal point of the constraint functional, that is, the Euler-Lagrange equation

∂P
∂z

− d

dx

∂P
∂p

= 0

is not satisfied. To prove the Euler-Lagrange multiplier rule under this assumption, we will show that
the problem boils down to a finite dimensional one. The thing is, if we were to pick a solution y∗

and to try and perturb it with some (δy), there is no way to ensure that y∗ + ε(δy) still satisfies the
constraint. Choose a second variation, say (δy)1, and introduce, for a couple of parameters (ε, ε1),
the function

y∗ + ε(δy) + ε1(δy)1.

You know that y∗ satisfies the constraint P (y∗) = L. Introduce

θ : (ε, ε1) 7→ P (y∗ + ε(δy) + ε1(δy)1).

Then, θ(0, 0) = L. The hypothesis "y∗ is not extremal for P" can be used to show that there exists a
curve (ε, ε1(ε)) in a neighbourhood of (0, 0) such that

θ
(
ε, ε1(ε)

)
≡ 0.

Indeed, one has
dθ

dε1
=

∫
(δy)1(x)

(
∂P
∂z

− d

dx

∂P
∂p

(x, y∗(x), ẏ∗(x))

)
dx.

Since the Euler-Lagrange equation associated with P is not satisfied by y∗, we can choose some point
x̃ such that (

∂P
∂z

− d

dx

∂P
∂p

)(
x, y∗(x), ẏ∗(x)

)
> 0

for instance, and pick a perturbation (δy)1 localized around x̃, so that ∂θ
∂ε1

̸= 0, whence applying the
implicit function theorem gives us the desired parameterization.
We can now apply the finite dimensional Euler-Lagrange multiplier rule to the functions θ and
Θ(ε, ε1) := L(y∗ + ε(δy) + ε1(δy)1). There exists λ ∈ R such that, at any solution of the constrained
problem, and in particular at (0, 0),

∇
(
Θ+ λθ

)
(0, 0) = 0.

But direct computation show that this implies the Euler-Lagrange equation (
equationcontrainte
III.6).

Let’s apply it, then, to the Dido’s problem: the two Lagrangian functions involved are

L(x, z, p) = y

and
P(x, z, p) =

√
1 + p2.

The admissible functions are further constrained by y(−1) = y(1) = 0. We take, as a a constraint,
P [y] = L > 2 (otherwise, the set of admissible functions is either reduced to the null function or
empty). We then recall that, if y∗ is a solution, then y∗ satisfies the first order condition for L+ λP,
so that the Beltrami’s identity is also satisfied. The rest of the calculation will be detailed in the
exercises.
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III-C. About the existence of minimizers

While in the finite dimensional setting the existence of solution for variational problems followed
straightforward from compactness, in the calculus of variations, this difficulty is not so easily overcome,
as is shown by Weierstraß’ counter example: consider the space X defined as follows:

X :=
{
u ∈ C1([−1; 1];R) , u(±1) = ±1

}
.

Consider the functional L defined by

L[u] :=

∫ 1

−1

|xu′(x)|2dx

and the minimization problem
inf
u∈X

L[u].

It is obvious that this infimum is non-negative. However, consider the sequence of functions {uk}k∈N
defined by

uk :=
arc tan(k·)
arc tan(k)

.

It is readily checked that uk ∈ X. But a simple calculation proves that

L[uk] →
k→+∞

0.

On the other hand, it is obvious that no function can reach this infimum for it would satisfy the
boundary conditions...

III-D. Exercises

LemmeFondamental Exercise III.1. [ The fundamental lemma of the calculus of variations]
Prove Lemma

LF
III.1.

Exercise III.2. [Using the Euler-Lagrange equation] Find the extremals for the functionals below
subject to the fixed point conditions:

1. L(y) :=
∫ π

2

0

(
y2 + y′2 − 2y sin(x)

)
dx subject to y(0) = 0 and y(π2 ) =

3
2 .

2.
∫ 2

1
y′2

x3 dx subject to y(1) = 0, y(2) = 4.

3.
∫ 2

0
(xy′ + y′2)dx subject to y(0) = 1, y(2) = 0.

4. Can you solve the Euler-Lagrange equation for the Weierstraß’s counterexample?

5.
∫ 1

0
ex
√
1 + y′2dx.

Exercise III.3. [The catenary] We are interested in a surface of revolution with minimal area. Up
to a rotation, we can assume that the x-axis is the axis of rotation in the space, so that a surface of
revolution is described by some function y = y(x) > 0. We also suppose we are working between x0
and x1, and that the endpoints y(x0) and y(x1) are fixed.

1. Using the same kind of reasoning that was carried during the lectures, can you explain why the
area ssociated with a function y is given by

A[y] :=

∫ x1

x0

2πy(x)
√
1 + y′(x)2dx?

2. Using Beltrami’s identity, find the form of a solution.
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Exercise III.4. [Geodesics on the sphere] We are going to try and prove that the geodesics on a
sphere are great circles. We work in spherical polar coordinates, that is, any point on the sphere is
denoted by two angles, θ and ϕ, as depicted on the picture below.
This enables us to see a curve drawn on the sphere as a map

γ(t) =
(
cos(θ(t)) sin(ϕ(t)), sin(θ(t)) sin(ϕ(t)), cos(ϕ(t))

)
.

Assume θ is a function of ϕ. Then, can you show that the length is given by the following formula:

L(θ) =

∫ √
1 + sin(ϕ)2θ′(ϕ)2dϕ?

Using Beltrami’s identity, derive the Euler-Lagrange equation for, say, the geodesic between the north
pole and the south pole. Try and solve it.

Exercise III.5. [The isoperimetric problem]

1. So, we want, with a fixed perimeter , say P , to maximize the area enclosed by a curve γ(t) =
(x(t), y(t)) where t ∈ [0; 1] and γ(0) = γ(1). This time, it is no longer possible to assume that y
is a function of x. Recall that the perimeter is given by

P =

∫ 1

0

√
ẋ2 + ẏ2.

Furthermore, its area is given by

A =

∫ 1

0

xẏ − yẋ.

2. For a curve that is solution, we know there exists some λ ∈ R such that (x, y) is a critical point
for A − λP . Thus you get two sets of Euler Lagrange equations, one on x and one on y. Can
you solve them?

III-E. Hints and solutions

Solution III.1. Assume, by contradiction, that f does not vanish identically on [a; b]. That means
that, for instance, there exists τ ∈ [a; b] such that f(τ) > 0. By continuity of f , there exists ε > 0 such
that f > 0 on [τ − ε; τ + ε]. Take a triangle function h, defined by h(x) = 0 if x ∈ [a; τ − ε]∪ [τ + ε; b],
by h(x) = x− τ + ε if x ∈ [τ − ε; τ ], and by h(x) = τ + ε−x if x ∈ [τ ; τ + ε]. It is readily checked that
h is indeed continuous, so that ∫ b

a

fh = 0,

but we should also have
∫ b

a
fh > 0. This is absurd.

Solution III.2.

Solution III.3.

Solution III.4.
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IV. The calculus of variations: second order conditions

IV-A. Some historical background: from Galileo to Maupertuis

IV-B. Legendre’s 1786 Mémoire

IV-B- 1. The second variation formula

IV-B- 2. Towards a sufficient condition?

IV-C. Jacobi’s 1836 paper

IV-C- 1. The problem of conjugate points

IV-C- 2. A sufficient condition
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