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Abstract

In this paper, we study the asymptotic behavior of weakly transverse water-waves
under a weak Coriolis forcing in the long wave regime. We derive the Boussinesg-
Coriolis equations in this setting and we provide a rigorous justification of this model.
Then, from these equations, we derive two other asymptotic models. When the Cori-
olis forcing is weak, we fully justify the rotation-modified Kadomtsev-Petviashvili
equation (also called Grimshaw-Melville equation). When the Coriolis forcing is
very weak, we rigorously justify the Kadomtsev-Petviashvili equation. This work
provides the first mathematical justification of the KP approximation under a Cori-
olis forcing.

1 Introduction

We consider the motion of an inviscid, incompressible fluid under the influence of the
gravity g = —ge, and the rotation of the Earth with a rotation vector f = %ez. We
assume that the fluid has a constant density p and that no surface tension is involved.
We assume that the surface is a graph above the still water level and that the seabed is
flat. We denote by X = (z,7) € R? the horizontal variable and by z € R the vertical
variable. The fluid occupies the domain Q; := {(X,2) € R®, — H < z < ((t,X)}.
We denote by U = (V,w)" the velocity in the fluid. Notice that V is the horizontal
component of U and w its vertical component. Finally, we assume that the pressure P
is constant at the surface of the fluid. The equations governing such a fluid are the free

surface Euler-Coriolis equations(!)

1
8tU+(U-VX,Z)U+fX U= —;VXVZP—gez in Qy, (1)
div U = 0 in ,

with the boundary conditions
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'The centrifugal potential is assumed to be constant and included in the pressure term.



P‘Z:C = PO)

0¢—U-N =0,
wy = 0,
where P, is constant, N = (VC>, U= <V> = U|z:¢ and U, = <Vb> = U|z:—H'
1 w Wp

In this work, we do not directly work on the free surface Euler-Coriolis equations. We
rather consider another formulation called the Castro-Lannes formulation (see [4]). This
formulation generalizes the well-known Zakharov/Craig-Sulem formulation (][22, 6]) to a
fluid with a rotational component. In [4], Castro and Lannes shown that we can express
the free surface Euler equations thanks to the unknowns (C Uy, w) ) where w = Curl U
is the vorticity of the fluid and

U// ZK—FEVC.

Then, they provide a system of three equations on these unknowns. In [15], a similar
work has been done to take into account the Coriolis forcing. It leads to the following
system, called the Castro-Lannes system or the water waves equations with vorticity,

%¢—-U-N=0,
8tU//+VC+%V\U//\2—%V[(1 + V¢ ) w?|+(VE gy ) ViV =0, (@)
Ow+(U-Vx )w= (w-Vx.) U+ f0,U,

where U = <?7v,> = U[¢](Uy,w) is the unique solution in H* ()

of the following Div-Curl equation

curl U = w in €y,

divU =0 in Q,
wp = 0.

The main goal of this paper is to study weakly transverse long waves. Therefore, we
consider a nondimensionalization of the previous equations. Five physical parameters
are involved in this work : the typical amplitude of the surface a, the typical longitudinal
scale L, the typical transverse scale L, the characteristic water depth H and the typical
Coriolis frequency f. We introduce four dimensionless parameters

H? a av/gH d L,
= —, £ = — 0O = an = —.
=T~ HfL, "7 7L,

2Notice that Castro and Lannes used the unknowns (Q, % -U//,w). However, as noticed in [16], the
unknowns (C , Uy, w) are better to derive shallow water asymptotic models.



The parameter p is called the shallowness parameter. The parameter € is called the
nonlinearity parameter. The parameter Ro is the Rossby number and finally the pa-
rameter vy is called the transversality parameter. Then, we can nondimensionalize the
Euler equations (1) and the Castro-Lannes equations (2) (see Part 1.2). In this work,
we study the following asymptotic regime

g
-Aboussi = {(,LL,&“,")/,RO),O < 1% < /1,075:0(/;),’)/ < 17% = O(\/ﬁ)}?

This regime corresponds to a long wave regime (¢ = O(u)) under a weak Coriolis forcing
£

5 = O(y/n). For an explanation of the first assumption, we refer to [12]. The second

Ro ™
assumption is standard in oceanography. Rewriting - = jﬁ%, this assumption means

that the rotation period is assumed to be much smaller than the time scale of the waves.
We refer to [9, 7] for more explanations about this assumption (see also [10, 17, 8, 14]).

We organize this paper in four parts. In Section 1.2, we explain how we nondimension-
alize the equations and we provide a local wellposedness result. In Section 2, we derive
and justify the Boussinesq-Coriolis equations in the asymptotic regime Apoussi- The
Boussinesq-Coriolis equations are a system of three equations on the surface ¢ and the
vertical average of the horizontal velocity denoted V (defined in (9)). They correspond
to a (9(,u2) approximation of the water waves equations. These equations are

8tc + V7. ([1 + EC] V) = O,
<L (3)

(1 — HV’YVW) OV +VIC+eV.- VIV — V=,
3 Ro

Then, in Section 3, we study the KP approximation which corresponds to the asymptotic
regime Apoussi With € = p and v = /u. This second assumption corresponds to weakly
transverse effects (see for instance [12]). In this regime, we derive two other asymptotic
models. When the Coriolis forcing is weak ( = \/,E), we rigorously justify the modified-
rotation Kadomtsev-Petviashvili equation (see Subsection 3.1), also called Grimshaw-
Melville equation in the physics literature,

3
2

1, 1 1
kdek + 68£/~c> + 50uk = Sk

85 <87—/€ + Sha

Then, when the Coriolis forcing is very weak (ﬁ = u), we fully justify the KP equation
(see Subsection 3.2)

3 1.4 1

Finally, in Section 4, we compare the scalar asymptotic models we derive in Section 3
with the ones derived in [16] : the Ostrovsky equation and the KdV equation.



1.1 Notations/Definitions

- If A € R3, we denote by Ay, its horizontal component.

-tV = (:j) € R?, we define the orthogonal of V by V+ = <U>
- In this paper, C () is a nondecreasing and positive function whose exact value has no

importance.

- Consider a vector field A or a function w defined on €. Then, we denote A = A|,_,
W = W|z:€< and Ab = A|Z:,1, Wp = W|z:71~

-If N € N and f is a function on R%, |f|,~ is its HV-norm, |f|, is its L?-norm and
|f| ;0 its L®-norm. We denote by (, ), the L?(R?) inner product.

- If f is a function defined on R?, We use the notation V7 f = (9,f, ’yayf)t.
- If u = u(X, z) is defined in €2, we define

u(X, z)dz and u* = u — w.

1 + 5C
- For N > 0, we define the Hilbert spaces 9, H (R?)
0, HN (R?) = {k € HN1(R?), k = 9,k with k € HN(R2)} . (4)
The function k is denoted 8; 'k in the following.

- Similarly, for N > 0, we define the Hilbert spaces 92H" (R?).

- In the following definition, we recall the notion of consistence (see for instance [12]).

Definition 1.1. We say that the Castro-Lannes equations (7) are consistent of order
@) (,uz) with a system of equations S for ¢ and V if for any smooth solutions (C U” 7, )

of the Castro-Lannes equations (7), the pair (C, [eC] (U‘”, )) (defined in (9)) solves
S up to a residual of order O (/1,2).

1.2 Nondimensionalization

We recall the four dimensionless parameters

H? a av/gH L,
n=Tfre= g Ro= gy =1 (5)

We nondimensionalize the variables and the unknowns. We introduce (see [12] or [15])



P
V’z,/—— = i
g W gaL pgH

In the following, we use the following notations

, Y
V’Y - V)’Zf{ - (’yagy,> V)'Lé/'y e <\/gzv/ > CUI'IM = V}‘Lé/ ; X le/,I/7’Y - V)léj/’j/z/

We also define
/
1
U+ = (@Y) ,w = ;curl’WU“, (6)
and

B TTH
U, U| 15

v (V)

|z'=e¢”

NHAT — (—SWVVC)
1 .
Remark 1.2. Notice that the nondimensionalization of the vorticity presented in (6)
corresponds to weakly sheared flows (see [3], [20], [18]).
The nondimensionalized fluid domain is
Q= {(X" ) eR?, —1<2 <el(Y,X)}.
Finally, the Euler-Coriolis equations (1) become
c 7 5\/> V/J_
divy,,, U =0 in ),

with the boundary conditions

1

at’C/ _ *HH . NH#Y = 0,
ol

wy, = 0.

In the following, we omit the primes. We can proceed similarly to nondimensionalize
the Castro-Lannes formulation. We define the quantity

U/‘/W =V +ewV7(.

Then, the Castro-Lannes formulation becomes (see [4] or [15] when v = 1),



1
¢ — *Q‘“N"” =0,

atUUf 7+V’YC+ V’Y’UN Y

—%W[(l + 2 VP w | +e (V4 Up) V=V =0, (7)

oot - (U VT w= (w- VL) U+ 0.0

where UH = (V K ) Ut [5(](U‘W, ) is the unique solution in H'(€;) of

w
curl®” U* = pw in Qy,
div*” U* = 0 in Qy,

— ™Y
V+ewV7()—c = U7,

wp = 0.
In order to rigorously derive asymptotic models, we need an existence result for the
Castro-Lannes formulation (7). We recall that the existence of solutions to the water
waves equations is always obtained under the so-called Rayleigh-Taylor condition that
assumes the positivity of the Rayleigh-Taylor coefficient a (see Part 3.4.5 in [12] for the
link between a and the Rayleigh-Taylor condition or [15]) where

@ = ale() (U7, w) = 1+ & (0 + V¢ (U) 7, w) - V) wle) (U7, ).
We explain in [15] how we can define the Rayleigh-Taylor coefficient a at t = 0. We also
assume that the water depth is bounded from below by a positive constant
EIhmin >0 3 1+5< > hmin-

The following theorem can be found in [15] and provide a local wellposedness result of
the Castro-Lannes formulation (7) (see also Theorem 1.5 in [16]).

Theorem 1.3. Let A > 0 and N > 5. We suppose that (u,e,7,Ro) € Apoussi- We
assume that

(Gor (UH )0, w0) € HY*3(R2) x HY (R?) x HV 1 (@),
_ gl
with VA7 - wg = 0 and V7+ - (U/‘/w)o =wp - ( 5\/€V CO) . Finally, we assume that

EIhmina Omin > 0 , 1+ ECO > hmin and a[ECO]((U;/LW)Oa‘*’O) > Omin,

and that

G0l vy + Mol +llwollgy-1 < A

‘ vk



Then, there exists T > 0 and a unique classical solution ((,U‘”,w) to the Castro-

Lannes (7) on [0,T] with initial data (Cg,( )o,w()) Moreover,

T 1
T = 0 — =,

max (5,%) " T

max <|C( Mg~ +

(0,7

ot ->||HN1) -,

with ¢ :C<A #O,h ,%).

Remark 1.4. Notice that thanks to Theorem 1.3 together with Part 5.5.1 in [4], the
quantities ¢, U;/W, w, V, U, 0, (9tU;/W, 0w and 0, U remain bounded uniformly with
respect to the small parameters during the time evolution of the flow.

2 The Boussinesq-Coriolis equations

In this part, we derive and fully justify the Boussinesq-Coriolis equations (3) under a
weak Coriolis forcing - = O (\/ﬁ) We recall the corresponding asymptotic regime

[3)
Aboussi = {(/%577’ RO) 70 < 12 < Mo, € = O(u),v < 1a % = O(\/ﬁ)} . (8)

Notice that no assumption on v is made in this part. The Boussinesq equations corre-
spond to an order O(u?) approximation of the water waves equations. Motivated by [16],
we use the Castro-Lannes equations (7) to derive this asymptotic model. We introduce
the water depth

Bt X) = 1+2C(t, X),
and the vertical average of the horizontal velocity
U w)(t, X Ly (U, w)(t, X, 2)d
’ t = — t .
VU 00 X) = o [ VECAIU @) Xz )
In the following we denote V = (u,v)’. More generally, if u is a function defined in

), we denote by w its vertical average and u* = u — u. We also have to introduce the
”shear” velocity

¢
Vi = Vale) (UL, w)(t, X) = / Wik (t, X, )

and its vertical average



1 [e¢ re€
szsh:/ / wit.
hi) ).

As noticed in [4], these quantities appear when one wants to obtain an expansion with
respect to p of the velocity. We recall that

U =V +ewV7C.

2.1 Asymptotic expansions with respect to p

In this part, we give an expansion of different quantities with respect to pu. These
expansions will help us to derive the Boussinesq-Coriolis equations (3) in Section 2.2.
The following proposition gives a link between V and U* - N*7 (the proof is a small
adaptation of Proposition 4.2 in [15]).

Proposition 2.1. If ((,U“’W, > satisfy the Castro-Lannes system (7), we have

U"-N*Y = —uV7 - (hV).

Then we get the first equation of the Boussinesq-Coriolis system from the first equation
of (7). We also need an expansion of V and w with respect to pu. We introduce the
following operators

e¢ 2
Tl f= [V [ pand TR = (T
In the following, we denote T' = T [¢¢] and T™ = T™ [¢(] when no confusion is possible.

Proposition 2.2. In the Boussinesq regime Apoyssi, if (C U’”, > satisfy the Castro-

Lannes system (7), we have

V =V 4 JaVi, + pT*V + pa TV, + 0 (1),
V=V - /uQ+ul*V — 2TV, + 0 (),
where

2
-ty

T*V = % (2 —[z+ ]2> VIV? -V and T*

We also have

w = ,u(z+1V7V—l—u2/ VY- VE+0(u )

w=—phV7 - V+(9(



Proof. This proof is an adaptation of part 2.2 in [3], Part 4.2 in [15] and Section 2.1 in
[16]. First, using curl®” U* = pw, we obtain that

Viwy, = 0,V — Vit

Then, we consider the ansatz V =V +,/uV. By integrating the previous equation, we
obtain

VIO V1 = —\/wjt + V1w,

([ ) ([ )

Secondly, using Proposition 2.1 and the divergence-free assumption, we get

v ([ V) w0

Then, gathering the previous two equality, we obtain

Since Vi = 0, we get

V =V + /uVy +uT*V. (11)

Finally, the expansion of V follows by applying the operator Id + p1™ to the previous
equality. For the second equality, we notice that 7V} = —T'V}, . The third and fourth

equalities follow from the fact that V does not depend on z. The fifth equality are a
consequence of Equalities (10) and (11). Finally, the sixth equality follows from the fact
that V3, = 0 and that ¢ = O(u). O

We can also get an expansion of 0;V and Oyw.

Proposition 2.3. In the Boussinesq regime Apoyssis if (C,U;;’W,w) satisfy the Castro-

Lannes system (7), we have
\7 * *X7 3 kg

o (V—V—\/ﬁVsh—MT V —p2T sh> =0 (4,

O (X -V + Q- puT*V + M%TV:h> =0 (u?),

O (w+ phV'V) = 0 (1?).
Proof. The result follows from Proposition 2.1 and the equality

V= (1—uT*) (V+/uVh) + p*T*T*V.
O

Since we can not express Q and V7, with respect to ¢ and V, we need an evolution

equation at order O (/ﬁ) of these quantities.

9



Proposition 2.4. In the Boussinesq regime Apoyssi, if (C, U”’W, ) satisfy the Castro-

Lannes system (7), then Q satisfies the following equation

oy (VY =0 ().

and V7, satisfies the equation

* * X7 * 57\ L 3
OV +EV-V IV +eVE VIV —e [l + 2] (V7 - V) 0. Vbh+R T (V-V)" =0 (w) .

Proof. This proof is an adaptation of Part 2.3 in [3] and Part 2.2 in [16]. Thanks to the
horizontal component of the vorticity equation of the Castro-Lannes formulation (7), we
get

€ € €
0, AV RAYAS —wo, = V'V 4+ —w,0,V+ —0,V
hwp + € wp + MW L Wp = EWp, + \/ﬁwz .V + Ro\/ﬁ 5

Furthermore, since curl®” U* = uw, we have
9,V = —/uwit + O (p) and w, = V-V 4+ 0 (V7).

Then, using Proposition 2.2, we obtain

Oywp+eV-Vwy, —c[1 + 2] (V’Y ) V) O,wp, —ewp, - VIV —¢ (VWLV) wh ——0, V=0 ( )

Rovi

Then, integrating with respect to z, using the fact that 0;(+V7- (hV) =0, Vg, = fac wj,
and Q, = V7, we get (see the computations in Part 2.3 in [3])

VAVl RVaavi £ VAV Y. 3
OVt V-V Vit eV VIV o (V= V) = el +4] (V- V) 0. Ve +0 (M) .
and

L 3
atQ‘l—EV (V—X) =0 n2 .
Rovi ()
Finally, the second equation follows from the fact that V3 = Vg, — Q. O

2.2 Full justification of the Boussinesq-Coriolis equations

We can now establish the Boussinesq-Coriolis equations under a weak Coriolis forcing.
The Boussinesq-Coriolis equations (3) are the following system

8¢+ V7 WV =0,
1 — — — € =l

(1 - fvvv%) OV + VI +V - VIV 4+ —V' =0.
3 Ro

First, we show a consistency result.

10



Proposition 2.5. In the Boussinesq regime Apoyussi, the Castro-Lannes equations (7)
are consistent at order O(u?) with the Boussinesq-Coriolis equations (3) in the sense of
Definition 1.1.

Proof. The first equation of the Boussinesq-Coriolis equations is always satisfied for a
solution of the Castro-Lannes formulation by Proposition 2.1. We recall that the second
equation of the Castro-Lannes formulation is

S vl=o
O

00 G () ()

Thanks to Proposition 2.2, we know that (¢ = O(u))

Ul =V 4ewV'( =V +0 (1?) =V = JiQ+ pl"V — 2 TVG, + O (4?),

and

v ‘U’”‘ =U7 YU — s (VU Ut
=V V'V e iQ- V'V = e iV - V1Q — £ (V14 U) VE 4 0 (2),

Furthermore, thanks to Proposition 2.4 and Proposition 2.2, we get (% =0 (\/;7))

PO TV, = pToNVG, + O (u2) = —,qu—TV L0 () =0(1?).
Finally, using Proposition 2.2, Proposition 2.4, Proposition 2.3 and Remark 1.4, we
obtain from the second equation of the Castro-Lannes formulation that
(1-EVIVH) OV +VIC+EV VIV H V' =0 (1),

Notice that all the terms that involve Q disappear (this fact was pointed out in [3] and
[15]). O

Remark 2.6. In [16], the author points out the fact that under a strong Coriolis forcing
(% < 1), a new term appears in the Boussinesq-Coriolis equations. We would like to
emphasize that this term is not present in this setting since we only study a weak Coriolis

forcing (ﬁ =0 (\/ﬁ))
The purpose of this part is to fully justify the Boussinesq-Coriolis equations (3). First,

we give a local wellposedness result of the Boussinesq-Coriolis equations. We define the
energy space

XY (R?) = HN(R?*) x HY(R?) x HY(R?),

endowed with the norm
|(CaV)|,2xgy = |¢l5y + [VIgy + 1|V - VIEx

11



Proposition 2.7. Let N > 3 and (CO,VO) € X/iV(RQ) . Suppose that (u,e,7v,Ro) €
Apoussi- Assume that

Fhmin >0, 1+ eCo > hmin.

Then, there exists an existence time T > 0 and a unique solution (C,V) on [0,T] to
the Boussinesq-Coriolis equations (3) with initial data (gO,VO) . Moreover, ((,V) €
C ([0,T); XY (R?)) and

Ty, 1

_to L _ T\ (4 . _ 2
T = LT c andr[{)l7aT}](’(C,V)(t, )’X[)’ c,

(Vo))

Proof. This proof is a small adaptation of the proof of Proposition 6.7 in [12]. We only

give the energy estimates. We assume that (C ,V) solves (3) on [0, %} and that

hmin ’

with ¢/ = C <,u0, —

hmin T
1+eC> on [O,O}.
2 2
We denote U = (C ,V)t. We introduce the symmetric matrix operator
1 0
SU) = <0 hly — pV? (hVV-))
and the associated energy

ENU) =35> (S(V)d°U,0°U),.

la|<N

N | —

Remark that there exists ¢1,co = C (L, |h|Loo) such that

hmin
1 .
¢ |V V)3 < <—3vV (hV7-V) ,V) < VY-V,
2

We also notice that for |a| = N,

d — s ~ 0
a B0 = (h (1-4vrvT) aaatv) <sg (V7 0°0V) vw) telot.

and that, denoting A7 = V7 - V7,

< C (o, EN(V)) .

HN

p|V V|, < ’(1 - %m)_l V- (VI +eV VIV + V)

Then, after some computations we obtain (¢ = O (p))

12



LEN (W) < pC (V) ¥
and the result follows from Gronwall’s inequality. O
We also have a stability result for the Boussinesq-Coriolis equations (3).
Proposition 2.8. Let the assumptions of Proposition 2.7 be satisfied. Suppose that
there exists <§:, \7) eC <[0, %} ;XiV(RQ)> satisfying

¢+ V7 - hV = Ry,

(1-EVIVH) OV +VIHEV VIV =V = R
where h = 1+¢eC and with R = (Ry, Ry) € L™ ({O, %] ;HN_I(]RQ)). Then, if we denote
¢ = (C,V) — <C~, \7) where U = ((, V) is the solution given in Proposition 2.7, we have

el xv-1 < (‘eto‘xlyl +t|R|Loo<|:O77;?j|;HN—1)> ,

where

(€V)],. = (0.2 x) "RL*([QTS];H“)> |

1 _
1 = C (MO? h77 }(€07V0) ‘XN )
min H
Proof. We proceed as in Proposition 2.7. We define the energy

Y= Y (S o).

la|<N—1

After some computations, we get

d _
GFN 0 < (1Rl 0 (0 Ul

min

(69) ]y 1Rlincs ) ez ) el

Then the result follows from Gronwall’s inequality. O

We can now rigorously justify the Boussinesq-Coriolis equations. We recall that the

operator V[a{](U‘”, ) is defined in (9).

Theorem 2.9. Let N > 12 and (u,¢,v,Ro0) € Apoussi - We assume that we are under
the assumptions of Theorem 1.3. We define the following quantities

Vo = VI[eGo]((U) 7)o, wo) , V = V[(](U)7, w).

13



Then, there exists a time T > 0 such that
(i) T has the form

S 1
max(u,%)’ andT =c.

(it) There exists a unique classical solution (Cz, V) of (3) with the initial data (o, Vo)
on [0, T].

(i1i) There exists a unique classical solution (C, U/’/W,w> of System (7) with initial data
<C07 (U;/L’q/)o,wo) on [0,T].
(iv) The following error estimate holds, for 0 <t < T,

} (C, v) - (CB’ VB) |L°°([O,t}><R2) S /,LQt C2,

with ¢ :C<A,p0,# L )

hmin ? Gmin

Therefore, in the Boussinesq regime Apgyyss; a solution of the water waves system (7)

remains close to a solution of the Boussinesqg-Coriolis equations (3) over a time O (ﬁ)

with an accuracy of order O (,u%)

Remark 2.10. Notice that if one considers a solution of a system and wants to show

that this solution remains close to a solution of the waves equations over times O (ﬁ)

with an accuracy of order O (u%) , it is sufficient to compare this solution with a solution

of the Boussinesq-Coriolis equations (3). We use this strategy in the following.

3 The KP approximation

In this section, we consider the KP (Kadomtsev-Petviashvili) approximation under a
weak Coriolis forcing. We assume that ¢ = i (long waves) and v = /jt (weakly transverse
effects). We consider two different regimes. First, if = = /i (weak rotation), we derive
the rotation-modified KP equation (12). Then, if {5 = u (very weak rotation), we derive
the KP equation (19). We refer to [10] for more physical explanations about these two
models (see also [11, 7, 9]).

3.1 Weak rotation, the rotation-modified KP equation

In the irrotational setting, the KP equation provides a good approximation of the water
waves equation under the assumption that € and p have the same order and that v and
VIt have the same order (see [13] or Part 7.2 in [12]). When a Coriolis forcing is taken
into account, Grimshaw and Melville ([10]) derived an equation for long waves, which is
an adaptation of the KP equation

14



3 1., 1 1
This equation is called the rotation-modified KP equation or Grimshaw-Melville equation
in the physics literature. Notice that this equation was originally derived for internal
water waves ([10, 7]). In this part, we fully justify this equation. Inspired by [10, 7], we
consider the asymptotic regime

9
ARKP = {(:UﬂS?’YvRO)aO << po, € =pyY = \/ﬁ?% = \//7“}

Then, the Boussinesq-Coriolis equations become (v = /1)

HC+ V7 (L4 uCV) =0,

M - o (13)
(1 - gWW-) OV + V¢ + V- V'V + iV =0,

In the following, we denote V = (u,v)!. Our strategy is similar to the one used in [16] to
fully justify the Ostrovsky equation. We consider an expansion of (¢, V) with respect to
. Inspired by [13] or Part 7.2 in [12], we seek an approximate solution (Capp, Uapp, Vapp)
of (13) in the form

Capp(tv €L, y) = k(l’ - ta Y, Mt) + MC(I) (t7 Ty, /Lt)7
uapp(t’ x, y) = k(ﬂi‘ - tv Y, Ht) + Hu(l) (tv x,Yy, /“Lt)v (14)
vapp(tv €T, y) = \/ﬁv(l/Z) (tv T, Y, Mt)

where k = k(&,7) is a traveling water wave modulated by a slow time variable and the
others terms are correctors. In the following, we denote by 7 the variable associated to
the slow time variable ut. Plugging the ansatz into Sytem (13), we obtain

{at(app + V"/ . ([1 =+ ﬂcapp]vapp) = ,LLR(ll) + ,UtQRl,

M _ _ — — 1 3
(1 B §V7VV,) Ot Vapp + V7 Capp + 11V app - V' Vapp + \/ﬁvapp = \/ﬁR%l/% + “Rﬁl) + ”gRQ'
(15)
where

R(ll) e 8t<(1) + 8xU(1) + 0k + 2/4385]{1 + 8yv(1/2),

9 . 0 9 8tu(1) + awC(l) + O0:k + %ag’k + kOck — V(1/2)
R(1/2) B (8,511(1/2) + Oyk + k;> and R(l) - < 0 ’

and

Ry = 0:{1) + 0x (kuqy + kCay + uCayuay) + 0y ((k + pay)vay2),

Ry = (/itR21, Ra,2) (16)

with
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1 1 1
Ry = 8Tu(1) — g@?&—k — g@i@{d(l) — uga,ﬁ&u(l) + 0y (kU(l)) + ,uU(l)a;KU(l)

1 %
= 300v01/2) — 3020072 + V20 (k+ puq))
1
Ryo = (97-11(1/2) + 3yC(1) + k@zv(l/g) +ua) + gayagk + ;LU(l)amv(l/g) + ,uv(l/g)ayv(l/g)

5 (Ork + ey + 00001 2) + Oyaruqr) + 00001 2)
Then, the strategy is to choose (k,v(1/9)) such that, for all (z,y) € R2, t € [0, ﬂ and
T €1[0,T7,
R(ll)(t, x,y,7) =0 and R?l/Q) (t,z,y,7) = R?l)(t,x, y,7) = 0.

Remark 3.1. As noticed in Part 7.2.2 in [12], we should a priori add \/ji((1 2)(t, =, y, ut),

Vi) (t @, y, pt), vy (t, o, y, pt), and pogy(t, o, y, ut) to the ansatz (14) for Capp, Uapp
and vapy respectively. But, it leads to ((1/2) = u(1/2) = vy = v(1) = 0 if these quantities
are nitially zero.

We focus first on the condition R%l/Z) (t,2,y,7) = 0. Assuming that v(;/9) and k vanish
at x = oo, this condition is equivalent to the equation

010:v(1/2)(t, 2y, T) + Ogk(x — t,y,7) + 8§yk:(a; —t,y,7) = 0.
Then, using the fact that 0y(k(x —t,y,7)) = —0ck(x — t,y,7), we can integrate with

respect to t and we get
Ov(12)(t, 2y, 7) = [“)wv?lﬂ) (z,y) + k(z — t,y,7) + Oyk(z — t,y,7) — K (2, y) — O k°(x — t,y,T),

where k° and vol /o) A€ the initial data of k and v(y /o) respectively. Then, assuming that
k(-,7) € 0, HN (R?) for all T € [0,T] (see (4)), we obtain

—~

v(1/2)(t, 2, y, T) 20?1/2)(517, y) + 0y k(x — t,y,7) + 0, 9y k(z — t,y,T)
- aglko("b? y) - ax_layko(m - ta Y, 7—)7

Secondly, we study the conditions R%l) = R?l) = 0. Denoting wy = (1) £u(1), we obtain

(O 4 0p) wy + <28¢k + 3kOck + %62% +0; 02k — 8§1k) (x—t,7)+ Fy =0,
(17)
(0 — Oz)w_ + (k@gk - %821@ + 0. 107k + 20, 10,k + ag%) (x—t,7)+ F; =0,

where
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F§ = 0yv{y gy + 01 ja) — 05 'K° — 01 OK0 — 20,19, k°.

The following Lemma (see Lemma 7.20 in [12] or Lemma 2 in [13]) gives us a Condition
to control (1) and uy).

Lemma 3.2. Let ¢; # co. Let ki, ko € H?(R?) with ky = 0, K2 and Ky € H3(R?). We
consider the unique solution k of

(at + Clax)k - kl (JT - Clt7 y) + ]{Zg(.’E - CQt) y)a
klt:() — 0

Then, tlim ‘%k:(t, )|H2 =0 if and only if k1 =0 and in that case

t
|k(t, ) gz < Cm | Kol s -

Hence, since we want to avoid a linear growth of the solution of (17), we must impose

3 1
—kOck + —
2" T
which is the the rotation-modified KP equation defined in (12). In the following, we

provide a local existence result for this equation. This proposition generalizes Theorem
1.1 in [5].

1 1
Ok + O+ 50 Ok — 50 k=0 (18)

Proposition 3.3. Let N >4 and ko € 9, HY (R?). Then, there exists a time T > 0 and
a unique solution k € C ([0,T);0.HY (R?)) to the rotation-modified KP equation (18)
and one has

‘aglk(t, -)]HN <C (T,

6g1k0)HN) .

Furthermore, if ko, 02ko € 02HN"2(R?), then k € C ([0,T]; 02H"~2(R?)) and one has

‘Bg%(t, ')‘ ., <C (T,

—2
af kO‘HN& ’

—292
OF 202k |, |ekol )

Finally, if N > 6 and ko, 0jko € 02HN=4(R?), then akecC ([0,T); 02HN=4(R?)) and
one has

‘6g2k(t, -)’ <C <T, ,

aﬁ_2k°‘ﬂ

0202k ‘
¢ Yy,

85_1k0‘HN> .

HN-4 N—4 N—4’
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Proof. The first point follows from Theorem 1.1 in [5]. We only have to prove the second
and the third points. This proof is similar to the proof of Lemma 7.22 in [12] for the
KP equation and the proof of Proposition 3.8 in [16] for the Ostrovsky equation. In
the following, we denote by S(t) the semi-group of the linearized rotation-modified KP
equation

1 3 1 —192 1 —17.
Ok + 02k + 50,0k — 50,k = 0.

One can check that this semi-group acts unitary on HV(R?). We also define k= 0.k
We can check that

oo lgr Lo 00 147 3 AR
Ok + 20k + 50702k — 507 '+ S0 (Rk ) = 0.
Using the Duhamel’s formula we obtain

13 I N =
07 'k(r) = S(1)0 o — /0 5(t— ) (K(k(s)) ds.
We can see by product estimates that 8{112:0, k(s)k(s) € HN=%(R?) and then that
kecC ([0,T); 0, HN=3(R?)). Then, we consider the following equality
1 1
2 6
For the second point, we get that (1 — 852 — 85)85_ 2k € HN=%(R?) and the result follows

easily. For the third point, we obtain from the second point that 8§8g ’k € HN-4(R?).
O

-3
2 -2 -1 2 2
(1-85) 9k = 0g 'k + [k + Z0Ek,

We can now rigorously justify the rotation-modified KP equation. The following theorem
is the main theorem of this part.

Theorem 3.4. Let k° € 02H'2(R?) such that 1 + ek® > hyin > 0 and v° € 9, H8(R?).
Suppose that (u,e,7y,Ro) € Arkp. Then, there exists a time Ty > 0, such that we have
(i) a unique classical solution ((p,up,vp) of (13) with initial data (k°,k°, /m°) on
0, 2],

o

(ii) a unique classical solution k of (18) with initial data k° on [0, Tp).

(iii) If we define (Crxp,urkp) (t,x,y) = (k(x —t,y,pt), k(x —t,y,ut)) we have the
following error estimate for all 0 <t < %,

t
|(CB,uB) — (CRKP,URKP)’LOO([Uyt]XRz) < ClLH(l + /ut)

where C' = C (ﬁ,uo, 8;1110}1{8).

—21.0
ax k ‘H127
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Proof. In order to simplify the technicality of this proof, C' is a constant of the form

1 _ _
c=C <ha Ko, ‘8:1: 21{0‘[{12 ) ‘aw 1UO}H9>
min
The first and second point follow from Proposition 2.7 and Proposition 3.3. Then, from
System (17) and Lemma 3.2, we obtain

t
1+t
We also notice that we can control all the derivatives with respect to x, y or 7 of u and

v be differentiating (17). Hence, we get a control for the remainders R; and Rz and we
obtain, for 0 <t < %,

’C(l)‘HQ + |u(1)‘H2 <C

‘Rl(t)|H3 + |R2(t)’H3 < (.

Then, using Proposition 2.8, on can have

3
|(CBy up, UB) - (Cappy Uapp, Uapp) ’L‘X’([O,t]XRz) < CNQ t.
Finally, from the ansatz (14) and Lemma 3.2, we have

t

|(Capp7uapp) - (CRKP’URKP)‘LOO([O’{:]XRQ) < Hm,

and the result follows easily.
O

This theorem provides the first mathematical justification of the rotation-modified KP
equation. Notice that the condition kY € 92H1°(R?) is quite restrictive. As noted in [12]
Part 7.2.1 and in [16] for the Ostrovsky equation, using the strategy developed in [1],
we can hope to weaken the assumption on k" into k% € 9, H"(R?).

3.2 Very weak rotation, the KP equation

In this part we study the situation of a very weak Coriolis forcing. We derive and fully
justify the KP equation. We show that if 5 is small enough, we can derive the KP
equation

3 1,4 1
Inspired by [10], we consider the following asymptotic regime

3
AKP = {(/’L787’77RO)70 SMSM07€:/’L7’Y:\/E7% :/'L}

The Boussinesq-Coriolis equations become (v = /1)

19



¢+ V7 ([L+ pC]V) =0,

p e v v L ol (20)
(1 - §WW-) OV £V + 4V -VIV 4 iV =0.

Proceeding as in the previous part, we denote V = (u,v)! and we seek an approximate
solution (Capp, Uapp; Vapp) Of (20) in the form
Capp(t, ) = k(z — t,y, ut) + pay(t, =, y, ut),
Uapp(t, ) = k(x — t,y, pt) + pugy (t, ©,y, pt), (21)
Vapp(t, ) = /(1 )2) (8 2, y, pit) + poy (8, 2, y, pt).
Then, we plug the ansatz into Sytem (20) and we get

8t<app + v’y ) ([ + Mcapp] GPP) - MR( p2(9 v(l) + K Rl’
3
(1 - §V7V7'> O Vapp + V7 Capp + 1V app - V' Vapp + UVapp = ﬂR(21/2) + “R?l) +u2 Ry

where
R H= 875((1) + 693u(1) + 0rk + Qkagk‘ + 8yv(1/2),
s 0 deuqy + 02C1y + O-k + 302k + kOck
R(1/2) - (atv(l/Z) + ayk/’> and R(l) — < atv(l) 4 k )
and
Ry = 0:C1) + 0 (kuqy + K¢y + uCayuy) + 0y ((k + uCy) (v 2y + mvay)),
Ry = (—(0(1/2) + VEva) + VER21, Rz,z)
with

- 1 1 1
R2)1 = 8—,—’&(1) — gaga-,-k' — §a§atU(1) — ,ugaia.ru (1) + 5 (k’u 1)) + Hu 1)8 U(l
1
- gagyt(vu/z) +VEvay) = gaiy‘r(v(l/Q) + fvu)) + (v(1/2) + Vva))dy (k + pugy)
Ra o =0 v(1/2)+8 C(l + kO, ( (1/2) —|—f’0(1 )—|-U(1 + 8 65k;+uu 1)6 ( (1/2) -I-\f’v(l )

- (@‘jmk + 03wy + 020 (v(1y2) + VEv(1)) + uaymu (1) + HO20- (v /2) + Vi)
( (1/2) + VI(1)) 0y (V1 /2) + VIV ())-

Then, we choose (k,v(1/2),v(1)) such that, for all (z,y) € R2, t e [0, ﬂ and T € [0, 7],
R%l)(t, z,y,7) =0 and R%1/2) (t,z,y,7) = R?l)(t,:n, y,7) =0.

First, we obtain that
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U(I/Q) = a;layk + U?I/Q) — a;laykov
vy = 05 'k + gy — 05 K.

Then, denoting wy = (1) £ u(y), we get
(0r + 0p) wy + (28Tk + 3kOck + %agk + 8518513) (x—t,7)+Fy =0,
(0 — Ox)w_ + (kagk - %agk + 8518§k) (x—t,7)+ Fy =0,

where

Fo = 0yv{y g — 0 'O K.

Therefore, in order to avoid a linear growth (see Lemma 3.2), k must satisfies the KP
equation (19). The following Lemma is a local wellposedness result for the KP equation
(see Lemma 7.22 in [12] or [19, 2, 21]).

Proposition 3.5. Let N > 5 and ko € 0, HY (R?). Then, there exists a time T > 0 and
a unique solution k € C ([0,T); 0, H™ (R?)) to the KP equation (19) and one has

aglko)HN) .

Furthermore, if N > 6 and 851@0 € 02HN=4(R?), then &gk eC ([O,T]; 8§HN*4(R2)) and
one has

‘aglk(t, -)]HN <C (T,

2k00 k()| <O (T |02k

8g1k0‘HN) .

We can now establish a rigorous justification of the KP equation.

Theorem 3.6. Let k° € 02H'2(R?) such that 1+ek® > hypin > 0 and 0?1/2) € 0, H%(R?),

v?l) € H'(R?). Suppose that (u,e,v,Ro) € Axp. Denote v° = \/fw?l/Q) + ,tw(ol). Then,
there exists a time Ty > 0, such that we have
(i) a unique classical solution (Cp,up,vp) of (13) with initial data (k°, k°,2°) on {0, %} .

(ii) a unique classical solution k of (19) with initial data k° on [0, Tp).
(11i) If we define (Cxp,uxp) (t,z) = (k(x — t,y, ut), k(x — t,y, ut)) we have the following

error estimate for all 0 <t < %,

ut
‘(CB:UB> - (CKPyUKP)‘Loo([07t}XR2) < Cm(l + ﬂt)

U?l) ’H7)

where C = C <ﬁ;ﬂ0, aEQkO‘Hu ) 893_117?1/2)

H8'
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Proof. The proof is very similar to the proof of Theorem 3.4. O

Remark 3.7. Contrary to the justification of the KP equation in the irrotational setting
(see Part 7.2 in [12] or [13]), the transverse part of the horizontal velocity v must contain
an order O(u) contribution. Notice that if one considers a weaker Coriolis forcing, for

. 3 . Lo
mstance ﬁ = u2, this assumption is no more necessary.

4 Which equation for which asymptotic regime ?

4.1 The Ostrovsky and KdV equations

In Section 3, we derived two asymptotic models in the long wave regime (¢ = u). First,
if y = /p and 5 = /11, we derived the rotation-modified KP equation

3 1.4 1 1

Then, if v = /i and 5 = u, we obtained the KP equation

3 1,5 1

In [16], we performed a similar derivation in the long wave regime under the assumption
that v = O(u?). When s = VI, we derived the Ostrovsky equation

3 1\ 1

and when 5 = i, we derived the KdV equation

3 Lo, _
Ok + Shdck + 02k = 0. (23)

We would like to emphasize that we can weaken the assumption v = O(p?) into v = p. In
the following, we show this fact on the Ostrovsky equation. We consider the asymptotic
regime

3
Aostrov = {(M?&’%RO) 0 < p < po,e=p,y = p, % = \/ﬁ} .
Then we seek an approximate solution (Capp, Uapps Vapp) Of the Boussinesg-Coriolis equa-
tions in the form
Capp(tv €T, y) = k‘(l‘ —t,y, /.Lt) + MC(l)(ta LY, Mt)a
uapp(t’ z, y) = k(ZE —1,y, :U’t) + A1) (t’ z,Y, Nt)’
Uapp(ta z, y) = \//jv(l/Z) (t7 z,Y, Mt) + HU(1) (ta z,Y, Mt)

Plugging the ansatz into the Boussinesq-Coriolis equations, we obtain
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atCapp + Vv7. ([1 =+ u(am,]vam,) = /j,R(ll) —+ ﬂ%Rh
I £ N4 — — L R
(1 a gvvvv,) OV app + V7 Capp + iV app -+ V' Vapp + V11V opp = \/ﬁR(Zl/z) + NR%l) + p2 Ry.

where

R{yy = 01y + Ooury + Ork + 2k0ck,

2 . 0 2 8tU,(1) + 81.§(1) + 0.k + %ag’k + kOck — V(1/2)
R )9 = (8,511(1/2) n k) and Ry = ( Byvgry + O,k )

and where Ry, Ry are remainders similar to the ones found in Sections 3.1 and 3.2. Then,
using the same strategy than before, we impose that R%l) = 0 and R?l j2) = R%l) = 0.
We obtain

_ a1 0 —17.0
vy = O Tk vg g — 0k,
'U(l) = 85153//{7 + 'U?l) — (9glayk:0,

and, denoting wy = ((1) & u(y), we get
1
(O + Op) wy + (2&/@ + 3kOck + gagk - 85%) (x —t,7) — Fy =0,
1
(O — O) w_ + (kagk - gagk + 8§1k> (x—t,7)+Fy=0,

where Fy = v?l /2y 85_ k0. In order to avoid a linear growth (see Lemma 3.2), k

must satisfies the Ostrovsky equation (22). Proceeding as in [16], we can generalize
Theorem 3.9 in [16] to the asymptotic regime Aostrov. A solution of the Ostrovsky
equation provides a O( /i) approximation of the Boussinesq-Coriolis equations over a

time O (i) We can proceed similarly for the KAV equation (23). Under the asymptotic

regime

g
’AKdV: {(M75777R0)70§MSMO:EZ/’L)’Y:M7R7 :M}

and with the ansatz

Capp(ts T, y) = k(z — t,y, ut) + py (¢, @, y, pt),
uapp(t’ z, y) = k((L‘ —t,y, //Jt) + AU (1) (ta z,y, /‘Lt)a
vapp(t’ xz, y) = Mv(l) (t7 z,y, Mt)a

we can generalize Theorem 3.12 in [16] to the asymptotic regime Agqy. A solution of
the KdV equation provides a O(u) approximation of the Boussinesq-Coriolis equations

over a time O (i)
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4.2 Conclusion

We summarize Section 3 and Subsection 4.1 by the following table. Notice that all of
these models provide a O(,/jt) approximation (at least) in the long wave regime (¢ = p)

of the Boussinesq-Coriolis equations over a time O (i)

Ro \//j )

v

VI | Rotation-modified KP equation | KP equation

W Ostrovsky equation KdV equation
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