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Abstract

In this paper, we study the asymptotic behavior of weakly transverse water-waves
under a weak Coriolis forcing in the long wave regime. We derive the Boussinesq-
Coriolis equations in this setting and we provide a rigorous justification of this model.
Then, from these equations, we derive two other asymptotic models. When the Cori-
olis forcing is weak, we fully justify the rotation-modified Kadomtsev-Petviashvili
equation (also called Grimshaw-Melville equation). When the Coriolis forcing is
very weak, we rigorously justify the Kadomtsev-Petviashvili equation. This work
provides the first mathematical justification of the KP approximation under a Cori-
olis forcing.

1 Introduction

We consider the motion of an inviscid, incompressible fluid under the influence of the
gravity g = −gez and the rotation of the Earth with a rotation vector f = f

2ez. We
assume that the fluid has a constant density ρ and that no surface tension is involved.
We assume that the surface is a graph above the still water level and that the seabed is
flat. We denote by X = (x, y) ∈ R2 the horizontal variable and by z ∈ R the vertical
variable. The fluid occupies the domain Ωt := {(X, z) ∈ R3 , − H < z < ζ(t,X)}.
We denote by U = (V,w)t the velocity in the fluid. Notice that V is the horizontal
component of U and w its vertical component. Finally, we assume that the pressure P
is constant at the surface of the fluid. The equations governing such a fluid are the free
surface Euler-Coriolis equations(1)∂tU + (U · ∇X,z) U + f×U = −1

ρ
∇X,zP − gez in Ωt,

div U = 0 in Ωt,

(1)

with the boundary conditions

∗Indiana University. Email : bmelinan@indiana.edu
1The centrifugal potential is assumed to be constant and included in the pressure term.
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
P|z=ζ = P0,

∂tζ −U ·N = 0,

wb = 0,

where P0 is constant, N =

(
−∇ζ

1

)
, U =

(
V
w

)
= U|z=ζ and Ub =

(
Vb

wb

)
= U|z=−H .

In this work, we do not directly work on the free surface Euler-Coriolis equations. We
rather consider another formulation called the Castro-Lannes formulation (see [4]). This
formulation generalizes the well-known Zakharov/Craig-Sulem formulation ([22, 6]) to a
fluid with a rotational component. In [4], Castro and Lannes shown that we can express
the free surface Euler equations thanks to the unknowns

(
ζ,U�,ω

)
(2) where ω = Curl U

is the vorticity of the fluid and

U� = V + w∇ζ.

Then, they provide a system of three equations on these unknowns. In [15], a similar
work has been done to take into account the Coriolis forcing. It leads to the following
system, called the Castro-Lannes system or the water waves equations with vorticity,


∂tζ −U ·N = 0,

∂tU�+∇ζ+1

2
∇
∣∣U�

∣∣2−1

2
∇
[(

1 + |∇ζ|2
)

w2
]
+
(
∇⊥ ·U�

)
V⊥+fV⊥ = 0,

∂tω+(U ·∇X,z)ω= (ω · ∇X,z) U+f∂zU,

(2)

where U =

(
V
w

)
= U[ζ](U�,ω) is the unique solution in H1(Ωt)

of the following Div-Curl equation
curl U = ω in Ωt,

div U = 0 in Ωt,

(V + w∇ζ)|z=ζ = U�,

wb = 0.

The main goal of this paper is to study weakly transverse long waves. Therefore, we
consider a nondimensionalization of the previous equations. Five physical parameters
are involved in this work : the typical amplitude of the surface a, the typical longitudinal
scale Lx, the typical transverse scale Ly, the characteristic water depth H and the typical
Coriolis frequency f . We introduce four dimensionless parameters

µ =
H2

L2
x

, ε =
a

H
, Ro =

a
√
gH

HfLx
and γ =

Lx
Ly
.

2Notice that Castro and Lannes used the unknowns
(
ζ, ∇

∆
·U�,ω

)
. However, as noticed in [16], the

unknowns
(
ζ,U�,ω

)
are better to derive shallow water asymptotic models.
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The parameter µ is called the shallowness parameter. The parameter ε is called the
nonlinearity parameter. The parameter Ro is the Rossby number and finally the pa-
rameter γ is called the transversality parameter. Then, we can nondimensionalize the
Euler equations (1) and the Castro-Lannes equations (2) (see Part 1.2). In this work,
we study the following asymptotic regime

Aboussi =
{

(µ, ε, γ,Ro) , 0 ≤ µ ≤ µ0, ε = O (µ) , γ ≤ 1,
ε

Ro
= O(

√
µ)
}
,

This regime corresponds to a long wave regime (ε = O(µ)) under a weak Coriolis forcing
ε
Ro = O(

√
µ). For an explanation of the first assumption, we refer to [12]. The second

assumption is standard in oceanography. Rewriting ε
Ro = fLx√

gH
, this assumption means

that the rotation period is assumed to be much smaller than the time scale of the waves.
We refer to [9, 7] for more explanations about this assumption (see also [10, 17, 8, 14]).

We organize this paper in four parts. In Section 1.2, we explain how we nondimension-
alize the equations and we provide a local wellposedness result. In Section 2, we derive
and justify the Boussinesq-Coriolis equations in the asymptotic regime Aboussi. The
Boussinesq-Coriolis equations are a system of three equations on the surface ζ and the
vertical average of the horizontal velocity denoted V (defined in (9)). They correspond
to a O(µ2) approximation of the water waves equations. These equations are∂tζ +∇γ ·

(
[1 + εζ] V

)
= 0,(

1− µ

3
∇γ∇γ ·

)
∂tV +∇γζ + εV · ∇γV +

ε

Ro
V
⊥

= 0.
(3)

Then, in Section 3, we study the KP approximation which corresponds to the asymptotic
regime Aboussi with ε = µ and γ =

√
µ. This second assumption corresponds to weakly

transverse effects (see for instance [12]). In this regime, we derive two other asymptotic
models. When the Coriolis forcing is weak

(
ε
Ro =

√
µ
)
, we rigorously justify the modified-

rotation Kadomtsev-Petviashvili equation (see Subsection 3.1), also called Grimshaw-
Melville equation in the physics literature,

∂ξ

(
∂τk +

3

2
k∂ξk +

1

6
∂3ξk

)
+

1

2
∂yyk =

1

2
k.

Then, when the Coriolis forcing is very weak
(
ε
Ro = µ

)
, we fully justify the KP equation

(see Subsection 3.2)

∂ξ

(
∂τk +

3

2
k∂ξk +

1

6
∂3ξk

)
+

1

2
∂yyk = 0.

Finally, in Section 4, we compare the scalar asymptotic models we derive in Section 3
with the ones derived in [16] : the Ostrovsky equation and the KdV equation.
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1.1 Notations/Definitions

- If A ∈ R3, we denote by Ah its horizontal component.

- If V =

(
u
v

)
∈ R2, we define the orthogonal of V by V⊥ =

(
−v
u

)
.

- In this paper, C (·) is a nondecreasing and positive function whose exact value has no
importance.

- Consider a vector field A or a function w defined on Ω. Then, we denote A = A|z=εζ ,
w = w|z=εζ and Ab = A|z=−1, wb = w|z=−1.

- If N ∈ N and f is a function on R2, |f |HN is its HN -norm, |f |2 is its L2-norm and
|f |L∞ its L∞-norm. We denote by ( , )2 the L2(R2) inner product.

- If f is a function defined on R2, We use the notation ∇γf = (∂xf, γ∂yf)t.

- If u = u(X, z) is defined in Ω, we define

u(X) =
1

1 + εζ

∫ εζ(X)

−1
u(X, z)dz and u∗ = u− u.

- For N ≥ 0, we define the Hilbert spaces ∂xH
N (R2)

∂xH
N (R2) =

{
k ∈ HN−1(R2), k = ∂xk̃ with k̃ ∈ HN (R2)

}
. (4)

The function k̃ is denoted ∂−1x k in the following.

- Similarly, for N ≥ 0, we define the Hilbert spaces ∂2xH
N (R2).

- In the following definition, we recall the notion of consistence (see for instance [12]).

Definition 1.1. We say that the Castro-Lannes equations (7) are consistent of order

O
(
µ2
)

with a system of equations S for ζ and V if for any smooth solutions
(
ζ,Uµ,γ

� ,ω
)

of the Castro-Lannes equations (7), the pair
(
ζ,V[εζ]

(
Uµ,γ

� ,ω
))

(defined in (9)) solves

S up to a residual of order O
(
µ2
)
.

1.2 Nondimensionalization

We recall the four dimensionless parameters

µ =
H2

L2
x

, ε =
a

H
, Ro =

a
√
gH

HfLx
and γ =

Lx
Ly
. (5)

We nondimensionalize the variables and the unknowns. We introduce (see [12] or [15])
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
x′ =

x

Lx
, y′ =

y

Ly
, z′ =

z

H
, ζ ′ =

ζ

a
, t′ =

√
gH

Lx
t,

V′ =

√
H

g

V

a
, w′ = H

√
H

g

w

aLx
and P ′ = P

ρgH
.

In the following, we use the following notations

∇γ = ∇γX′ =

(
∂x′

γ∂y′

)
, ∇µ,γX′,z′ =

(√
µ∇γX′
∂z′

)
, curlµ,γ = ∇µ,γX′,z′ × , divµ,γ = ∇µ,γX′,z′ · .

We also define

Uµ =

(√
µV′

w′

)
, ω′ =

1

µ
curlµ,γUµ, (6)

and

Uµ =

(√
µV′

w′

)
= Uµ

|z′=εζ′ , Uµ
b = Uµ

|z′=−1,N
µ,γ =

(
−ε√µ∇γζ ′

1

)
.

Remark 1.2. Notice that the nondimensionalization of the vorticity presented in (6)
corresponds to weakly sheared flows (see [3], [20], [18]).

The nondimensionalized fluid domain is

Ω′t′ := {(X ′, z′) ∈ R3 , − 1 < z′ < εζ ′(t′, X ′)}.

Finally, the Euler-Coriolis equations (1) become

∂t′U
µ +

ε

µ

(
Uµ · ∇µ,γX′,z′

)
Uµ +

ε
√
µ

Ro

(
V′⊥

0

)
= −1

ε
∇µ,γX′,z′P

′ − 1

ε
ez in Ω′t,

divµ,γX′,z′ Uµ = 0 in Ω′t,

with the boundary conditions ∂t′ζ
′ − 1

µ
Uµ ·Nµ,γ = 0,

w′b = 0.

In the following, we omit the primes. We can proceed similarly to nondimensionalize
the Castro-Lannes formulation. We define the quantity

Uµ,γ
� = V + εw∇γζ.

Then, the Castro-Lannes formulation becomes (see [4] or [15] when γ = 1),
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

∂tζ −
1

µ
Uµ ·Nµ,γ = 0,

∂tU
µ,γ
� +∇γζ+ε

2
∇γ
∣∣∣Uµ,γ

�

∣∣∣2− ε

2µ
∇γ
[(

1 + ε2µ |∇γζ|2
)

w2
]
+ε
(
∇⊥ ·Uµ,γ

�

)
V⊥+

ε

Ro
V⊥ = 0,

∂tω+
ε

µ

(
Uµ ·∇µ,γX,z

)
ω=

ε

µ

(
ω · ∇µ,γX,z

)
Uµ+

ε

µRo
∂zU

µ,

(7)

where Uµ =

(√
µV
w

)
= Uµ[εζ](Uµ,γ

� ,ω) is the unique solution in H1(Ωt) of
curlµ,γ Uµ = µω in Ωt,

divµ,γ Uµ = 0 in Ωt,

(V + εw∇γζ)|z=εζ = Uµ,γ
� ,

wb = 0.

In order to rigorously derive asymptotic models, we need an existence result for the
Castro-Lannes formulation (7). We recall that the existence of solutions to the water
waves equations is always obtained under the so-called Rayleigh-Taylor condition that
assumes the positivity of the Rayleigh-Taylor coefficient a (see Part 3.4.5 in [12] for the
link between a and the Rayleigh-Taylor condition or [15]) where

a := a[εζ](Uµ,γ
� ,ω) = 1 + ε

(
∂t + εV[εζ](Uµ,γ

� ,ω) · ∇
)

w[εζ](Uµ,γ
� ,ω).

We explain in [15] how we can define the Rayleigh-Taylor coefficient a at t = 0. We also
assume that the water depth is bounded from below by a positive constant

∃hmin > 0 , 1 + εζ ≥ hmin.

The following theorem can be found in [15] and provide a local wellposedness result of
the Castro-Lannes formulation (7) (see also Theorem 1.5 in [16]).

Theorem 1.3. Let A > 0 and N ≥ 5. We suppose that (µ, ε, γ,Ro) ∈ Aboussi. We
assume that (

ζ0, (U
µ,γ
� )0,ω0

)
∈ HN+ 1

2 (R2)×HN (R2)×HN−1(Ω0),

with ∇µ,γ · ω0 = 0 and ∇γ⊥ · (Uµ,γ
� )0 = ω0 ·

(
−ε√µ∇γζ0

1

)
. Finally, we assume that

∃hmin, amin > 0 , 1 + εζ0 ≥ hmin and a[εζ0]((U
µ,γ
� )0,ω0) ≥ amin,

and that

|ζ0|
HN+ 1

2
+

∣∣∣∣∣ 1√
1 +
√
µ|D|

(Uµ,γ
� )0

∣∣∣∣∣
HN

+ ||ω0||HN−1 ≤ A.
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Then, there exists T > 0 and a unique classical solution
(
ζ,Uµ,γ

� ,ω
)

to the Castro-

Lannes (7) on [0, T ] with initial data
(
ζ0, (U

µ,γ
� )0,ω0

)
. Moreover,

T =
T0

max
(
ε, ε

Ro

) ,
1

T0
= c1,

max
[0,T ]

(
|ζ(t, ·)|HN +

∣∣∣∣∣ 1√
1 +
√
µ|D|

Uµ,γ
� (t, ·)

∣∣∣∣∣
HN− 1

2

+ ||ω(t, ·)||HN−1

)
= c2,

with cj = C
(
A,µ0,

1
hmin

, 1
amin

)
.

Remark 1.4. Notice that thanks to Theorem 1.3 together with Part 5.5.1 in [4], the
quantities ζ, Uµ,γ

� , ω , V, U, ∂tζ, ∂tU
µ,γ
� , ∂tω and ∂tU remain bounded uniformly with

respect to the small parameters during the time evolution of the flow.

2 The Boussinesq-Coriolis equations

In this part, we derive and fully justify the Boussinesq-Coriolis equations (3) under a
weak Coriolis forcing ε

Ro = O
(√
µ
)
. We recall the corresponding asymptotic regime

Aboussi =
{

(µ, ε, γ,Ro) , 0 ≤ µ ≤ µ0, ε = O(µ), γ ≤ 1,
ε

Ro
= O(

√
µ)
}
. (8)

Notice that no assumption on γ is made in this part. The Boussinesq equations corre-
spond to an order O(µ2) approximation of the water waves equations. Motivated by [16],
we use the Castro-Lannes equations (7) to derive this asymptotic model. We introduce
the water depth

h(t,X) = 1 + εζ(t,X),

and the vertical average of the horizontal velocity

V = V[εζ](Uµ,γ
� ,ω)(t,X) =

1

h(t,X)

∫ εζ(t,X)

z=−1
V[εζ, βb](Uµ,γ

� ,ω)(t,X, z)dz. (9)

In the following we denote V = (u, v)t. More generally, if u is a function defined in
Ω, we denote by u its vertical average and u∗ = u − u. We also have to introduce the
”shear” velocity

Vsh = Vsh[εζ](Uµ,γ
� ,ω)(t,X) =

∫ εζ

z
ω⊥h (t,X, z′)dz′

and its vertical average
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Q = Vsh =
1

h

∫ εζ

−1

∫ εζ

z′
ω⊥h .

As noticed in [4], these quantities appear when one wants to obtain an expansion with
respect to µ of the velocity. We recall that

Uµ,γ
� = V + εw∇γζ.

2.1 Asymptotic expansions with respect to µ

In this part, we give an expansion of different quantities with respect to µ. These
expansions will help us to derive the Boussinesq-Coriolis equations (3) in Section 2.2.
The following proposition gives a link between V and Uµ ·Nµ,γ (the proof is a small
adaptation of Proposition 4.2 in [15]).

Proposition 2.1. If
(
ζ,Uµ,γ

� ,ω
)

satisfy the Castro-Lannes system (7), we have

Uµ ·Nµ,γ = −µ∇γ ·
(
hV
)
.

Then we get the first equation of the Boussinesq-Coriolis system from the first equation
of (7). We also need an expansion of V and w with respect to µ. We introduce the
following operators

T [εζ] f =

∫ εζ

z
∇γ∇γ ·

∫ z′

−1
f and T ∗ [εζ] f = (T [εζ] f)∗ ,

In the following, we denote T = T [εζ] and T ∗ = T ∗ [εζ] when no confusion is possible.

Proposition 2.2. In the Boussinesq regime Aboussi, if
(
ζ,Uµ,γ

� ,ω
)

satisfy the Castro-

Lannes system (7), we have

V = V +
√
µV∗sh + µT ∗V + µ

3
2T ∗V∗sh +O

(
µ2
)
,

V = V−√µQ + µT ∗V− µ
3
2TV∗sh +O

(
µ2
)
,

where

T ∗V =
1

2

(
h2

3
− [z + 1]2

)
∇γ∇γ ·V and T ∗V = −h

2

3
∇γ∇γ ·V.

We also have

w = −µ(z + 1)∇γV + µ
3
2

∫ z

−1
∇γ ·V∗sh +O

(
µ2
)
,

w = −µh∇γ ·V +O
(
µ2
)
,
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Proof. This proof is an adaptation of part 2.2 in [3], Part 4.2 in [15] and Section 2.1 in
[16]. First, using curlµ,γ Uµ = µω, we obtain that

√
µωh = ∂zV

⊥ −∇γ⊥w.

Then, we consider the ansatz V = V+
√
µV1. By integrating the previous equation, we

obtain

√
µ∂zV1 = −√µω⊥h +∇γ⊥w.

Since V1 = 0, we get

V1 =

(∫ εζ

z
ω⊥h

)∗
− 1
√
µ

(∫ εζ

z
∇γw

)∗
.

Secondly, using Proposition 2.1 and the divergence-free assumption, we get

w = −µ∇γ ·
(∫ z

−1
V

)
. (10)

Then, gathering the previous two equality, we obtain

V = V +
√
µV∗sh + µT ∗V. (11)

Finally, the expansion of V follows by applying the operator Id + µT ∗ to the previous
equality. For the second equality, we notice that T ∗V∗sh = −TV∗sh. The third and fourth

equalities follow from the fact that V does not depend on z. The fifth equality are a
consequence of Equalities (10) and (11). Finally, the sixth equality follows from the fact
that V∗sh = 0 and that ε = O(µ).

We can also get an expansion of ∂tV and ∂tw.

Proposition 2.3. In the Boussinesq regime Aboussi, if
(
ζ,Uµ,γ

� ,ω
)

satisfy the Castro-

Lannes system (7), we have

∂t

(
V−V−√µV∗sh − µT ∗V− µ

3
2T ∗V∗sh

)
= O

(
µ2
)
,

∂t

(
V−V +

√
µQ− µT ∗V + µ

3
2TV∗sh

)
= O

(
µ2
)
,

∂t
(
w + µh∇γV

)
= O

(
µ2
)
.

Proof. The result follows from Proposition 2.1 and the equality

V = (1− µT ∗)
(
V +

√
µV∗sh

)
+ µ2T ∗T ∗V.

Since we can not express Q and V∗sh with respect to ζ and V, we need an evolution

equation at order O
(
µ

3
2

)
of these quantities.
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Proposition 2.4. In the Boussinesq regime Aboussi, if
(
ζ,Uµ,γ

� ,ω
)

satisfy the Castro-

Lannes system (7), then Q satisfies the following equation

∂tQ + εV · ∇γQ + εQ · ∇γV +
ε

Ro
√
µ

(
V−V

)⊥
= O

(
µ

3
2

)
,

and V∗sh satisfies the equation

∂tV
∗
sh+εV·∇γV∗sh+εV∗sh·∇γV−ε [1 + z]

(
∇γ ·V

)
∂zV

∗
sh+

ε

Ro
√
µ

(
V−V

)⊥
= O

(
µ

3
2

)
.

Proof. This proof is an adaptation of Part 2.3 in [3] and Part 2.2 in [16]. Thanks to the
horizontal component of the vorticity equation of the Castro-Lannes formulation (7), we
get

∂tωh + εV · ∇γωh +
ε

µ
w∂zωh = εωh · ∇γV +

ε
√
µ
ωz∂zV +

ε

Ro
√
µ
∂zV.

Furthermore, since curlµ,γ Uµ = µω, we have

∂zV = −√µω⊥h +O (µ) and ωz = ∇γ⊥ ·V +O (
√
µ) .

Then, using Proposition 2.2, we obtain

∂tωh+εV ·∇γωh−ε [1 + z]
(
∇γ ·V

)
∂zωh−εωh ·∇γV−ε

(
∇γ⊥V

)
ω⊥h −

ε

Ro
√
µ
∂zV = O

(
µ

3
2

)
,

Then, integrating with respect to z, using the fact that ∂tζ+∇γ ·
(
hV
)

= 0, Vsh =
∫ εζ
z ω⊥h

and Qx = V∗sh we get (see the computations in Part 2.3 in [3])

∂tVsh+εV·∇γVsh+εVsh ·∇γV+
ε

Ro
√
µ

(V−V)⊥ = ε [1 + z]
(
∇γ ·V

)
∂zVsh+O

(
µ

3
2

)
.

and

∂tQ + εV · ∇γQ + εQ · ∇γV +
ε

Ro
√
µ

(
V−V

)⊥
= O

(
µ

3
2

)
.

Finally, the second equation follows from the fact that V∗sh = Vsh −Q.

2.2 Full justification of the Boussinesq-Coriolis equations

We can now establish the Boussinesq-Coriolis equations under a weak Coriolis forcing.
The Boussinesq-Coriolis equations (3) are the following system∂tζ +∇γ · hV = 0,(

1− µ

3
∇γ∇γ ·

)
∂tV +∇γζ + εV · ∇γV +

ε

Ro
V
⊥

= 0.

First, we show a consistency result.
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Proposition 2.5. In the Boussinesq regime ABoussi, the Castro-Lannes equations (7)
are consistent at order O(µ2) with the Boussinesq-Coriolis equations (3) in the sense of
Definition 1.1.

Proof. The first equation of the Boussinesq-Coriolis equations is always satisfied for a
solution of the Castro-Lannes formulation by Proposition 2.1. We recall that the second
equation of the Castro-Lannes formulation is

∂tU
µ,γ
� +∇γζ+ε

2
∇γ
∣∣∣Uµ,γ

�

∣∣∣2− ε

2µ
∇γ
[(

1 + ε2µ |∇γζ|2
)

w2
]
+ε
(
∇⊥ ·Uµ,γ

�

)
V⊥+

ε

Ro
V⊥ = 0.

Thanks to Proposition 2.2, we know that (ε = O(µ))

Uµ,γ
� = V + εw∇γζ = V +O

(
µ2
)

= V−√µQ + µT ∗V− µ
3
2TV∗sh +O

(
µ2
)
,

and

ε

2
∇γ
∣∣∣Uµ,γ

�

∣∣∣2=εUµ,γ
� · ∇γUµ,γ

� − ε
(
∇γ⊥ ·Uµ,γ

�

)
Uµ,γ⊥

�

=εV · ∇γV− ε√µQ · ∇γV− ε√µV · ∇γQ− ε
(
∇γ⊥ ·Uµ,γ

�

)
V⊥ +O

(
µ2
)
.

Furthermore, thanks to Proposition 2.4 and Proposition 2.2, we get
(
ε
Ro = O

(√
µ
))

µ
3
2∂tTV∗sh = µ

3
2T∂tV

∗
sh +O

(
µ2
)

= −µ
3
2
ε

Ro
TV∗⊥sh +O

(
µ2
)

= O
(
µ2
)
.

Finally, using Proposition 2.2, Proposition 2.4, Proposition 2.3 and Remark 1.4, we
obtain from the second equation of the Castro-Lannes formulation that(

1− µ

3
∇γ∇γ ·

)
∂tV +∇γζ + εV · ∇γV +

ε

Ro
V
⊥

= O
(
µ2
)
.

Notice that all the terms that involve Q disappear (this fact was pointed out in [3] and
[15]).

Remark 2.6. In [16], the author points out the fact that under a strong Coriolis forcing(
ε
Ro ≤ 1

)
, a new term appears in the Boussinesq-Coriolis equations. We would like to

emphasize that this term is not present in this setting since we only study a weak Coriolis
forcing

(
ε
Ro = O

(√
µ
))

.

The purpose of this part is to fully justify the Boussinesq-Coriolis equations (3). First,
we give a local wellposedness result of the Boussinesq-Coriolis equations. We define the
energy space

XN
µ (R2) = HN (R2)×HN (R2)×HN (R2),

endowed with the norm

|(ζ,V)|2XN
µ

= |ζ|2HN + |V|2HN + µ |∇γ ·V|2HN .
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Proposition 2.7. Let N ≥ 3 and
(
ζ0,V0

)
∈ XN

µ (R2) . Suppose that (µ, ε, γ,Ro) ∈
Aboussi. Assume that

∃hmin > 0 , 1 + εζ0 ≥ hmin.

Then, there exists an existence time T > 0 and a unique solution
(
ζ,V

)
on [0, T ] to

the Boussinesq-Coriolis equations (3) with initial data
(
ζ0,V0

)
. Moreover,

(
ζ,V

)
∈

C
(
[0, T ];XN

µ (R2)
)

and

T =
T0
µ

,
1

T0
= c1 and max

[0,T ]

∣∣(ζ,V) (t, ·)
∣∣
XN
µ

= c2,

with cj = C
(
µ0,

1
hmin

,
∣∣(ζ0,V0

)∣∣
XN
µ

)
.

Proof. This proof is a small adaptation of the proof of Proposition 6.7 in [12]. We only

give the energy estimates. We assume that
(
ζ,V

)
solves (3) on

[
0, T0

µ

]
and that

1 + εζ ≥ hmin

2
on

[
0,
T0
µ

]
.

We denote U =
(
ζ,V

)t
. We introduce the symmetric matrix operator

S(U) =

(
1 0
0 hI2 − µ1

3∇
γ (h∇γ ·)

)
and the associated energy

EN (U) =
1

2

∑
|α|≤N

(S(U)∂αU, ∂αU)2 .

Remark that there exists c1, c2 = C
(

1
hmin

, |h|L∞
)

such that

c1 |∇γ ·V|22 ≤
(
−1

3
∇γ
(
h∇γ ·V

)
,V

)
2

≤ c2 |∇γ ·V|22 .

We also notice that for |α| = N ,

d

dt
(S(U)∂αU) =

(
∂α∂tζ

h
(
1− µ

3∇
γ∇γ ·

)
∂α∂tV

)
−
(

0

εµ3
(
∇γ · ∂α∂tV

)
∇γζ

)
+ ε l.o.t.

and that, denoting ∆γ = ∇γ · ∇γ ,

µ
∣∣∇γ · ∂tV∣∣HN ≤ ∣∣∣∣(1− µ

3
∆γ
)−1

µ∇γ ·
(
∇γζ + εV · ∇γV +

ε

Ro
V
⊥)∣∣∣∣

HN
≤ C

(
µ0, EN (U)

)
.

Then, after some computations we obtain (ε = O (µ))

12



d

dt
EN (U) ≤ µC

(
EN (U)

)
EN (U)

and the result follows from Grönwall’s inequality.

We also have a stability result for the Boussinesq-Coriolis equations (3).

Proposition 2.8. Let the assumptions of Proposition 2.7 be satisfied. Suppose that

there exists
(
ζ̃, Ṽ

)
∈ C

([
0, T0

µ

]
;XN

µ (R2)
)

satisfying∂tζ̃ +∇γ · h̃Ṽ = R1,(
1− µ

3
∇γ∇γ ·

)
∂tṼ +∇γ ζ̃ + εṼ · ∇γṼ +

ε

Ro
Ṽ
⊥

= R2.

where h̃ = 1+εζ̃ and with R = (R1, R2) ∈ L∞
([

0, T0
µ

]
;HN−1(R2)

)
. Then, if we denote

e =
(
ζ,V

)
−
(
ζ̃, Ṽ

)
where U = (ζ,V) is the solution given in Proposition 2.7, we have

|e(t)|XN−1
µ
≤ c1

(∣∣e|t=0

∣∣
XN−1
µ

+ t |R|
L∞

([
0,
T0
µ

]
;HN−1

)) ,
where

c1 = C

(
µ0,

1

hmin
,
∣∣(ζ0,V0

)∣∣
XN
µ
,
∣∣∣(ζ̃, Ṽ)∣∣∣

L∞
([

0,
T0
µ

]
;XN
µ

) , |R|
L∞

([
0,
T0
µ

]
;HN−1

)
)
.

Proof. We proceed as in Proposition 2.7. We define the energy

FN−1(e) =
1

2

∑
|α|≤N−1

(S(U)∂αe, ∂αe)2 .

After some computations, we get

d

dt
FN−1(e) ≤

(
|R|HN−1 + µC

(
µ0,

1

hmin
, |U |XNµ ,

∣∣∣(ζ̃, Ṽ)∣∣∣
XNµ

, |R|HN−1

)
|e|XN−1

µ

)
|e|XN−1

µ
.

Then the result follows from Gronwall’s inequality.

We can now rigorously justify the Boussinesq-Coriolis equations. We recall that the
operator V[εζ](Uµ,γ

� ,ω) is defined in (9).

Theorem 2.9. Let N ≥ 12 and (µ, ε, γ,Ro) ∈ ABoussi . We assume that we are under
the assumptions of Theorem 1.3. We define the following quantities

V0 = V[εζ0]((U
µ,γ
� )0,ω0) , V = V[εζ](Uµ,γ

� ,ω).

13



Then, there exists a time T > 0 such that

(i) T has the form

T =
T0

max
(
µ, ε

Ro

) , and
1

T0
= c1.

(ii) There exists a unique classical solution
(
ζB ,VB

)
of (3) with the initial data

(
ζ0,V0

)
on [0, T ].

(iii) There exists a unique classical solution
(
ζ,Uµ,γ

� ,ω
)

of System (7) with initial data(
ζ0, (U

µ,γ
� )0,ω0

)
on [0, T ].

(iv) The following error estimate holds, for 0 ≤ t ≤ T ,∣∣(ζ,V)− (ζB,VB

)∣∣
L∞([0,t]×R2)

≤ µ2t c2,

with cj = C
(
A,µ0,

1
hmin

, 1
amin

)
.

Therefore, in the Boussinesq regime ABoussi a solution of the water waves system (7)

remains close to a solution of the Boussinesq-Coriolis equations (3) over a time O
(

1√
µ

)
with an accuracy of order O

(
µ

3
2

)
.

Remark 2.10. Notice that if one considers a solution of a system and wants to show

that this solution remains close to a solution of the waves equations over times O
(

1√
µ

)
with an accuracy of order O

(
µ

3
2

)
, it is sufficient to compare this solution with a solution

of the Boussinesq-Coriolis equations (3). We use this strategy in the following.

3 The KP approximation

In this section, we consider the KP (Kadomtsev-Petviashvili) approximation under a
weak Coriolis forcing. We assume that ε = µ (long waves) and γ =

√
µ (weakly transverse

effects). We consider two different regimes. First, if ε
Ro =

√
µ (weak rotation), we derive

the rotation-modified KP equation (12). Then, if ε
Ro = µ (very weak rotation), we derive

the KP equation (19). We refer to [10] for more physical explanations about these two
models (see also [11, 7, 9]).

3.1 Weak rotation, the rotation-modified KP equation

In the irrotational setting, the KP equation provides a good approximation of the water
waves equation under the assumption that ε and µ have the same order and that γ and√
µ have the same order (see [13] or Part 7.2 in [12]). When a Coriolis forcing is taken

into account, Grimshaw and Melville ([10]) derived an equation for long waves, which is
an adaptation of the KP equation
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∂ξ

(
∂τk +

3

2
k∂ξk +

1

6
∂3ξk

)
+

1

2
∂yyk =

1

2
k. (12)

This equation is called the rotation-modified KP equation or Grimshaw-Melville equation
in the physics literature. Notice that this equation was originally derived for internal
water waves ([10, 7]). In this part, we fully justify this equation. Inspired by [10, 7], we
consider the asymptotic regime

ARKP =
{

(µ, ε, γ,Ro) , 0 ≤ µ ≤ µ0, ε = µ, γ =
√
µ,

ε

Ro
=
√
µ
}
.

Then, the Boussinesq-Coriolis equations become (γ =
√
µ)∂tζ +∇γ ·

(
[1 + µζ]V

)
= 0,(

1− µ

3
∇γ∇γ ·

)
∂tV +∇γζ + µV · ∇γV +

√
µV
⊥

= 0.
(13)

In the following, we denote V = (u, v)t. Our strategy is similar to the one used in [16] to
fully justify the Ostrovsky equation. We consider an expansion of (ζ,V) with respect to
µ. Inspired by [13] or Part 7.2 in [12], we seek an approximate solution (ζapp, uapp, vapp)
of (13) in the form

ζapp(t, x, y) = k(x− t, y, µt) + µζ(1)(t, x, y, µt),

uapp(t, x, y) = k(x− t, y, µt) + µu(1)(t, x, y, µt),

vapp(t, x, y) =
√
µv(1/2)(t, x, y, µt)

(14)

where k = k(ξ, τ) is a traveling water wave modulated by a slow time variable and the
others terms are correctors. In the following, we denote by τ the variable associated to
the slow time variable µt. Plugging the ansatz into Sytem (13), we obtain

∂tζapp +∇γ ·
(
[1 + µζapp]Vapp

)
= µR1

(1) + µ2R1,(
1− µ

3
∇γ∇γ ·

)
∂tVapp +∇γζapp + µVapp · ∇γVapp +

√
µV
⊥
app =

√
µR2

(1/2) + µR2
(1) + µ

3
2R2.

(15)

where

R1
(1) = ∂tζ(1) + ∂xu(1) + ∂τk + 2k∂ξk + ∂yv(1/2),

R2
(1/2) =

(
0

∂tv(1/2) + ∂yk + k

)
and R2

(1) =

(
∂tu(1) + ∂xζ(1) + ∂τk + 1

3∂
3
ξk + k∂ξk − v(1/2)

0

)
,

and

R1 = ∂τζ(1) + ∂x
(
ku(1) + kζ(1) + µζ(1)u(1)

)
+ ∂y((k + µζ(1))v(1/2)),

R2 = (
√
µR2,1, R2,2)

(16)

with
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R2,1 = ∂τu(1) −
1

3
∂2ξ∂τk −

1

3
∂2x∂tu(1) − µ

1

3
∂2x∂τu(1) + ∂x

(
ku(1)

)
+ µu(1)∂xu(1)

− 1

3
∂3xytv(1/2) −

µ

3
∂3xyτv(1/2) + v(1/2)∂y

(
k + µu(1)

)
,

R2,2 = ∂τv(1/2) + ∂yζ(1) + k∂xv(1/2) + u(1) +
1

3
∂y∂

2
ξk + µu(1)∂xv(1/2) + µv(1/2)∂yv(1/2)

− µ

3

(
∂3yxτk + ∂3yxtu(1) + ∂2y∂tv(1/2) + µ∂yxτu(1) + µ∂2y∂τv(1/2)

)
.

Then, the strategy is to choose (k, v(1/2)) such that, for all (x, y) ∈ R2, t ∈
[
0, Tµ

]
and

τ ∈ [0, T ],

R1
(1)(t, x, y, τ) = 0 and R2

(1/2)(t, x, y, τ) = R2
(1)(t, x, y, τ) = 0.

Remark 3.1. As noticed in Part 7.2.2 in [12], we should a priori add
√
µζ(1/2)(t, x, y,µt),√

µu(1/2)(t, x, y, µt), v(0)(t, x, y, µt), and µv(1)(t, x, y, µt) to the ansatz (14) for ζapp, uapp
and vapp respectively. But, it leads to ζ(1/2) = u(1/2) = v(0) = v(1) = 0 if these quantities
are initially zero.

We focus first on the condition R2
(1/2)(t, x, y, τ) = 0. Assuming that v(1/2) and k vanish

at x =∞, this condition is equivalent to the equation

∂t∂xv(1/2)(t, x, y, τ) + ∂ξk(x− t, y, τ) + ∂2ξyk(x− t, y, τ) = 0.

Then, using the fact that ∂t(k(x − t, y, τ)) = −∂ξk(x − t, y, τ), we can integrate with
respect to t and we get

∂xv(1/2)(t, x, y, τ) = ∂xv
0
(1/2)(x, y) + k(x− t, y, τ) + ∂yk(x− t, y, τ)− k0(x, y)− ∂yk0(x− t, y, τ),

where k0 and v0(1/2) are the initial data of k and v(1/2) respectively. Then, assuming that

k(·, τ) ∈ ∂xHN (R2) for all τ ∈ [0, T ] (see (4)), we obtain

v(1/2)(t, x, y, τ) =v0(1/2)(x, y) + ∂−1x k(x− t, y, τ) + ∂−1x ∂yk(x− t, y, τ)

− ∂−1x k0(x, y)− ∂−1x ∂yk
0(x− t, y, τ),

Secondly, we study the conditions R1
(1) = R2

(1) = 0. Denoting w± = ζ(1)±u(1), we obtain

(∂t + ∂x)w+ +

(
2∂τk + 3k∂ξk +

1

3
∂3ξk + ∂−1ξ ∂2yk − ∂−1ξ k

)
(x− t, τ) + F 1

0 = 0,

(∂t − ∂x)w− +

(
k∂ξk −

1

3
∂3ξk + ∂−1ξ ∂2yk + 2∂−1ξ ∂yk + ∂−1ξ k

)
(x− t, τ) + F 2

0 = 0,

(17)

where
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F 1
0 = ∂yv

0
(1/2) − v

0
(1/2) + ∂−1ξ k0 − ∂−1ξ ∂2yk

0,

F 2
0 = ∂yv

0
(1/2) + v0(1/2) − ∂

−1
ξ k0 − ∂−1ξ ∂2yk

0 − 2∂−1ξ ∂yk
0.

The following Lemma (see Lemma 7.20 in [12] or Lemma 2 in [13]) gives us a Condition
to control ζ(1) and u(1).

Lemma 3.2. Let c1 6= c2. Let k1, k2 ∈ H2(R2) with k2 = ∂xK2 and K2 ∈ H3(R2). We
consider the unique solution k of{

(∂t + c1∂x)k = k1(x− c1t, y) + k2(x− c2t, y),

k|t=0 = 0.

Then, lim
t�∞

∣∣1
t k(t, ·)

∣∣
H2 = 0 if and only if k1 ≡ 0 and in that case

|k(t, ·)|H2 ≤ C
t

1 + t
|K2|H3 .

Hence, since we want to avoid a linear growth of the solution of (17), we must impose

∂τk +
3

2
k∂ξk +

1

6
∂3ξk +

1

2
∂−1ξ ∂2yk −

1

2
∂−1ξ k = 0 (18)

which is the the rotation-modified KP equation defined in (12). In the following, we
provide a local existence result for this equation. This proposition generalizes Theorem
1.1 in [5].

Proposition 3.3. Let N ≥ 4 and k0 ∈ ∂xHN (R2). Then, there exists a time T > 0 and
a unique solution k ∈ C

(
[0, T ]; ∂xH

N (R2)
)

to the rotation-modified KP equation (18)
and one has ∣∣∣∂−1ξ k(t, ·)

∣∣∣
HN
≤ C

(
T,
∣∣∣∂−1ξ k0

∣∣∣
HN

)
.

Furthermore, if k0, ∂
2
yk0 ∈ ∂2xHN−2(R2), then k ∈ C

(
[0, T ]; ∂2xH

N−2(R2)
)

and one has

∣∣∣∂−2ξ k(t, ·)
∣∣∣
HN−2

≤ C
(
T,
∣∣∣∂−2ξ k0

∣∣∣
HN−2

,
∣∣∣∂−2ξ ∂2yk0

∣∣∣
HN−2

, |∂ξk0|HN

)
.

Finally, if N ≥ 6 and k0, ∂
2
yk0 ∈ ∂2xHN−4(R2), then ∂2yk ∈ C

(
[0, T ]; ∂2xH

N−4(R2)
)

and
one has

∣∣∣∂−2ξ k(t, ·)
∣∣∣
HN−4

≤ C
(
T,
∣∣∣∂−2ξ k0

∣∣∣
HN−4

,
∣∣∣∂−2ξ ∂2yk0

∣∣∣
HN−4

,
∣∣∣∂−1ξ k0

∣∣∣
HN

)
.
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Proof. The first point follows from Theorem 1.1 in [5]. We only have to prove the second
and the third points. This proof is similar to the proof of Lemma 7.22 in [12] for the
KP equation and the proof of Proposition 3.8 in [16] for the Ostrovsky equation. In
the following, we denote by S(t) the semi-group of the linearized rotation-modified KP
equation

∂τk +
1

6
∂3ξk +

1

2
∂−1ξ ∂2yk −

1

2
∂−1ξ k = 0.

One can check that this semi-group acts unitary on HN (R2). We also define k̃ = ∂τk.
We can check that

∂τ k̃ +
1

6
∂3ξ k̃ +

1

2
∂−1ξ ∂2y k̃ −

1

2
∂−1ξ k̃ +

3

2
∂ξ

(
k̃k
)

= 0.

Using the Duhamel’s formula we obtain

∂−1ξ k̃(τ) = S(t)∂−1ξ k̃0 −
3

2

∫ τ

0
S(t− s)

(
k(s)k̃(s)

)
ds.

We can see by product estimates that ∂−1ξ k̃0, k(s)k̃(s) ∈ HN−4(R2) and then that

k̃ ∈ C
(
[0, T ]; ∂xH

N−3(R2)
)
. Then, we consider the following equality

1

2

(
1− ∂2y

)
∂−2ξ k = ∂−1ξ k̃ +

3

4
k2 +

1

6
∂2ξk,

For the second point, we get that (1− ∂2ξ − ∂2y)∂−2ξ k ∈ HN−4(R2) and the result follows

easily. For the third point, we obtain from the second point that ∂2y∂
−2
ξ k ∈ HN−4(R2).

We can now rigorously justify the rotation-modified KP equation. The following theorem
is the main theorem of this part.

Theorem 3.4. Let k0 ∈ ∂2xH12(R2) such that 1 + εk0 ≥ hmin > 0 and v0 ∈ ∂xH8(R2).
Suppose that (µ, ε, γ,Ro) ∈ ARKP. Then, there exists a time T0 > 0, such that we have

(i) a unique classical solution (ζB, uB, vB) of (13) with initial data
(
k0, k0,

√
µv0
)

on[
0, T0

µ

]
.

(ii) a unique classical solution k of (18) with initial data k0 on [0, T0].

(iii) If we define (ζRKP , uRKP ) (t, x, y) = (k(x− t, y, µt), k(x− t, y, µt)) we have the
following error estimate for all 0 ≤ t ≤ T0

µ ,

|(ζB, uB)− (ζRKP , uRKP )|L∞([0,t]×R2) ≤ C
µt

1 + t
(1 +

√
µt)

where C = C
(

1
hmin

, µ0,
∣∣∂−2x k0

∣∣
H12 ,

∣∣∂−1x v0
∣∣
H8

)
.
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Proof. In order to simplify the technicality of this proof, C is a constant of the form

C = C

(
1

hmin
, µ0,

∣∣∂−2x k0
∣∣
H12 ,

∣∣∂−1x v0
∣∣
H9

)
The first and second point follow from Proposition 2.7 and Proposition 3.3. Then, from
System (17) and Lemma 3.2, we obtain∣∣ζ(1)∣∣H2 +

∣∣u(1)∣∣H2 ≤ C
t

1 + t
.

We also notice that we can control all the derivatives with respect to x, y or τ of u and
v be differentiating (17). Hence, we get a control for the remainders R1 and R2 and we
obtain, for 0 ≤ t ≤ T

µ ,

|R1(t)|H3 + |R2(t)|H3 ≤ C.

Then, using Proposition 2.8, on can have

|(ζB, uB, vB)− (ζapp, uapp, vapp)|L∞([0,t]×R2) ≤ Cµ
3
2 t.

Finally, from the ansatz (14) and Lemma 3.2, we have

|(ζapp, uapp)− (ζRKP , vRKP )|L∞([0,t]×R2) ≤ µ
t

1 + t
,

and the result follows easily.

This theorem provides the first mathematical justification of the rotation-modified KP
equation. Notice that the condition k0 ∈ ∂2xH10(R2) is quite restrictive. As noted in [12]
Part 7.2.1 and in [16] for the Ostrovsky equation, using the strategy developed in [1],
we can hope to weaken the assumption on k0 into k0 ∈ ∂xH9(R2).

3.2 Very weak rotation, the KP equation

In this part we study the situation of a very weak Coriolis forcing. We derive and fully
justify the KP equation. We show that if ε

Ro is small enough, we can derive the KP
equation

∂ξ

(
∂τk +

3

2
k∂ξk +

1

6
∂3ξk

)
+

1

2
∂yyk = 0. (19)

Inspired by [10], we consider the following asymptotic regime

AKP =
{

(µ, ε, γ,Ro) , 0 ≤ µ ≤ µ0, ε = µ, γ =
√
µ,

ε

Ro
= µ

}
.

The Boussinesq-Coriolis equations become (γ =
√
µ)
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∂tζ +∇γ ·
(
[1 + µζ]V

)
= 0,(

1− µ

3
∇γ∇γ ·

)
∂tV +∇γζ + µV · ∇γV + µV

⊥
= 0.

(20)

Proceeding as in the previous part, we denote V = (u, v)t and we seek an approximate
solution (ζapp, uapp, vapp) of (20) in the form

ζapp(t, x) = k(x− t, y, µt) + µζ(1)(t, x, y, µt),

uapp(t, x) = k(x− t, y, µt) + µu(1)(t, x, y, µt),

vapp(t, x) =
√
µv(1/2)(t, x, y, µt) + µv(1)(t, x, y, µt).

(21)

Then, we plug the ansatz into Sytem (20) and we get

∂tζapp +∇γ ·
(
[1 + µζapp]Vapp

)
= µR1

(1) + µ
3
2 ∂yv(1) + µ2R1,(

1− µ

3
∇γ∇γ ·

)
∂tVapp +∇γζapp + µVapp · ∇γVapp + µV

⊥
app =

√
µR2

(1/2) + µR2
(1) + µ

3
2R2.

where

R1
(1) = ∂tζ(1) + ∂xu(1) + ∂τk + 2k∂ξk + ∂yv(1/2),

R2
(1/2) =

(
0

∂tv(1/2) + ∂yk

)
and R2

(1) =

(
∂tu(1) + ∂xζ(1) + ∂τk + 1

3∂
3
ξk + k∂ξk

∂tv(1) + k

)
,

and

R1 = ∂τζ(1) + ∂x
(
ku(1) + kζ(1) + µζ(1)u(1)

)
+ ∂y((k + µζ(1))(v(1/2) + µv(1))),

R2 =
(
−(v(1/2) +

√
µv(1)) +

√
µR̃2,1, R2,2

)
with

R̃2,1 = ∂τu(1) −
1

3
∂2ξ∂τk −

1

3
∂2x∂tu(1) − µ

1

3
∂2x∂τu(1) + ∂x

(
ku(1)

)
+ µu(1)∂xu(1)

− 1

3
∂3xyt(v(1/2) +

√
µv(1))−

µ

3
∂3xyτ (v(1/2) +

√
µv(1)) + (v(1/2) +

√
µv(1))∂y

(
k + µu(1)

)
,

R2,2 = ∂τv(1/2) + ∂yζ(1) + k∂x(v(1/2) +
√
µv(1)) + u(1) +

1

3
∂y∂

2
ξk + µu(1)∂x(v(1/2) +

√
µv(1))

− µ

3

(
∂3yxτk + ∂3yxtu(1) + ∂2y∂t(v(1/2) +

√
µv(1)) + µ∂yxτu(1) + µ∂2y∂τ (v(1/2) +

√
µv(1))

)
+ µ(v(1/2) +

√
µv(1))∂y(v(1/2) +

√
µv(1)).

Then, we choose (k, v(1/2), v(1)) such that, for all (x, y) ∈ R2, t ∈
[
0, Tµ

]
and τ ∈ [0, T ],

R1
(1)(t, x, y, τ) = 0 and R2

(1/2)(t, x, y, τ) = R2
(1)(t, x, y, τ) = 0.

First, we obtain that
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v(1/2) = ∂−1x ∂yk + v0(1/2) − ∂
−1
x ∂yk

0,

v(1) = ∂−1x k + v0(1) − ∂
−1
x k0.

Then, denoting w± = ζ(1) ± u(1), we get

(∂t + ∂x)w+ +

(
2∂τk + 3k∂ξk +

1

3
∂3ξk + ∂−1ξ ∂2yk

)
(x− t, τ) + F0 = 0,

(∂t − ∂x)w− +

(
k∂ξk −

1

3
∂3ξk + ∂−1ξ ∂2yk

)
(x− t, τ) + F0 = 0,

where

F0 = ∂yv
0
(1/2) − ∂

−1
ξ ∂2yk

0.

Therefore, in order to avoid a linear growth (see Lemma 3.2), k must satisfies the KP
equation (19). The following Lemma is a local wellposedness result for the KP equation
(see Lemma 7.22 in [12] or [19, 2, 21]).

Proposition 3.5. Let N ≥ 5 and k0 ∈ ∂xHN (R2). Then, there exists a time T > 0 and
a unique solution k ∈ C

(
[0, T ]; ∂xH

N (R2)
)

to the KP equation (19) and one has∣∣∣∂−1ξ k(t, ·)
∣∣∣
HN
≤ C

(
T,
∣∣∣∂−1ξ k0

∣∣∣
HN

)
.

Furthermore, if N ≥ 6 and ∂2yk0 ∈ ∂2xHN−4(R2), then ∂2yk ∈ C
(
[0, T ]; ∂2xH

N−4(R2)
)

and
one has

∣∣∣∂2yk0∂−2ξ k(t, ·)
∣∣∣
HN−4

≤ C
(
T,
∣∣∣∂−2ξ ∂2yk0

∣∣∣
HN−4

,
∣∣∣∂−1ξ k0

∣∣∣
HN

)
.

We can now establish a rigorous justification of the KP equation.

Theorem 3.6. Let k0 ∈ ∂2xH12(R2) such that 1+εk0 ≥ hmin > 0 and v0(1/2) ∈ ∂xH
8(R2),

v0(1) ∈ H
7(R2). Suppose that (µ, ε, γ,Ro) ∈ AKP. Denote v0 =

√
µv0(1/2) + µv0(1). Then,

there exists a time T0 > 0, such that we have

(i) a unique classical solution (ζB, uB, vB) of (13) with initial data
(
k0, k0, v0

)
on
[
0, T0

µ

]
.

(ii) a unique classical solution k of (19) with initial data k0 on [0, T0].

(iii) If we define (ζKP , uKP ) (t, x) = (k(x− t, y, µt), k(x− t, y, µt)) we have the following
error estimate for all 0 ≤ t ≤ T0

µ ,

|(ζB, uB)− (ζKP , uKP )|L∞([0,t]×R2) ≤ C
µt

1 + t
(1 +

√
µt)

where C = C
(

1
hmin

, µ0,
∣∣∂−2x k0

∣∣
H12 ,

∣∣∣∂−1x v0(1/2)

∣∣∣
H8
,
∣∣∣v0(1)∣∣∣H7

)
.
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Proof. The proof is very similar to the proof of Theorem 3.4.

Remark 3.7. Contrary to the justification of the KP equation in the irrotational setting
(see Part 7.2 in [12] or [13]), the transverse part of the horizontal velocity v must contain
an order O(µ) contribution. Notice that if one considers a weaker Coriolis forcing, for

instance ε
Ro = µ

3
2 , this assumption is no more necessary.

4 Which equation for which asymptotic regime ?

4.1 The Ostrovsky and KdV equations

In Section 3, we derived two asymptotic models in the long wave regime (ε = µ). First,
if γ =

√
µ and ε

Ro =
√
µ, we derived the rotation-modified KP equation

∂ξ

(
∂τk +

3

2
k∂ξk +

1

6
∂3ξk

)
+

1

2
∂yyk =

1

2
k.

Then, if γ =
√
µ and ε

Ro = µ, we obtained the KP equation

∂ξ

(
∂τk +

3

2
k∂ξk +

1

6
∂3ξk

)
+

1

2
∂yyk = 0.

In [16], we performed a similar derivation in the long wave regime under the assumption
that γ = O(µ2). When ε

Ro =
√
µ, we derived the Ostrovsky equation

∂ξ

(
∂τk +

3

2
k∂ξk +

1

6
∂3ξk

)
=

1

2
k, (22)

and when ε
Ro = µ, we derived the KdV equation

∂τk +
3

2
k∂ξk +

1

6
∂3ξk = 0. (23)

We would like to emphasize that we can weaken the assumption γ = O(µ2) into γ = µ. In
the following, we show this fact on the Ostrovsky equation. We consider the asymptotic
regime

Aostrov =
{

(µ, ε, γ,Ro) , 0 ≤ µ ≤ µ0, ε = µ, γ = µ,
ε

Ro
=
√
µ
}
.

Then we seek an approximate solution (ζapp, uapp, vapp) of the Boussinesq-Coriolis equa-
tions in the form

ζapp(t, x, y) = k(x− t, y, µt) + µζ(1)(t, x, y, µt),

uapp(t, x, y) = k(x− t, y, µt) + µu(1)(t, x, y, µt),

vapp(t, x, y) =
√
µv(1/2)(t, x, y, µt) + µv(1)(t, x, y, µt)

Plugging the ansatz into the Boussinesq-Coriolis equations, we obtain
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∂tζapp +∇γ ·
(
[1 + µζapp]Vapp

)
= µR1

(1) + µ
3
2R1,(

1− µ

3
∇γ∇γ ·

)
∂tVapp +∇γζapp + µVapp · ∇γVapp +

√
µV
⊥
app =

√
µR2

(1/2) + µR2
(1) + µ

3
2R2.

where

R1
(1) = ∂tζ(1) + ∂xu(1) + ∂τk + 2k∂ξk,

R2
(1/2) =

(
0

∂tv(1/2) + k

)
and R2

(1) =

(
∂tu(1) + ∂xζ(1) + ∂τk + 1

3∂
3
ξk + k∂ξk − v(1/2)

∂tv(1) + ∂yk

)
,

and where R1, R2 are remainders similar to the ones found in Sections 3.1 and 3.2. Then,
using the same strategy than before, we impose that R1

(1) = 0 and R2
(1/2) = R2

(1) = 0.
We obtain

v(1/2) = ∂−1ξ k + v0(1/2) − ∂
−1
ξ k0,

v(1) = ∂−1ξ ∂yk + v0(1) − ∂
−1
ξ ∂yk

0,

and, denoting w± = ζ(1) ± u(1), we get

(∂t + ∂x)w+ +

(
2∂τk + 3k∂ξk +

1

3
∂3ξk − ∂−1ξ k

)
(x− t, τ)− F0 = 0,

(∂t − ∂x)w− +

(
k∂ξk −

1

3
∂3ξk + ∂−1ξ k

)
(x− t, τ) + F0 = 0,

where F0 = v0(1/2) − ∂−1ξ k0. In order to avoid a linear growth (see Lemma 3.2), k

must satisfies the Ostrovsky equation (22). Proceeding as in [16], we can generalize
Theorem 3.9 in [16] to the asymptotic regime Aostrov. A solution of the Ostrovsky
equation provides a O(

√
µ) approximation of the Boussinesq-Coriolis equations over a

time O
(

1
µ

)
. We can proceed similarly for the KdV equation (23). Under the asymptotic

regime

AKdV =
{

(µ, ε, γ,Ro) , 0 ≤ µ ≤ µ0, ε = µ, γ = µ,
ε

Ro
= µ

}
.

and with the ansatz

ζapp(t, x, y) = k(x− t, y, µt) + µζ(1)(t, x, y, µt),

uapp(t, x, y) = k(x− t, y, µt) + µu(1)(t, x, y, µt),

vapp(t, x, y) = µv(1)(t, x, y, µt),

we can generalize Theorem 3.12 in [16] to the asymptotic regime AKdV. A solution of
the KdV equation provides a O(µ) approximation of the Boussinesq-Coriolis equations

over a time O
(

1
µ

)
.
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4.2 Conclusion

We summarize Section 3 and Subsection 4.1 by the following table. Notice that all of
these models provide a O(

√
µ) approximation (at least) in the long wave regime (ε = µ)

of the Boussinesq-Coriolis equations over a time O
(

1
µ

)
.

γ

ε
Ro √

µ µ

√
µ Rotation-modified KP equation KP equation

µ Ostrovsky equation KdV equation
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