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Numerical optimisation-Part # 0

General introduction, pre-requisites

The goal of this course is to provide sound theoretical foundations for continuous
optimisation. Optimisation problems arise everywhere, whether it be in medicine,
in mechanics, in finance or in artificial intelligence. We will not be considering
any specific application as we rather seek to provide a general overview of these
problems and of the basic tools required to handle them.

We will consider optimisation problems that write

min
x∈X

f(x)

where X is a subset of a (possibly infinite dimensional) vector space and f : X → R
is the so-called “objective function”. The class will proceed along the following lines:

(1) We will first review basic concepts in optimisation, the main goal being to
provide standard tools to establish existence (and possibly uniqueness) of
minimisers x∗ of f . The key words are coercivity and convexity; a certain
familiarity with differential calculus is required, as is a certain dexterity
with linear algebra.

(2) The second part of the class will be dealing with unconstrained finite-
dimensional optimisation, that is, when X = Rd for some d ≥ 1. The
main emphasis of this part will be on approximation procedures, the key
concept being that of gradient descent. A reasonable familiarity with dif-
ferential equations will be expected in the last section of this part.

(3) The third part of the class will be devoted to constrained optimisation
problems, that is, when X is a strict subset of a vector space (still finite-
dimensional at this stage). The key-concepts that the student should mas-
ter at the end of this section are Lagrange multipliers and basic duality.
We will also place a great emphasis on approximation methods, the two
main algorithms being the projected gradient algorithm and the Uzawa
algorithm.

(4) The final part of this class should be seen as an introduction on more
advanced topics in optimisation in the infinite dimensional setting: calculus
of variations, optimal control and back-propagation, the latter being of
central importance in the study of Neural Networks.

Parts of these lectures are inspired by classes I gave at other points, parts are
inspired by the works of my predecessors (P. Cardaliaguet, Y. Viossat).The class
should be self-contained and, as usual, there is no need to use other references: the
lectures and exercise sessions should provide enough material. Nevertheless, some
“standard” references are the following:
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Part 1. A review of basic concepts

1. Existence of optimisers, optimality conditions

Throughout this entire chapter, unless stated otherwise, we consider a fixed, C 2

function f : Rd → R.

1.0.1. First definitions. The goal of this section is to fix the terminology, as well as
some notations.

Definition 1.1. A point x∗ ∈ Rd is called:

(1) A global minimiser of f if

∀x ∈ Rd , f(x∗) ≤ f(x).

(2) A local minimiser of f if

∃ε > 0 ,∀x ∈ Rd , ‖x− x∗‖ ≤ ε⇒ f(x∗) ≤ f(x).

In the remainder of this document, we will adopt the following notational con-
ventions:

(1) Md(R) denotes the set of d× d matrices, Mp,q(R) denotes the set of p× q
matrices.

(2) Sd(R) denotes the set of symmetric matrices in Md(R). The transpose of a
matrix M is written MT .

(3) S+
d (R), resp. S++

d (R), resp. S−d (R), resp. S−−d (R) denotes the set of
symmetric positive, resp. definite positive, resp. negative, resp. symmetric
negative, matrices.

1.1. The optimisation problem under consideration. The goal of this class
is to study the optimisation problem

(1.1) inf
x∈Rd

f(x).

A first question is whether or not a solution x∗ actually exists, in which case we
are allowed to write

min
x∈Rd

f(x).

To this end, let us recall the definition of coercivity :

Definition 1.2. We say that a continuous function f is coercive if for any M ∈ R
the sub-level set {x ∈ Rd : f(x) ≤M} is bounded.

The main point of coercivity is the following proposition:

Proposition 1.1. Assume f is coercive. Then f has a global minimiser x∗. With a
slight abuse of terminology, we will say that x∗ solves (1.1), and dub it a minimiser
of f in Rd.

Proof of Proposition 1.1. Let x0 ∈ Rd be arbitrary and consider the set

E0 := {x ∈ Rd : f(x) ≤ f(x0)}.
By assumption, E0 is a compact set and it is clear that if x∗ solves

(1.2) inf
x∈E0

f(x)

then it solves (1.1). However, the existence of a solution to (3.2) follows from the
Weierstraßtheorem: every continuous function on a compact set reaches its extrema
on this set. �
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1.2. Optimality conditions. Now, consider (1.1), and assume that x∗ is a solu-
tion. Naturally, one would like to have either an explicit or a good enough numerical
approximation of the minimiser x∗. Unless we are quite lucky and an easy compar-
ison argument provides an explicit value, this is a hopeless endeavour. The best we
can do is to rely on optimality conditions. Optimality conditions allow to reduce
the search of a minimiser to the resolution of a non-linear system of equations.

There are two optimality conditions. The first-order optimality condition reads

(1.3) ∇f(x∗) = 0

while the second-order optimality condition writes

∇2f(x∗) ∈ S+
d (R).

Assume for simplicity that (1.3) has a finite number of solutions x1, . . . , xN , which
have tractable expressions. This still does not provide any conclusion, and we
need to compute the Hessian of f at each xk, k = 1, . . . , N . There are several
possibilities, summarised in the following proposition:

For the sake of future references, let us single out the following definition:

Definition 1.3. Let f ∈ C 1(Rd;R). A point x∗ ∈ Rd is called a critical point of
f if

∇f(x∗) = 0.

Proposition 1.2. Assume f is C 2 and let x∗ be a critical point of f .

(1) If ∇2f(x∗) ∈ S++
d (R), then x∗ is a strict local minimiser of f .

(2) If ∇2f(x∗) ∈ S−−d (R), then x∗ is a strict local maximiser of f .
(3) If ∇2f(x∗) has at least one negative and one positive eigenvalue, x∗ is a

saddle point: there exist two orthogonal directions ~e1 , ~e2 such that t∗ = 0 is
a local minimiser of t 7→ f(x+te1), and a local maximiser of t 7→ f(x+te2).

(4) If ∇2f(x∗) ∈ S+
d (R), but not in S++

d (R), then we cannot conclude and
further analysis is required.

In the first two cases, we say that x∗ is a non-degenerate critical point.

Proof of Proposition 1.2. We only prove the first and third points. We first assume
that

(1.4) ∇2f(x∗) ∈ S++
d (R).

There are two ways to prove that x∗ is a local minimiser, both of which naturally
rely on Taylor expansions, and on the following consequence of (1.4) (see Exercise
1.1): there exists a constant λ > 0 such that, for any z ∈ Rd,

(1.5) 〈∇2f(x∗)z, z〉 ≥ λ‖z‖2.

(1) First approach: a proof by contradiction Argue by contradiction and as-
sume that there exists a sequence {xk}k∈N such that

∀k ∈ N , f(xk) ≤ f(x∗).

From the mean-value formula, we know that for any k ∈ N there exists
ξk ∈ [xk;x∗] = {(1− t)xk + tx∗ , t ∈ [0; 1]} such that

f(xk) = f(x∗) +
1

2
〈∇2f(ξk)(xk − x∗), xk − x∗〉.
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In particular, setting for any k ∈ N zk := xk−x∗

‖xk−x∗‖ ,

〈∇2f(ξk)zk, zk〉 ≤ 0.

As for any k ∈ N we have ‖zk‖ = 1 we can (up to taking a subsequence)
assume that {zk}k∈N converges to some z∞ , ‖z∞‖ = 1. Since xk →

k→∞
x∗,

it follows that ξk →
k→∞

x∗. Passing to the limit in the previous inequality

we obtain
〈∇2f(x∗)z∞, z∞〉 ≤ 0,

in contradiction with (1.5).
(2) Second approach: continuity of the Hessian From (1.5) and the fact that

∇2f is continuous it is possible to show the following fact (see Exercise
1.1): there exists λ′ > 0 and ε > 0 such that

∀x ∈ B(x∗; ε) ,∀z ∈ Rd , 〈∇2f(x)z, z〉 ≥ λ′‖z‖2.
We can conclude as before: fix such an ε > 0. Then, for any x ∈ B(x∗; ε),
there exists ξ ∈ B(x∗; ε) such that

f(x)− f(x∗) =
1

2
〈∇2f(ξ)(x− x∗), (x− x∗)〉 ≥ λ′

2
‖x− x∗‖2

and the conclusion follows.

�

The exercises of this chapter (in particular Exercise 1.3) contain several examples
of optimisation problems that can be solved by hand. Such examples are usually
limited to dimension 2 or 3, unless the problem has a very specific structure.
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2. Convexity, strict convexity

The second crucial notion is that of convexity, which has two main interests, as
we shall explain:

(1) The first one is when studying global properties of a functions: in that case,
assuming convexity helps in either proving uniqueness of the optimiser (in
the strongly convex case) or at least to have some geometric structure on
the set of minimisers.

(2) The second one is more local in nature: consider a function f : Rd → R
that admits a non-degenerate local minimum x∗ ∈ Rd. Then, locally around
x∗, by Taylor expansions, f can be suitably approximated by a (strongly)
convex functions. Thus, we can hope that any global study of convex
functions can translate to local studies around non-degenerate local minima
(this is of particular importance when dealing with gradient descents).

2.1. Various definitions of convexity and basic properties.

Definition 2.1. A set K ⊂ Rn is said to be convex if for all x and y in K,
tx+(1− t)y ∈ K for all t in [0, 1] (for any two points in K, the segment that unites
them is in K).

Definition 2.2. Let K ⊂ Rn be a convex set and f : K → R be a function.

(1) f is convex on K if

∀x , y ∈ K, t ∈ (0, 1) , f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

(2) f is strictly convex on K if

∀x 6= y ∈ K, t ∈ (0, 1) , f(tx+ (1− t)y) < tf(x) + (1− t)f(y).

(3) f is strongly convex on K if there exists α > 0 such that

∀x, y ∈ K, t ∈ [0, 1] , f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− α

2
t(1− t)‖x− y‖2.

(4) f is said to be concave if −f is convex (and similar definitions for strictly
or strongly concave).

Of course, these definitions can be a tad annoying to work with. When f is more
regular (say, C 1 or C 2), equivalent characterisations are available.

Proposition 2.1 (Equivalent characterisation of convexity in the C 1 regime). Let
f ∈ C 1(Rd;R). Then the following propositions are equivalent:

(1) f is convex.
(2) (A convex function is above its tangent hyperplane) For any x , y ∈ Rd,

(2.1) f(y) ≥ f(x) + 〈∇f(x), y − x〉.
(3) (The gradient of a convex function is monotone) For any x , y ∈ Rd,

(2.2) 〈∇f(y)−∇f(x), y − x〉 ≥ 0.

Proof of Proposition 2.1. Assume that f is convex and let x , y ∈ Rd. Thus, for any
t ∈ [0; 1],

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

or, alternatively,
f(x+ t(y − x))− f(x)

t
≤ f(y)− f(x).
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As f is C 1, passing to the limit t→ 0 gives

〈∇f(x), y − x〉 ≤ f(y)− f(x),

which is exactly (2.1). Now, assuming (2.1), we obtain

〈∇f(x), y − x〉 ≤ f(y)− f(x) ≤ −〈∇f(y), x− y〉
or, equivalently,

〈∇f(x)−∇f(y), x− y〉 ≥ 0.

Now, assuming (2.2), let us show (2.1). Let x , y ∈ Rd. Then, by the Taylor formula,

f(y)− f(x) =

ˆ 1

0

〈∇f ((1− t)x+ ty) , y − x〉dt

=

ˆ 1

0

〈∇f ((1− t)x+ ty)−∇f(x), y − x〉dt+ 〈∇f(x), y − x〉.

However, setting xt := (1− t)x+ ty, we have

xt − x = t(y − x).

In particular,

〈∇f(xt)−∇f(x), y − x〉 ≥ 0

whence

f(y)− f(x) ≥ 〈∇f(x), y − x〉
so that (2.1) is satisfied. Finally, assume (2.1). Let us show that f is convex. Let
x , y ∈ Rd and t ∈ [0; 1]. Consider the map

g : t 7→ f ((1− t)x+ ty)− (1− t)f(x)− tf(y).

Then g(0) = g(1) = 0 and, retaining the notation xt := (1− t)x+ ty,

g′(t) = 〈∇f(xt), y − x〉 − (f(y)− f(x)).

Observe that for any t0 , t1 ∈ [0; 1] there holds

(t0 − t1)(g′(t0)− g′(t1)) = 〈∇f(xt0)−∇f(xt1), (t0 − t1)(y − x)〉
= 〈∇f(xt0)−∇f(xt1), xt0 − xt1〉
≥ 0

whence g′ is non-decreasing. By the Rolle theorem, there exists s ∈ (0; 1) such
that g′(s) = 0. Consequently, g is non-increasing on (0; s) and non-decreasing on
(s; 1), and is thus maximal at either t = 0 or t = 1, thereby concluding the proof
of convexity of f . �

We leave as an exercise the following proposition:

Proposition 2.2 (Equivalent characterisation of strong convexity in the C 1 regime).
Let f ∈ C 1(Rd;R). Then the following propositions are equivalent:

(1) f is α-strongly convex convex.
(2) For any x , y ∈ Rd,

(2.3) f(y) ≥ f(x) + 〈∇f(x), y − x〉+
α

2
‖y − x‖2.

(3) For any x , y ∈ Rd, x 6= y

(2.4) 〈∇f(y)−∇f(x), y − x〉 ≥ α‖y − x‖2.
7
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To conclude these reminders, we recall some characterisation of convex C 2 func-
tions:

Proposition 2.3. Let f ∈ C 2(Rd;R). Then the following properties are equivalent:

(1) f is convex.
(2) For any x ∈ Rd ,∇2f(x) ∈ S+

d (R).

There is also a nice characterisation of α-strongly convex functions:

Proposition 2.4. Let f ∈ C 2(Rd;R) and α > 0. Then the following properties
are equivalent:

(1) f is α-strongly convex.
(2) For any x ∈ Rd, the lowest eigenvalue λ1(∇2f(x)) of the Hessian of f

satisfies

λ1
(
∇2f(x)

)
≥ α.

Unfortunately, there is no such nice characterisation of strict convexity, but
merely an implication (we also refer to Exercise 1.5):

Proposition 2.5. Let f ∈ C 2(Rd;R). If

∀x ∈ Rd ,∇2f(x) ∈ S++
d (R)

then f is strictly convex.

Similarly, we leave the proofs of these propositions as exercises.

2.2. Convex function and minimisation. The main result of this section is the
following:

Theorem 2.1. Let f be a convex function, and assume that the problem

(2.5) min
x∈Rd

f(x)

has a solution x∗. Then:

(1) If f is strictly convex, (2.5) has a unique solution.
(2) In general, the set of minimisers

X := {x ∈ Rd : f(x) = f(x∗)}

is a convex set.

Proof of Theorem 2.1. We begin with the fact that the set of minimisers X is con-
vex: let x , y be such that f(x) = f(y) = f(x∗). Then, by convexity of f ,

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y) = f(x∗),

whence (1 − t)x + ty ∈ X. Now, suppose that f is strictly convex and assume by
contradiction that f has two distinct minimisers x , y. By strict convexity, for any
t ∈ (0; 1),

f((1− t)x+ ty) < (1− t)f(x) + tf(y) = f(x∗),

in contradiction with the minimality of x∗. �
8
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2.3. Several (useful) inequalities related to convex functions. To conclude
the first part, we will give and prove several inequalities related to convex functions–
these might seem quite abstruse at first, but they will be coming in handy in later
parts of the class, so that this specific section of the lecture notes should be taken as
a reference point for later purposes. Furthermore, the proofs allow to get familiar
with usual tricks when dealing with convex functions.

Proposition 2.6. Let f be a convex function and assume that ∇f is µ-Lipschitz
continuous. Then

(2.6) ∀x , y ∈ Rd , f(x)− f(y)− 〈∇f(y), y − x〉 ≥ 1

2µ
‖∇f(x)−∇f(y)‖2.

In particular, if f admits a minimiser x∗, it follows that

(2.7) ∀x ∈ Rd , f(x)− f(x∗) ≥ 1

2µ
‖∇f(x)‖2.

This is sometimes referred to as “co-coercivity of the gradient”.

Proof of Proposition 2.6. The key is to introduce an auxiliary point z. Fix x , y ∈
Rd. Then for any z ∈ Rd

f(x)− f(y) = f(x)− f(z) + f(z)− f(y)

≤ 〈∇f(x), x− z〉
+ f(z)− f(y)

by convexity

≤ 〈∇f(x), x− z〉+ 〈∇f(y), z − y〉+
µ

2
‖z − y‖2

by µ-Lipschitzianity of the gradient.

We now minimise the right-hand side with respect to z. As ϕ : z 7→ 〈z,∇f(y) −
∇f(x)〉+ µ

2 ‖y − z‖
2 is a strictly convex function of z, if z∗ is a critical point of ϕ,

then it is a global minimiser of ϕ. As

∇ϕ(z∗) = 0⇔ z∗ = y +
1

µ
(∇f(x)−∇f(y))

we obtain
f(x)− f(y) ≤ 〈∇f(x), x〉 − 〈∇f(y), y〉+ ϕ(z∗).

Expanding, we deduce

f(x)− f(y) ≤ 〈∇f(x), x− y〉 − 1

µ
〈∇f(x),∇f(x)−∇f(y)〉

+
1

µ
〈∇f(y),∇f(x)−∇f(y)〉+

1

2µ
‖∇f(x)−∇f(y)‖2

≤ 〈∇f(x), x− y〉 − 1

2µ
‖∇f(x)−∇f(y)‖2,

which is the desired inequality. �

The final inequality, the proof of which is to be found in Exercise 1.9, is the
Polyak-Lojasiewicz inequality:

Proposition 2.7. Let f ∈ C 1(Rd;R) be an α-strongly convex function. Then

∀x ∈ Rd , f(x)− inf
Rd
f ≤ 1

2α
‖∇f(x)‖2.
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Exercises for Part 1

Exercise 1.1. Let A ∈ Sd(R).

(1) Letting λ1(A) ≤ λ2(A) ≤ · · · ≤ λd(A) be the eigenvalues of A, show that

λ1(A) = inf
‖z‖2=1

〈Az, z〉.

(2) Show that for any two A ,B ∈ Sd(R) there holds

|λ1(A)− λ1(B)| ≤ ‖A−B‖op
where ‖ · ‖op stands for the standard operator norm on the set of matrices.

Exercise 1.2. Let A ∈ Sd(R) and b ∈ Rd. We consider

f : x 7→ 1

2
〈Ax, x〉 − 〈b, x〉.

(1) Show that f is coercive if, and only if A ∈ S++
d (R).

(2) Show that f is convex if, and only if A ∈ S+
d (R).

(3) Show that f is strictly convex if, and only if A ∈ S++
d (R).

Exercise 1.3. Classify the critical points (local minimisers, local maximisers, sad-
dle points, indeterminate critical points) of the following functions:

(1) f1 : (x, y) 7→ (x− y)2 + (x+ y)3,
(2) f2 : (x, y) 7→ x2 − 2y2 + 3xy,
(3) f3(x, y) 7→ x4 + y3 − 3y − 2.

Exercise 1.4 (Distance between two sets). Let A and B be two closed, nonempty
subsets of Rd.

(1) Show that if A is compact, then the problem

min
a∈A, b∈B

‖a− b‖

has a solution (at least one).
(2) Show with a counter-example that this problem need not have a solution if

neither A nor B is assumed compact, even if A and B are convex.

Exercise 1.5. Give an example of a strictly convex function ϕ : Rd → R such that
the equation

∇2ϕ(x) = 0

has infinitely many solutions.

Exercise 1.6 (Carathéodory theorem). Let Ω ⊂ Rd. We call the convex hull of Ω
the smallest convex set containing Ω. We denote it by C(Ω).

(1) Show that

C(Ω) =

{
N∑
i=0

tixi , N ∈ N , {ti}i=0,...,N ∈ [0; 1]N+1 ,

N∑
i=0

ti = 1 , {xi}i=0,...,N ∈ ΩN+1

}
.

(2) We now want to show the Carathéodory theorem: for any x ∈ C(Ω), there
exist t0, . . . , td ∈ [0; 1] , x0, . . . , xd ∈ Ω such that

d∑
i=0

ti = 1 , x =

d∑
i=0

tixi.

10
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(a) Using an example, show why one needs at least (d+ 1) points.
(b) Prove the Carathéodoory theorem; you can argue by descending in-

duction, starting (for instance) from a point x ∈ C(Ω) that writes

x =
∑d+1
i=0 tixi, and showing that one of the vectors x′is can be ex-

pressed using the others.
(c) Deduce from the Carathéodory theorem that if Ω is compact, then so

is C(Ω).

Exercise 1.7 (Extreme points I: projection on closed convex sets). Let K ⊂ Rd
be a closed convex set. Show that there exists a unique z ∈ K, denoted by ΠK and
dubbed the orthogonal projection of x on K, such that

‖x−ΠK(x)‖ = min
z∈K
‖x− z‖

and that
∀y ∈ K , 〈x−ΠK(x), y −Πk(x)〉 ≤ 0.

Show that ΠK is 1-Lipschitz.

Exercise 1.8 (Extreme points II: The Krein-Milman theorem). (1) Give an ex-
ample of a convex set K ⊂ Rd that has no extreme points.

(2) We assume that K is compact. Prove that K has extreme points.
(3) We now want to prove the (finite-dimensional) Krein-Milman theorem: any

x ∈ K is a convex combination of extreme points of K.
(a) Let x ∈ ∂K. Show that there exists a hyperplane (called the supporting

hyperplane) H = {ϕ = 0} where ϕ ∈ (Rd)′ , ϕ 6= 0 (the dual of Rd)
such that x ∈ H and ϕ(K) ⊂ (−∞; 0] (hint: think of the projection
ΠK).

(b) Let x ∈ K. Show that if x ∈ H for some supporting hyperplane of K
(i.e. associated with some y ∈ K) then x is an extreme point of K if,
and only if, x is an extreme point of H ∩K.

(c) Show the Krein-Milman theorem proceeding by induction on the di-
mension.

Exercise 1.9 (Polyak-Lojasciewicz Inequality). Let f : R → R be an α- strongly
convex function and let x∗ be a minimiser of f . First, prove that

∀x ∈ Rd , ‖x− x∗‖2 ≤ 2

α
(f(x)− f(x∗)).

Second, show the following inequality:

∀x ∈ Rd , f(x)− f(x∗) ≤ 1

2α
‖∇f(x)‖2 .

Finally, deduce that

∀x ∈ Rd , ‖x− x∗‖ ≤ 1

α
‖∇f(x)‖.
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Part 2. Unconstrained optimisation: approximation and gradient
descent

3. An overview of gradient descent: basic principle & study of
convex functions

3.1. Goal of the part. In this part of the class we will study a first approximation
method for optimisation problems. In other words, consider once again a problem
of the form

(3.1) min
x∈Rd

f(x)

and assume for the sake of simplicity that a solution x∗ exists. As we already
mentioned, the first exploitable information on x∗ we have is that it is a critical
point of f :

∇f(x∗) = 0.

The goal of the gradient descent is to find critical points of f through an iterative
method, that is, a method which can be written as{

Start from an initial guess x0,

Supposing x0, . . . , xk are built, set xk+1 = xk +Gk(xk)

for some function Gk, the definition of which might depend on the previous iterates
x0, . . . , xk. Most of the time, this will not be the case, and the iteration map Gk
will not depend on the index k. The goal is to obtain algorithms that produce
sequences that converge at a “good enough” rate — most of the time, we will be
satisfied with linear convergence, in the following sense:

Definition 3.1. Let {xk}k∈N ∈ (Rd)N and x∗ ∈ Rd. We say that {xk}k∈N converges
linearly, at rate α ∈ [0; 1), to x∗, if there exists a constant C such that

∀k ∈ N , ‖xk − x∗‖ ≤ Cαk.

3.2. Definition of the gradient descent and basic properties.

3.2.1. First considerations. The gradient descent is a local algorithm that essen-
tially relies on a Taylor expansion of the function f : assume that you are starting
from an initial guess x0 ∈ Rd, and you want to solve (1.1). We look for a point
that is close enough to x0, say at distance at most d0, and such that f(x1) < f(x0)
(if that is possible). In that case, a natural idea is to replace f by its first-order
Taylor approximation

f(x0 + z) = f(x0) + 〈∇f(x0), z〉+ o
z→0

(‖z‖)

so that, at first order, we are solving the minimisation problem

(3.2) min
‖x−x0‖≤d0

〈∇f(x0), x− x0〉.

At this stage, two things may happen:

(1) Either the gradient vanishes (∇f(x0) = 0), in which case we stop, as we
are satisfied with what we already have. Now, if we wanted to go further
in the analysis, we should note that two other possibilities arise: either f
is convex, in which case this implies that x0 is a global minimiser of the
function f , or f is not convex and we would need to do something different

12
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to investigate the local optimality of x0. This will very often not be the
case.

(2) Either the gradient does not vanish, so that the pseudo-optimisation prob-
lem (3.2) has a unique solution

x1 = − d0
‖∇f(x0)‖

∇f(x0).

Now, the question remains of choosing the parameter d0. Of course, if we already
know that the gradient is small enough in norm, it makes no sense to look for a point
that would be far away, and this naturally leads to choosing d0 as d0 = τ‖∇f(x0)‖
for some τ > 0.

Overall, we define the sequence of iterates of the gradient descents as follows:{
x0 ∈ Rd ,
∀k ∈ Rd , xk+1 = xk − τ∇f(xk).

The main questions under consideration from now on are:

(1) The convergence of the generated sequence {xk}k∈N.
(2) The convergence of the sequence of values {f(xk)}k∈N.
(3) The convergence of the gradient of the objective function {∇f(xk)}k∈N.

Of course, the convergence of {xk}k∈N implies the convergence of the values and of
the gradient; the convergence of the values, on the other hand, does not imply the
convergence of the sequence itself. It is also important to note that, in general, the
presentation of gradient descent assumes, from the get-go, some strong convexity of
f , which gives a positive answer to all the questions above. On the other hand, it is
extremely important, both in practice and in theory, to distinguish these different
steps and this is what we will do. At any rate, here is a simple result:

Proposition 3.1. Assume that f ∈ C 1 and that the gradient descent with fixed step
size τ converges in the sense that {xk}k∈N converges to some x∗. Then ∇f(x∗) = 0.

Proof of Proposition 3.1. If the sequence converges then, passing to the limit in
xk+1 = xk −∇f(xk) yields ∇f(x∗) = 0. �

Of course the next question is, if we assume that {xk}k∈N converges to some x∗,
is it true that x∗ is, in fact, a minimiser of f? The answer is no in general. Consider
for instance the function

f : x 7→ x3

3
,

a fixed 1 > τ > 0 and an initialisation x0 = 1. The sequence of iterates of the
gradient descent is given by

∀k ∈ N , xk+1 = xk(1− τxk).

Now, if τ ∈ (0; 1), a simple reasoning by induction shows that the sequence {xk}k∈N
is positive and decreasing; in particular it is converging so that by Proposition 3.1
it converges to 0, which is not a minimiser of f . Of course, one might argue that
this is cheating, as the function f is not coercive. Nevertheless, it is easy to adapt
this example: simply modify f on (−∞;−1] to have a globally smooth, coercive
function.

13
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3.2.2. Do the step-size and the regularity matter? In this first paragraph, we inves-
tigate in a formal manner the constraints we should put on the step size and on the
function f to obtain a converging sequence, where the parameters should be chosen
uniformly with respect to the initial condition. We begin with the regularity of the
function. Let us consider the case of a C 1, but not C 1,1 function, for instance, in
two variables

f : (x, y) 7→ 2

3

(
x2 + 2y2

) 3
4 .

It is fairly easy to show that the function f is C 1, but not C 1,1 at 0 (this is left as
an exercice): simply observe that

|f(x, y)| ≤ C‖(x, y)‖ 3
2 .

Furthermore, 0 is the unique minimiser of f . For a given parameter τ > 0, the
sequence of iterates is given explicitly by

xk+1 = xk

(
1− τ

(x2
k+2y2k)

1
4

)
yk+1 = yk

(
1− 2τ

(x2
k+2y2k)

1
4

)
.

Observe that, at a formal level, if the sequence converges, then it must converge to
0. Thus, we “should” be able to write that

(xk+1, yk+1) ∼ τ

(x2k + 2y2k)
1
4

(−xk,−2yk) .

Defining

zk := x2k + 2y2k

we deduce that (asymptotically)

zk+1 ≥ Cz
1
2

k , C = τ2.

Now, let us assume that this inequality is, in fact, satisfied for all k ∈ N. This
would give the lower bound

zk+1 ≥ CC
1
2 z

12

22

k−1 ≥ · · · ≥ C
∑k
i=0( 1

2 )
i

z2
−k

0 ,

and cannot converge to 0.
We continue with an investigation of the step size; here the computations are

much easier, as it suffices to consider, in the one-dimensional case, the function

f : x 7→ µ

2
x2.

Then, for any initialisation x0 and any fixed step size τ > 0, the sequence of iterates
is given by

xk+1 = xk(1− µτ) = x0(1− µτ)k.

Thus, the method converges if, and only if, 0 < τ < 1
µ . As µ quantifies the

steepness of f ′, or, put otherwise, the average variation of the gradient, we fairly
easily understand that the wilder the gradient of a function, the smaller the step
size needs to be.

14
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3.2.3. The gradient descent is a descent method. In this section, we consider a
function f ∈ C 1(Rd) with a µ-Lipschitz gradient in the sense that

(3.3) ∀x , y ∈ Rd , ‖∇f(x)−∇f(y)‖ ≤ µ‖x− y‖.
We do not make any assumption on the coercivity of f , or on the existence of a
minimiser. Our first result is the following:

Theorem 3.1. For any x0 ∈ Rd, for any τ > 0, the sequence generated by the
gradient descent initialised at x0 with step size τ satisfies

∀k ∈ N , f(xk+1)− f(xk) ≤ τ (τµ− 1) ‖∇f(xk)‖2.

In particular, if τ ∈
(

0; 1
µ

)
then the sequence {f(xk)}k∈N is strictly decreasing

unless it is stationary. Finally, for any τ ∈
(

0; 1
2µ

)
there holds

∀k ∈ N , f(xk+1)− f(xk) ≤ −τ
2
‖∇f(xk)‖2.

Proof of Theorem 3.1. It suffices to write that for any k ∈ N there holds

f(xk+1) = f(xk − τ∇f(xk)).

From the mean-value theorem, there exists ξ ∈ B(xk; ‖xk+1 − xk‖) such that

f(xk+1) = f(xk) + 〈∇f(ξ),−τ∇f(xk)〉.
This rewrites

f(xk+1)− f(xk) = −〈∇f(ξ)−∇f(xk), τ∇f(xk)〉 − τ‖∇f(xk)‖2

≤ τ‖∇f(ξ)−∇f(xk)‖ · ‖∇f(xk)‖ − τ‖∇f(xk)‖2

≤ τµ‖xk+1 − xk‖ · ‖∇f(xk)‖ − τ‖∇f(xk)‖2

= τ (τµ− 1) ‖∇f(xk)‖2.
The conclusion follows. �

We highlight once again that we did not require any information other than the
regularity of ∇f . In the next section, we will illustrate several nice properties of
gradient descent when the function f to be optimised is convex.

3.2.4. Convergence of the gradient descent II: convex functions. We now make one
stronger assumption on the function f . Namely, we assume that f still satisfies
(3.3) for some constant µ > 0 and that f is convex.

Theorem 3.2. Assume that f is convex and satisfies (3.3) for some µ > 0. Finally,

assume that f has a minimiser x∗. For any τ ∈
(

0; 1
2µ

)
, for any initialisation x0,

the gradient descent with fixed step size τ , initialised at x0, satisfies

∀k ∈ N , f(xk+1)− f(x∗) ≤ ‖xk − x
∗‖2

2τ(k + 1)
.

Proof of Theorem 3.2. Recall that from Theorem 3.1 we have

∀k ∈ N , f(xk+1)− f(xk) ≤ −τ
2
‖∇f(xk)‖2.

However, by convexity of f ,

f(xk) ≤ f(x∗) + 〈∇f(xk), xk − x∗〉.
15
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Consequently,

f(xk+1) ≤ f(xk)− τ

2
‖∇f(xk)‖2

≤ f(x∗) + 〈∇f(xk), xk − x∗〉 −
τ

2
‖∇f(xk)‖2

= f(x∗) +
2

τ

(
τ

2
〈∇f(xk), xk − x∗〉 −

τ2

4
‖∇f(xk)‖2

)
= f(x∗)− 2

τ

(
‖τ

2
∇f(xk)− 1

2
(xk − x∗)‖2 −

1

4
‖xk − x∗‖2

)
= f(x∗)− 2

τ

(
1

4
‖xk+1 − x∗‖2 −

1

4
‖xk − x∗‖2

)
.

We thus deduce that

k (f(xk)− f(x∗)) ≤
k∑
i=1

(f(xi)− f(x∗)) ≤ 1

2τ
‖x0 − x∗‖2.

The conclusion follows.
�

3.2.5. Convergence of the gradient descent III: quadratic functions. We saw in the
previous paragraph that, in the case of convex functions, we could get a convergence
rate (algebraic, as it turns out) for the gradient descent. The goal of this section is
to provide a finer convergence rate in the special case of quadratic functions.

Definition 3.2. We say that a function f : Rd → R is quadratic if there exists
A ∈Md(R) and b ∈ Rd such that

∀x ∈ Rd , f(x) =
1

2
〈Ax, x〉 − 〈b, x〉.

When f is quadratic, we say that f is represented by (A, b).

A straightforward computation shows that

∇f(x) =
A+AT

2
x− b.

In particular, when A is symmetric,

∇f(x) = Ax− b

and x∗ is a critical point of f if, and only if, x∗ is a solution to Ax∗ = b.

Theorem 3.3. Let A ∈ S++
d (R), b ∈ Rd and f be the quadratic function represented

by (A, b). Letting 0 < λ1 ≤ λd(A) be the eigenvalues of A, for any τ ∈
(

0; 2
λd(A)

)
,

for any x0 ∈ Rd, the gradient descent initialised at x0 with fixed step size τ > 0
converges linearly to the unique solution of Ax∗ = b and, more specifically,

∀k ∈ N , ‖xk − x∗‖ ≤ α(τ)k‖x0 − x∗‖

with α(τ) = maxi=1,...,d |1− τλi(A)|. Finally,

min
τ∈
(
0; 2
λd(A)

)α(τ) = α

(
1

λ1(A) + λd(A)

)
=

cond(A)− 1

cond(A) + 1
with cond(A) =

λd(A)

λ1(A)
.

16
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Proof of Theorem 3.3. Observe that as A ∈ S++
d (R) all the eigenvalues of A are

positive. Furthermore, A induces a bijection, whence x∗ is uniquely defined. Ad-
ditionally, as A is symmetric, ∇f(x) = Ax − b. Now we explicitly obtain, for any
k ∈ N,

xk+1 = xk − τAxk + τb

so that, defining yk := xk − x∗,

∀k ∈ N , yk+1 = yk − τAxk + τb = yk − τA(xk − x∗) = (Id− τA)yk.

The matrix Id− τA has eigenvalues 1− τλd(A) ≤ · · · ≤ 1− τλ1(A)We deduce that

∀k ∈ N , ‖yk+1‖ = ‖(Id− τA)yk‖ ≤ ‖Id− τA‖op · ‖yk‖.

Here, we used the operator norm on Id− τA. By a straightforward iteration argu-
ment we deduce that

∀k ∈ N , ‖yk‖ ≤ ‖Id− τA‖kop ‖y0‖.

However,

‖Id− τA‖op = max
i=1,...,d

|1− τλi(A)|.

We refer to Exercise 1.1. In particular, if τ > 0 is chosen so that

(3.4) α(τ) := max
i=1,...,d

|1− τλi(A)| < 1

we obtain

∀k ∈ N , ‖xk − x∗‖ ≤ α(τ)k‖x0 − x∗‖.

It remains to pick τ > 0 so that α(τ) < 1. However

α(τ) < 1⇔ −1 < 1− τλd(A) ≤ 1− τλ1(A) < 1

which rewrites, in a compact form, as

τ <
2

λd(A)
.

The conclusion follows. Finally, it is an easy exercise to see that α is minimised at
τ∗ such that

|1− τ∗λ1(A)| = |1− τ∗λd(A)|.

Solving this equation explicitly in τ∗ yields

τ∗ =
2

λ1(A) + λd(A)
, whence α(τ∗).

�

Let us observe that the convergence rate of gradient descent is quantified by the
conditioning number of the matrix A: if cond(A) ≈ 1 then the method converges
extremely quickly if τ∗ is chosen properly, while, if cond(A) � 1 (which means
that A, as a linear map, dilates much more in certain directions than in others),
the method will a priori converge extremely slowly. It is important to have basic
reflexes regarding the conditioning number of matrix. We refer to Exercise 2.3.
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3.2.6. Convergence of the gradient descent IV: the case of strongly convex functions.
The purpose of this section is to generalise the results of the previous paragraph to
the case of strongly convex functions:

Theorem 3.4. Let f be a α-strongly convex, coercive, C 1 function with a µ-
Lipschitz gradient. Let x∗ be the minimiser of f . Then, for any x0 ∈ Rd, for any

τ ∈
(

0; 1
2µ

)
, the gradient descent initialised at x0 with fixed step size τ converges

linearly to x∗ and, more precisely, we have

∀k ∈ N , ‖xk − x∗‖ ≤ (1− ατ)
k
2 ‖x0 − x∗‖.

Proof of Theorem 3.4. We observe that, setting yk := xk − x∗, we have

∀k ∈ N , yk+1 = yk − τ (∇f(xk)−∇f(x∗)) .

Taking the squared norm on each side of this identity yields

‖yk+1‖2 = ‖yk‖2 + τ2‖∇f(xk)‖2 − 2τ〈∇f(xk)−∇f(x∗), xk − x∗〉
Now observe that

α

2
‖xk − x∗‖2 + 〈∇f(xk), x∗ − xk〉 ≤ f(x∗)− f(xk)

so that

‖yk+1‖2 ≤ (1− ατ)‖yk‖2 + 2τ(f(x∗)− f(xk)) + τ2‖∇f(xk)‖2

From (2.7)
τ2‖∇f(xk)‖2 ≤ 2τ2µ(f(xk)− f(x∗)).

Consequently

‖yk+1‖2 ≤ (1− ατ)‖yk‖2 + 2τ (1− τµ) (f(x∗)− f(xk)) ≤ (1− ατ)‖yk‖2.
�
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4. Beyond convexity

One might then wonder what happens when the function f to be optimised is
no longer convex. We will be going over two phenomena: the first one is that, even
when f is not convex, the gradient descent converges locally around non-degenerate
minimisers–this is absolutely expected. The second phenomenon is different in
nature, and amounts to investigating whether we can guarantee that the gradient
descent at least converges. It is the case, provided f only has isolated critical points.
This relies on the Zoutendijk theorem.

4.1. Convergence around non-degenerate local minimisers. The first theo-
rem that we give, the proof of which is given in Exercise 2.4, is the following:

Theorem 4.1. Let f ∈ C 2(Rd;R) have a µ-Lipschitz gradient. Let x∗ be a non-
degenerate local minimiser of f in the sense that ∇f(x∗) = 0 ,∇2f(x∗) ∈ S++

d (R).
There exists ε > 0 such that, for any τ > 0 small enough, for any x0 ∈ B(x∗; ε),
the gradient descent initialised at x0 with step size τ converges linearly to x∗.

This is unsurprising: locally around x∗, one can write

f(x) ≈ f(x∗) +
1

2
〈∇2f(x∗)(x− x∗), x− x∗〉

so the situation “should” resemble the quadratic case. The only difficulty is in
controlling the error term in the approximation above. The proof is carried out in
Exercise 2.4.

4.2. Convergence to isolated critical points. A much more interesting ex-
tension of the analysis we carried out above is the case of non-convex functions.
Observe that, in general, one can not obtain any convergence result, per the counter
examples we already encountered. Nevertheless, if the function f is coercive and
has only isolated critical points, it is possible to reach the following conclusion:

Theorem 4.2. Let f ∈ C 1(Rd;R) be coercive and have a µ-Lipschitz gradient.
Assume that f only has isolated critical points. Then for any τ > 0 small enough,
for any x0 ∈ Rd, the sequence of iterates generated by the gradient descent initialised
at x0 with step-size τ converges, and its limit is a critical point of f .

Proof of Theorem 4.2. The proof is quite lengthy, but elementary. We split it into
several parts for the convenience of the reader:

(1) The sequence {xk}k∈N remains bounded Recall that if τ ∈
(

0; 1
2µ

)
there

holds

f(xk+1)− f(xk) ≤ −τ
2
‖∇f(xk)‖2.

In particular, {xk}k∈N ⊂ {f ≤ f(x0)} = K0, which is, by assumption, a
compact set. The conclusion follows.

(2) There holds ‖xk+1 − xk‖ →
k→∞

0 Similarly, summing the previous estimates,

we obtain
τ

2

∞∑
k=0

‖∇f(xk)‖2 ≤ f(x0)− f(x∗),

which implies

(4.1) ‖xk+1 − xk‖2 = ‖∇f(xk)‖2 →
k→∞

0.
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(3) The sequence {xk}k∈N has a unique closure point Of course, this property
would suffice to conclude, as any sequence living in a compact set converges
if, and only if, it has a unique closure point. However, observe that from
(4.1) any closure point of {xk}k∈N is a critical point. As critical points
are isolated, and as K0 is compact, there are finitely many critical points
y0, . . . , yN in K0. By continuity of the gradient, we can fix ε , δ > 0 such
that

∀i 6= j ,B(yi; ε) ∩ B(yj ; ε) = ∅ , inf
K0\∪iB(yi;e)

‖∇f‖ ≥ δ > 0.

I particular, if {xk}k∈N had two distinct closure points, say y0 and y1,
it would follow from (4.1) that there exists a subsequence {xnk}k∈N ⊂
K0 \ ∪iB(yi; e), which would contradict that any closure point is critical.
Consequently, {xk}k∈N has a unique critical point, and thus converges.

�
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Exercises for Part 2

Exercise 2.1. (1) We let A =

1 3 0
0 2 0
0 0 0

, b =

0
0
1

 and f be represented by

(A, b). Can the gradient descent initialised at a given x0 ∈ Rd with fixed
step size τ > 0 converge?

(2) Assume that A is symmetric and that for any b ∈ Rd, for any x0 ∈ Rd there
exists τ > 0 such that the gradient descent generated at x0 with step size
τ > 0 converges. Show that A ∈ S++

d (R).

Exercise 2.2. We let A ∈ Sd(R) be matrix with (at least) two eigenvalues of
opposite signs. We let b = 0. Show that for any τ > 0 the set {x0 ∈ Rd :
the gradient descent initialised at x0 with fixed step size τ converges} has measure

zero.

Exercise 2.3. [Some basic properties of the conditioning number]

(1) Show that, for any symmetric positive definite matrix M , cond(M) ≥ 1.
(2) Show that for any symmetric definite positive matrix cond(M) = ‖M‖op ·
‖M−1‖op. We use this expression to define the conditioning number of any
invertible matrix M ∈ Gld(R).

(3) Show that for any M ∈ Gld(R) cond(M) ≥ 1 and that, for any orthogonal
matrix P , cond(PM) = cond(M).

(4) For any M ∈ Gld(R) show that ‖M‖op = ‖MT ‖op.
(5) Let M ∈ Gld(R) be such that Cond(M) = 1. Show that there exists x ∈ R∗

such that xM is an orthogonal matrix.

Exercise 2.4. Prove Theorem 4.1.

Exercise 2.5. Let f ∈ C 1(Rd;R) be bounded from below, satisfy the Polyak-
Lojasiewicz condition with constant α:

∀x ∈ Rd , f(x)− inf
Rd
f ≤ 1

2α
‖∇f(x)‖2.

Assume that ∇f is µ-Lipschitz. For any τ ∈
(

0; 1
µ

)
any x0 ∈ Rn, let {xk}k∈N be

the sequence generated by the gradient descent initialised at x0 with fixed step size
τ . Show that

∀k ∈ N , f(xk+1)− inf f ≤ (1− τα)k+1(f(x0)− inf f).

Exercise 2.6. The goal of this exercise is to show the convergence of the line-search
gradient descent for quadratic functions.

(1) Preliminary: Kantorovich inequality Let A ∈ S++
d (R) with eigenvalues 0 <

λ1 ≤ · · · ≤ λd. Show that

∀x ∈ Rd \ {0} , ‖x‖4 ≤ 〈Ax, x〉 · 〈A−1x, x〉 ≤ ‖x‖
4

4
· (λ1 + λd)

2

λ1λd
.

(2) Let A ∈ S++
d (R) and b ∈ Rd. Let x ∈ Rd. Solve the optimisation problem1

min
τ>0

f(x− τ∇f(x)).

1In particular, show existence and uniqueness of the optimiser
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(3) We now consider the sequence generated by the line search algorithm. Using
the explicit expression of the step size obtained at the previous question and
defining, for any k ∈ N, yk := A(xk − x∗), show that

∀k ∈ N , 〈yk+1, xk+1 − x∗〉 = 〈yk, xk − x∗〉 ·
(

1− ‖yk‖4

〈Ayk, yk〉〈A−1yk, yk〉

)
.

(4) Conclude the proof.
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