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Introduction

The goal of this course is to provide you with the standard functional analysis
material you will need when studying partial differential equations. Naturally, there
is no way to cover all the relevant results and concepts, but we settled on a (fairly
standard) choice that we hope will prove useful. Some of the lectures and notes are
inspired by the lectures of D. Gontier (who was in charge of the course in 2024).

7





Bibliography

[1] Robert A. Adams and John J. F. Fournier. Sobolev spaces, volume 140 of Pure Appl. Math.,

Academic Press. New York, NY: Academic Press, 2nd ed. edition, 2003.
[2] Nelson Dunford and Jacob T. Schwartz. Linear operators. Part I: General theory. With the

assistance of William G. Bade and Robert G. Bartle. New York etc.: John Wiley &— Sons

Ltd., repr. of the orig., publ. 1959 by John Wiley & Sons Ltd., Paperback ed. edition, 1988.
[3] William Dunham. The calculus gallery. Masterpieces from Newton to Lebesgue. Princeton,

NJ: Princeton University Press, 2005.

[4] Lawrence C. Evans. Weak convergence methods for nonlinear partial differential equations.
Expository lectures from the CBMS regional conference held at Loyola University of Chicago,

June 27-July 1, 1988, volume 74 of Reg. Conf. Ser. Math. Providence, RI: American Math-
ematical Society, 1990.

[5] Lawrence Craig Evans and Ronald F. Gariepy. Measure theory and fine properties of func-

tions. Textb. Math. Boca Raton, FL: CRC Press, 2nd edition edition, 2025.
[6] Roger Godement. Analysis II: Differential and integral calculus, Fourier series, holomorphic

functions. Transl. from the French by Philip Spain. Universitext. Berlin: Springer, 2005.

[7] Jean-François Le Gall. Measure theory, probability, and stochastic processes, volume 295 of
Grad. Texts Math. Cham: Springer, 2022.

[8] Giovanni Leoni. A first course in Sobolev spaces, volume 181 of Grad. Stud. Math. Providence,

RI: American Mathematical Society (AMS), 2nd edition edition, 2017.
[9] Mathieu Lewin. Describing lack of compactness in Sobolev spaces. available online.

[10] Pierre-Louis Lions. The concentration-compactness principle in the calculus of variations. The

locally compact case. I. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1:109–145, 1984.
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CHAPTER 1

Lebesgue Spaces

In the first one or two lectures, we will be going over the classical theory of
Lebesgue spaces Lp

1.1. Some reminders on measure theory and on Lebesgue measure

The notion of Lebesgue measure is a delicate one. Roughly speaking, there are
two ways to construct the Lebesgue measure on Rd:

(1) One starts from the construction of the one-dimensional Lebesgue measure
and proceed by tensorisation.

(2) The second one proceeds from the Carathéodory extension theorem.

Although we refer to [7] for a comprehensive and efficient treatment of basic facts
in measure theory, let us summarise the main points we will use:

(1) First, we define the Borel σ-algebra as the σ-algebra generated by open
sets.

(2) Second, one needs to prove that there exists a (unique up to multiplica-
tion) “natural”1 measure | · | on the Borel σ-algebra, which satisfies:

(a) For any (ai; bi) ∈ R2 , ai ≤ bi, |
∏d
i=1(ai; bi)| =

∏d
i=1 |bi − ai|,

(b) For any Borel measurable set A, for any x ∈ Rd, |x+A| = |A|.
(c) For any measurable set A and any λ ≥ 0, |λA| = λd|A|.

(3) Third, one needs to define the notion of Lebesgue measurable sets; to this
end, one must introduce the notion of zero Lebesgue measure set. Essen-
tially, any Lebesgue measurable set is the union of a Borel measurable
set and of a zero Lebesgue measure set. This fact relies on the inner and
outer regularity of the Lebesgue measure. When a property is satisfied up
to a set of zero measure, we say it is satisfied almost everywhere2.

As always in measure theory, the key point is to keep in mind that things can behave
weirdly, and that counter-examples are extremely important (there are Lebesgue
measurable sets that are not Borel measurable, there are non-Lebesgue measurable
sets, there are sets with empty interior that have positive measure etc). We also
refer to [3] for a historical overview of the development of measure theory.

1.2. Integrable functions and Lp spaces

We work with functions f : Rd → R. Recall that such a function is called
measurable if, for any Lebesgue measurable set A ⊂ R, f−1(A) ⊂ Rd is Lebesgue

1in the sense of Haar measures.
2To be really precise, one should rather define it as Lebesgue almost everywhere; to keep

things light, this will be implicit.
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measurable. Among these, we single out simple functions, namely, functions that
write

f =

n∑
i=1

αi1Ai

where n ∈ N∗, {αi}i=1,...,n ∈ Rd satisfies

α1 < · · · < αn

and, for any i , 1 ≤ i ≤ n, Ai is a Lebesgue-measurable set. We let E be the set of
simple functions, and E+ be the set of non-negative simple functions.

1.2.1. Definition of integrable functions. For any f ∈ E+ writing f =∑n
i=1 αi1Ai , we define ˆ

Rd
f(x)dx =

n∑
i=1

αi|Ai|.

Now, for any non-negative measurable function f : Rd → R+, we defineˆ
Rd
f(x)dx = sup

{ˆ
Rd
h(x)dx : h ∈ E+ , h ≤ f almost everywhere

}
.

The key properties of this integral are the following:

(1) Linearity: for any λ ≥ 0, for any f , g measurable and non-negative,ˆ
Rd

(λf + g) = λ

ˆ
Rd
f +

ˆ
Rd
g.

(2) Monotonicity: for any f , g measurable and non-negative, if f ≤ g almost
everywhere, then ˆ

Rd
f ≤

ˆ
Rd
g.

(3) For any measurable, non-negative functions f , g, if f = g a.e., then´
Rd f =

´
Rd g.

From this, we might define integrable functions as Lebesgue measurable func-
tions f : Rd → R such that |f | has a finite integral in the sense above. In this case,
writing f = f+ − f− with f± ≥ 0, we defineˆ

Rd
f =

ˆ
Rd
f+ −

ˆ
Rd
f−.

We let L1(Rd) denote the set of integrable functions.
The three main theorems of the Lebesgue integral are the following:

Theorem 1.1 (Monotone Convergence Theorem). If (fj) is a sequence of mea-
surable functions, increasing in the sense that fj ≤ fj+1 a.e., then f : x 7→ f(x) :=
lim fj(x) is measurable, andˆ

Rd
f(x)dx = lim

j→∞

ˆ
Rd
fj(x)dx.

In other words, increasing sequence implies that we can commute limits
´

lim =
lim

´
. The last value can be infinite, in which case f is not integrable.
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Remark 1.1 (Lebesgue is stable, Riemann is not). Note the first result, stating
that f = lim fj(x) is measurable. This is strong statement, which fails in Riemann
theory. Recall that the Riemann integral is defined on the set C0

pw of piece-wise
continuous functions (or to be more specific on its completion). However, this set
is not closed when taking increasing limits. For instance, label the rationnal numbers
by Q = {q1, q2, · · · } (it is countable), and set fN (x) = 1(x ∈ {q1, · · · , qN}). Then
fN is piece-wise continuous (the points where fN is discontinuous are isolated). We
have fN+1 ≥ fN and limN→∞ fN = 1Q, which is not piece-wise continuous.

Another related proposition is the following:

Proposition 1.1. Let {fk}k∈N be a sequence of measurable functions. The set
A of elements x such that limk→∞ fk(x) exists is measurable, and the function

f∞ :

{
A 3 x 7→ limk→∞ fk(x) ,

Ac 3 x 7→ 0

is measurable.

We refer for instance to [7, Lemma 1.5].

Theorem 1.2 (Fatou inequality). Let (fj) be a sequence of positive measur-
able functions. Then f := lim infj→∞ fj is positive, measurable, and

0 ≤
ˆ
Rd
f(x)dx ≤ lim inf

j→∞

ˆ
Rd
fj(x)dx.

In other words, ˆ
lim inf ≤ lim inf

ˆ
.

To remember the order of the inequality, just keep in mind the sequence

fj : x 7→ 1[j;+∞](x).

Then for any x ∈ R we have lim inf fj(x) = 0, although
´
Rd fj = +∞.

Finally, we have the most important theorem, the dominated convergence the-
orem3.

Theorem 1.3 (Dominated convergence theorem). Let (fj) be a sequence of
measurable functions which converges point-wise to a measurable function f a.e.
Assume there is an integrable function G so that for any j ∈ N we have |fj | ≤ G
a.e.. Then |f | ≤ G a.e. andˆ

Rd
f = lim

j→∞

ˆ
Rd
fj ,

ˆ
Rd
|fj − f | = 0.

In other words, domination implies that we can commute the limits:

lim

ˆ
=

ˆ
lim .

Here again, we refer to [7]. To understand why domination is important, the
reader should keep in mind the following three counterexamples.

• The mass goes to infinity. Let ψ ∈ C∞0 (Rd,R+) and e ∈ Rd \ {0}.
Then fj(x) := ψ(x− je) converges point-wise to f = 0. However,

´
fj =´

ψ > 0, while
´
f = 0.

3Although it could in several instances be replaced with the Egorov theorem; we refer to [12].
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• The mass spreads over. Take fj(x) = jdψ(jx). Then fj converge
point-wise to f for all x 6= 0, so a.e. However,

´
fj =

´
ψ > 0, while´

f = 0.

• The mass concentrates. Consider now fj(x) = j−dψ(x/j). Again, fj
converges point-wise to f = 0. However,

´
fj =

´
ψ > 0, while

´
f = 0.

Another fantastic result in measure theory is that, in some sense, the fundamental
theorem of calculus is true almost everywhere; this is the Lebesgue differentiation
theorem:

Theorem 1.4. Let f ∈ L1(Rd). Then, for a.e. x ∈ Rd,

f(x) = lim
ε→0

1

|B(x; ε)|

ˆ
B(x;ε)

f.

This is one of the few theorems here that requires finer properties of the
Lebesgue measure (through the Vitali covering lemma) and that can be reinter-
preted through the lens of the Radon-Nykodym theorem. We refer the reader
to [5].

1.2.2. Lp spaces. Analogously to L1, we define, for any p ∈ [1; +∞), the set
Lp(Rd) as

(1) Lp :=
{
f measurable, |f |p ∈ L1(Rd)

}
.

We introduce the notation

(2) ‖f‖p
Lp(Rd)

:=

ˆ
Rd
|f |p.

For p =∞, the set L∞ is defined as the set of Lebesgue measurable functions that
are bounded a.e. In that case, we introduce the notation

(3) ‖f‖L∞(Rd) := inf {λ ≥ 0 , |{f > λ}| = 0} .

It is important to observe that the notations are consistence, in that, if f ∈ L∞(Rd)
is compactly supported then

‖f‖L∞(Rd) = lim
p→∞

‖f‖Lp(Rd).

It is easy to check that Lp ,L∞ are vector spaces. However, the natural quantities
‖ · ‖Lp(Rd) are not norms. Rather, they satisfy the following two first axioms of
norms:

(1) Homogeneity: for any λ ≥ 0, for any p ∈ [1; +∞], for any f ∈ Lp(Rd),

‖λf‖Lp(Rd) = |λ| · ‖f‖Lp(Rd).

(2) Sub-additivity: for any p ∈ [1; +∞], for any f , g ∈ Lp(Rd), we have

(4) ‖f + g‖Lp(Rd) ≤ ‖f‖Lp(Rd) + ‖g‖Lp(Rd).

This is the Minkowski inequality, which we prove below (Theorem 1.8).

The problem is the separation property: if f = g a.e., but f 6≡ g, then

‖f − g‖Lp(Rd) = 0.

This leads to defining the equivalence relation

f ∼ g if, and only if, f = g a.e.

14
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and to defining Lp(Rd) as

Lp(Rd) := Lp(Rd)/ ∼ .

For any f ∈ Lp(Rd) (which should be thought of as an equivalence class), we can
define

‖f‖Lp(Rd) = ‖f0‖Lp(Rd)

where f0 is any representative of f (as an equivalence class).
The set Lp(Rd) is called the Lebesgue space with exponent p. Before studying

the topological properties of Lp(Rd) we need to recall the main inequalities.
For any given measurable subset Ω of Rd, we define in similar ways the spaces

Lp(Ω) and Lp(Ω).

1.3. The fundamental inequalities

1.3.1. The Jensen inequality. The key inequality is the Jensen inequality–
note that one needs to prove it differently from the Riemann Jensen inequality.

Theorem 1.5. [Jensen inequality] Let ϕ : R → R be convex, f : Rd → R be
measurable and µ : Rd → R be measurable, with

´
Rd µ = 1. Then

ϕ

(ˆ
Rd
fµ

)
≤
ˆ
Rd
ϕ(f)µ.

In particular, for any measurable subset A of Rd and any function f such that
f1A ∈ L1(Rd) we have

ϕ

(
1

|A|

ˆ
A

f

)
≤ 1

|A|

ˆ
A

ϕ(f).

Remark 1.2. It is awkward to take µ as a function rather than as a probability
measure, but this is a consequence of focusing on the Lebesgue measure.

Proof of Theorem 1.5. Assume for the sake of simplicity that ϕ is C 1 so
that, for any z , y ∈ R,

ϕ(y) ≥ ϕ(z) + ϕ′(z)(y − z).

In particular, defining

y = f(x) , z =

ˆ
Rd
fµ

we obtain

ϕ(f(x)) ≥ ϕ
(ˆ

Rd
fµ

)
+ ϕ′

(ˆ
Rd
fµ

)(
f(x)−

ˆ
Rd
fµ

)
.

Multiplying by µ and integrating yields the conclusion.
When ϕ is not C 1, one simply needs to use the following fact (valid for any

convex functions):

∀ξ ∈ R , ϕ(ξ) = sup
a ,b∈R ,a·+b≤ϕ(·)

(aξ + b)

to conclude in the same way. �
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1.3.2. The Hölder inequality and inclusion of Lebesgue spaces. We
now use the Jensen inequality to prove the following:

Theorem 1.6. Let 1 ≤ p, q ≤ ∞ be such that

1

p
+

1

q
= 1

and let Ω be a measurable subset of Rd. Let f ∈ Lp(Ω) and g ∈ Lq(Ω). Then
fg ∈ L1(Ω), and ˆ

Ω

|fg| ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω).

Proof of Theorem 1.6. Without loss of generality, we may assume that f
and g are non-negative. We introduce G := g/‖g‖Lq , which satisfies ‖G‖Lq = 1.
We then set µ(x) = Gq(x), F (x) := f(x)/Gq/p(x) and J(t) := tp, which is convex.
We apply Jensen’s inequality to (J, F, µ), which givesˆ

Ω

(
f

Gq/p

)p
Gq ≥

(ˆ
Ω

f

Gq/p
Gq
)p

.

with (we use that q(1− 1
p ) = 1 in the last equality)

ˆ
Ω

(
f

Gq/p

)p
Gq =

ˆ
Ω

fp, and

(ˆ
Ω

(
f

Gq/p

)
Gq
)p

=

(ˆ
Ω

fGq(1−
1
p )

)p
=

(ˆ
Ω

fG

)p
.

Consequently, (ˆ
Ω

f
g

‖g‖Lq

)p
=

(ˆ
Ω

fG

)p
≤
ˆ

Ω

fp,

whence

‖fg‖pL1 =

(ˆ
Ω

fg

)p
≤ ‖f‖pLp‖g‖

p
Lq .

�

A crucial consequence of the Hölder inequality is the following:

Corollary 1.1. If |Ω| <∞, then for any 1 ≤ p ≤ q ≤ ∞,

Lq(Ω) ⊂ Lp(Ω).

Remark 1.3. This inclusion is obviously not true when |Ω| =∞. For instance,
it suffices to take Ω = R, f ≡ 1, so that f ∈ L∞(R) but f is not in any Lp(R) for
any p <∞.

You should also pay attention to the fact that not only is this not true for general
measures, but that the reverse inequalities might actually holds. For instance, if we
define for any p ∈ [1; +∞)

`p :=

{
{xk}k∈N ,

∞∑
k=0

|xk|p <∞

}
and

`∞ := {{xk}k∈N , {xk}k∈N is bounded }
then for any

1 ≤ p ≤ q ≤ ∞
we have

`p ⊂ `q.
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Finally, a good exercise is the following: fix any p ∈ [1; +∞]. Find a function
f ∈ Lp(R+) such that, for any q 6= p we have f /∈ Lq(R+).

Another corollary of the Hölder inequality is the following– the proof (which is
easy) is left as an exercise:

Theorem 1.7. [General form of the Hölder inequality] Let 1 ≤ p, q, r ≤ ∞ be
such that

1

p
+

1

q
=

1

r
.

Let f ∈ Lp(Ω) and g ∈ Lq(Ω). Then fg ∈ Lr(Ω), and

‖fg‖Lr (Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω).

1.3.3. The Minkowski inequality. Finally, we go back to the Minkowski
inequality (4).

Theorem 1.8. For all f, g ∈ Lp(Ω) with 1 ≤ p ≤ ∞, we have

‖f + g‖Lp(Ω) ≤ ‖f‖Lp(Ω) + ‖g‖Lp(Ω).

In particular, the map f 7→ ‖f‖Lp(Ω) is convex. If 1 < p < ∞ this map is strictly
convex.

Proof of Theorem 1.8. We haveˆ
Ω

|f + g|p =

ˆ
Ω

|f + g| · |f + g|p−1 ≤
ˆ

Ω

|f | · |f + g|p−1 +

ˆ
Ω

|g| · |f + g|p−1.

We use the Hölder inequality with f ∈ Lp(Ω) and |f + g|p−1 ∈ Lq with q = p
p−1 ,

and get ˆ
Ω

|f | · |f + g|p−1 ≤
(ˆ

Ω

|f |p
)1/p(ˆ

Ω

|f + g|p
) p−1

p

.

This gives ‖f + g‖pLp(Ω) ≤
(
‖f‖Lp(Ω) + ‖g‖Lp(Ω)

)
‖f + g‖p−1

Lp(Ω), which is equivalent

to the required inequality. �

1.4. Lp as vector spaces

In this section, we review several important topological facts about Lebesgue
spaces.

1.4.1. Lebesgue spaces as Banach spaces. The first topological fact about
Lebesgue spaces is that they are Banach spaces, in the sense that any Cauchy
sequence admits a limit in that space. We summarise this in the following theorem:

Theorem 1.9. For any 1 ≤ p ≤ ∞, the Lebesgue space Lp(Rd) is a Banach
space.

We will see, in the proof of this theorem, the following result, that we single
out for easier referencing:

Proposition 1.2. Let {fk}k∈N ∈ Lp(Rd)N and f ∈ Lp(Rd) be such that

‖fk − f‖Lp(Rd) →
k→∞

0.

Then there exists a subsequence of {fk}k∈N that converges almost everywhere to f .

17
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Proof of Theorem 1.9. We begin with the case p < ∞. We consider a
Cauchy sequence (for the Lp topology) {fk}k∈N. Of course, to obtain the result,
it suffices to prove that there exists a subsequence of {fk}k∈N that admits a limit
f ∈ Lp (for the Lp topology), as the fact that we work with a Cauchy sequence
will then entail the convergence of the entire sequence to f . Observe that, as the
sequence is Cauchy, we can assume, up to extraction, that

(5) ∀k ∈ N , ‖fk − fk+1‖Lp(Rd) ≤
1

2k
.

Now, observe that the series

k∑
i=1

(fi+1 − fi)(x)

is absolutely converging for a.e. x ∈ Rd. Indeed, we have

ˆ
Rd

( ∞∑
k=1

|fk+1 − fk|

)p
= lim
N→∞

ˆ
Rd

(
N∑
k=1

|fk+1 − fk|

)p
by the monotone convergence theorem

= lim
N→∞

(
N∑
k=1

‖fk+1 − fk|‖Lp(Rd)

)p
by the Lp triangle inequality

<∞ by (5).

Consequently, for a.e. x ∈ Rd, we have

∞∑
k=1

|fk+1 − fk|(x) <∞

which implies that, for a.e. x ∈ Rd, the sequence {fk(x)}k∈N converges, say to
f(x). By Proposition 1.1, the function

f : x 7→ f(x) if {fk(x)}k∈N converges, 0 otherwise

is measurable. Furthermore,

f(x) = lim
N→∞

f1(x) +

N∑
k=1

(fk+1(x)− fk(x))

and the Fatou lemma implies that f ∈ Lp(Rd). Finally,

lim
n→∞

ˆ
Rd
|f − fn|p = lim

N→∞
lim
n→∞

ˆ
Rd
|fN+1 − fn|p

≤ lim
n→∞

1

2np

= 0.

This concludes the proof in the case p <∞. The case p =∞ is straightforward. �
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1.4.2. Separability of Lebesgue spaces. We now turn to another ques-
tion, that of the separability of Lebesgue spaces. Recall that a Banach space is
called separable if it admits a countable, dense subset. The main theorem is the
following:

Theorem 1.10. • For any p ∈ [1; +∞), the space Lp(Ω) is separable.
The set of compactly supported, continuous functions is dense in Lp(Rd).

• L∞(Ω) is not separable.

Proof of Theorem 1.10. We begin with the case p < ∞. Of course, using
the density of points with rational coordinates in Rd, it suffices to show that the

set of simple functions f =
∑N
i=1 αi1Ai , where the Ai’s are measurable, is dense

in Lp. Let f ∈ Lp(Ω). As we can split f into its positive and its negative part,
we can assume that f is non-negative. We consider, for any N ∈ N and any
0 ≤ j ≤ N2N−1, the sets

AN := {f ≥ N} , Bj,N :=

{
j

2N
≤ f ≤ j + 1

2N

}
.

We finally define

fN := N1AN +

N2N−1∑
j=0

j

2N
1Bj,N .

Then it is readily checked that this sequence is increasing, and converges pointwise
to f . From the monotone convergence theorem, we deduce that

‖fN − f‖Lp(Ω) →
N→∞

0.

In particular, taking the αi and the coordinates of the Ai’s to be rational, we obtain
the result.

Let us now show that L∞(Ω) is not separable. We claim that it suffices to show
that L∞(Rd) is not separable. Indeed, should L∞(Rd) be separable, with a dense
countable family {fk}k∈N, then it is readily checked that the family {fk1Ω}k∈N is
a countable, dense family in L∞(Ω). Regarding the non-separability of L∞(Rd),
simply consider the family {fr}r∈R+ := {1B(0;r)}r∈R+ . This family is uncountable

and, for any r 6= r′, ‖fr − fr′‖L∞(Rd) = 1. Consequently, L∞(Rd) can not admit a
countable dense subset. �

1.4.3. Duality in Lebesgue spaces I: basic facts about duality. The
last property of Lebesgue spaces as Banach spaces has to do with duality or, in
other words, with linear forms on Lebesgue spaces. Recall that the dual of the
space Lp(Ω) is the set of all continuous linear forms T : Lp(Ω) → R. Before
we state our main theorem (Theorem 1.13 below) we need to recall some basic
facts about duality in general Banach spaces. As always, the main tool here is the
Hahn-Banach theorem, which we give in analytic form:

Theorem 1.11. [Hahn-Banach, Analytic form] Let (E, ‖·‖) be a Banach space,

let F be a subspace of E and T ∈ F ′. There exists T̃ ∈ E′ such that

T̃
∣∣∣
F

= T , ‖T̃‖E′ ≤ ‖T‖F ′ .

Observe that we do not require F to be closed, as any continuous linear form
on F can be extended to the closure F̄ (we leave this as an exercise). We do not
prove this theorem here–in the finite dimensional setting, or in the case of separable
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Banach spaces, this can be done completely by hand. However, we will use it in
the non-separable case as well, and Theorem 1.11 then relies on the Zorn lemma.

A very useful consequence of the Hahn-Banach representation theorem is the
following:

Proposition 1.3. Let (E, ‖ · ‖) be a Banach space and E′ be its dual, endowed
with the norm. Then

∀x ∈ E , ‖x‖ = sup
T∈E′ ,‖T‖E′≤1

T (x).

We also give the geometric version of the Hahn-Banach theorem:

Theorem 1.12. Let (E, ‖ · ‖) be a Banach space, A ,B ⊂ E be two convex sets,
with A compact, B closed and A ∩B = ∅. There exists f ∈ E′ such that

sup
A
f < inf

B
f.

1.4.4. Duality in Lebesgue spaces II: the Riesz representation theo-
rem. The main theorem in the study of duality is the Riesz representation theorem:

Theorem 1.13. [Riesz representation theorem]

(1) Let p ∈ [1; +∞) and define p′, the Lebesgue conjugate exponent, as

1

p
+

1

p′
= 1.

There is an isometry between Lp(Ω)′ and Lp
′
(Ω), which we often abbrevi-

ate as

Lp(Ω)′ = Lp
′
(Ω).

(2) For any p ∈ (1; +∞), Lp(Ω) is reflexive, meaning that the natural injection
Lp(Ω) ↪→ Lp(Ω)′′ is a bijective isometry.

(3) The dual of L∞(Ω) is strictly larger than L1(Ω).

Remark 1.4 (Regarding reflexivity). The fact that for any p ∈ (1; +∞) the
space Lp(Ω) is reflexive is a corollary of a much more general theorem, which states
that any uniformly convex Banach space is reflexive. The fact that L2(Ω) is reflexive
is a consequence of the fact that any Hilbert space is reflexive.

Remark 1.5 (Regarding the dual of L∞). The dual of L∞(Ω) is, to put it
mildly, a space you should stay away from, as it consists of a subset of finitely
additive set-functions. We refer the brave reader to [2].

To prove this theorem, we will rely on the Radon-Nikodym theorem:

Theorem 1.14. Assume µ and ν are two non-negative Borel measures and that
µ is absolutely continuous with respect to ν in the sense that for any measurable set
A we have

ν(A) = 0⇒ µ(A) = 0.

Further assume that µ and ν are σ finite. Then there exists a ν-integrable function
f such that for all measurable subset A we have

µ(A) =

ˆ
A

fdν.
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Proof of Theorem 1.14. We only treat the case where µ and ν have finite
mass. We begin with the case µ ≤ ν. The fact that ν(Rd) < ∞ implies that
L2(ν) ↪→ L1(ν). Consider the map

Φ : L2(ν) 3 f 7→
ˆ
fdµ.

As Φ is continuous by the assumption µ ≤ ν, we deduce that there exists ψ ∈ L2(ν)
such that

∀f ∈ L2(ν) ,

ˆ
fdµ =

ˆ
ψfdν.

In particular, for any measurable set A we have

µ(A) =

ˆ
A

fdν.

We can then apply this to the general case: there exists a µ+ν measurable function
f such that for any measurable set A we have

µ(A) =

ˆ
A

fdµ+

ˆ
A

fdν.

This implies that f ≤ 1 µ + ν a.e., and that ν({f = 1}) = 0. Let N := {f = 1}.
Then

µ(A) = µ(A ∩N c) =

ˆ
A

1Nc
f

1− f
dν,

as claimed. �

We will not prove the fact that Lp(Ω)′ = Lp
′
(Ω) but we give some hints:

consider a linear map Φ ∈ (Lp(Ω))′, and define

µ : A 7→ Φ(1A).

Show that there exist two Radon measures µ± such that µ = µ+ − µ−, and such
that µ∓ is absolutely continuous with respect to the Lebesgue measure. Conclude.

It is important to keep in mind the proof that L∞(Ω)′ is strictly larger than
L1(Ω).

Proof that L1(Ω) ( L∞(Ω)′. Assume that Ω is open and bounded. The key
is once again the Hahn-Banach theorem. The set C 0

c (Ω) is closed in L∞(Ω) Define
T : C 0

c (Ω) 3 f 7→ f(x0) where x0 is any given point in Ω. Then T can be extended
to a continuous linear map on L∞(Ω), that vanishes on C 0

c (Ω\{x0}). Consequently,
if there existed ϕ ∈ L1 such that

´
Ω
ϕf = T (f), it would follows that ψ = 0, a

contradiction.
Another, similar construction would be the following: choose a f ∈ L∞ such

that dist(f,C 0
b (Rd)) > 0 and define the linear map

T : C 0
b (Rd)⊕ Rf 3 g + tf 7→ t

and show that T is continuous. Then, by the Hahn-Banach theorem, T extends to
a non trivial linear form on L∞(Rd), which vanishes on C 0

b (Rd). We can conclude
as above. �

Henceforth, we will use the notation p′ without redefining it every single time.
A useful, related fact, is the following:
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Proposition 1.4. For all 1 ≤ p ≤ ∞, and all f ∈ Lp(Ω), we have

‖f‖Lp = sup

{ˆ
Ω

fg, g ∈ Lp
′
(Ω), ‖g‖Lp′ (Ω) ≤ 1

}
.

Proof of Proposition 1.4. Once again, we need to distinguish between p ∈
(1; +∞) and p ∈ {1,∞}. Observe that by the Hölder inequality we have

sup

{ˆ
Ω

fg, g ∈ Lp
′
(Ω), ‖g‖Lp′ (Ω) ≤ 1

}
≤ ‖f‖Lp(Ω).

When p ∈ (1; +∞), we can take g0 := 1

‖f‖p−1
Lp
|f |p−2f , so that |g0| = 1

‖f‖p−1
Lp
|f |p−1.

Since f ∈ Lp(Ω) and since p′ = p/(p− 1), we have g0 ∈ Lp
′
(Ω) with

‖g0‖p
′

Lp′
=

ˆ
Ω

|g0|p
′

=

ˆ
Ω

|g0|
p
p−1 =

1

‖f‖pLp

ˆ
Ω

|f |p = 1.

On the other hand, we haveˆ
Ω

g0f =
1

‖f‖p−1
Lp

ˆ
Ω

|f |p = ‖f‖Lp ,

and the result follows.
When p = 1, it suffices to take g0 = sgn(f). When p = +∞, define, for any

ε > 0, gk := sgn(f) 1
|{f≥‖f‖L∞(Ω)−ε}|

1{f≥‖f‖L∞(Ω)−ε} and observe that
ˆ

Ω

gkf ≥ ‖f‖L∞(Ω) − ε.

Passing to the limit ε→ 0 provides the conclusion. �

1.5. Convolution and density of smooth functions in Lebesgue spaces

In this section, we study some topological properties of Lebesgue spaces, with a
particular emphasis on separability and density of particular families of functions.
The main tool, which will also be used in the study of Sobolev spaces, is convolution.

1.5.1. Convolution in Lebesgue spaces. In this section, we take Ω = Rd.
Let f, g be two measurable functions. We define the convolution f ∗ g by

(f ∗ g)(x) :=

ˆ
Rd
f(y)g(x− y)dy.

It is readily checked that the convolution product is both commutative and as-
sociative. From the Hölder inequality (Theorem 1.6), the convolution product is
well-defined for any f ∈ Lp(Rd) , g ∈ Lq(Rd), with 1

p + 1
q = 1 and, in that case,

‖f ∗ g‖L∞(Rd) ≤ ‖f‖Lp(Rd)‖g‖Lq(Rd).

The advantage of convolution is its regularising property, which we shall see in
more details when studying elliptic equations and their fundamental solutions. In
general, f ∗g is at least as regular as f and as g. This is formalised in the following
theorem:

Theorem 1.15. Let f ∈ Lp(Rd) and let g ∈ C k(Rd) with compact support.
Then f ∗ g ∈ C k(Rd) and, for any 0 ≤ i ≤ k,

∇i(f ∗ g) = f ∗ (∇ig).
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Proof of Theorem 1.15. The proof of this theorem is essentially a combi-
nation of the dominated convergence theorem and of the fact that differentiability
of a function follows from the continuity of the partial derivatives. Let ei be the
i-th canonical vector of Rd. We have

1

t
((f ∗ g)(x+ tei)− (f ∗ g)(x)) =

ˆ
Rd
f(y)

[
1

t
(g(x− y + tei)− g(x− y))

]
dy.

Since g is smooth, the term in bracket converges pointwise to (∂ig) (x−y) as t→ 0.
In addition, using the mean value theorem, there is c in the segment [x−y, x−y+tei]
so that∣∣∣∣f(y)

[
1

t
(jε(x+ te1 − y)− g(x− y))

]∣∣∣∣ = |f(y)(∂ig)(c)| ≤ ‖(∂ig)‖L∞ |f(y)|,

which is integrable in y, and independent of t. We can thus conclude by the domi-
nated convergence theorem that ∂i(f ∗ g) is well-defined. Applying the dominated
convergence theorem once more, these partial derivatives are continuous, and we
can conclude by induction that f ∗ g ∈ C k. �

We now consider a compactly supported function ψ ∈ C∞(Rd) that satisfies

0 ≤ ψ ≤ 1 , supp(ψ) ⊂ B(0; 1) ,

ˆ
Rd
ψ = 1.

The existence of such a function ψ is a standard exercise in analysis (think of

x 7→ e−
1
x2 ...). We now introduce the sequence {ψk}k∈N, defined as follows:

∀k ∈ N , ψk : x 7→ 2dkψ
(
2kx
)
.

Such a sequence is called a mollifier and serves to approximate any Lp function
by a sequence of more regular functions.

Theorem 1.16. Let 1 ≤ p < ∞. Let f ∈ Lp(Rd) and define, for any k ∈ N,
fk := (f ∗ ψk). Then:

(1) For any k, fk ∈ C∞(Rd).
(2) Furthermore,

(6) ‖fk − f‖Lp(Rd) →
k→∞

0.

In the proof of this theorem, we will be using the weak convergence of transla-
tion operators in Lp spaces.

Proposition 1.5. Let p ∈ [1; +∞). Define, for any τ ∈ Rd and any f ∈
Lp(Rd), mτ (f) := f(· − τ). Then

∀f ∈ Lp(Rd) , ‖mτ (f)− f‖ →
τ→0

0.

Proof of Proposition 1.5. By the density of simple functions in Lp(Rd), it
suffices to prove the result for f simple. However, this amounts to showing that,

for any measurable orthotope A =
∏d
i=1(ai; bi) with finite measure,ˆ

Rd
|1A − 1A+τ |p →

τ→0
0.

This is however a simple computation. Alternatively, one can also work with com-
pactly supported continuous functions. �
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Remark 1.6. This proposition is obviously wrong when p = +∞. Indeed, just
take f = 1[0;1]. Then, for any τ 6= 0, ‖mτ (f)− f‖L∞(Rd) = 1.

Proof of Theorem 1.16. The first point is a consequence of Theorem 1.15.
As for the second point, let us rewrite

(fk−f)(x) =

ˆ
Rd
f(y)ψk(x−y)dy−f(x)

ˆ
Rd
ψk(x−y)dy =

ˆ
Rd

(f(x− y)− f(x))ψk(y)dy.

We deduce

|(fk − f)(x)| ≤
ˆ
Rd
|f −my(f)|(x) · |ψk(y)|

1
p · |ψk(y)|

1
p′ dy

so that ˆ
Rd
|fk − f |p ≤

ˆ
Rd

∣∣∣∣ˆ
Rd
|f −my(f)|(x) · |ψk(y)|

1
p · |ψk(y)|

1
p′ dy

∣∣∣∣p dx
≤
ˆ
Rd

ˆ
Rd
|f −my(f)|p(x) · |ψk(y)| · ‖ψk‖

p
p′

L1(Rd)
dydx

by the Hölder inequality

≤
ˆ
y∈supp(ψk)

sup
z∈supp(ψk)

‖mz(f)− f‖Lp(Rd) · |ψk(y)|dy

→
k→∞

0

where the last limit is obtained as a consequence of supp(ψk) ⊂ B(0; 2−k) and from
Proposition 1.5. �

Remark 1.7 (Uniform convergence for the strong Lp topology). Can we make
the previous result uniform, meaning, do we have

(7) sup
‖f‖

Lp(Rd)
≤1

‖fk − f‖Lp(Rd) →
k→∞

0?

This answer to this question is (naturally) no. To give an example, unfortunately,
we have to jump ahead and to use a bit of (L2) Fourier transform. Assuming that
(7) held with p = 2, using the fact that the Fourier transform of fk is

f̂k(ξ) = ψ̂k(ξ)f̂(ξ)

and the fact that ·̂ is an L2 isometry, this would entail that

sup
f̂∈L2(Rd) ,‖f̂‖

L2(Rd)
≤1

ˆ
Rd
|f̂(ξ)|2|1− ψ̂k(ξ)|2dξ →

k→∞
0.

This in turn proves that, uniformly in ξ, k,

|1− ψ̂k(ξ)|2 →
k→∞

0.

Nevertheless, take any ξ0 such that ψ̂(ξ0) 6= 0 , ψ̂(ξ0) 6= 1 (why does such a ξ0
exist?), and observe that

ψ̂k(2kξ0) = ψ̂(ξ0).

This concludes the proof.
It is however possible to prove that if we have a uniform Lp bound on the

gradient of f , then the answer is positive. In the case p = 1 it is an elementary but
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good exercise to prove the following estimate: assume that f ∈ C 1
c (Rd). Show that

there exists a constant C that only depends on ψ such that

‖fk − f‖L1(Rd) ≤ C2−k‖∇f‖L1(Rd).

1.6. Convergence in Lp spaces

The goal of this paragraph is to provide some information regarding the differ-
ent types of convergences in Lp spaces.

1.6.1. A reminder on the Riesz theorem. We begin this section, devoted
to the exploration of various aspects of compactness, with a reminder on the Riesz
theorem:

Theorem 1.17 (Riesz). Let E be a Banach space. The following statements
are equivalent:

(1) The unit ball is sequentially compact.
(2) E is finite dimensional.

Proof of Theorem 1.17. One direction is immediate. Now, assume that
E is infinite dimensional. Fix a unit vector x1. Then we claim that there exists
x2 ∈ §(0; 1) such that ‖x1 − x2‖ ≥ 1

2 . Fix x′1 ∈ E ⊂ Rx1. As the vector space
V1 := Rx1 is closed, δ := dist(x′1, V1) > 0. In particular, there exists y1 ∈ V1 such
that

δ ≤ dist(x′1, y1) ≤ 2δ.

We set

x2 :=
x′1 − y1

‖x′1 − y1‖
.

Then we deduce that

‖x1 − x2‖ =

∥∥∥∥ x′1 − z1

‖x′1 − y1‖

∥∥∥∥ for some z1 ∈ V1

≥ δ

2δ

≥ 1

2
.

Iterating this construction, we deduce that there exists a sequence {xk}k∈N such
that, for any k , k′ ∈ N,

‖xk − xk′‖ ≥
1

2
,

which implies that it can not have any converging subsequence, thereby concluding
the proof. �

1.6.2. Different types of convergence: a crash course on weak topolo-
gies. In this first paragraph, we recall the basic definitions of weak and strong con-
vergence in Banach spaces; the notations are the same as in paragraph 3.11. Let
E be a Banach space. We can consider several topologies on E. The more natural
one is the strong topology, defined by the following notion of convergence:

xn −−−−→
n→∞

x, iff ‖xn − x‖E → 0. (strong convergence).
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We can also define the weak topology of E. This one is defined by the following
notion:

xn ⇀
n→∞

x, iff ∀T ∈ E′, T (xn − x)→ 0. (weak convergence).

Finally, we sometime use the weak-∗ topology. This only applies if E = F ′ is
already the dual space of another Banach space F . Then

xn ⇀
n→∞

x, iff ∀f ∈ F, (xn−x)(f)→ 0. (weak-* convergence if E = F ′).

Remark 1.8 (A big word of caution). Weak topologies have fewer open sets,
and therefore have more compact sets, which is the main reason it was introduced
and studied. The weak topology has some surprising properties (if, instead of defin-
ing it through convergence, we did so using open sets, then any open set would be
unbounded whenever E is infinite dimensional; as we do not touch on topological
vector spaces in these lectures we do not dwell on this aspect).

In general, the dual of a Banach space is much better behaved than the Banach
space itself when it comes to compactness and weak convergence. This is due to the
Banach-Alaoglu theorem which we state below.

Remark 1.9. In the finite dimensional case, weak and strong convergence are
equivalent.

Remark 1.10 (The basic example of weak convergence: Hilbert spaces). Take
any infinite dimensional separable Hilbert space (H, 〈·, ·〉) with a Hilbert basis {ek}k∈N.
We know that by the Plancherel identity there holds, for any x ∈ H,

‖x‖2 =

∞∑
k=0

|〈x, ek〉|2

which implies that for any x ∈ H we have 〈x, ek〉 →
k→∞

0. From the Riesz repre-

sentation theorem, we deduce that ek ⇀
k→∞

0, although ‖ek‖ = 1. This gives the

example of a weakly converging sequence that is not strongly converging.
More generally, consider a sequence {xk}k∈N ∈ HN that writes

∀k ∈ N , xk =

∞∑
j=0

αk,jej .

Prove that

xk ⇀
k→∞

x =

∞∑
j=0

α∞,jej

if, and only if,

∀j ∈ N , αk,j →
k→∞

α∞,j .

In other words, in the case of Hilbert spaces:

(1) For a bounded sequence, the weak convergence is equivalent to the point-
wise convergence of the coefficients (is it true without the boundedness
assumption?).

(2) The strong convergence implies the uniform convergence of the coefficients
(is the converse true?).

The main theorem related to weak and strong convergence is the following:
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Theorem 1.18. (1) If xk →
k→∞

x strongly in E, then xk ⇀
k→∞

x weakly.

(2) If E is reflexive, then the weak-* convergence on (E′)′ = E is equivalent
to the weak convergence on E.

(3) If xk ⇀
k→∞

x weakly in E, then {xk}k∈N is bounded in E and

(8) ‖x‖ ≤ lim inf
k→∞

‖xk‖.

(4) If xk →
k→∞

x strongly in E, and Tk ⇀
k→∞

T weakly in E′, then Tk(xk) →
k→∞

T (x).

Remark 1.11. The last point of the theorem states that weak convergence+strong
convergence implies convergence. In general, if xk ⇀

k→∞
x weakly in E and if

Tk ⇀
k→∞

T weakly in E∗, there is no reason that

Tk(xk) →
k→∞

T (x).

A classical example is the following: take again a Hilbert space (H, 〈·, ·〉) and a
Hilbert basis {ek}k∈N. We saw in Remark 1.10 that ek ⇀

k→∞
0. However, defining

Tk : x 7→ 〈x, ek〉 this gives

∀k ∈ N , Tk(xk) = 1.

Proof of Theorem 1.18. The only non-immediate point is the boundedness
of every weakly converging sequence. We do not prove it here, as it relies on the
Banach-Steinhaus theorem. �

1.6.3. The Banach-Alaoglu theorem and reflexivity of Banach spaces.
The most important theorem is the Banach-Alaoglu theorem:

Theorem 1.19. Let (E, ‖ ·‖) be a separable Banach space. Then any bounded
set B of E′ is sequentially compact for the weak-* topology.

Proof of Theorem 1.19. As E is separable, let {uk}k∈N be a countable,
dense subset of E. Let {Tj}j∈N ∈ (E′)N be a bounded family of linear forms on E.
We argue by the Cantor diagonal process to show that there exists a subsequence
{nk}k∈N such that

∀k ∈ N , {Tnj (uk)}j∈N has a limit T (x).

To this end: first find an extractor φ0 such that

Tφ0(j)(u0) →
j→∞

T (u0),

then φ1 such that

Tφ0(φ1(j))(u1) →
j→∞

T (u1)....

and finally set

Tnj := Tφ0(φ1(...(φj(j)))).

It is clear that for any k , k′, T (xk + xk′) = T (xk) + T (xk′). Furthermore, since
{Tj}j∈N is bounded in E′, so is T . This implies that T can be extended to a
continuous linear form on E, and this completes the proof. �

For further reference, we reformulate this theorem in the case of Lebesgue
spaces:
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Theorem 1.20. (1) Let 1 < p <∞. If {fk}k∈N is a bounded sequence in
Lp(Ω), then there is a subsequence {φ(k)}k∈N and an element f ∈ Lp(Ω)
such that {fφ(k)}k∈N weakly (in the weak Lp(Ω) sense) or weakly-* (seeing

the weak topology on Lp(Ω) as the weak-* topology on Lp
′
(Ω)′)converges

to f .

(2) If {fk}k∈N is a bounded sequence in L∞(Ω), then there is a subsequence
{φ(k)}k∈N and an element f ∈ L∞(Ω) such that {fφ(k)}k∈N weakly-* con-
verges to f .

Remark 1.12 (The case p = 1). Theorem 1.20 is not true for p = 1. To see
this, consider d = 1, Ω := (−1; 1) and the sequence fk := 2k+11[−2−k;2k]. This

sequence is bounded in L1. However, it can not converge for the weak topology on
L1: for any φ ∈ C 0

c (Ω),
´

Ω
fkφ →

k→∞
φ(0). There is, however, no L1 function f∞

such that for any φ ∈ C 0
c (Ω) we have φ(0) =

´
Ω
f∞φ (we leave this as an exercise).

One would need to work in the space of Radon measures.
We will actually show later on that L1(Ω) is not the dual of any Banach space.

1.7. Strong convergence criteria in Lp(Rd)

1.7.1. Which phenomena prevent strong convergence in Lebesgue
spaces? There are essentially three phenomena that can prevent the strong con-
vergence (up to a subsequence) of a bounded sequence in Lp(Ω).

(1) When Ω = Rd (or is at any rate unbounded) the mass can go to infinity,
think of fk := 1[k;k+1]. This is a bit of cheating as, up to a translation,
the sequence converges strongly.

(2) When Ω = Rd, one can also have a vanishing type of phenomenon, where
the mass spreads out. Think, for instance, of

ψk(x) :=
1√
k
ψ
(x
k

)
where ψ is a fixed C∞c (Rd) function. Then

´
Rd ψ

2
k =

´
Rd ψ

2, but {ψk}k∈N
converges to 0. More generally, in dimension d, we can prove that for any
u ∈ L2(Rd), the sequence defined by

uk(x) :=
1

k
d
2

u
(x
k

)
converges weakly to 0. Indeed, let ϕ ∈ C∞c (Rd) be supported in B(0;R).
Then ˆ

Rd
ukϕ = k

d
2

ˆ
B(0;Rk )

uϕ(k·)

≤ k d2 ‖u‖L2(B(0;Rk )‖ϕ‖L∞(Rd)

(
R

k

) d
2

≤ C‖u‖L2(B(0;Rk )

→
k→∞

0.

(3) Finally, oscillations. This is the main hurdle, especially in the case of
bounded domain. The standard example is the following: consider, on
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(−1; 1), a function ψ ∈ Lp(Ω) extended by periodicity and set

ψk(x) := ψ(kx).

Then

ψk ⇀
k→∞

 1

−1

ψ.

This last convergence is weak if p < ∞ and weak-* if p = ∞. We leave
the proof as an exercise.

1.7.2. The case of L1(Ω): the Dunford-Pettis theorem. As we saw, the
previous theorem does not apply to L1(Ω), and the counter-example we gave was
essentially that of a concentrating sequence of functions that converges to a measure
(a dirac, in that case). This is actually the main thing that can go wrong, per the
Dunford-Pettis theorem (which we do not show here):

Theorem 1.21. Assume Ω has finite measure and let {fk}k∈N ∈ L1(Ω)N. Then
the following properties are equivalent:

(1) {fk}k∈N has a L1-weakly converging subsequence.
(2) {fk}k∈N is uniformly integrable in the following sense: for any ε > 0,

there exists δ > 0 such that for any A ⊂ Ω,

|A| ≤ δ ⇒
ˆ
A

|fk| < ε.

(3) For any ε > 0, there exists M such that

∀k ∈ N ,
ˆ
{fk≥M}

|fk| < ε.

1.7.3. The Riesz-Fréchet-Kolmogorov theorem. The main theorem pro-
viding some compactness result in Lebesgue spaces in the Riesz-Fréchet-Kolmogorov
theorem (which we do not prove here), the Lebesgue analog of the Arzela-Ascoli
theorem:

Theorem 1.22. [Riesz-Fréchet-Kolmogorov] Let p ∈ [1; +∞) and let C be a
closed, bounded subset of Lp(Rd). Then C is (sequentially) compact if, and only if,
it satisfies the two following properties:

(1) It is equi-integrable: there holds

lim
R→∞

sup
f∈C
‖f1Rd\B(0;R)‖Lp(Rd) = 0.

(2) It is equicontinuous: with the notations of Proposition 1.5,

lim
y→0

sup
f∈C
‖my(f)− f‖Lp(Rd) = 0.

Remark 1.13 (Other aspects of the problem). Other facets of weak vs. strong
convergence in Lebesgue spaces or (for the next chapter) in Sobolev spaces are to be
found in applications of the concentration-compactness principle [10]. We refer to
the expository notes of Lewin [9].

1.8. Related questions

1.8.1. Convexity, weak convergence and strong convergence.
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1.8.1.1. The Mazur lemma. There are intimate ties between weak convergence
and convexity. In this part, we offer an overview of some of these links, without
dwelling on the proofs. We begin with the equivalence between weak and strong
closedness:

Theorem 1.23. Let E be a Banach space and C ⊂ E be a convex set. Then C
is closed for the strong topology if, and only if, C is closed for the weak topology.

Proof of Theorem 1.23. One direction is obvious. Let C be a convex set
that is closed for the strong topology, let {xk}k∈N ∈ CN , xk ⇀

k→∞
x∞ and assume

by contradiction that x∞ /∈ C. Then by the Hahn-Banach theorem, we can find a
linear map f such that

sup
x∈C

f(x) < f(x∞),

in contradiction with the weak convergence. This concludes the proof. �

To some extent, this theorem means that weak convergence can “only” reach
the convex hull of a set. As a consequence of this theorem, one deduces the Mazur
lemma:

Corollary 1.2 (Mazur Lemma). Let {xk}k∈N ∈ E converge weakly to x∞ ∈
E. Then there exists a sequence of convex combinations of {xk}k∈N that converges
strongly to x∞.

1.8.2. Weak convergence becoming strong.
1.8.2.1. Weak convergence becoming strong. We present two theorems that prove

very useful in practice. The first theorem, which serves as an appetiser, is the fol-
lowing:

Theorem 1.24. Let (H, 〈·, ·〉) be a Hilbert space. Let {xk}k∈N ∈ HN converge
weakly to x∞, and assume that

‖xk‖ →
k→∞

‖x‖.

Then the convergence is strong.

Proof of Theorem 1.24. It suffices to write

‖xk − x∞‖2 = ‖xk‖2 + ‖x∞‖2 − 2〈xk, x∗〉
→
k→∞

0

as 〈xk, x∗〉 →
k→∞

0.

�

Theorem 1.24 does not seem to have much to do with convexity, when stated
as such. The next theorem helps reframe it in a more general setting:

Theorem 1.25. Let (E, ‖ · ‖) be a Banach space and assume that ‖ · ‖ is uni-
formly convex in the sense that

∀ε > 0 ,∃δ > 0 ,∀x , y ∈ S(0; 1) , ‖x− y‖ ≥ ε⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.

Let {xk}k∈N ∈ EN converge weakly to x∞ ∈ E and assume that

‖xk‖ →
k→∞

‖x∞‖.
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Then
xk →

k→∞
x∞.

Proof of Theorem 1.25. Up to considering the sequence zk := xk
‖xk‖ , which

also converges weakly to x∞, we may assume that ‖xk‖ = 1 for any k. Take T ∈ E′
such that T (x∞) = 1 = ‖T‖. By weak convergence, we deduce that

T (xk) →
k→∞

1.

Consequently, ∥∥∥∥T (x∞ + xk
2

)∥∥∥∥ ≤ ‖T‖ · ∥∥∥∥xk + x∞
2

∥∥∥∥ ≤ 1.

In particular, ∥∥∥∥xk + x∞
2

∥∥∥∥ →k→∞ 1.

By uniform convexity, this implies ‖xk − x∞‖ →
k→∞

0. �

Remark 1.14 (The Milman-Pettis theorem). The Milman-Pettis theorem en-
sures that uniformly convex Banach spaces are reflexive, so that one does not need
distinguish between the weak topology on E and the weak-* topology on E seen as
the dual of E′.

Remark 1.15 (Some examples of (non-)uniformly convex spaces and failure
of the theorem). This theorem applies to Lp spaces for any p ∈ (1; +∞) (prove
that they are uniformly convex). However, it is easy to see that L∞ and L1 are
not uniformly convex. One might then ask if, in that case, the theorem might still
be true, either with the weak of with the weak-* topology. This is not the case:
for instance, consider, in L∞(Ω) endowed with the weak-* topology, the follow-
ing sequence: fk := 1E + gk1Ec where gk is a sequence of characteristic func-
tions converging weakly to a constant. Then the weak limit f∞ of fk satisfies
‖f∞‖L∞(Ω) = 1 = limk→∞ ‖fk‖L∞(Ω), but the convergence is not strong. Simi-

larly, consider L1(Ω) endowed with the weak topology, and (any)weakly converging
sequence of non-negative unctions {fk}k∈N satisfyingˆ

Ω

fk = 1.

Then, f∞ being the weak limit of that sequence, we have
´

Ω
f∞ = 1. Thus, if the

theorem held, it would imply that any weak limit is strong, which is obviously false
(exercise: provide a counter-example).

Remark 1.16 (Are unit balls special?). One might wonder whether the as-
sumptions of this theorem can be weakened by asking: is it true that, if K ⊂ E is
a convex set, and if {xk}k∈N ∈ KN converges weakly to an extreme point x∞ of K,
then the convergence is strong? The answer is no: consider the Hilbert space `2(N),
endowed with its canonical basis {ek}k∈N. Consider the set K = Conv({ek}k∈N)
and the sequence {ek}k∈N. By the Plancherel formula, ek ⇀

k→∞
0. However, we can

show that 0 is an extreme point of K: indeed, assuming that 0 = (1− t)x+ ty for
some x , y ∈ K, it follows that, for any k ∈ N, 0 = (1 − t)〈x, ek〉 + t〈y, ek〉 ≥ 0
whence x = y = 0. Since the convergence is not strong, the conclusion follows.

1.8.2.2. Some example of weak convergence becoming strong: the Visintin the-
orem.
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CHAPTER 2

Distributions and fundamental solutions

This is going to be a much shorter chapter, devoted to a very basic course in
distribution theory. The main reference regarding distribution theory remains, to
this day, the book of Schwartz. We also refer to [6,11].

Notations: multi index etc, ∂α, ∂α

2.1. Fundamental solutions and distributions

2.2. The basic idea(s) behind distributions

2.2.1. Basic definitions. Ω being an open set in Rd, we let D(Ω) denote the
set of compactly supported, C∞ functions.

Definition 2.1. A distribution T is a linear map T : D(Ω)→ R that satisfies
the following: for any compact set K ⊂ Ω, there exists NK ∈ N and cK such that

∀ϕ ∈ C∞c (K) , |T (ϕ)| ≤ cK
∑
|α|≤NK

‖∂αϕ‖L∞(K).

The set of distributions is denoted D′(Ω).

Remark 2.1 (Regarding the order of a distribution). We list some comments:

(1) If Ω = Rd and if the integer NK can be chosen independent of K, say N ,
we say that T has finite order N .

(2) An example of distribution is T : ϕ 7→ ϕ(0), which is of order 0. On the
other hand, it is easy to construct an example of a distribution that does
not have finite order: define

T : ϕ 7→
∞∑
k=0

kϕ(k)(k).

Then T clearly defines a distribution, but it can not have finite order.
(3) Schwartz quickly obtained a generalisation of the Riesz duality theorem

(the set of Radon measures on a compact set K is the dual of C (K)): on
any compact set K ⊂ Rd, there exist Radon measures µi’s such that

∀ϕ ∈ C∞c (K) , T (ϕ) =
∑
|α|≤Nk

ˆ
K

∂αϕ, dµα.

We will revisit the last two points in the next paragraph.

The next thing we need to do is to define a topology on distributions; unsur-
prisingly, we are going to work with the analog of the weak-* topology (keep in
mind that C∞c (Rd) can not be a Banach space for any reasonable topology).
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Definition 2.2. Let {Tk} ∈ (D′(Ω))N be a sequence of distributions and T∞ ∈
D′(Ω). We say that the sequence converges to T∞ in the sense of distributions and
we write

Tk
D′(Ω)→
k→∞

T∞

if
∀ϕ ∈ D(Ω) , Tk(ϕ) →

k→∞
T∞(ϕ).

As a consequence of the Banach-Steinhaus theorem (for the interested reader,
one would need to prove it in Fréchet spaces), we have the following marvellous
property of distributions:

Proposition 2.1. Let {Tk}k∈N ∈ (D′(Ω))N and assume that there exists a
linear function T∞ such that

∀ϕ ∈ D(Ω) , Tk(ϕ) →
k→∞

T∞(ϕ).

Then T∞ ∈ D′(Ω) and

Tk
D′(Ω)→
k→∞

T∞.

Finally, we define the derivatives of distributions by analogy with the smooth
case: indeed, recall that for any f ∈ C 1(Ω), for any ϕ ∈ D(Ω), as ϕ is compactly
supported, it follows that for any i ∈ {1, . . . , d},ˆ

Ω

∂f

∂xi
ϕ = −

ˆ
Ω

∂ϕ

∂xi
f.

Definition 2.3. If T ∈ D′(Ω), and α is a multi-index the ∂α derivative of T
is the distribution noted ∂αT and defined by

∂αT (ϕ) := (−1)|α|T (∂αϕ).

Of course, this definition extends to any differential operator L =
∑
α aα(·)∂α,

for instance the Laplacian L = −
∑d
i=1

∂2

∂x2
i
, for instance by defining

−∆T : D(Ω) 3 ϕ 7→ T (−∆ϕ).

The beautiful fact with distributions is that, almost by definition, we have the
following stability result:

Proposition 2.2. Assume that Tk
D′(Ω)→
k→∞

T∞. Then, for any multi-index α,

∂αTk
D′(Ω)→
k→∞

∂αT∞.

From the Schwartz theorem, all partial derivations commute for distributions.

2.2.2. Particular examples.
2.2.2.1. Measure induced distributions. As we already noted, for any Radon

measure µ on Ω, the operator Tµ : ϕ 7→
´

Ω
ϕdµ defines a (zero order) distribu-

tion. Among these, the most important one is the dirac mass δ0, whose associated
distribution, still denoted δ0, is given by

δ0 : ϕ 7→ ϕ(0).

Observe that the convergence in the sense of measures implies the convergence in
the sense of distributions.
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2.2.2.2. Function induced distributions. For 1 ≤ p ≤ ∞, we set
(9)
Lploc(Ω) := {f measurable on Ω such that, for all compact K ⊂ Ω, f ∈ Lp(K)} .

The sets Lploc(Ω) are not normed spaces but it is an exercise to check that

Lp(Ω) ⊂ Lploc(Ω) ⊂ L1
loc(Ω),

so the space L1
loc(Ω) contains all the Lp(Ω) spaces: if a result is true for all f ∈

L1
loc(Ω), it is also true for f ∈ Lploc(Ω) and for f ∈ Lp(Ω).

The following theorem shows that one can distinguish L1
loc functions (hence all

Lp functions) among distributions.

Theorem 2.1 (L1
loc functions are determined by distributions). If f ∈ L1

loc(Ω),
then Tf : φ 7→

´
Ω
fφ is a distribution. Furthermore, if f, g ∈ L1

loc(Ω), then Tf = Tg
in D′(Ω) if, and only if, f = g a.e.

The proof is elementary, and we leave it as an exercise.
An important example is that of the Heaviside function

H : R 3 x 7→ 1(−∞:0](x).

Its importance comes from the fact that

H ′ = −δ0.

Indeed, it suffices to observe that, for any ϕ ∈ D(R),ˆ
R
H ′ϕ = −

ˆ
R
Hϕ′

= −
ˆ 0

−∞
ϕ′

= −ϕ(0).

2.2.2.3. Convolution and distributions. We can define several operations on dis-
tributions, but the one that will be most useful when discussing fundamental solu-
tions of elliptic PDEs is the convolution with a smooth function. We only work in
the case Ω = Rd, although one could make it work in an open set (but this would
create irrelevant complications regarding the support of the function we take the
convolution with). Observe that, for any (smooth enough) functions f , g , ϕ, we
haveˆ
Rd

(f∗g)φ :=

¨
(Rd)2

f(x)g(y−x)φ(y)dydx =

¨
(Rd)2

f(x)φ(z)g(z−x)dxdz =

ˆ
Rd
f(g̃∗φ),

where we set g̃(x) := g(−x). Thus, if T ∈ D′(Rd) and if g is a compactly supported
L1 function, we define the convolution product T ∗ g as

T ∗ g : D(Ω) 3 ϕ 7→ T (g̃ ∗ ϕ) .

The fact that T ∗ g is a distribution is immediate and left as an exercise. Just as
was the case with Lp functions, convolution smoothes distributions out:

Theorem 2.2. We retain the notations from Theorem 1.15. Let {ψk}k∈N be
a smooth approximation of unity. Then the sequence {Tk := T ∗ ψk}k∈N converges
to T in D′(Rd). In addition, for any k ∈ N, Tk can be identified with a C∞(Rd)
function, and ∂αTk = T ∗ (∂αψk).
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Then again, it suffices to work by duality and to invoke Theorem 1.15.

Remark 2.2. One can not define in a meaningful way the convolution of two
distributions in general. It is however possible to define the convolution between a
distribution and a compactly supported distribution (meaning a distribution T such
that there exists a compact set K satisfying: for any ϕ ∈ C∞c (Rd \K), T (ϕ) = 0).

Remark 2.3. Observe that for any function ϕ ∈ D(Ω) we have ϕ ∗ δ0 = ϕ.

We finally give the following:

Proposition 2.3. Let T ∈ D′(Ω) be such that ∇T = 0. Then there exists
c ∈ R such that T ≡ c.

Proof of Proposition 2.3. Let {ψk}k∈N be an approximation of unity. Then
by the preceding theorem we obtain

∇(ρk ∗ T ) = 0

whence, for any k ∈ N, ρk∗T is a constant, say ck. The sequence {ck}k∈N converges,
up to a subsequence, to some c∞ ∈ R, but also, in the sense of distribution, to T ,
whence T = c∞. �

2.3. The Fourier transform of tempered distributions

Another fundamental operation of analysis is the Fourier transform, and we
would like to define the Fourier transform of distributions (this was actually one of
the initial motivations of Schwartz). However, the situation is quite delicate.

2.3.1. The Fourier transform of functions. We begin by recalling some
basic facts about the Fourier transform of functions. For a given function f ∈
L1(Rd), we define its Fourier transform as

(10) f̂(ξ) =
1

(2π)
d
2

ˆ
Rd
e−i〈x,ξ〉f(x)dx.

We summarise the following standard facts about the Fourier transform:

Theorem 2.3. (1) For any f ∈ L1(Rd), f̂ ∈ C 0(Rd) and ‖f̂‖L∞(Rd) ≤
‖f‖L1(Rd).

(2) For any f ∈ C k(Rd) such that, for any |α| ≤ k ∇αf ∈ L1(Rd) we have

∇̂αf = i|α|ξαf̂(ξ).

(3) Conversely, if k ∈ N, if
´
Rd ‖x‖

k|f |(x)dx < ∞ then f̂ ∈ C k(Rd) and, for
any |α| ≤ k

∇αf̂(ξ) = (−i)|α|x̂αf.
(4) If f , g ∈ L1(Rd) then

f̂ ∗ g = (2π)
d
2 f̂ ĝ.

(5) If f , f̂ ∈ L1(Rd) then ̂̂
f(−·) = f.

(6) The Fourier transform can be defined as an isometry on L2(Rd).
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These facts will not be proved here.
An important formula for Fourier analysis is the following theorem, which gives

the Fourier transform of the Gaussian.

Proposition 2.4. Let, for any α > 0,

gα : x 7→ e−α‖x‖
2

.

Then

ĝα(ξ) =
1

(2α)
d
2

e−
‖ξ‖2
4α .

Proof of Proposition 2.4. First of all, recall that

ĝα(0) =

ˆ
Rd
e−α‖x‖

2

=
(π
α

) d
2

.

We then claim that it suffices to compute it in the one-dimensional case (why?).
To compute ĝα when d = 1,, it suffices to establish a differential equation, and to
observe that, by derivation and integration by parts,

ĝ′α(ξ) = −i
ˆ
R
xe−αx

2−i〈x,ξ〉dx

= − ξ

2α
ĝα(ξ)

and solving this ODE gives the desired result. �

2.3.2. The Fourier transform on Lp(Rd).

2.3.3. Tempered distributions and their Fourier transform. Of course,
we would like to define the Fourier transform of a distribution T by duality, setting,
for instance

T̂ : D(Rd) 3 ϕ 7→ T (f̂).

This is not possible, as one might very well have ϕ ∈ D(Ω), although ϕ̂ /∈ D(Rd).
Thus, we need to find a space that is bigger than D(Rd), and that is stable by
Fourier transform. Based on the properties we recalled above, the natural class to
consider is the following:

Definition 2.4. The Schwartz class S(Rd) is defined as the set of functions
f ∈ C∞(Rd) such that

∀k ∈ N , sup
x∈Rd

sup
|α|≤k

(1 + |x|)k |∇αf | <∞.

This space is endowed with a Fréchet structure and has the following nice
properties (which are left as exercises):

Proposition 2.5. S(Rd) is stable by derivation and multiplication by a poly-
nomial, and these operations are continuous for the Fréchet space structure on
S(Rd). Furthermore, D(Rd) is dense in S(Rd), and the Fourier transform is an
isomorphism of S(Rd).

We can now define the class of distributions we can take the Fourier transform
of–it is the dual of S(Rd):
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Definition 2.5 (Tempered distribution). A distribution T is said to be tem-
pered if there exist k ∈ N , C such that

∀ϕ ∈ D(Rd) , |T (ϕ)| ≤ C sup
|α|≤k ,x∈Rd

(1 + |x|)k |∇αϕ|(x).

In that case, we write T ∈ S ′(Rd).

Observe that by density of D(Rd), this implies that a tempered distribution
can be extended to an element of the dual of S(Rd) and, conversely, any element
in the dual of S(Rd) defines a distribution. Thus, S ′(Rd) = (S(Rd))′.

Observe that the class of tempered distributions is quite large: any function
that grows at most polynomially defines a tempered distribution.

We can now define the Fourier transform oof a tempered distribution:

Definition 2.6 (Fourier transform of distributions). Let T ∈ S ′(Rd). The
Fourier transform of T is defined as

T̂ : S(Rd) 3 ϕ 7→ T (ϕ̂).

Furthermore, it defines a tempered distribution.

2.4. Fundamental solution of partial differential equations

In this section we investigate a partial differential equation with (for the time
being) constant coefficients

(11)
∑
|α|≤N

aα∂
αu = f in Rd

for a given function f : Rd → R. The following theorem boils down the study of
existence of a solution to (11) (we do not touch on the uniqueness, which does not
hold without further information on the behaviour of the solution at infinity) to
the solving of a distributional equation:

Theorem 2.4. Suppose that there exists a distribution T ∈ D′(Rd) such that∑
|α|≤N

aα∂
αT = δ0.

Then, for any f ∈ D(Rd), the C∞ function T ∗ f is a solution of (11).

Proof of Theorem 2.4. The proof is immediate from Remark 2.3. �

2.4.1. Computation of certain fundamental solutions. In this part, we
go over the basic partial differential equations and their fundamental solutions (as
well as some consequences we can draw from it). We will be relying on the Fourier
transform for tempered distributions.

2.4.1.1. Green function for the Poisson problem. We want to solve

−∆Φ = δ0

in the sense of distributions.
To determine such a fundamental solution, we observe that the Laplacian is a

rotation-invariant operator, as is δ0 viewed as a distribution. This suggests search-
ing for the fundamental solution in the form of a radial function, that is, a function
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of the form Φ = ϕ(| · |). Then, for all x 6= 0, the hypothesis ∆Φ = 0 can be written
in polar coordinates as:

∆Φ(x) =

(
∂2
rrϕ+

n− 1

r
∂rϕ

)
r=|x|

= 0.

We can solve this differential equation and obtain the following result:

Definition 2.7. Let n ≥ 2. We define on Rd \ {0} the function Φ by

Φ(x) := − 1

2π
ln(||x||2) if n = 2,

and

Φ(x) :=
1

(n− 2)Sn|x|n−2
if n > 2,

where

Sn :=
2π

n
2

Γ
(
n
2

) .
The function Φ is called the fundamental solution of the Laplacian.

Lemma 2.1. The function Φ defined above is indeed a fundamental solution of
the Laplacian in the sense of distributions.

Proof. We only treat the case n = 3; the case n = 2 is simpler, and the case
n > 3 is similar. Let us show that:

∆

(
1

|x|

)
= −4πδ0.

Already, for |x| > 0, we have ∆
(

1
|x|

)
= 0 in the classical sense. Thus, in the

sense of distributions:

∆

(
1

|x|

)
=
∑

uαD
αδ0,

where the uα are real coefficients and the sum is finite1.
Let f ∈ D(R3). Then:

〈∆
(

1

|x|

)
, f〉 =

ˆ
R3

∆f(x)

|x|
dx

= lim
ε→0

ˆ
|x|≥ε

∆f(x)

|x|
dx.

Define, for ε > 0:

Iε :=

ˆ
|x|≥ε

∆f(x)

|x|
dx.

Let us compute this quantity using the Green formula; assume supp(f) ⊆
B(0, R). Then, Green’s formula applied to B(0, R) \ B(0, ε) gives:

Iε =

ˆ
|x|=ε

{
1

|x|
· −y
|y|
· ∇f(y) + f(y) · y

|y|
· ∇ 1

|y|

}
dy → −4πf(0) as ε→ 0.

1This follows from the notion of homogeneity degree of a distribution.
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Indeed,∣∣∣∣∣
ˆ
|x|=ε

y

|y|2
· ∇f(y) dy

∣∣∣∣∣ ≤ 1

ε
‖∇f‖∞

ˆ
|x|=ε

dy︸ ︷︷ ︸
=4πε2

→ 0 as ε→ 0,

and ˆ
|x|=ε

− 1

|y|2
f(x) dy = −

ˆ
|x|=ε

1

|y|2
(f(y)− f(0) + f(0)) dy

= − 1

ε2

ˆ
|x|=ε

f(0) dy︸ ︷︷ ︸
=−4πf(0)

−
ˆ
|x|=ε

1

ε2
(f(y)− f(0)) dy︸ ︷︷ ︸

≤4π sup|x|=ε |f(x)−f(0)|→0

.

�

2.4.2. Green function for the heat equation. Let g ∈ S(Rd). We aim to
solve the heat equation:

(12)

{
∂tu−∆u = 0 in [0;T ]× Rd ,
u(0, ·) = g ∈ S(Rd).

To do this, we will use Fourier theory, developed for this purpose.
Suppose we have a solution to (12) such that for all t ≥ 0, u(·, t) ∈ S(Rd) and

u is C 1 in the time variable. Fix t, and take the spatial Fourier transform of the
equation, using the convention:

û(ξ, t) :=

ˆ
Rd
u(x, t)e−ix·ξ dx

so that the Fourier inversion formula reads:

u(x, t) =
1

(2π)d

ˆ
Rd
û(ξ, t)eiξ·x dξ

With the assumptions above, the heat equation becomes:

∀ξ ∈ Rd,∀t ≥ 0, ∂tû(ξ, t) = −|ξ|2û(ξ, t)

This form is much nicer: whereas ∆ is a differential operator and couples the
spatial variables, the ξ variables are decoupled in the Fourier-transformed equation.
Thus, in discretization, the resulting matrix will be diagonal, while the discretiza-
tion of the Laplacian generally produces a non-diagonal matrix. In a way, the
Fourier transform diagonalizes constant coefficient differential operators.

Solving this ordinary differential equation, we obtain:

(13) û(ξ, t) = e−|ξ|
2tĝ(ξ).

In other words, in Fourier space, the heat equation simply multiplies the initial data
by a Gaussian. Furthermore, irreversibility appears in this expression: we cannot
reverse time and allow t < 0, otherwise the inverse Fourier transform would become
invalid.

To invert this transformation, we introduce the heat kernel:

Φ(x, t) :=
1

(2π)d

ˆ
Rd
e−|ξ|

2t+iξ·x dξ =
1

(4πt)
d
2

e−
|x|2
4t
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The solution to 12 is then given by convolution:

∀x ∈ Rd,∀t > 0, u(x, t) =
1

(4πt)
d
2

ˆ
Rd
e−
|x−y|2

4t g(y) dy(14)

∀x ∈ Rd, u(x, 0) = g(x)(15)

and this formula indeed satisfies the desired conditions.

Proposition 2.6. If g ∈ C 0(Rd) ∩ L∞(Rd), then u given by 14 satisfies:

(1) u ∈ C∞(Rd×]0; +∞[)
(2) ∂tu(x, t) = ∆u(x, t) for all x ∈ Rd, t > 0
(3) For all x ∈ Rd, u(x, t)→ g(x) as x→ x and t→ 0+

Proof. (1) This follows from successive applications of general integra-
tion theorems.

(2) This second point is evident once we notice that ∂tΦ = ∆Φ.
(3) This point is a bit more delicate: set y := x+

√
tz. Then

u(x, t) =
1

(4π)
d
2

ˆ
Rd
e−
|z|2

4 g(x+ z
√
t) dz

and this formula is still valid for t = 0. We then conclude by dominated
convergence:

|u(x, t)− g(x)| = 1

(4π)
d
2

∣∣∣∣ˆ
Rd
e−
|z|2

4 (g(x+ z
√
t)− g(x)) dz

∣∣∣∣→ 0 as x→ x, t→ 0+

�

Note that the assumptions made on g are by no means minimal: we could
allow g to have polynomial growth, or merely require that g defines a tempered
distribution.

A parabolic maximum principle appears: for example,

sup
x∈Rd

sup
t≥0

u(x, t) ≤ sup g

and similarly for infimums. Moreover, g ≥ 0 implies u ≥ 0, and even u(x, t) > 0
for all x and t > 0, unless g ≡ 0: heat propagates instantaneously throughout the
entire universe.

A natural question to ask is: is the solution u given by 14 the unique solution
to this problem? Equivalently, if g = 0, is the zero solution the only solution?
Actually, no. The issue is that the other solutions are not physically acceptable (e.g.,

they may grow like e|x|
2

at infinity). Under slightly more restrictive assumptions,
however, uniqueness can be guaranteed:

Proposition 2.7. Let u ∈ C 0(Rd × [0;T ]) ∩ L∞(Rd × [0;T ]) such that

∂tu = ∆u in D′(Rd×]0;T [).

Then u is given by (14) with g = u(·, 0).

Proof. The proof is rather clever and uses the previous proposition. First,

suppose that u is actually of class C 2 on Rd × [0;T ] and that x 7→ ∂αx ∂
β
t u(x, t) is

bounded on Rd, for t ∈]0;T [ and |α|+ |β| ≤ 2.
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Let’s move to the main idea: define, for 0 ≤ s < t ≤ T , the function vt,s
2 as

v(x, τ) :=
1

(4π(t− τ))
d
2

ˆ
Rd
e−
|x−y|2
4(t−τ) u(y, τ) dy, x ∈ Rd, τ ∈]s; t[

So, omitting the spatial dependence:

v(τ) = Φ(t− τ) ∗ u(τ), τ ∈]s; t[

Differentiate both sides in τ . Differentiation under the integral on the right is
justified by the hypotheses. Then:

∂τv(τ) = ∂τΦ(t− τ) ∗ u(τ) + Φ(t− τ) ∗ ∂τu(τ)

= −∆Φ(t− τ) ∗ u(τ) + Φ(t− τ) ∗∆u(τ)

= 0

So v depends only on space. Then, taking the limits in t and s is straightfor-
ward. The limit τ → s poses no problem, and the limit τ → s is handled using
Proposition 2.6. Note that:

u(t) = v(t) = v(s) = Φ(t− s) ∗ u(s)

Thus,

u(t) = Φ(t− s) ∗ u(s)

With s = 0, we obtain the result. If u does not satisfy the stronger assumptions
made at the start of the proof, we regularize and proceed by approximation. �

How can we use this kind of reasoning to treat the heat equation with source
terms? We now present a very general and useful method for studying certain
evolution equations.

We are now interested in the following equation:

(16)

{
∂tu−∆u = f(x, t) for t ≥ 0
u(x, 0) = g(x)

Working with suitable regularity and taking the spatial Fourier transform, we
obtain:

∀ξ ∈ Rd,∀t ≥ 0, ∂tû(ξ, t) = −|ξ|2û(ξ, t) + f̂(ξ, t)

Using ODE theory and the method of variation of constants, we get, for fixed
ξ:

∀t ≥ 0, û(ξ, t) = e−|ξ|
2tû(ξ, 0) +

ˆ t

0

e−|ξ|
2(t−s)f̂(ξ, s) ds

Taking the inverse Fourier transform we finally obtain:

∀x ∈ Rd,∀t ≥ 0, u(x, t) = (Φ(·, t) ∗ u(·, 0)) (x) +

ˆ t

0

Φ(x, t− s) ∗ f(s) ds

This is the Duhamel formula. We thus obtain a “fundamental solution of
the heat equation” in Rn+1: define Φ̃ : Rd × R→ R by:

(17) Φ̃(x, t) := H(t)
1

(4πt)
d
2

e−
|x|2
4t

2abbreviated as v to lighten notation
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where H is the Heaviside function. Note that Φ̃ is C∞ on Rn+1 \ {0}. It is also
locally integrable: indeed,ˆ

Rd
Φ̃(x, t) dx = H(t) ∈ L1

loc(R),

and the positivity of Φ̃ allows the Fubini theorem to be applied. Thus, Φ̃ defines a
distribution.

2.4.3. Green function for the wave equation. In this section, we are
interested in solving the following equation:

(18) ∂2
t u(x, t)−∆u(x, t) = f(x, t), x ∈ Rn, t ∈ R

First, we assume that f ∈ S(Rn × R). Note that, in the case of the heat
equation, we only considered future times, whereas here we are interested in the
behavior at all times. We can impose initial data. The fact that the equation is
second order in time indicates that we must impose two initial conditions:{

u(x, 0) = u0(x), x ∈ Rn
∂tu(x, 0) = v0(x), x ∈ Rn

where u0 and v0 are assumed to belong to S(Rn). Taking the spatial Fourier
transform of (18), we obtain the differential equation:

∂2
t û(ξ, t) + |ξ|2û(ξ, t) = f̂(ξ, t), ξ ∈ Rn, t ∈ R

We obtain an expression for the solution:

û(ξ, t) = cos(|ξ|t)û0(ξ) +
sin(|ξ|t)
|ξ|

v̂0(ξ) +

ˆ t

0

sin(|ξ|(t− s))
|ξ|

f̂(ξ, s) ds

Let us call this solution (A). We can also choose not to impose initial conditions
and instead select the so-called causal or retarded solution, i.e., one that tends
to zero as t→ −∞:

û(ξ, t) =

ˆ t

−∞

sin(|ξ|(t− s))
|ξ|

f̂(ξ, s) ds

We call this solution (B). Solutions (A) and (B) correspond to two different physical
problems. Let Φ be the tempered distribution on Rn × R defined by

(19) ˆ̃Φ(ξ, t) = H(t)
sin(|ξ|t)
|ξ|

This is a fundamental solution of the wave equation; we recover a convolution
product. In the study of the heat equation, Fourier decay provided regularity of
the solution, but here, the decay is not fast enough, and we may encounter non-
physical solutions. With this definition, (B) becomes

u = Φ̃ ∗ f
where the convolution is taken in both space and time. Note that this is not the only
fundamental solution; it is called the causal or retarded fundamental solution.
In low dimensions, we have explicit expressions for Φ̃:

Proposition 2.8. The retarded fundamental solution of the wave equation sat-
isfies:

(1) Case n = 1: Φ̃(x, t) = 1
2H(t− |x|)
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(2) Case n = 2: Φ̃(x, t) = 1
2π

H(t−|x|)√
t2−|x|2

(3) Case n = 3: Φ̃(x, t) = 1
4πtδ(t− |x|) = 1

4π|x|δ(t− |x|)

Before moving to the proof, recall that δ(t − |x|) is defined, by duality, as the
distribution on Rn+1 given by:

∀ϕ ∈ D(Rn+1), 〈δ(t−|x|), ϕ〉 =

ˆ +∞

0

{ˆ
|x|=t

ϕ(x, t) dS(x)

}
dt =

ˆ
R3

ϕ(x, |x|) dx

Proof. In this proof, we will take a shortcut: we start from the expressions
of Φ̃ and show that they satisfy (19).

(1) Case n = 1: Compute the Fourier transform in space: if ξ ∈ R, t ∈ R+,

ˆ̃Φ(ξ, t) =
1

2

ˆ t

−t
e−iξxdx

=
sin(|ξ|t)
|ξ|

H(t)

Thus the desired result is proved. Before moving on to other dimensions,
let’s make some comments: by direct calculation, the causal solution given
by (B) becomes

u(x, t) =
1

2

ˆ
R×R

H(t− s− |x− y|)f(y, s) dy ds

The Heaviside function selects a specific domain in space-time:

u(x, t) =
1

2

ˆ
C−(x,t)

f(y, s) dy ds

where C−(x, t) := {(y, s) : |x− y| ≤ t− s} is called the past cone of the
point (x, t).

C−(x, t) is sometimes called the domain of dependence of the
point (x, t). Consider (y, s). Can it influence u(x, t)? Yes, but only if
(x, t) lies in the domain of influence of (y, s), i.e., if (x, t) ∈ C+(y, s) :=
{(x, t) : |x−y| ≤ t−s}. This is also called the future cone of the point
(y, s). It is quite clear that

(y, s) ∈ C−(x, t)⇔ (x, t) ∈ C+(y, s)

This reflects the finite speed of wave propagation, a phenomenon also
known as the Huygens principle. Let us now turn to d’Alembert’s formula,
solution (A). It takes the form:

∀t ≥ 0, ∀x, u(x, t) =
1

2
(u0(x−t)+u0(x+t))+

1

2

ˆ x+t

x−t
v0(y) dy+

1

2

ˆ t

0

ˆ x+τ

x−τ
f(y, t−τ) dy dτ

Again, we see the same idea: we can define domains of influence, depen-
dence, etc.

(2) Case d = 2: We cautiously skip this calculation for now, as it is more
complex, and will return to it later.
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(3) Case d = 3: Here, for fixed t, δ(t − |x|) is simply the surface measure on
S(0, t). Its Fourier transform in space is obtained by direct calculation
using the Fourier transform of signed measures. If ξ ∈ R3, t > 0, then

ˆ̃Φ(ξ, t) =
1

4πt

ˆ
S(0,t)

e−ix·ξ dS(x)

We’re in trouble, but it’s time to present a very instructive calculation
specific to odd dimensions: define ψ by

∀t > 0, ∀ξ ∈ R3, ψ(ξ, t) :=

ˆ
S(0,t)

e−iξ·x dS(x)

Then

ψ(ξ, t) = 4πt
sin(|ξ|t)
|ξ|

Define the value at ξ = 0 by taking the limit. For ξ = 0, the formula
is obvious. If ξ 6= 0, then observe that ψ is rotation invariant. Letting
e3 := (0, 0, 1), we have, for all t > 0,

ψ(ξ, t) = ψ(|ξ|e3, t)

Switch to spherical coordinates:

S(0, t) = {t(sin θ cosϕ, sin θ sinϕ, cos θ) | 0 < θ < π, 0 < ϕ < 2π}
In this system, dS(x) = t2 sin θ dθ dϕ, and so

ψ(ξ, t) = ψ(|ξ|e3, t) =

ˆ π

0

{ˆ 2π

0

e−it cos θ|ξ|t2 sin θ dϕ

}
dθ

= 2πt2
ˆ π

0

e−it cos θ|ξ| sin θ dθ

= 4πt
sin(|ξ|t)
|ξ|

The miracle of odd dimension occurs in the last step where we arrive at
a function that we can integrate simply. This concludes the proof.

Write formulas (A) and (B). The causal solution becomes, with con-
volution taken in space-time:

u(x, t) = (Φ̃ ∗ f)(x, t)

=

ˆ +∞

0

{ˆ
|y|=s

1

4π|y|
f(x− y, t− |y|) dS(y)

}
ds

=

ˆ
R3

1

4π|y|
f(x− y, t− |y|) dy

We thus obtain the very elegant formula:

(20) u(x, t) =

ˆ
R3

f(y, t− |y − x|)
4π|x− y|

dy

This is one of the beautiful formulas of classical physics. Here, we integrate
over |x−y| = t−s. What the source emits arrives with a delay t−|x−y|,
and the received signal is attenuated, which is expressed by the factor

1
|x−y| . In dimension 1, however, the signal travels either to the right or

the left, and the received signal always has intensity equal to half the
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initial one. We also see that u(x, t) depends only on the values of f on
∂C−(x, t): this is the strong Huygens principle.

Formula (A) now becomes the famous Kirchhoff formula:
(21)

u(x, t) =
1

4πt

ˆ
|x−y|=t

v0(y) dS(y)+
d

dt

(
1

4πt

ˆ
|x−y|=t

u0(y) dS(y)

)
+

1

4π

ˆ
|x−y|≤t

f(y, t− |x− y|)
4π|x− y|

dy

�

2.5. The Malgrange-Ehrenpreis theorem

We conclude this chapter with a discussion of the Malagrange-Ehrenpreis theo-
rem, which guarantees the existence of fundamental solutions to partial differential
equations with constant coefficients. We refer to subsequent chapters for a differ-
ent proof for non-constant coefficients elliptic operators in domains using duality
methods.
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CHAPTER 3

Sobolev Spaces and weak formulation of elliptic
equations

In this chapter, we study a particular class of distributions given by Sobolev
space. The main reference is [8] (see also [1]).

3.1. The Dirichlet energy and the Poisson problem

One of the natural ways to motivate the introduction of Sobolev spaces is the
resolution of the following boundary value problem, the so-called Poisson problem:
for a given f : ∂Ω→ R, prove that there exists a unique solution u to the problem

(22)

{
−∆u = 0 in Ω ,

u = f on ∂Ω.

Physically, this corresponds to

3.2. Definition of the Sobolev spaces and basic properties

3.2.1. Basics and topological properties of Sobolev spaces. Through-
out, we fix an integer k ∈ N and an exponent p ∈ [1; +∞]. We let Ω be an open
subset of Rd.

Definition 3.1. The Sobolev space Wm,p(Ω) is defined as

Wm,p(Ω) :=
{
f ∈ Lp(Ω), ∀α ∈ Nd, |α| ≤ m, ∂αf ∈ Lp(Ω)

}
,

where ∂αf means that the distributional derivative ∂αf can be identified with an
Lp function. This space is endowed with the norm

‖f‖Wm,p(Ω) =

 ∑
|α|≤m

‖∂αf‖pLp(Ω)

 1
p

.

Remark 3.1. We have by definition W 0,p(Ω) = Lp(Ω).
The case p = 2 plays a special role, and is sometimes abbreviated as Wm,2(Ω) =

Hm(Ω). Its specificity comes from the fact that it is particularly well-suited to
handle elliptic equations, and that it is a Hilbert space for the scalar product

〈u, v〉Hm(Ω) =
∑
|α|≤m

ˆ
Ω

∂αu∂αv.

As a consequence of similar theorems on Lebesgue spaces, we have the following
topological properties of Sobolev spaces:

Theorem 3.1. Let m ∈ N , p ∈ [1; +∞]. Then:

(1) Wm,p(Ω) is a Banach space.
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(2) If p <∞, Wm,p(Ω) is separable.
(3) If p ∈ (1; +∞), Wm,p(Ω) is reflexive.

Proof of Theorem 3.1. The fact that Sobolev spaces are Banach spaces is a
simple consequence of the completeness of Lebesgue spaces: if {fk}k∈N is a Cauchy
sequence in Wm,p(Ω), it follows that for any multi-index α , |α| ≤ k the sequence
{∂αfk}k∈N is a Cauchy sequence in Lp(Ω). In particular, for any α there exists gα
such that

∂αfk ⇀
k→∞

gα.

To conclude, it remains to show that ∂αg0 = gα. However, for any test function
ϕ ∈ D(Ω), in the sense of distribution, we haveˆ

Ω

ϕgα = lim
k→∞

ˆ
Ω

∂αfkϕ = lim
k→∞

(−1)|α|
ˆ

Ω

fk∂
αϕ = (−1)|α|

ˆ
Ω

g0∂
αϕ.

This allows to conclude.
Regarding the separability and reflexivity, recall that a closed subspace of a

separable (resp. reflexive) Banach space is also separable (resp. reflexive) (exercise:
prove it!). Let us then show that Wm,p(Ω) can be identified with a closed subspace
of a reflexive, separable Banach space. To this end, consider the set J := {α , |α| ≤
m}, and consider the embedding

inj : Wm,p(Ω) 3 f 7→ (∂αf)α∈J ∈ L
p(Ω× J),

where Lp(Ω × J) is endowed with tensor product of the Lebesgue measure on Ω
and of the counting measure on J . Then inj is injective, isometric and continuous
and, by the same arguments that proved the completeness, its image is closed. We
deduce that Wm,p(Ω) can be identified, as a Banach space, with a closed subspace
of Lp(Ω × J). As the latter is a reflexive, separable Banach space, the conclusion
follows. �

Finally, to conclude the basic properties, let us provide the analog of Theorem
1.16:

Theorem 3.2. Let 1 ≤ p <∞ and m ∈ N. Let f ∈ Wm,p(Rd) and define, for
any k ∈ N, fk := (f ∗ ψk) (with the notations of Theorem 1.16). Then:

(1) For any k, fk ∈ C∞(Rd).
(2) Furthermore,

(23) ‖fk − f‖Wm,p(Rd) →
k→∞

0.

This theorem is naturally also valid in any open set Ω, and leads to the following
result:

Theorem 3.3. Let p ∈ [1; +∞). Then C∞(Ω)∩Wm,p(Ω) is dense in Wm,p(Ω).

Remark 3.2. (1) The set C∞(Ω) does not coincide with C∞
(
Ω
)
.

(2) The Sobolev space Wm,p(Ω) could have been defined as the topological
completion of C∞(Ω) with respect to the ‖ · ‖Wm,p(Ω) norm.

(3) In the case where Ω has a smooth enough boundary we will see that C∞(Ω)
is dense in Wm,p(Ω).
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3.2.2. Some useful properties of Sobolev functions. We begin with some-
thing that always comes in handy:

Proposition 3.1. Let Ω be an open subset of Rd, m ∈ N ,m ≥ 1, p ∈ [1; +∞]
and u ∈Wm,p(Ω). If

∇u = 0 a.e.

then there exists a constant c such that

u = c a.e..

Proof of Proposition 3.1. This is a consequence of Proposition 2.3. �

The other purely technical lemma is the following:

Proposition 3.2. Let Ω be an open set, m ∈ N ,m ≥ 1 , p ∈ [1; +∞] and
u ∈Wm,p(Ω). Assume that for a given λ ≥ 0 we have

|{u = λ}| > 0.

Then ∇u = 0 a.e. in {u = λ}.

When dealing with PDEs, it is often quite convenient to compose Sobolev
functions with other functions, for instance (see Section 3.9.2 for an application to
the maximum principle) replacing a function u with |u|. The following proposition
summarises the main information:

Proposition 3.3. Let Ω be an open set, m ∈ N , p ∈ [1; +∞] and u = u+−u− ∈
W 1,p(Ω). Then |u| ∈W 1,p(Ω) and

∇u = 1{u≥0}∇u+ − 1{u≤0}∇u−.

Remark 3.3 (What happens in Wm,p(Ω) for m > 1?). Proposition 3.3 is
wrong for u ∈ Wm,p(Ω). For instance, in W 2,2((−1; 1)) consider u = x. Then
u ∈ W 2,2((−1; 1)), but v = |u| = |x| satisfies, in a distributional sense, v′ =
sgn(·) , v′′ = δ0 so v ∈W 1,2, but v /∈W 2,2.

To prove Proposition 3.3, we need the following Sobolev version of the chain
rule:

Proposition 3.4. Let ψ ∈ C 1(R) be such that ‖ψ′‖L∞(R) < +∞, let Ω be an

open subset of Rd, p ∈ [1; +∞] and u ∈ W 1,p(Ω). Then ψ ◦ u ∈ W 1,p(Ω) and
∇(ψ ◦ u) = ψ′(u)∇u.

Remark 3.4. One could adapt the proof to higher order Sobolev spaces, which
would require more regularity of the function ψ (typically, Cm to obtain the stability
of Cm by composition).

Proof of Proposition 3.4. We let {uk}k∈N ∈ C∞(Ω) be an approximation
of u in W 1,p(Ω). Then, for any test function ϕ ∈ C∞c (Ω), we haveˆ

Ω

v∂iψ ◦ uk = −
ˆ

Ω

(∂iv)ψ ◦ uk

=

ˆ
Ω

vψ′(uk)∂iuk

→
k→∞

ˆ
Ω

vψ′(u)∂iu by the dominated convergence theorem

and this concludes the proof. �
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Proof of Proposition 3.3. We proceed by approximation, and we simply
show that u1{u≥0} ∈ W 1,p(Ω). To this end, we let {ψε}ε→0 be a smooth approx-

imation of x 7→ x+ satisfying ‖ψ′‖L∞ ≤ 1. Then it is clear from Proposition 3.4
that for any ε > 0, ψε ◦ u ∈W 1,2(Ω), and that, in a Lp sense,

∇ψε ◦ u = ψ′ε(u)∇u.

It is then an exercise tho check that ψ′ε(u) → 1{u≥0} a.e. in Ω, and it suffices to
pass to the limit to obtain the conclusion.

�

3.3. The trace operator and Wm,p
0 (Ω) spaces

Usually, when one considers a PDE set in a (possibly unbounded) domain,
giving the equation itself is not enough, and it needs to be supplemented with some
more conditions–this is of course even the case for differential equations. As an
example, consider the PDE (in a distributional sense)

−∆u = f

set in Rd. As, for any b ∈ Rd, the map vb : x 7→ 〈b, x〉 is harmonic, if u solves the
PDE, then so does u+ vb for any b. On the other hand, if we impose, for instance,
that u is bounded, then we have at most one solution (exercise: prove it using the
Fourier transform of distributions).

Now, if we were working in a bounded domain, say Ω = B(0; 1), a possibility
would be to impose the value of u on the boundary of the domain, for instance u = 0
on ∂Ω. Now, the question is: as we want to solve PDEs in Sobolev spaces, does this
make any sense? Indeed, Sobolev functions are defined almost everywhere, and ∂Ω
has zero Lebesgue measure. The goal of this paragraph is to explain why having
some integrability of the gradient of u allows to define u on ∂Ω in a meaningful
manner.

3.3.1. The trace operator. The main reference for this entire part is [8,
Chapter 18]. To make sense, when u ∈W 1,p(Ω), of u : ∂Ω→ R, we begin with the
case Ω = Rd+ = {xd > 0}. In this case, we ca consider the map

Tr : C∞(Rd+) 3 u 7→ u ∈ C∞({xd = 0}).

We have the following theorem:

Theorem 3.4. There exists a constant C > 0 such that, for any u ∈W 1,p(Rd+)∩
C∞(Rd+) there holds ˆ

{xd=0}
|u|p ≤ C

ˆ
Rd+
|u|p + |∇u|p.

As a consequence, Tr extends to a continuous operator Tr : W 1,p(Rd)→ Lp({xd =
0}).

Proof of Theorem 3.4. Assume for the sake of simplicity that u ∈W 1,p(Rd)
(this step requires a extension operator, we refer to Section 3.5) and that it is com-
pactly supported so that u ∈ C∞c (Rd). For all x ∈ {xd = 0}, we have∣∣u|{xd=0}

∣∣p (x) = |u|p(x, 0) ≤
ˆ

[0,∞)

|∂xd (|u|p)| (x, s)ds = p

ˆ
[0,∞)

|u|p−1|∂xdu|(x, s)ds.
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Using the inequality |a|p−1|b| ≤ |a|p+ |b|p (consider the case |a| ≤ |b| and |b| ≤ |a|),
this gives the point-wise estimate∣∣u|{xd=0}

∣∣p (x) ≤ p
ˆ

[0,∞)

(|u|p + |∇u|p)(x, s)ds.

Integrating in x ∈ {xd = 0} proves that ‖u‖Lp({xd=0}) ≤ p‖u‖W 1,p(Rd). By density

of C∞0 (Rd) in W 1,p(Rd), the result holds on the whole space W 1,p(Rd).
�

A natural question is whether any Lp({xd = 0}) function can be extended to
a W 1,p(Rd) function. Unfortunately, the answer is no. In fact, the range of Tr is
significantly smaller than Lp({xd = 0}). To understand it better, we would need
to study fractional Sobolev spaces. We refer to Section 3.6. The moral of the story
is that Tr(u) loses some regularity, but not too much, and an easy theorem is the
following:

Theorem 3.5. Let m ≥ 1. There exists a constant C > 0 such that, for any
u ∈Wm,p(Rd+) ∩ C∞(Rd+) there holds

‖u‖Wm−1,p({xd=0}) ≤ C‖u‖Wm,p(Rd+).

As a consequence, Tr extends to a continuous operator Tr : Wm,p(Rd)→Wm−1,p({xd =
0}).

In the case of a bounded regular domain Ω, one can similarly define the trace
operator, by flattening the boundary so that, locally, the situation is the same as
in Theorem 3.4:

Theorem 3.6. Let Ω be an open set with uniformly C 1 boundary, m ≥ 1 and
p ∈ [1; +∞]. There exists a constant CΩ > 0 such that, for any u ∈ Wm,p(Ω) ∩
C∞(Ω) there holds

‖u‖Wm−1,p(∂Ω) ≤ C‖u‖Wm,p(Ω).

As a consequence, Tr extends to a continuous operator Tr : Wm,p(Ω)→Wm−1,p(∂Ω).

With these definitions at hand, we can now make sense of more general inte-
gration by parts formulas: for any u ∈W 2,p(Ω) and any v ∈ C∞(Ω), we have

ˆ
Ω

(−∆u)v = −
ˆ
∂Ω

∂u

∂ν
v +

ˆ
Ω

〈∇u,∇v〉.

Finally, we can define the Sobolev space Wm,p
0 (Ω):

Definition 3.2. Let Ω be an open set with C 1 boundary, m ∈ ,m ≥ 1 and
p ∈ [1; +∞]. The Sobolev space Wm,p

0 (Ω) is defined as

Wm,p
0 (Ω) := ker(Tr)

where Tr is the trace operator. When u ∈ Wm,p
0 (Ω), we write u = 0 on ∂Ω. When

p = 2, this space is sometimes written Hm
0 (Ω).
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3.3.2. An alternative definition of Wm,p
0 (Ω). Another possibility is to de-

fine Wm,p
0 (Ω) as the completion of of C∞c (Ω) with respect to the Wm,p norm. This

is not the most natural definition from the point of view of PDEs, but can also
come in handy. The fact that when Ω is regular enough the two notions coincide is
given by the following theorem:

Theorem 3.7. We let W̃m,p
0 (Ω) (m ∈ N ,m ≥ 1 , p ∈ [1; +∞] be the completion

for the Wm,p norm of D(Ω). Then, if Ω has C 1 boundary, it follows that

Wm,p
0 (Ω) = W̃m,p

0 (Ω).

3.4. Sobolev embeddings

In this paragraph, we review some of the main theorems of functional analysis
in Sobolev spaces, the Sobolev embedding theorems. Essentially, these theorems
mean that, if the gradient a function is extremely integrable, then the function
has more regularity or, if a function has a high number of integrable derivatives,
then the function is much more integrable than expected. The compact embedding
theorems also provide a natural Sobolev extension of the Arzela-Ascoli theorem.
Here, one should be very careful regarding the interplay between the degree of
differentiability m, the degree of integrability p and the dimension d.

Caution: the proofs of all the following results are highly technical and should
be omitted in your first read through. However, Remarks 3.8–3.7 are extremely
important.

3.4.1. Sobolev embeddings when p > d. The main inequality is the Mor-
rey embedding:

Theorem 3.8. [Morrey inequality] Assume that Ω = Rd ,Rd+ or that Ω is a
bounded open set with C 1 boundary. Then, for any p ∈ (d; +∞), the space W 1,p(Ω)

is continuously embedded in C 0,1− dp (Ω), meaning that for every u ∈W 1,p(Ω) there

exists v ∈ C 0,1− dp (Ω) such that u = v a.e. and ‖v‖
C

1− d
p (Ω)

≤ C‖u‖W 1,p(Ω). This is

abbreviated as: there exists a constant C such that

∀u ∈W 1,p(Ω) , ‖u‖
C

0,1− d
p (Ω)

≤ ‖u‖W 1,p(Ω).

As a corollary of the previous inequality and of some finer interpolation results
we do not give here we deduce:

Corollary 3.1 (Morrey embedding theorem). Let Ω = Rd ,Rd+ or an open
set with C∞ boundary. Let p ∈ (d; +∞) and m ∈ N ,m ≥ 1. If

mp > d

then there exists a constant C such that

∀u ∈Wm,p(Ω) , ‖u‖C `,γ(Ω) ≤ ‖u‖Wm,p(Ω)

where

` =

⌊
m− d

p

⌋
, γ = m− `− d

p

if m− d
p is not an integer, and

` = m− d

p
, γ ∈ [0; 1)
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if m− `
p is an integer.

Assuming ∂Ω of class C∞ is an overkill, one simply needs as many degrees of
regularity as the functions defined in Ω.

Remark 3.5. The previous result does not hold when p = d > 1. Indeed,
should it be the case, it would follow that W 1,d(Ω) ⊂ L∞(Ω), which is not true, as

the following classical example shows: let u : x 7→ ψ(x) ln
(

ln
(

1 + 1
|x|

))
where ψ is

a smooth cut-off function supported in B(0; 1). Then, focusing on the case |x| ≤ 1
we obtain

|∇u|(x) =
1

1
1+|x|−1 ln

(
1 + 1

|x|

) .
By the Bertrand criterion and integration in polar coordinates, if d > 1, we deduce
that ∇u ∈ Ld(Rd) and so u ∈W 1,d(Rd). However, u is not bounded.

Remark 3.6. In the case d = 1, the situation is much simpler, as shown
by the following theorem (exercise: prove it!): For any p ∈ [1; +∞], W 1,p(R) is
continuously embedded into L∞(R) ∩ C 0(R).

Remark 3.7 (Regarding the optimality of the regularity exponent). We can
use a scaling argument to show that the Morrey exponent is optimal. Indeed, assume
that W 1,p(Ω) ↪→ C 0,γ(Ω), so that for some constant C we have

∀x , y , |u(x)− u(y)| ≤ C‖x− y‖α‖u‖W 1,p(Ω).

Now define, for any ε > 0, uε := u
( ·
ε

)
. Then direct computations show that

‖uε‖Lp = ε
d
p ‖u‖Lp

as well as

‖∇uε‖Lp = ε
d−p
p ‖∇u‖Lp

so that, for ε > 0 small enough we have

‖uε‖W 1,p(Ω) ∼ ε
d−p
p ‖∇u‖Lp(Ω).

Consequently,

|u(x)− u(y)| = |uε(εx)− uε(εy)| ≤ Cεαε
p−d
p ‖∇u‖Lp(Ω)

and so we must have

α+
d− p
p
≤ 0.

3.4.2. Sobolev embedding for p < d. When p < d, we do not gain regular-
ity, but we do obtain more integrability. This is the Gagliardo-Nirenberg-Sobolev
inequality:

Theorem 3.9. [Gagliardo-Nirenberg-Sobolev inequality] Assume that Ω = Rd ,Rd+
or that Ω is a bounded open set with C 1 boundary. Then:

(1) W 1,1(Ω) is continuously embedded into L
d
d−1 (Ω).

(2) For any p ∈ (1; d), W 1,p(Ω) is continuously embedded in L
dp
d−p (Ω).

In the general case, we have the following:
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Theorem 3.10. Assume that Ω = Rd ,Rd+ or that Ω is a bounded open set with
C∞ boundary. Then, for any m ∈ N ,m ≥ 1 , p ∈ (1; +∞) such that

mp < d

the space Wm,p(Ω) is continuously embedded in Lq(Ω) with

1

q
=

1

p
− m

d
.

When m = d and p = 1, the space W d,1(Ω) is continuously embedded into L∞(Ω).

A final remarkable theorem related to Sobolev functions with high integrability
is the Rademacher theorem:

Theorem 3.11. Assume that Ω = Rd ,Rd+ or that Ω is an open set with C 1

boundary. Assume that for some p ∈ (d; +∞] u ∈W 1,p(Ω). Then u is differentiable
almost-everywhere, and its weak derivative coincides with is (classically defined)
derivative.

Remark 3.8 (Regarding the optimality of the integrability exponent). The
Lebesgue exponents are optimal in the previous theorem. Indeed, assume that for
some constant C we have

∀u ∈W 1,p(Ω) , ‖u‖Lq(Ω) ≤ C‖u‖W 1,p(Ω).

Let u ∈W 1,p(Ω) and set

uε : x 7→ u
(x
ε

)
.

Then, for any ε > 0, we have

‖uε‖Lq = ε
d
q ‖u‖Lq

as well as

‖∇uε‖Lp = ε
d−p
p ‖∇u‖Lp .

In particular, we deduce that

ε
d
q ≤ Cε

d−p
p

whence
d

q
− d

p
≥ 1.

This gives

1

q
≥ d− p

pd
.

3.4.3. Sobolev embedding when p = d. The case p = d is very delicate,
and we merely mention that the natural embedding space is that of functions of
mean bounded oscillations. We refer to [8] and merely state the following result:

Theorem 3.12. Assume that Ω = Rd ,Rd+ or that Ω is an open set with C 1

boundary. Then for any q ∈ [1; +∞) we have W 1,d(Ω) ↪→ Lq(Ω), but W 1,d(Ω) is
not included in L∞(Ω).
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3.4.4. Compact embeddings. To conclude regarding Sobolev embeddings,
we go back to the introduction of this chapter, Section 3.1: we would like to obtain
some compactness properties. This is provided by the following theorem, due to
Rellich and Kondrachov, which is set in the framework of bounded open sets Ω. To
simplify things a bit, we say that the embedding of a Banach space X into Y is
compact if any X-bounded sequence admits a strongly Y -converging subsequence.

Theorem 3.13. [Rellich-Kondrachov] Let Ω be a bounded open subset with ∂Ω
of class C 1. Then:

(1) For any p ∈ (d; +∞), for any α ∈
(

0; 1− d
p

)
, the embedding W 1,p(Ω) ↪→

C 0,β
(
Ω
)

is compact.

(2) For ay p ∈ [1; d), for any q ∈
[
1; p∗ = pd

d−p

)
, the embedding W 1,p(Ω) ↪→

Lq(Ω) is compact.

The following corollary will be useful, we single it out for further reference:

Corollary 3.2. If Ω is a bounded open subset with a C 1 boundary and p ∈
[1; +∞], the embedding W 1,p(Ω) ↪→ Lp(Ω) is compact.

In general, assume p < d. Letting p∗ be defined as p∗ = pd
d−p , W 1,p(Ω) is

embedded in Lq(Ω) for any q ∈ [1; p∗] and the embedding is compact for any q < p∗.

Remark 3.9 (The critical case of the embedding). We can wonder whether the
embedding W 1,p(Ω) ↪→ Lp

∗
(Ω) could be compact. Here again, to show that it is not

the case, we re-use the scaling properties already encountered in Remarks 3.8–3.7.
Indeed, consider a smooth, radially symmetric and compactly supported function
u : B(0; 1)→ R, as well as, for any ε > 0,

uε : x 7→ u
(x
ε

)
.

Then, for any ε > 0, we have

‖uε‖Lq = ε
d
q ‖u‖Lq

as well as
‖∇uε‖Lp = ε

d−p
p ‖∇u‖Lp ,

whence if q = p∗ the two quantities scale the same. In particular,

vε :=
uε

ε
d−p
p ‖∇u‖Lp

is bounded in W 1,p and in Lq
∗
. As it converges a.e. to 0, it can not converge

strongly in Lq.

As always, we have the following more general version (the previous one is often
sufficient in practice):

Theorem 3.14. Let Ω be an open bounded subset of Rd with a C∞ boundary.
For any m, `, p , q with (m, `) ∈ N2 , (p, q) ∈ [1; +∞] such that

m− d

p
> `− d

q

the embedding
Wm,p(Ω) ↪→W `,q(Ω)

is compact.
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Remark 3.10 (What happens when Ω is not bounded?). When the domain Ω
is not bounded, the situations is much more delicate but can be handled using the
concentration-compactness principle of Lions; we refer once more to [9].

3.5. Complement*: Sobolev extensions

3.6. Complement*: fractional Sobolev spaces

In this class, the main interest of fractional Sobolev spaces is to understand the
range of the Trace operator and, more specifically, to obtain the following result:

Corollary 3.3. Let Ω be an open bounded subset with C 1 boundary. Then
the trace operator Tr : W 1,2(Ω)→ L2(∂Ω) is compact.

3.7. Complement*: dual of Sobolev spaces

3.8. Poincaré inequalities

We now prove the main functional inequality of Sobolev spaces, the Poincaré
inequality, which will be revisited when discussing the spectral theory of compact
operators:

Theorem 3.15. Let Ω be a bounded open set with C 1 boundary and p ∈
[1; +∞). There exist two constant C1 , C2 such that the following hold:

(1) Poincaré inequality in W 1,p
0 (Ω):

(24) ∀u ∈W 1,p
0 (Ω) ,

ˆ
Ω

|u|p ≤ C1

ˆ
Ω

|∇u|p.

(2) Poincaré inequality with normalised mean: if in addition Ω is connected

(25) ∀u ∈W 1,p(Ω) ,

ˆ
Ω

∣∣∣∣u−  
Ω

u

∣∣∣∣p ≤ C2

ˆ
Ω

|∇u|p.

Proof of Theorem 3.15. We argue by contradiction and assume that (24)
does not hold. In particular, and up to normalisation, there exists a sequence
{uk}k∈N ∈W 1,p

0 (Ω) such that, for any k ∈ N,ˆ
Ω

|∇uk|p ≤
1

k
,

ˆ
Ω

|uk|p = 1.

Since the embedding W 1,p(Ω) ↪→ Lp(Ω) is compact, up to a subsequence, there
exists u∞ ∈ W 1,p(Ω) such that {uk}k∈N converges Lp strongly, W 1,p(Ω) weakly
(by reflexivity of W 1,p(Ω)) to u∞. By compactness of the trace operator, u∞ = 0
on ∂Ω and ˆ

Ω

|u∞|p = 1 ,

ˆ
Ω

|∇u∞|p ≤ lim inf
k→∞

ˆ
Ω

|∇uk|p = 0

so that u∞ is constant. Since u∞ = 0 on ∂Ω, we have u∞ ≡ 0.
�

Regarding (24), taking u = 0 on ∂Ω is an overkill, and one can easily show
with the exact same method of proof the following:
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Theorem 3.16. Let Ω be a bounded open set with C 1 boundary and p ∈ [1; +∞].
Let Γ ⊂ ∂Ω be a regular subset of ∂Ω with positive Hausdorff measure, and let
W 1,p(Ω,Γ) denote the set of functions in W 1,p(Ω) such that u = 0 on Γ. Then,
there exists C3 such that

(26) ∀u ∈W 1,p(Ω,Γ) ,

ˆ
Ω

|u|p ≤ C1

ˆ
Ω

|∇u|p.

3.9. Existence of solutions to elliptic PDEs: minimisation procedures

In this section, we put the general theory developed up util that point to the
study of existence of solutions to the Poisson problem in a bounded, smooth domain,
by minimising the Dirichlet energy introduced in Section 3.1.

3.9.1. The general method for the Poisson problem. We want to solve,
in a bounded domain Ω with C 1 boundary, the PDE

(27)

{
−∆u = f in Ω ,

u = 0 on ∂Ω.

Which sense should we give to this equation? A natural one is the notion of weak
solutions, which requires the use of less derivatives of the solution u. Namely,
assuming every integration by parts goes well, we have, if u ∈ W 1,2

0 (Ω) solves this
PDE, that

∀v ∈W 1,2
0 (Ω) ,

ˆ
Ω

〈∇u,∇v〉 =

ˆ
Ω

fv.

This appears, as we already observed, as the criticality condition for the functional

E : u 7→ 1

2

ˆ
Ω

|∇u|2 −
ˆ

Ω

fu.

Observe that we now have a natural space on which E is defined, the Sobolev space
W 1,2

0 (Ω). This suggests looking for minimisers of E in W 1,2
0 (Ω), so that we should

consider a minimising sequence {uk}k∈N. There will be two steps:

(1) The first one, akin to the case of finite-dimensional optimisation, is to
show that the sequence {uk}k∈N is bounded. This coercivity property is
linked to the Poincaré inequality.

(2) Once boundedness is established, we need to be able to pass to the limit
to deduce that the limit of a minimising sequence is a minimiser. This is
where things can become tricky, due to the different topologies at play,
but we stress that here, the main tool is the Rellich-Kondrachov compact
embedding theorem.

We will prove the following theorem, and use it to obtain easy generalisations:

Theorem 3.17. For any f ∈ L2(Ω), the functional

E : W 1,2
0 (Ω) 3 u 7→ 1

2

ˆ
Ω

|∇u|2 −
ˆ

Ω

fu

has a unique critical point uf which is also a global minimiser of E . uf satisfies

∀v ∈W 1,2
0 (Ω) ,

ˆ
Ω

〈∇u,∇v〉 =

ˆ
Ω

fv.

Finally, we have the regularity estimate

‖u‖W 1,2(Ω) ≤ C‖f‖L2(Ω)

57



A review of Functional Analytic tools for PDEs - 2025-2026

for a constant C that only depends on Ω.

Proof of Theorem 3.17. We consider a minimising sequence {uk}k∈N. First
of all, by the Poincaré inequality,

‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω)

for some constant C. Consequently, the Cauchy-Schwarz inequality implies thatˆ
Ω

|∇uk|2 . 1 + ‖∇uk‖L2(Ω),

so that the sequence {uk}k∈N is bounded in W 1,2
0 (Ω). By reflexivity of W 1,2

0 (Ω)

and by the Rellich-Kondrachov theorem, there exists u∞ ∈W 1,2
0 (Ω) such that

uk →
k→∞

u∞ weakly in W 1,2
0 (Ω), strongly in L2(Ω).

We now need to check that u∞ is a minimiser of E . On the one hand, by strong
L2 convergence we have ˆ

Ω

fu∞ = lim
k→∞

ˆ
Ω

fuk.

On the other hand, by the semi-continuity of the norm we also haveˆ
Ω

|∇u∞|2 ≤ lim inf
k→∞

ˆ
Ω

|∇uk|2

whence

E (u∞) ≤ lim inf
k→∞

E (uk) = min E .

Thus, u∞ is a minimiser and the Euler-Lagrange equation for the minimisation of
E reads

∀v ∈W 1,2
0 (Ω) ,

ˆ
Ω

〈∇u,∇v〉 =

ˆ
Ω

fv.

As for the uniqueness, it follows from the strong convexity of E (on W 1,2
0 (Ω); be

careful, it is not strictly convex on W 1,2(Ω)!!). �

Remark 3.11 (The case of inhomogeneous Dirichlet boundary conditions).
It is easy to adapt the previous theorem to the case of inhomogeneous boundary
conditions in the following sense: let g ∈ range(Tr), f ∈ L2(Ω). Consider the
partial differential equation {

−∆u = f in Ω ,

u = g on ∂Ω.

Introduce the space

Xg := {u ∈W 1,2(Ω) : u = g on ∂Ω}.

Then, by the same arguments as before, show that

E : Xg 3 u 7→
1

2

ˆ
Ω

|∇u|2 −
ˆ

Ω

fu

has a unique minimum on Xg, which is a solution of that PDE.
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Remark 3.12 (The L2 setting). The fact that the Poisson equation with L2

right hand side has a variational formulation is tied to two crucial facts: first,
W 1,2(Ω) is a Hilbert space. Second, the operator −∆ is symmetric. A natural
question is then: does a similar result hold when the right-hand side f only satisfies
f ∈ Lp(Ω) and when the operator is no longer symmetric? The answer is yes, and
we will discuss this in Section 3.11.

3.9.2. Application to the maximum principle. An interesting consequence
of the variational formulation of Theorem 3.17 is the following weak version of the
maximum principle:

Theorem 3.18 (Maximum principle, weak form). Let f ∈ L2(Ω) , f ≥ 0. Let
u be the solution of {

−∆u = f in Ω ,

u = 0 on ∂Ω.

Then u ≥ 0 in Ω.

Proof of Theorem 3.18. For any u ∈ W 1,2
0 (Ω) we also have |u| ∈ W 1,2

0 (Ω)
and, from Proposition 3.3 ˆ

Ω

|∇|u||2 =

ˆ
Ω

|∇u|2.

As f ≥ 0, ˆ
Ω

fu ≤
ˆ

Ω

f |u|

whence
E (u) ≥ E (|u|).

The conclusion follows by uniqueness of the minimiser of E . �

3.9.3. Generalisation: the Lax-Milgram theorem. A generalisation of
the minimisation procedure introduced in the previous paragraph in terms of bi-
linear forms is the Lax-Milgram theorem, which holds in great generality (whose
main applications are to be found in parabolic equations and numerical analysis, in
particular for finite element methods), and overcomes the symmetry assumption:

Theorem 3.19. [Lax-Milgram theorem] Let (H, 〈·, ·〉) be a Hilbert spaces. Let
a : H × H → R be a bilinear form which is continuous and coercive, and let
b : H → R be a continuous linear map. Then there is unique u ∈ H so that

∀f ∈ H, a(u, f) = b(f).

In addition, if a is symmetric then u is the unique minimiser of J : H → R defined
by

J(v) :=
1

2
a(v, v)− b(v).

Proof of Theorem 3.19. We do not prove the properties related to sym-
metric forms a, as the proof is exactly similar to that of Theorem 3.17 (by studying
the underlying minimisation problem). The proof proceeds in two steps: first, the
case of a finite dimensional space, and second an approximation procedure. If H
is finite dimensional, let A be the matrix of the bilinear form a and z be such that
b(f) = 〈z, f〉. We are thus looking for u such that

〈Au, f〉 = 〈z, f〉.
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As A is coercive, A is invertible and it suffices to set u = A−1z. In the case of an
infinite dimensional space H, let {ek}k∈N be a Hilbert basis of H and set, for any
N ∈ N, EN := Vect(e1, . . . , eN ). Let, for any N ∈ N, uN denote the solution (with
transparent notations) of AuN = z. By continuity and coercivity of a, we obtain

‖uN‖2 . ‖z‖2

where . means “≤ up to a multiplicative constant”. The sequence {uN}N∈N is
thus bounded. Let u∞ be a weak limit. Passing to the limit, we deduce that

∀N ∈ N ,∀f ∈ EN , a(u∞, f) = b(f).

As {ek}k∈N is a Hilbert basis, the conclusion follows.
�

3.9.4. What happens with lower-order terms?

3.9.5. What happens with other boundary conditions? We conclude
this brief presentation of variational methods with a presentation of the Neumann
problem, where the homogeneous Dirichlet boundary condition is replaced with

∂νu = 0 on ∂Ω.

In other words, we consider

(28)

{
−∆u = f in Ω ,

∂νu = 0 on ∂Ω.

First of all, observe that by the Green formula, if (28) has a solution, thenˆ
Ω

f =

ˆ
Ω

(−∆u) = −
ˆ
∂Ω

∂νu = 0.

Second, observe that, if u is a solution, so is u + c for any constant c. So this
problem seems rather ill-posed. We can solve the last problem by imposing, for
instance,

´
Ω
u = 0, in order to fix such a constant. Furthermore, it is not clear how

we should look for a solution. Let us look at the weak formulation of this PDE: it
should read

∀v ∈W 1,2(Ω) ,

ˆ
Ω

〈∇u ,∇v〉 =

ˆ
Ω

fv.

This suggests looking at the functional

J : W 1,2(Ω) 3 u 7→ 1

2

ˆ
Ω

|∇u|2 −
ˆ

Ω

fv.

Let us check whether critical points of this functional can be interpreted as solutions
of (28) (discarding any discussion of the existence of critical points). Assume fur-
thermore that the critical point u is of class W 2,2(Ω), so that ∂νu can be interpreted
in the sense of traces. Then we would have, for any v ∈ C∞c (Ω),ˆ

Ω

(−∆u)v =

ˆ
Ω

fv.

In particular, −∆u = f a.e. Thus, the criticality condition implies

∀v ∈W 1,2
0 (Ω) ,

ˆ
∂Ω

v∂νu = 0,

which in turn gives ∂νu = 0. Thus, this seems to be the right-functional (although
we would need to study the a priori regularity of minimisers).
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This does not provide a way around the difficulties tied to the existence of
minimisers. In fact, show that J has a (non-necessarily unique) minimiser if, and
only if,

´
Ω
f = 0.

3.10. Generalisations to other lower semi-continuous functionals

If we inspect the previous section, it appears that a fundamental tool is the
minimisations of functionals defined on general Banach spaces. What did we use
on the functional E used to derive existence of a solution for the Poisson problem?
That it was coercive, and that it behaved well under weak convergence. Regarding
the coercivity, not much can be done: we need to ensure that a minimising sequence
remains bounded, or that we can choose at least one bounded minimising sequence.
Now, regarding the behaviour under weak convergence, the functional E was not
continuous, merely lower-semi-continuous (l.s.c.) for the weak topology. Likewise
in general, it is not necessary to have continuity of the functional for the weak
topology (there are way too few weakly continuous maps), but just to have l.s.c in
the following sense:

Definition 3.3. Let (E, ‖ · ‖) be a Banach space and J : E → R. We say that
J is weakly (resp. strongly) lower semi-continuous if, for any sequence {xk}k∈N
weakly (resp. strongly) converging to x∞ there holds

J(x∞) ≤ lim inf
k→∞

J(xk).

Of course, a weakly l.s.c. functional is strongly l.s.c. The following result,
which should be taken as yet another instance of the interplay between convexity
and weak topologies, shows that the converse is also true:

Theorem 3.20. If J : E → R is convex, then J is strongly l.s.c. if, and only
if, J is weakly l.s.c.

Proof of Theorem 3.20. Assume that J is convex and, for the sake of sim-
plicity, that J is differentiable. In particular, for any x , y ∈ E,

J(y) ≥ J(x) + dJ(x)[y − x].

Now, let xk ⇀
k→∞

x∞. It follow that

J(xk) ≥ J(x∞) + dJ(x∞)[xk − x∞]

whence

lim inf
k→∞

J(xk) ≥ J(x∞)

thereby establishing the proof of the weak lower semi-continuity. The proof in the
case J l.s.c, with respect to the strong topology follows along the same lines, once
the existence of a supporting hyperplane is established. �

On the other hand, the following result, taken from the monograph of Evans
[4], shows that most natural functionals are to some extent weakly continuous if
and only if they are convex. To be more specific, when dealing with PDEs, most
functionals to optimise write

E : u 7→
ˆ

Ω

j(∇u) +

ˆ
Ω

j1(u).
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Usually, as one gets compactness in a stronger Sobolev norm, the dominated con-
vergence theorem suffices to entail the continuity of.

´
Ω
j1(·) with respect to the

weak topology. Thus, the difficult part is to understand whether

J : W 1,p(Ω) 3 u 7→
ˆ

Ω

j(∇u)

is weakly l.s.c. The answer is the following

Theorem 3.21. The functional

J : W 1,p(Ω) 3 u 7→
ˆ

Ω

j(∇u)

is weakly l.s.c. if, and only if, j is convex.

We refer to [4, Chapter 2].

3.11. Duality methods

3.11.1. Beyond the L2 framework.

3.11.2. Existence of fundamental solutions.

3.12. Beyond symmetric operators

62



CHAPTER 4

Spectral methods, solvability of elliptic PDEs and
basic regularity theory

In this chapter, we go back to the Sobolev space W 1,2
0 (Ω) to study the eigenval-

ues and eigenfunctions of elliptic operators. We will begin with a general framework.

4.1. The spectral theorem

4.1.1. Main goal: spectral decomposition of the Laplacian. The main
goal of this section is to obtain the following spectral decomposition theorem for
the Laplacian:

Theorem 4.1. Let Ω be a bounded domain in Rd with boundary ∂Ω of class
C1. Then, there is a Hilbert basis {ek}k∈N of L2(Ω) as well as a non-decreasing
sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ · · · → ∞
such that

∀k ∈ N∗, ek solves

{
−∆ek = λkek in Ω ,

ek = 0 on ∂Ω
.

In addition, every eigenvalue has finite multiplicity. Furthermore, up to further
normalisation, {ek/‖ek‖W 1,2(Ω)} is a Hilbert basis of W 1,2

0 (Ω).

There many ways to prove this theorem by hand but we will rather deduce it
from the general spectral decomposition theorem.

4.1.2. The general framework: spectral decomposition of compact,
symmetric operators. One needs to be careful when handling the spectrum of
operators in the infinite dimensional case, especially in the case of general Banach
spaces. Fortunately, the situation is quite simple when dealing with Hilbert spaces
(and this is for the time being the framework we limit ourselves to).

4.1.2.1. Compact, self-adjoint operators. We let (H, 〈·, 〉) be a Hilbert space
and we let A ∈ L(H) be a bounded operator. We say that A is self-adjoint if

∀x , y ∈ H , 〈Ax, y〉 = 〈Ay, x〉.

We say that A is compact if for any bounded sequence {xk}k∈N ∈ HN the sequence
{Axk}k∈N admits a strongly converging subsequence.

4.1.2.2. The spectral decomposition of self-adjoint operators. For the sake of
time, we first give a version of the spectral theorem in the case of injective operators
A; we postpone the general statement to the next paragraph.

Theorem 4.2. Let A ∈ L(H) be a compact self-adjoint operator. Assume it is
injective. Then:
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(1) A has countably many eigenvalues {σk}k∈N whose absolute values {|σk|}k∈N
can be ordered non-increasingly as, for any σ > 0, there are finitely many
eigenvalues of A in (−σ;σ)c. The associated eigenvectors are orthogonal
and the eigenvalues can be variationally characterised as follows:

|σ1| = sup
‖x‖2=1

|〈Ax, x〉| ,

∀k > 1 , |σk| = sup
‖x‖2=1 ,〈x,e1〉=···=〈x,ek−1〉=0

|〈Ax, x〉|.

(2) 0 is the only accumulation point of the sequence of eigenvalues.
(3) Each non-zero eigenvalue has finite multiplicity.
(4) There holds

∀x ∈ H, Ax =

∞∑
k=0

σk〈x, ek〉ek.

(5) The sequence {σk}k∈N thus produced contains all possible non-zero eigen-
values of A.

(6) Letting, for any k ∈ N, E(σk) = ker(A− σkId), the closure of ⊕∞k=0Ek is
H so that

∀x ∈ H, x =

∞∑
k=0

〈x, ek〉ek.

In other words, {ek}k∈N is a Hilbert basis of H.

Remark 4.1. There are some (purely notational) difficulties when considering
non-injective operators.

To prove this theorem, we will rely on the following lemma:

Lemma 4.1. For any compact self-adjoint operator A, we have

‖A‖ = sup
‖x‖2=1

|〈Ax, x〉| .

Proof of Lemma 4.1. Define

|σ1| := sup
‖x‖2=1

|〈Ax, x〉| .

By definition of the operator norm and the Cauchy-Schwarz inequality, we have

|σ1| ≤ ‖A‖.
Now, recall (exercise: prove it) that

‖A‖ = sup
‖x‖=‖y‖=1

|〈Ax, y〉| .

By symmetry of A,

〈Ax, y〉 =
1

2
(〈Ax, y〉+ 〈Ay, x〉)

=
1

4
(〈A(x+ y), x+ y〉 − 〈A(y − x), y − x〉)

≤ |σ1|
4

(
‖x+ y‖2 + ‖x− y‖2

)
= |σ1|,

which concludes the proof. �
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We will also be using the following lemma:

Lemma 4.2. Assume T is compact and xk ⇀
k→∞

x∞. Then Txk →
k→∞

Tx∞.

Proof of Lemma 4.2. By compactness of T , there exists y∞ such that Txk →
k→∞

y∞. Let f ∈ E′. Then f ◦ T ∈ E′, and thus (f ◦ T )(xk) →
k→∞

(f ◦ T )(x∞). On the

other hand, f(Txk) →
k→∞

f(y∞). Thus, for any f ∈ E′, f(Tx∞) = f(y∞), which

implies that Tx∞ = y∞. �

Proof of Theorem 4.2. We begin by observing that any eigenspace E(λ) =
ker(A−λId) is finite dimensional if λ 6= 0. Indeed, assume that it is infinite dimen-
sional, so that we can find a infinite orthonormal family {yk}k∈N of E(λ). Then, as
yk = 1

λTyk and as {yk}k∈N is bounded, yk →
k→∞

y∞ for some y∞ ∈ E(λ) with norm

1. On the other hand, by the Plancherel formula, yk ⇀
k→∞

0, a contradiction. The

same proof shows that there can be only finitely many eigenvalues of A in (−σ;σ)c

for any σ > 0 so that we have at most a countable set of eigenvalues.
We then proceed inductively. First of all, we define

(29) |σ1| := max
‖x‖=1

〈Ax, x〉 = ‖A‖

and we observe that this variational problem has a solution e1. Indeed, let {xk}k∈N
be a maximising sequence for the problem:

〈Axk, xk〉 →
k→∞

σ1 , σ1 = sup
‖x‖=1

〈Ax, x〉.

Then, up to a subsequence, {xk}k∈N converges weakly in H to some x∞. As A is
compact, we deduce that Axk →

k→∞
Ax∞ (strongly). We can not however guarantee

that ‖x∞‖ = 1. However, observe that

‖Axk − σ1xk‖2 = −2σ1〈Axk, xk〉+ σ2
1 + ‖Axk‖2 ≤ σ2

1 + ‖A‖2 − 2σ1〈Axk, xk〉.

From Lemma 4.1, the right-hand side converges to zero so that {Axk − σ1xk}k∈N
is strongly converging. As {Axk}k∈N is also strongly converging, we deduce that
{xk}k∈N converges strongly to x∞, that Ax∞ = σ1x∞, and that x∞ solves (29).
We let e1 := x∞.

We can then create an iterative sequence by the variational procedure intro-
duced above, by working on 〈e1〉⊥. It suffices to observe that A restricted to this
orthogonal subspace is still compact and self-adjoint (Exercise: check that 〈x1〉⊥
is stable by A). The sequence thus obtained is non-increasing in norm, and, as
already noted, the only possible accumulation point of the sequence is 0.

Let us now prove

∀x ∈ H, Ax =

∞∑
k=0

σk〈x, ek〉ek.

To this end, let x ∈ H and set

yk := x−
k∑
i=1

〈x, ei〉ei.
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Then yk is orthogonal to the first k eigenfunctions i.e. yk ∈ F⊥k with Fk =
⊕1≤i≤kVect(ei), and, by the Plancherel theorem,

‖yk‖ ≤ ‖x‖.

This implies that

‖Ax−
k∑
i=1

σk〈x, ek〉ek‖ = ‖Ayk‖ ≤ ‖yk‖ · ‖A‖L(F⊥k ) = |σk+1| · ‖x‖.

Thus,

‖Ax−
k∑
i=1

σk〈x, ek〉ek‖ →
k→∞

0.

Now, let λ be a non-zero eigenvalue of A and x ∈ H \ {0} such that Ax = λx.
In particular,

λx =

∞∑
i=1

λk〈x, ek〉ek = 0

as two eigenvectors associated with different eigenvalues are orthogonal. However,
λx 6= 0, a contradiction.

Finally, let us prove that {ek}k∈N is a Hilbert basis of H when A is injective. To
this end, consider F∞ := ⊕∞i=1Vect(Ei), and let us show that F⊥∞ = {0}. Assume
F⊥∞ is not 0. Then A ∈ L(F∞), A is self-adjoint and compact, and so we can
reiterate the previous construction to obtain yet another eigenvalue. �

4.1.3. Application to the Laplacian. We can now discuss Theorem 4.1. Of
course, the main difficulty is that the Laplacian is certainly not compact. Much
rather, we are going to work on the inverse of the Laplacian, that is, on the operator

(−∆)−1 : L2(Ω) 3 f 7→ uf solution of

{
−∆uf = f in Ω ,

uf ∈W 1,2
0 (Ω).

Let us check that this operator satisfies all the assumptions of the spectral theorem:

(1) First of all, we need to check that it is symmetric. However, for any
f , g ∈ L2(Ω), we haveˆ

Ω

ufg =

ˆ
Ω

uf (−∆ug)

=

ˆ
Ω

ug(−∆uf )

=

ˆ
Ω

ugf.

(2) Second, we need to study its compactness. Observe that by the stan-
dard elliptic estimates we obtained before, we have, up to a multiplicative
constant C,

‖uf‖L2(Ω) . ‖f‖L2(Ω).

By compactness of the Sobolev embedding W 1,2
0 (Ω) ↪→ L2(Ω), we deduce

that the operator is compact.
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Consequently, there exists a sequence {σk}k∈N of eigenvalues converging to 0, and
a sequence of normalised eigenfunctions {ϕk}k∈N such that, for any k ∈ N,

ϕk ∈W 1,2
0 (Ω) , (−∆)−1ϕk = λkϕk.

Letting λk := 1
σk

, this gives an increasing sequence of eigenvalues such that

∀k ∈ N ,

{
−∆ϕk = σkϕk in Ω ,

ϕk ∈W 1,2
0 (Ω).

4.2. Spectral characterisation of W k,2(Td)

4.3. The Fredholm alternative and solvability of second order elliptic
equations

Another fundamental aspect of the theory of compact operators to elliptic PDEs
is the Fredholm alternative. Un the finite dimensional case, the non-invertibility
does not imply both non-injectivity and non-surjectivity. Some typical examples
are the Bernoulli shift operators:

T1 : `2(N) 3 u 7→ (u1, . . . , ) , T2 : `2(N) 3 u 7→ (0, u1, . . . ).

The situation is different when the operators are assumed to be compact perturba-
tions of the identity. This is the content of the Fredholm alternative, which reads
as follows:

Theorem 4.3. Let (E, ‖ · ‖) be a reflexive Banach space and T ∈ L(E) be a
compact operator. Then, for any µ 6= 0, µId − T is injective if, and only if, it is
onto.

This theorem does not require reflexivity of E but it simplifies one part of the
proof.

Proof of Theorem 4.3. The idea of the proof is to argue by contradiction.
Assume first that µId − T = Kµ is injective but not onto so that Range(Kµ) is a
proper subspace of E. Observe that this subspace is necessarily closed. Indeed, an
easy contradiction argument shows that up to a multiplicative constant we have

(30) ∀x ∈ E , ‖Kµx‖ & ‖x‖.
In particular, consider a sequence {Kµxk}k∈N that converges to some y∞. Then the
sequence {xk}k∈N converges weakly to some x∞. Writing µxk = Kµxk − Txk and
using the fact that Txk →

k→∞
Tx∞ we deduce that xk →

k→∞
x∞, which concludes the

proof. Thus, Range(Kµ) is a closed proper subspace of E and Kµ is an isomorphism
of E onto Range(Kµ). Define Vm := Range(Km+1

µ ), which is a strictly decreasing
(as Kµ is an isomorphism from E to its range) sequence of closed subspaces. In
particular, we can use the Riesz Lemma again (see Theorem 1.17) to find, for any
k ∈ N, some unit vector yk = Kµxk ∈ Vk such that dis(yk, Vk) ≥ 1

2 . Note that
by (30) the sequence {xk}k∈N is bounded. Furthermore, for any k ∈ N and any
j ≥ k + 1, we have yj ∈ Vk+1 so that

Txk − Txj = Kµ(xk − xj)− µxj + µxk ∈ µxk + Vk+1

whence
‖Txk − Txj‖ ≥

µ

2
.

This contradicts the compactness of T . �
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Let us see how to apply this result to the solvability of elliptic equations. We
consider a differential operator L of the form

L = −∇ · (A∇·) + 〈b,∇·〉+ c·

and we are interested in the solvability of the PDE

(31)

{
Lu = f ∈ L2(Ω) ,

u ∈W 1,2
0 (Ω).

We assume that the matrix A is uniformly elliptic in the sense that there exists
a > 0 such that

∀ξ ∈ Rd , a‖ξ‖2 ≤ 〈Ax, x〉
and, for the sake of simplicity, assume that b , c ∈ C 1(Ω). The Fredholm alternative
provides us with the following nice result: the (unique) solvability of (31) boils
down to the study of the homogeneous equation

Lu = 0.

Although we present it for Dirichlet boundary conditions, we will see in the next
paragraph how to extend it to other types of boundary conditions.

Theorem 4.4. The following statements are equivalent:

(1) For any f ∈ L2(Ω), there exists a unique solution u to (31).

(2) The unique solution to Lu = 0 , u ∈W 1,2
0 (Ω) is u ≡ 0.

Proof of Theorem 4.4. Let us assume condition (2). Then, let us show
that, for M large enough, the operator LM = L+M is invertible and has a compact
resolvent. This is a simple consequence of the Lax-Milgram theorem: observe that,
for any u ∈W 1,2

0 (Ω), we have, for any δ > 0,

〈LMu, u〉 =

ˆ
Ω

〈A∇u,∇u〉+

ˆ
Ω

〈b∇u, u〉+

ˆ
Ω

cu2 +M

ˆ
Ω

u2

≥ a
ˆ

Ω

|∇u|2 −
‖b‖L∞(Ω)δ

2

ˆ
Ω

|∇u|2 − 1

2δ

ˆ
Ω

u2 − ‖c‖L∞(Ω)

ˆ
Ω

u2 +M

ˆ
Ω

u2

&
ˆ

Ω

|∇u|2 +

ˆ
Ω

u2

where in the last line we first fixed δ > 0 small enough and then M large enough. In
particular, from similar arguments and the Lax-Milgram theorem, we deduce that
for any f ∈ L2 there exists uM,f such that LMuM,f = f , and LM has a compact
inverse.

Now, how does this apply to the solvability of (31)? Observe that

Lu = f

if, and only if,

LMu = Mu+ f

or, put differently,

(ML−1
M − Id)u = −L−1

M f.

Observe that the operator

Id−ML−1
M
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has a kernel reduced to {0} as the homogeneous problem only has the trivial so-
lution. By the Fredholm alternative, this operator is thus onto so that, for any
g,

(ML−1
M − Id)u = g

has a solution u in L2(Ω). This concludes the proof. �
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