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Abstract

In this paper, we want to understand the Proudman resonance. It is a resonant
respond in shallow waters of a water body on a traveling atmospheric disturbance
when the speed of the disturbance is close to the typical water wave velocity. We
show here that the same kind of resonance exists for landslide tsunamis and we
propose a mathematical approach to investigate these phenomena based on the
derivation, justification and analysis of relevant asymptotic models. This approach
allows us to investigate more complex phenomena that are not dealt with in the
physics literature such as the influence of a variable bottom or the generalization of
the Proudman resonance in deeper waters. First, we prove a local well-posedness
of the water waves equations with a moving bottom and a non constant pressure
at the surface taking into account the dependence of small physical parameters and
we show that these equations are a Hamiltonian system (which extend the result of
Zakharov [33]). Then, we justify some linear asymptotic models in order to study the
Proudman resonance and submarine landslide tsunamis; we study the linear water
waves equations and dispersion estimates allow us to investigate the amplitude of the
sea level. To complete these asymptotic models, we add some numerical simulations.

1 Introduction

1.1 Presentation of the problem

A tsunami is popularly an elevation of the sea level due to an earthquake. However,
tsunamis induced by seismic sources represent only 80 % of the tsunamis. 6% are due
to landslides and 3% to meteorological effects (see the book of B. Levin and M. Nosov
[20]). Big traveling storms for instance can give energy to the sea and lead to an elevation
of the surface. In some cases, this amplification is important and this phenomenon is
called the Proudman resonance in the physics literature. Similarly, submarine landslides
can significantly increase the level of the sea and we talk about landslide tsunamis. In
this paper, we study mathematically these two phenomena. We model the sea by an
irrotational and incompressible ideal fluid bounded from below by the seabed and from
above by a free surface. We suppose that the seabed and the surface are graphs above
the still water level. We model an underwater landslide by a moving seabed (moving
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bottom) and the meteorological effects by a non constant pressure at the surface (air-
pressure disturbance). Therefore, we suppose that b(t,X) = b0(X) + bm(t,X), where b0
represents a fixed bottom and bm the variation of the bottom because of the landslide.
Similarly, the pressure at the surface is of the form P+Pref, where Pref is a constant which
represents the pressure far from the meteorological disturbance, and P (t,X) models the
meteorological disturbance (we assume that the pressure at the surface is known). We
denote by d the horizontal dimension, which is equal to 1 or 2. X ∈ Rd stands for the
horizontal variable and z ∈ R is the vertical variable. H is the typical water depth. The
water occupies a moving domain Ωt := {(X, z) ∈ Rd+1 , −H + b(t,X) < z < ζ(t,X)}.
The water is homogeneous (constant density ρ), inviscid, irrotational with no surface
tension. We denote by U the velocity and Φ the velocity potential. We have U = ∇X,zΦ.
The law governing the irrotational fluids is the Bernoulli law

∂tΦ +
1

2
|∇X,zΦ|2 + gz =

1

ρ
(Pref − P) in Ωt, (1)

where P is the pressure in the fluid domain. Changing Φ if necessary, it is possible to
assume that Pref = 0. Furthermore, the incompressibility of the fluid implies that

∆X,zΦ = 0 in Ωt. (2)

We suppose also that the fluid particles do not cross the bottom or the surface. We denote
by n the unit normal vector, pointing upward and ∂n the upward normal derivative.
Then, the boundary conditions are

∂tζ −
√

1 + |∇ζ|2∂nΦ = 0 on {z = ζ(t,X)}, (3)

and

∂tb−
√

1 + |∇b|2∂nΦ = 0 on {z = −H + b(t,X)}. (4)

In 1968, V. E. Zakharov (see [33]) showed that the water waves problem is a Hamiltonian
system and that ψ, the trace of the velocity potential at the surface (ψ = Φ|z=ζ), and
the surface ζ are canonical variables. Then, W. Craig, C. Sulem and P.L. Sulem (see
[11] and [12]) formulate this remark into a system of two non local equations. We follow
their construction to formulate our problem. Using the fact that Φ satisfies (2) and (4),
we can characterize Φ thanks to ζ and ψ = Φ|z=ζ{

∆X,zΦ = 0 in Ωt,

Φ|z=ζ = ψ ,
√

1 + |∇b|2∂nΦ|z=−H+b = ∂tb.
(5)

We decompose this equation in two parts, the surface contribution and the bottom
contribution

Φ = ΦS + ΦB,

such that
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{
∆X,zΦ

S = 0 in Ωt,

ΦS
|z=ζ = ψ ,

√
1 + |∇b|2∂nΦS

|z=−H+b = 0,
(6)

and {
∆X,zΦ

B = 0 in Ωt,

ΦB
|z=ζ = 0 ,

√
1 + |∇b|2∂nΦB

|z=−H+b = ∂tb.
(7)

In the purpose of expressing (3) with ζ and ψ, we introduce two operators. The first
one is the Dirichlet-Neumann operator

G[ζ, b] : ψ 7→
√

1 + |∇ζ|2∂nΦS
|z=ζ , (8)

where ΦS satisfies (6). The second one is the Neumann-Neumann operator

GNN [ζ, b] : ∂tb 7→
√

1 + |∇ζ|2∂nΦB
|z=ζ , (9)

where ΦB satisfies (7). Then, we can reformulate (3) as

∂tζ −G[ζ, b](ψ) = GNN [ζ, b](∂tb). (10)

Furthermore thanks to the chain rule, we can express (∂tΦ)|z=ζ , (∇X,zΦ)|z=ζ and (∂zΦ)|z=ζ
in terms of ψ, ζ, G[ζ, b](ψ) and GNN [ζ, b](∂tb). Then, we take the trace at the surface of
(1) (since there is no surface tension we have P|z=ζ = P ) and we obtain a system of two
scalar equations that reduces to the standard Zakharov/Craig-Sulem formulation when
∂tb = 0 and P = 0,


∂tζ −G[ζ, b](ψ) = GNN [ζ, b](∂tb),

∂tψ + gζ +
1

2
|∇ψ|2 − 1

2

(
G[ζ, b](ψ) +GNN [ζ, b](∂tb) +∇ζ · ∇ψ

)2
(1 + |∇ζ|2)

= −P
ρ

.
(11)

In the following, we work with a nondimensionalized version of the water waves equations
with small parameters ε, β and µ (see section 2.1). The wellposedness of the water waves
problem with a constant pressure and a fixed bottom was studied by many people. S.
Wu proved it in the case of an infinite depth without nondimensionalization ([31] and
[32]). Then, D. Lannes treated the case of a finite bottom without nondimensionalization
([17]), T. Iguchi proved a local wellposedness result for µ small enough in order to justify
shallow water approximations for water waves ([15]), and D. Lannes and B. Alvarez-
Samaniego showed, in the case of the nondimensionalized equations, that we can find an
existence time T = T0

max(ε,β) where T0 does not depend on ε, β and µ ([6]). More recently,
B. Mésognon-Gireau improved the result of D. Lannes and B. Alvarez-Samaniego and
proved that if we add enough surface tension we can find an existence time T = T0

ε
where T0 does not depend on ε and µ ([23]). T. Iguchi studied the case of a moving
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bottom in order to justify asymptotic models for tsunamis ([16]). Finally, T. Alazard,
N. Burq and C. Zuily study the optimal regularity for the initial data ([2]) and more
recently, T. Alazard, P. Baldi and D. Han-Kwan show that a well-chosen non constant
external pressure can create any small amplitude two-dimensional gravity-capillary water
waves ([1]). We organize this paper in two part. Firstly in Section 2, we prove two
local existence theorems for the water waves problem with a moving bottom and a non
constant pressure at the surface by differentiating and ”quasilinearizing” the water waves
equations and we pay attention to the dependence of the time of existence and the size
of the solution with respect to the parameters ε, β, λ and µ. This theorem extends the
result of T. Iguchi ([16]) and D. Lannes (Chapter 4 in [19]). We also prove that the water
waves problem can be viewed as a Hamiltonian system. Secondly in Section 3, we justify
some linear asymptotic models and study the Proudman resonance. First, in Section 3.1
we study the case of small topography variations in shallow waters, approximation used
in the Physics literature to investigate the Proudman resonance; then in Section 3.2 we
derive a model when the topography is not small in the shallow water approximation;
and in Section 3.3 we study the linear water waves equations in order to extend the
Proudman resonance in deep water with a small fixed topography. Finally, Appendix A
contains results about the elliptic problem (17) and Appendix B contains results about
the Dirichlet-Neumann and the Neumann-Neumann operators. Appendix C comprises
standard estimates that we use in this paper.

1.2 Notations

A good framework for the velocity in the Euler equations is the Sobolev spaces Hs. But
we do not work with U but with ψ the trace of Φ, and U = ∇X,zΦ. It will be too
restrictive to take ψ in a Sobolev space. A good idea is to work with the Beppo Levi
spaces (see [13]). For s ≥ 0, the Beppo Levi spaces are

Ḣs(Rd) :=
{
ψ ∈ L2

loc(Rd), ∇ψ ∈ Hs−1(Rd)
}
.

In this paper, C is a constant and for a function f in a normed space (X, |·|) or a
parameter γ, C(|f |, γ) is a constant depending on |f | and γ whose exact value has non
importance. The norm | · |L2 is the L2-norm and | · |∞ is the L∞-norm in Rd. Let
f ∈ C0(Rd) and m ∈ N such that f

1+|x|m ∈ L
∞(Rd). We define the Fourier multiplier

f(D) : Hm(Rd) � L2(Rd) as

∀u ∈ Hm(Rd), f̂(D)u(ξ) = f(ξ)û(ξ).

In Rd we denote the gradient operator by ∇ and in Ω or S = Rd × (−1, 0) the gradient
operator is denoted ∇X,z. Finally, we denote by Λ :=

√
1 + |D|2 with D = −i∇.
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2 Local existence of the water waves equations

This part is devoted to the wellposedness of the water waves equations (Theorems 2.3
and 2.4). We carefully study the dependence on the parameters ε, β, λ and µ of the
existence time and of the size of the solution. Contrary to [19] and [16], we exhibit the
nonlinearities of the water waves equations in order to obtain a better existence time.

2.1 The model

In this part, we present a nondimensionalized version of the water waves equations. In
order to derive some asymptotic models to the water waves equations we introduce some
dimensionless parameters linked to the physical scales of the system. The first one is the
ratio between the typical free surface amplitude a and the water depth H. We define
ε := a

H , called the nonlinearity parameter. The second one is the ratio betweenH and the

characteristic horizontal scale L. We define µ := H2

L2 , called the shallowness parameter.
The third one is the ratio between the order of bottom bathymetry amplitude abott and
H. We define β := abott

H , called the bathymetric parameter. Finally, we denote by λ the
ratio of the typical landslide amplitude abott,m and abott. We also nondimensionalize the
variables and the unknowns. We introduce


X ′ =

X

L
, z′ =

z

H
, ζ ′ =

ζ

a
, b′ =

b

abott
, b′0 =

b0
abott

, b′m =
bm

abott,m
, t′ =

√
gH

L
t,

(
ΦS
)′

=
H

aL
√
gH

ΦS ,
(
ΦB
)′

=
L

Habott,m
√
gH

ΦB, ψ′ =
H

aL
√
gH

ψ, P ′ =
P

aρg
,

(12)

where

Ω′t = {(X ′, z′) ∈ Rd+1 , − 1 + βb′(t′, X ′) < z′ < εζ ′(t′, X ′)}.

Remark 2.1. It is worth noting that the nondimensionalization of ΦS, ψ and t comes
from the linear wave theory (in shallow water regime, the characteristic speed is

√
gH).

See paragraph 1.3.2 in [19]. Let us explain the nondimensionalization of ΦB. Consider
the linear case {

∆X,zΦ
B = 0, −H < z < 0,

ΦB
|z=0 = 0 , ∂zΦ

B
|z=−H = ∂tb.

A straightforward computation gives ΦB = sinh(z|D|)
|D| cosh(H|D|)∂tb. If the typical wavelength is

L, the typical wave number is 2π
L . Furthermore, the typical order of magnitude of ∂tb is

abott,m
√
gH

L . Then, the order of magnitude of ΦB in the shallow water case is

L

2π

√
gHabott,m

L

sinh(2πHL )

cosh(2πHL )
∼
√
gHabott,mH

L
.
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For the sake of clarity, we omit the primes. We can now nondimensionalize the water
waves problem. Using the notation

∇µX,z := (
√
µ∇X , ∂z )t and ∆µ

X,z := µ∆X + ∂2
z ,

the water waves equations (11) become in dimensionless form


∂tζ−

1

µ
Gµ[εζ, βb](ψ) =

βλ

ε
GNNµ [εζ, βb](∂tb),

∂tψ+ζ+
ε

2
|∇ψ|2− ε

2µ

(
Gµ[εζ, βb](ψ)+ λβµ

ε GNNµ [εζ, βb](∂tb)+µ∇(εζ) · ∇ψ
)2

(1 + ε2µ|∇ζ|2)
=−P .

(13)
In the following ∂n is the upward conormal derivative

∂nΦS = n ·
(√

µId 0
0 1

)
∇µX,zΦ

S
|∂Ω.

Then, The Dirichlet-Neumann operator Gµ[εζ, βb] is

Gµ[εζ, βb](ψ) :=
√

1 + ε2|∇ζ|2∂nΦS
|z=εζ = −µε∇ζ · ∇XΦS

|z=εζ + ∂zΦ
S
|z=εζ , (14)

where ΦS satisfies {
∆µ
X,zΦ

S = 0 in Ωt ,

ΦS
|z=εζ = ψ , ∂nΦS

|z=−1+βb = 0,
(15)

while the Neumann-Neumann operator GNNµ [εζ, βb] is

GNNµ [εζ, βb](∂tb) :=
√

1 + ε2|∇ζ|2∂nΦB
|z=εζ = −µ∇(εζ) ·∇XΦB

|z=εζ+∂zΦ
B
|z=εζ , (16)

where ΦB satisfies{
∆µ
X,zΦ

B = 0 in Ωt ,

ΦB
|z=εζ = 0 ,

√
1 + β2|∇b|2∂nΦB

|z=−1+βb = ∂tb.
(17)

Remark 2.2. We have nondimensionalized the Dirichlet-Neumann and the Neumann-
Neumann operators as follows

G[ζ, b](ψ) =
aL
√
gH

H2
Gµ[εζ

′
, βb

′
](ψ

′
), GNN [ζ, b](∂tb) =

abott,m
√
gH

L
GNNµ [εζ

′
, βb

′
](∂t′ b

′
).
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We add two classical assumptions. First, we assume some constraints on the nondi-
mensionalized parameters and we suppose there exist ρmax > 0 and µmax > 0, such
that

0 < ε, β, βλ ≤ 1 ,
βλ

ε
≤ ρmax and µ ≤ µmax. (18)

Furthermore, we assume that the water depth is bounded from below by a positive
constant

∃hmin > 0 , εζ + 1− βb ≥ hmin. (19)

In order to quasilinearize the water waves equations, we have to introduce the vertical
speed at the surface w and horizontal speed at the surface V . We define

w := w[εζ, βb]

(
ψ,
βλ

ε
∂tb

)
=
Gµ[εζ, βb](ψ) + µβλε G

NN
µ [εζ, βb](∂tb) + εµ∇ζ · ∇ψ

1 + ε2µ|∇ζ|2
, (20)

and

V := V [εζ, βb]

(
ψ,
βλ

ε
∂tb

)
= ∇ψ − εw[εζ, βb]

(
ψ,
βλ

ε
∂tb

)
∇ζ. (21)

2.2 Notations and statement of the main results

In this paper, d = 1 or 2, t0 >
d
2 , N ∈ N and s ≥ 0. The constant T ≥ 0 represents

a final time. The pressure P and the bottom b are given functions. We suppose that
b ∈ W 3,∞(R+;HN (Rd)) and P ∈ W 1,∞(R+; ḢN+1(Rd)). We denote by MN a constant
of the form

MN = C

(
1

hmin
, µmax, ε|ζ|Hmax(t0+2,N) , β|b|

L∞t H
max(t0+2,N)
X

)
. (22)

We denote by U := (ζ, ψ)t the unknowns of our problem. We want to express (11) as a
quasilinear system. It is well-known that the good energy for the water waves problem
is

EN (U) = |Pψ|2
H

3
2

+
∑

α∈Nd,|α|≤N

(
|ζ(α)|2L2 + |Pψ(α)|2L2

)
, (23)

where ζ(α) := ∂αζ, ψ(α) := ∂αψ − εw∂αζ and P := |D|√
1+
√
µ|D|

. This energy is motivated

by the linearization of the system around the rest state (see 4.1 in [19]). P acts as the
square root of the Dirichlet-Neumann operator (see [19]). Here, ζ(α) and ψ(α) are the
Alinhac’s good unknowns of the system (see [4] and [3] in the case of the standard water
waves problem). We define U(α) := (ζ(α), ψ(α))

t. We can introduce an associated energy
space. Considering a T ≥ 0,

7



ENT := {U ∈ C([0, T ];Ht0+2(Rd)× Ḣ2(Rd)) , EN (U) ∈ L∞([0, T ])}. (24)

Our main results are the following theorems. We give two existence results. The first
theorem extends the result of T.Iguchi (Theorem 2.4 in [16]) since we give a control of
the dependence of the solution with respect to the parameters ε, β and µ and we add a
non constant pressure at the surface and also extends the result of D.Lannes (Theorem
4.16 in [19]), since we improve the regularity of the initial data and add a non constant
pressure pressure at the surface and a moving bottom. Notice that we explain later
what is Condition (29) (it corresponds to the positivity of the so called Rayleigh-Taylor
coefficient).

Theorem 2.3. Let A > 0, t0 >
d
2 , N ≥ max(1, t0)+3, U0 ∈ EN0 , b ∈W 3,∞(R+;HN (Rd))

and P ∈W 1,∞(R+; ḢN+1(Rd)) such that

EN
(
U0
)

+
βλ

ε
|∂tb|L∞t HN

X
+ |∇P |L∞t HN

X
≤ A.

We suppose that the parameters ε, β, µ, λ satisfy (18) and that (19) and (29) are satisfied
initially. Then, there exists T > 0 and a unique solution U ∈ ENT to (13) with initial
data U0. Moreover, we have

T = min

(
T0

max(ε, β)
,

T0

βλ
ε |∂tb|L∞t HN

X
+ |∇P |L∞t HN

X

)
,

1

T0
= c1 and sup

t∈[0,T ]
EN(U) = c2,

with cj = C
(
A, 1

hmin
, 1
amin

, µmax, ρmax, |b|W 3,∞
t HN

X
, |∇P |

W 1,∞
t HN

X

)
.

Notice that if ∂tb and P are of size max(ε, β), we find the same existence time that
in Theorem 4.16 in [19]. The second result shows that it is possible to go beyond the
time scale of the previous theorem; although the norm of the solution is not uniformly
bounded in terms of ε and β, we are able to make this dependence precise. This theorem
will be used to justify some of the asymptotic models derived in Section 3 over large
time scales when the pressure at the surface and the moving bottom are not supposed
small. We introduce δ := max(ε, β2).

Theorem 2.4. Under the assumptions of the previous theorem, there exists T0 > 0 such
that U ∈ ENT0√

δ

. Moreover, for all α ∈
[
0, 1

2

]
, we have

1

T0
= c1, sup

t∈
[
0,
T0
δα

]EN(U) ≤ c3

δ2α
, cj = C

(
A,

1

hmin
,

1

amin
, µmax, ρmax, |b|W 3,∞

t HN
X
, |∇P |

W 1,∞
t HN

X

)
.

Notice that when ∂tb and P are of size max(ε, β), the existence time of Theorem 2.3 is
better than the one of Theorem 2.4. Theorem 2.4 is only useful when ∂tb and P are not
small. Notice finally, that Condition (29) is satisfied if ε is small enough. Hence, since
in the following, ε is small, it is reasonable to assume it.
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2.3 Quasilinearization

Firstly, we give some controls of |Pψ|Hs and |Pψ(α)|Hs with respect to the energy EN (U).

Proposition 2.5. Let T > 0, t0 > d
2 and N ≥ 2 + max(1, t0). Consider U ∈ ENT ,

b ∈W 1,∞(R+;HN (Rd)), such that ζ and b satisfy Condition (19) for all 0 ≤ t ≤ T . We
assume also that µ satisfies (18). Then, for 0 ≤ t ≤ T , for α ∈ Nd with |α| ≤ N − 1 and
for 0 ≤ s ≤ N − 1

2 ,

|∂αPψ|L2 + |Pψ(α)|H1 + |Pψ|Hs ≤MNEN (U)
1
2 +

βλ

ε
MN |∂tb|L∞t HN

X
.

Proof. For the first inequality, we have thanks to Proposition C.1,

|∂αPψ|L2 ≤ |Pψ(α)|L2 + ε|P(w∂αζ)|L2 ,

≤ |Pψ(α)|L2 +
ε

µ
1
4

|w∂αζ|
H

1
2
.

But ψ ∈ Ḣ2(Rd). Then by Proposition B.8, w ∈ H1(Rd) and ∂αζ ∈ H1(Rd). Using
Proposition C.2, we obtain

|∂αPψ|L2 ≤ |Pψ(α)|L2+Cε

∣∣∣∣∣ wµ 1
4

∣∣∣∣∣
H1

|ζ|HN ≤ |Pψ(α)|L2+MNε|ζ|HN

(
|Pψ|

H
3
2

+
βλ

ε
|∂tb|H1

)
.

The other inequalities follow with the same arguments, see for instance Lemma 4.6 in
[19].

The following statement is a first step to the quasilinearization of the water waves equa-
tions. It is essentially Proposition 4.5 in [19] and Lemma 6.2 in [16]. However, we
improve the minimal regularity of U (we decrease the minimal value of N to 4 in dimen-
sion 1) and we provide the dependence in ∂tb which does not given in [16]. For those
reasons, we give a proof of this Proposition.

Proposition 2.6. Let t0 >
d
2 , T > 0, N ≥ max(t0, 1) + 3, b ∈W 1,∞(R+;HN (Rd)) and

U ∈ ENT , such that ζ and b satisfy Condition (19) for all 0 ≤ t ≤ T . We assume also
that µ satisfies (18). Then, for all α ∈ Nd, 1 ≤ |α| ≤ N , we have,

∂α
(

1

µ
Gµ[εζ, βb](ψ)+

λβ

ε
GNNµ [εζ, βb](∂tb)

)
=

1

µ
Gµ[εζ, βb](ψ(α))+

βλ

ε
GNNµ [εζ, βb](∂α∂tb)

− ε1{|α|=N}∇ · (ζ(α)V ) +Rα.

Furthermore Rα is controlled

|Rα|L2 ≤MN |(εζ, βb)|HNEN (U)
1
2 +

βλ

ε
MN |∂tb|L∞t HN

X
.
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Proof. We adapt and follow the proof of Proposition 4.5 in [19]. See also Proposition
6.4 in [16]. Using Proposition B.13, we obtain

∂α
(

1

µ
Gµ[εζ, βb](ψ)+

λβ

ε
GNNµ [εζ, βb](∂tb)

)
=

1

µ
Gµ[εζ, βb](ψ(α))+

βλ

ε
GNNµ [εζ, βb](∂α∂tb)

− ε1{|α|=N}∇ · (ζ(α)V ) + βGNNµ [εζ, βb]
(
∇ ·
(
∂αb Ṽ

))
+Rα,

where Ṽ = Ṽ [εζ, βb](ψ,B) is defined in Equation (72) and Rα is a sum of terms of the
form (we adopt the notation of Remark B.12 in Appendix B.3)

Aj,ι,ν := dj
(

1

µ
Gµ(∂νψ) +

βλ

ε
GNNµ (∂ν∂tb)

)
.(∂ι

1
ζ, ..., ∂ι

j
ζ; ∂ι

1
b, ..., ∂ι

j
b),

where j is an integer and ι1, ..., ιj and ν are multi-index, and∑
1≤l≤j

|ιl|+ |ν| = N,

with (j, |ιl0 |, |ν|) 6= (1, N, 0) and (0, 0, N). Here ιl0 is such that max
1≤l≤j

|ιl| = |ιl0 |. In

particular, 1 ≤ |ιl0 | ≤ N . We distinguish several cases.

a) |ιl0 |+ |ν| ≤ N − 2 and |ιl0 | ≤ N − 3 or |ιl0 |+ |ν| ≤ N , |ιl0 | ≤ N − 3 and |ν| ≤ N − 2 :

Applying the second point of Theorem 3.28 in [19] and the first point of Proposition
B.15 with s = 1

2 and t0 = min(t0,
3
2), we get that

|Aj,ι,ν |L2 ≤MN

∏
l

|(ε∂ιlζ, β∂ιlb)|H3

[
|P∂νψ|H1 +

βλ

ε
|∂ν∂tb|L2

]
,

and the result follows by Proposition 2.5.

b) |ιl0 | = N − 2 and |ν| = 0 ,1 or 2 :

We apply the fourth point of Theorem 3.28 in [19] and the second point of Proposition
B.15 with s = 1

2 and t0 = max(t0, 1),

|Aj,ι,ν |L2≤MN |(ε∂ι
l0
ζ, β∂ι

l0
b)|

H
3
2

∏
l 6=l0

|(ε∂ιlζ, β∂ιlb)|HN−2

[
|P∂νψ|HN−2 +

βλ

ε
|∂ν∂tb|HN−2

]
.

Then, we get the result thanks to Proposition 2.5.
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c) ι1 = ι with |ι| = N − 1, |ν| = j = 1 :

We proceed as in Proposition 4.5 in [19], using Theorem 3.15 in [19] and Propositions
B.13, B.7, B.8.

d) |ιl0 | = N − 1 and |ν| = 0 :

Here j = 2 and |ι2| = 1. For instance we consider that l0 = 1 and |ι2| = 1. Using the
second inequality of Proposition B.15 we have

∣∣∣d2GNNµ (∂tb).(∂
ι1ζ, ∂ι

2
ζ; ∂ι

1
b, ∂ι

2
b)
∣∣∣
L2
≤MN

∣∣∣(ε∂ι1ζ, β∂ι1b)∣∣∣
H1

∣∣∣(ε∂ι2ζ, β∂ι2b)∣∣∣
H2
|∂tb|H2 .

Furthermore, using two times Proposition B.13, we get

1

µ
d2Gµ(ψ).(∂ι

1
ζ, ∂ι

2
ζ; ∂ι

1
b, ∂ι

2
b) = − ε

√
µ
dGµ[εζ, βb]

(
∂ι

1
ζ

1
√
µ
w(ψ, 0)

)
.(∂ι

2
ζ, 0)

− ε
√
µ
Gµ[εζ, βb]

(
∂ι

1
ζ

1
√
µ
dw(ψ, 0).(∂ι

2
ζ, 0)

)
− ε∇ ·

(
∂ι

1
ζdV (ψ, 0).(∂ι

2
ζ, 0)

)
+ βdGNNµ [εζ, βb]

(
∂ι

1
b Ṽ (ψ, 0)

)
.(0, ∂ι

2
b)

+ βGNNµ [εζ, βb]
(
∂ι

1
b dṼ (ψ, 0).(0, ∂ι

2
b)
)
.

The control follows from the first inequality of Theorem 3.15 and Proposition 4.4 in [19],
and Propositions B.14, B.8 and B.11.

e) |ν| = N − 1 and |ιl0 | = 1 :

Here, j = 1. It is clear that∣∣∣∣βλε dGNNµ (∂ν∂tb).(∂
ι1ζ; ∂ι

1
b)

∣∣∣∣
L2

≤ βλ

ε
MN |∂tb|HN .

Furthermore,

1

µ
dGµ(∂νψ).(∂ι

1
ζ; ∂ι

1
b) =

1

µ
dGµ(ψ(ν)).(∂

ι1ζ; ∂ι
1
b) +

1
√
µ
dGµ

(
ε
√
µ
w∂νζ

)
.(∂ι

1
ζ; ∂ι

1
b).

Then, using Theorem 3.15 in [19] and Proposition 2.5, we get the result.
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This Proposition enables to quasilinearize the first equation of the water waves equations.
For the second equation, it is the purpose of the following proposition.

Proposition 2.7. Let T > 0, N ≥ max(t0, 1)+3, b ∈W 1,∞(R+;HN (Rd)) and U ∈ ENT ,
such that ζ and b satisfy (19) for all 0 ≤ t ≤ T . We assume also that µ satisfies (18).
Then, for all α ∈ Nd, 1 ≤ |α| ≤ N , we have,

∂α
[
ε

2
|∇ψ|2 − ε

2µ
(1 + ε2µ|∇ζ|2)w2

]
=εV · (∇ψ(α) + ε∂αζ∇w)− ε

µ
w ∂αGµ(ψ)

− βλw ∂αGNNµ (∂tb) + Sα.

Furthermore Sα is controlled

|PSα|L2 ≤ εMNEN (U) + C

(
MN ,

βλ

ε
|∂tb|L∞t HN

X

)
εEN (U)

1
2 +MN

(
βλ√
ε
|∂tb|L∞t HN

X

)2

.

Proof. The proof of this Proposition is similar to the proof of Proposition 4.10 in [19]
expect we use Propositions B.8 and B.13. See also Proposition 6.4 in [16].

Thanks to this linearization, we can ”quasilinarize” equations (13). It is the purpose of
the next proposition. Let us introduce, the Rayleigh-Taylor coefficient

a := a(U, βb) =1 + ε∂t

(
w[εζ, βb]

(
ψ,
βλ

ε
∂tb

))
+ ε2V [εζ, βb]

(
ψ,
βλ

ε
∂tb

)
· ∇
(
w[εζ, βb]

(
ψ,
βλ

ε
∂tb

))
.

(25)

This quantity plays an important role. We also introduce two new operators,

A[U, βb] :=

(
0 − 1

µGµ[εζ, βb]

a(U, βb) 0

)
(26)

and

B[U, βb] :=

(
ε∇ · (•V ) 0

0 εV · ∇

)
. (27)

We can now quasilinearize the water waves equations. We use the same arguments as in
Proposition 4.10 in [19] and part 6 in [16]. Notice that we give here a precise estimate
with respect to ∂tb and P of the residuals Rα and Sα and that the minimal value of N ,
regularity of U , is smaller than in Proposition 4.10 in [19].

Proposition 2.8. Let T > 0, N ≥ max(t0, 1) + 3, b ∈ W 2,∞(R+;HN (Rd)), P ∈
L∞(R+; ḢN+1(Rd)) and U ∈ ENT satisfies (19) for all 0 ≤ t ≤ T and solving (13). We
assume also that µ satisfies (18). Then, for all α ∈ Nd, 1 ≤ |α| ≤ N , we have,

12



∂tU(α) +A[U, βb](U(α)) + 1{|α|=N}B[U, βb](U(α)) =

(
λβ

ε
GNNµ [0, 0](∂α∂tb),−∂αP

)t
+
(
R̃α, Sα

)t
.

(28)

Furthermore, R̃α and Sα satisfy


|R̃α|L2 ≤MN |(εζ, βb)|HNEN (U)

1
2 +

βλ

ε
MN |∂tb|L∞t HN

X
,

|PSα|L2 ≤ εMNEN (U) + C

(
MN ,

βλ

ε
|∂tb|L∞t HN

X

)
εEN (U)

1
2 +MN

(
βλ√
ε
|∂tb|L∞t HN

X

)2

.

Proof. Thanks to Proposition B.15, we get

∣∣GNNµ [εζ, βb](∂α∂tb)−GNNµ [0, 0](∂α∂tb)
∣∣
L2 ≤

∫ 1

0

∣∣dGNNµ [zεζ, zβb](∂α∂tb).(ζ, b)
∣∣
L2 dz

≤MN |(εζ, βb)|HN |∂α∂tb|L∞t HN
X
.

Then, denoting R̃α = Rα + GNNµ [εζ, βb](∂α∂tb) − GNNµ [0, 0](∂α∂tb), we obtain the first
equation thanks to Proposition 2.6. For the second equation, using Proposition 2.7 and
the first equation of the water waves problem, we have

∂t∂
αψ = −∂αζ − εV · (∇ψ(α) + ε∂αζ∇w) +

ε

µ
w ∂αGµ(ψ) +βw ∂αGNNµ (∂tb)−∂αP +Sα

= −∂αζ − εV · (∇ψ(α) + ε∂αζ∇w) + εw∂t∂
αζ − ∂αP + Sα

= −∂αζ(1 + ε∂tw + ε2V · ∇w)− εV · ∇ψ(α) + ε∂t(w∂
αζ)− ∂αP + Sα

= −a∂αζ − εV · ∇ψ(α) + ε∂t(w∂
αζ)− ∂αP + Sα,

and the result follows.

In the case of a constant pressure at the surface and a fixed bottom, it is well-known
that system (28) is symmetrizable if

∃ amin > 0 , a(U, βb) ≥ amin. (29)

Then, we introduce the symmetrizer

S[U, βb] :=

(
a(U, βb) 0

0 1
µGµ[εζ, βb]

)
. (30)

13



This symmetrization has an associated energy

Fα(U) =
1

2

(
S[U, βb](U(α)), U(α)

)
L2 , if α 6= 0,

F0(U) =
1

2
|ζ|2

H
3
2

+
1

2

(
Λ

3
2ψ,

1

µ
Gµ[εζ, βb](Λ

3
2ψ)

)
L2

,

F [N ](U) =
∑
|α|≤N

Fα(U).

(31)

As in Lemma 4.27 in [19], it can be shown that F [N ] and E [N ] are equivalent in the
following sense.

Proposition 2.9. Let T > 0, N ∈ N, U ∈ ENT satisfying (19) and (29) for all 0 ≤ t ≤ T .
Then, for all 0 ≤ k ≤ N , F [k] is comparable to Ek

1

|a(U, βb)|L∞ +MN
F [k][U, b] ≤ Ek(U) ≤

(
MN +

1

amin

)
F [k][U, b]. (32)

2.4 Local existence

The water water equations can be written as follow :

∂tU +N (U) = (0,−P )t, (33)

with N (U) = (N1(U),N2(U))t and

N1(U) := − 1

µ
Gµ[εζ, βb](ψ)− βλ

ε
GNNµ [εζ, βb](∂tb),

N2(U) := ζ +
ε

2
|∇ψ|2 − ε

2µ

(
1 + ε2µ|∇ζ|2

)(
w[εζ, βb]

(
ψ,
βλ

ε
∂tb

))2

.

(34)

According to our quasilinearization, we need that a be a positive real number. Therefore,
we have to express a without partial derivative with respect to t, particularly when t = 0.
It is easy to check that (we adopt the notation of Remark B.12 in Appendix B.3)

a(U, βb) = 1 + ε2V [εζ, βb]

(
ψ,
βλ

ε
∂tb

)
· ∇
[
w[εζ, βb]

(
ψ,
βλ

ε
∂tb

)]
+ εdw

(
ψ,
βλ

ε
∂tb

)
. (−N1(U), ∂tb) + εw[εζ, βb]

(
−P −N2(U),

βλ

ε
∂2
t b

)
.

(35)

The following Proposition gives estimates for a(U, βb). It is adapted from Proposition
6.6 in [16].

Proposition 2.10. Let T > 0, t0 >
d
2 , N ≥ max(t0, 1) + 3, (ζ, ψ) ∈ ENT is a solution of

the water waves equations (13), P ∈ L∞(R+; ḢN+1(Rd)) and b ∈ W 2,∞(R+;HN (Rd)),
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such that Condition (19) is satisfied. We assume also that µ satisfies (18). Then, for
all 0 ≤ t ≤ T ,

|a(U, βb)− 1|Ht0 ≤C
(
MN ,max(βλ, β) |∂tb|L∞t HN

X
, εEN (U)

1
2

)
εEN (U)

1
2

+ εMN

(
|∇P |L∞t HN

X
+
βλ

ε

∣∣∂2
t b
∣∣
L∞t H

N
X

)
.

Furthermore, if ∂3
t b ∈ L∞(R+;HN (Rd)) and ∂tP ∈ L∞(R+; ḢN (Rd)), then,

|∂t(a(U, βb))|Ht0 ≤C
(
MN ,max(βλ, β) |∂tb|W 1,∞

t HN
X
, |∇P |L∞t HN

X
, εEN (U)

1
2

)
εEN (U)

1
2

+εC
(
MN ,max(βλ, β) |∂tb|L∞t HN

X

)(
|∇P |

W 1,∞
t HN

X
+
βλ

ε

∣∣∂2
t b
∣∣
W 1,∞
t HN

X

)
.

Proof. Using the first point of Proposition B.8 and Product estimate C.2 we have

|V [εζ, βb](εψ, βλ∂tb) ·∇ [w[εζ, βb] (εψ, βλ∂tb)]|Ht0 ≤MN

(
|Pεψ|

Ht0+
1
2

+βλ |∂tb|L∞t Ht0
X

)2
.

Furthermore, thanks to the first point of Proposition B.15 and the first point of Theorem
3.28 in [19] we obtain

∣∣∣∣εdw(ψ,βλε ∂tb
)
.(−N1(U),∂tb)

∣∣∣∣
Ht0

≤MN|(εN1(U), β∂tb)|Ht0+1

(
|Pεψ|

Ht0+
1
2
+βλ |∂tb|L∞t Ht0

X

)
.

Then, the first inequality follows easily from Proposition B.8, Proposition 2.5 and Prod-
uct estimate C.2. The second inequality can be proved similarly.

We can now prove Theorems 2.3 and 2.4. We recall that δ := max(ε, β2).

Proof. We slice up this proof in three parts. First we regularize and symmetrize the
equations, then we find some energy estimates and finally we conclude by convergence.
We only give the energy estimates in this paper and a carefully study of the nonlinearities
of the water waves equations is done. We refer to the proof of Theorem 4.16 in [19]
for the regularization, the convergence and the uniqueness (see also part 7 in [16]).
For Theorem 2.3 (respectively Theorem 2.4), we assume that U solves (13) on [0, T ](

respectively on
[
0, T√

δ

])
and that (19) and (29) are satisfied for hmin

2 and amin
2 on

[0, T ]
(

respectively on
[
0, T√

δ

])
for some T > 0.

a) |α| = 0, The 0 - energy

We proceed as in Subsection 4.3.4.3 in [19] and part 6 in [16]. We have
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d

dt
F0(U) =

1

2µ

(
dGµ[εζ, βb](Λ

3
2ψ).(∂tζ, ∂tb),Λ

3
2ψ
)
L2

+
βλ

ε

(
Λ

3
2GNNµ [εζ, βb](∂tb),Λ

3
2 ζ
)
L2

−
(

Λ
3
2 (N2(U)− ζ) ,

1

µ
Gµ[εζ, βb](Λ

3
2ψ)

)
L2

−
(

1

µ
Gµ[εζ, βb](Λ

3
2ψ),Λ

3
2P

)
L2

.

(36)
We have to control all the term in the r.h.s.

? Control of βλ
ε

(
Λ

3
2GNNµ [εζ, βb](∂tb),Λ

3
2 ζ
)
L2

.

Using Proposition B.7, we get∣∣∣∣βλε (Λ
3
2GNNµ [εζ, βb](∂tb),Λ

3
2 ζ
)
L2

∣∣∣∣ ≤MN
βλ

ε
|∂tb|L∞t HN

X
EN (U)

1
2 .

? Control of
(

Λ
3
2 (N2(U)− ζ) , 1

µGµ[εζ, βb](Λ
3
2ψ)
)
L2

.

Using Proposition 2.5 and Proposition B.8, we get

∣∣∣∣(Λ 3
2(N2(U)−ζ),

1

µ
Gµ[εζ, βb](Λ

3
2ψ)

)
L2

∣∣∣∣≤|N2(U)− ζ|
H

3
2

∣∣∣∣ 1µGµ[εζ, βb](Λ
3
2ψ)

∣∣∣∣
L2

,

≤ εMNEN (U)
3
2+MN

(
βλ

ε
|∂tb|L∞t HN

X

)2

εEN (U).

? Control of
(

1
µGµ[εζ, βb](Λ

3
2ψ),Λ

3
2P
)
L2

.

We get, using Remark 3.13 in [19],∣∣∣∣( 1

µ
Gµ[εζ, βb](Λ

3
2ψ),Λ

3
2P

)
L2

∣∣∣∣ ≤MNE
N (U)

1
2 |∇P |L∞t HN

X
.

? Control of 1
2µ

(
dGµ[εζ, βb](Λ

3
2ψ).(∂tζ, ∂tb),Λ

3
2ψ
)
L2

.

Using Proposition 3.29 in [19], the second point of Theorem 3.15 in [19], Proposition B.7
and Proposition 2.5 , we get

∣∣∣∣ 1µ(dGµ[εζ, βb](Λ
3
2ψ).(∂tζ, ∂tb),Λ

3
2ψ
)
L2

∣∣∣∣≤MN |(εN1(U), β∂tb)|HN−2 |Pψ|2
H

3
2

≤MNεEN (U)
3
2 +max(β, βλ) |∂tb|L∞t HN

X
EN (U).
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Finally, gathering all the previous estimates, we get that

d

dt
F0(U) ≤ εMNEN (U)

3
2 +MNC

(
ρmax, |∂tb|L∞t HN

X

)
max(ε, β)EN (U)

+MN

√
EN (U)

(
|∇P |L∞t HN

X
+
βλ

ε
|∂tb|L∞t HN

X

)
.

(37)

b) |α| > 0, the higher orders energies

We proceed as in Subsection 4.3.4.3 in [19] and part 6 in [16]. A simple computation
gives

d

dt
(Fα(U)) = −ε1{|α|=N}

(
aζ(α),∇ ·

(
ζ(α)V

))
L2 +

(
aζ(α),

βλ

ε
GNNµ [0, 0](∂t∂

αb) + R̃α

)
L2

− ε1{|α|=N}
(

1

µ
Gµ[εζ, βb](ψ(α)), [V · ∇ψ(α)]

)
L2

+

(
1

µ
Gµ[εζ, βb](ψ(α)), Sα − ∂αP

)
L2

+
1

2

(
∂taζ(α), ζ(α)

)
L2 +

1

2

(
1

µ
dGµ[εζ, βb](ψ(α)).(∂tζ, ∂tb), ψ(α)

)
L2

.

(38)
We have to control all the term in the r.h.s.

? Control of
(
∂taζ(α), ζ(α)

)
L2 .

Using the second point of Proposition 2.10 we get

∣∣∣(∂taζ(α), ζ(α)

)
L2

∣∣∣≤MNC
(
ρmax, |∂tb|W 1,∞

t HN
X
, |∇P |L∞t HN

X
, εEN (U)

1
2

)
εEN (U)

3
2

+C
(
MN ,βλ |∂tb|L∞t HN

X

)(
|∇P |

W 1,∞
t HN

X
+
βλ

ε

∣∣∂2
t b
∣∣
W 1,∞
t HN

X

)
εEN (U).

? Control of
(
aζ(α),

βλ
ε G

NN
µ [0, 0](∂t∂

αb)
)
L2

.

We get, thanks to Proposition 2.10 and B.7,

∣∣∣∣(aζ(α),
βλ

ε
GNNµ [0,0](∂t∂

αb)

)
L2

∣∣∣∣≤C(ρmax,µmax,|b|W 2,∞
t HN

X
,|∇P|L∞t HN

X
,εEN(U)

1
2

)βλ
ε
|∂tb|L∞t HN

X
EN (U)

1
2.

? Controls of ε1{|α|=N}
(
aζ(α),∇ ·

(
ζ(α)V

))
L2 .

Inspired by Subsection 4.3.4.3 in [19], a simple computation gives
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∣∣∣ε(aζ(α),∇·
(
ζ(α)V

))
L2

∣∣∣= ∣∣∣ε (aζ(α)∇ · V , ζ(α)

)
L2

∣∣∣
≤C
(
ρmax,µmax,|b|W 2,∞

t HN
X
,|∇P |L∞t HN

X
,δEN (U)

)
ε
[
EN (U)

3
2 +EN (U)

]
.

using Proposition 2.10 and Proposition B.8.

? Controls of
(

1
µGµ[εζ, βb](ψ(α)),Sα−∂αP

)
L2

,
(

1
µdGµ[εζ, βb](ψ(α)).(∂tζ, ∂tb), ψ(α)

)
L2

and(
aζ(α), R̃α

)
L2

.

We can use the same arguments as in the third and the fourth point of part a) using
Propositions 2.8 and 2.10.

? Control of ε
(

1
µGµ[εζ, βb](ψ(α)), [V · ∇ψ(α)]

)
L2

.

We refer to the Subsection 4.3.4.3 and Proposition 3.30 in [19] for this control.

Gathering the previous estimates and using Proposition 2.9, we obtain that

d

dt
FN(U) ≤ C

(
ρmax,

1

hmin
,µmax,

1

amin
,|b|W 3,∞

t HN
X
,|∇P|W 1,∞

t HN
X
,εFN(U)

1
2

)
×(

εFN(U)
3
2 +max(ε, β)FN(U)+FN(U)

1
2

[
βλ

ε
|∂tb|L∞

t HN
X

+|∇P |L∞
t HN

X

])
.

(39)

Then, we easily prove Theorem 2.3, using the same arguments as Subsection 4.3.4.4 in

[19]. Furthermore, for α ∈
[
0, 1

2

]
, defining F̃N (U)(τ) = δ2αFN (U)

(
τ
δα

)
, we get

d

dτ
F̃N (U) ≤ C

(
ρmax,µmax,

1

amin
,

1

hmin
,|b|

W 3,∞
t HN

X
, |∇P |

W 1,∞
t HN

X
, F̃N (U)

)
.

We can also apply the same arguments as Subsection 4.3.4.4 in [19] and Theorem 2.4
follows.

2.5 Hamiltonian system

In this section we prove that the water waves problem (13) is a Hamiltonian system
in the Sobolev framework. This extends the classical result of Zakharov ([33]) to the
case where the bottom is moving and the atmospheric pressure is not constant (see also
[10]). In the case of a moving bottom, P. Guyenne and D. P. Nicholls already pointed
out it in [14] 1. We have to introduce the Dirichlet-Dirichlet and the Neumann-Dirichlet
operators

1It seems that there is a typo in their hamiltonian; ”−ζv” should read ”+ζv”.
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{
GDDµ [εζ, βb](ψ) =

(
ΦS
)
|z=−1+βb

,

GNDµ [εζ, βb](∂tb) =
(
ΦB
)
|z=−1+βb

,
(40)

where ΦS is defined in (15) and ΦB is defined in (17). We postpone the study of these
operators to appendix B.

Remark 2.11. If we denote Φ := ΦS + βλµ
ε ΦB, Φ satisfies

∆µ
X,zΦ = 0 in Ωt ,

Φ|z=εζ = ψ ,
√

1 + β2|∇b|2∂nΦ|z=−1+βb =
βλµ

ε
∂tb.

Then √
1 + ε2|∇ζ|2∂nΦ|z=εζ = Gµ[εζ, βb](ψ) +

βµλ

ε
GNNµ [εζ, βb](∂tb), (41)

and

Φ|z=−1+βb = GDDµ [εζ, βb](ψ) +
βµλ

ε
GNDµ [εζ, βb](∂tb). (42)

Theorem 2.12. Let T > 0, t0 >
d
2 , ζ, b ∈ C0([0, T ];Ht0+1(Rd)), ψ ∈ C0([0, T ];H2(Rd)),

∂tb ∈ C0([0, T ];H1(Rd)), P ∈ C0([0, T ];L2(Rd)) such that (ζ, ψ) is a solution of (13).
Define H = H(ζ, ψ) = T (ζ, ψ) + U(ζ, ψ), where T (ζ, ψ) = T is

T =
1

2µ

∫
Ωt

∣∣∣∣∇µX,z(ΦS +
βλµ

ε
ΦB

)∣∣∣∣2+∫
Rd

βλ

ε
∂tb

(
GDDµ [εζ, βb](ψ)+

βλµ

ε
GNDµ [εζ, βb](∂tb)

)
,

(43)
and U(ζ, ψ) = U is

U =
1

2

∫
Rd
ζ2dX +

∫
Rd
ζPdX. (44)

Then, the water waves equations (13) take the form

∂t

(
ζ
ψ

)
=

(
0 I
−I 0

)(
∂ζH
∂ψH

)
.

Remark 2.13. T is the sum of the kinetic energy and the moving bottom contribution
and U the sum of the potential energy and the pressure contribution. Using Green’s
formula and Remark 2.11 we obtain that

T =
1

2

∫
Rd
ψ

(
1

µ
Gµ[εζ, βb](ψ) +

βλ

ε
GNNµ [εζ, βb](∂tb)

)
dX

+
1

2

∫
Rd

βλ

ε
∂tb

(
GDDµ [εζ, βb](ψ) +

βλµ

ε
GNDµ [εζ, βb](∂tb)

)
dX,
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Proof. Using the linearity of the Dirichlet-Neumann and the Dirichlet-Dirichlet opera-
tors with respect to ψ and the fact that the adjoint of GNNµ [εζ, βb] is GDDµ [εζ, βb] (see
Proposition B.5), we get that

∂ψH =
1

µ
Gµ[εζ, βb](ψ) +

βλ

ε
GNNµ [εζ, βb](∂tb).

Applying Proposition B.13 (which provides explicit expressions for shape derivatives)
and remark 2.13, we obtain that

2∂ζH = − ε
µ
Gµ[εζ, βb](ψ)w + ε∇ψ · V − εβλ

ε
GNNµ [εζ, βb](∂tb)w + 2P + 2ζ,

= − ε
µ
Gµ[εζ, βb](ψ)w + ε∇ψ · ∇ψ − ε2w∇ψ · ∇ζ − εβλ

ε
GNNµ [εζ, βb](∂tb)w + 2P + 2ζ,

= ε |∇ψ|2 − ε

µ
w2
(
1 + ε2µ|∇ζ|2

)
+ 2P + 2ζ,

which ends the proof.

In fact, working in the Beppo Levi framework for ψ requires that 1
|D|∂tb ∈ L

2(Rd) and
results that are not dealing with this paper.

3 Asymptotic models

In this part, we derive some asymptotic models in order to model two different types
of tsunamis. The most important phenomenon that we want to catch is the Proudman
resonance (see for instance [24] or [30] for an explanation of the Proudman resonance) and
the submarine landslide tsunami phenomenon (see [20], [28] or [29]). These resonances
occur in a linear case. The duration of the resonance depends on the phenomenon. For a
meteotsunami, the duration of the resonance corresponds to the time the meteorological
disturbance takes to reach the coast (see [24]). However, for a landslide tsunami, the
duration of the resonance corresponds to the duration of the landslide (which depends
on the size of the slope, see [20] or [28]). If the landslide is offshore, it is unreasonable
to assume that the duration of the landslide is the time the water waves take to reach
the coast. A variation of the pressure of 1 hPa creates a water wave of 1 cm whereas a
moving bottom of 1 cm tends to create a water wave of 1 cm. Therefore we assume in
the following that abott,m = a (and hence βλ = ε). However, it is important to notice
that even if for storms, a variation of the pressure of 100 hPa is very huge, it is quite
ordinary that a submarine landslide have a thickness of 1 m. Typically, a storm makes
a variation of few Hpa, and the thickness of a submarine landslide is few dm (we refer
to [20]). In this part, we only study the propagation of such phenomena. Therefore,
we take d = 1. In the following, we give three linear asymptotic models of the water
waves equations and we give examples of pressures and moving bottoms that create a
resonance. The pressure at the surface P and the moving bottom bm move from the
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left to the right. We consider that the system is initially at rest. We start this part by
giving an asymptotic expansion with respect to µ and max(ε, β) of GNNµ [εζ, βb].

Proposition 3.1. Let t0 >
d
2 , ζ and b ∈ Ht0+2(Rd) such that Condition (19) is satisfied.

We suppose that the parameters ε, β and µ satisfy (18). Then, for all B ∈ Hs− 1
2 (Rd)

with 0 ≤ s ≤ t0 + 3
2 , we have∣∣GNNµ [εζ,βb](B)−GNNµ [0,0](B)

∣∣
Hs− 1

2
≤M0|(εζ, βb)|Ht0+2 |B|

Hs− 1
2

and ∣∣GNNµ [0,0](B)−B
∣∣
Hs− 1

2
≤ Cµ |B|

Hs+3
2
.

Proof. The first inequality follows from Proposition B.15 and the second from Remark
B.1.

Remark 3.2. In the same way and under the assumptions of the previous proposition,
we can prove that (see Proposition 3.28 in [19]), for 0 ≤ s ≤ t0 + 3

2 ,

|Gµ[εζ,βb](ψ)−Gµ[0,0](ψ)|
Hs− 1

2
≤ µM0|(εζ, βb)|Ht0+2|Pψ|

Hs+1
2

and ∣∣∣∣1µGµ[0,0](ψ)+∆ψ

∣∣∣∣
Hs− 1

2

≤ µC |∇ψ|
Hs+5

2
.

We denote by V the vertically averaged horizontal component,

V = V [εζ, βb] (ψ, ∂tb) =
1

1 + εζ − βb

∫ εζ

−1+βb
∇X (Φ[εζ, βb] (ψ, ∂tb) (·, z)) dz, (45)

where Φ = Φ[εζ, βb] (ψ, ∂tb) satisfies{
∆µ
X,zΦ = 0, − 1 + βb ≤ z ≤ εζ,

Φ|z=εζ = ψ ,
√

1 + β2|∇b|2∂nΦ|z=−1+βb = µ∂tb.

The following Proposition is Remark 3.36 and a small adaptation of Proposition 3.37
and Lemma 5.4 in [19] (see also Subsection A.5.5 in [19]).

Proposition 3.3. Let T > 0, t0 >
d
2 , 0 ≤ s ≤ t0 and ζ, b ∈ W 1,∞ ([0, T ];Ht0+2(Rd)

)
such that Condition (19) is satisfied on [0, T ]. We suppose that the parameters ε, β and

µ satisfy (18). We also assume that ψ ∈W 1,∞
(

[0, T ]; Ḣs+3(Rd)
)

. Then,

Gµ[εζ, βb](ψ) + µGNNµ [εζ, βb](∂tb) = −µ∇ ·
(
(1 + εζ − βb)V

)
+ µ∂tb,
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and


∣∣V −∇ψ∣∣

Hs ≤ µC
(

1

hmin
,µmax,ε|ζ|Ht0+2 ,β|b|

L∞t H
t0+2
X

)
max

(
|∇ψ|Hs+2 , |∂tb|L∞t Hs+1

X

)
,

∣∣∂tV −∇∂tψ∣∣Hs≤µC
(

1

hmin
,µmax,|ζ|Ht0+2 ,|∂tζ|Ht0+2 ,|b|

W 2,∞
t H

t0+2
X

, |∇ψ|Hs+2 , |∂t∇ψ|Hs+2

)
.

In this part, we will consider symmetrizable linear hyperbolic systems of the first order.
We refer to [7] for more details about the wellposedness. In the following, we will only
give the energy associated to the symmetrization.

3.1 A shallow water model when β is small

3.1.1 Linear asymptotic

We consider the case that ε, β, µ are small. Physically, this means that we consider
small amplitudes for the surface and the bottom (compared to the mean depth) and
waves with large wavelengths (compared to the mean depth). The asymptotic regime
(in the sense of Definition 4.19 in [19]) is

ALW = {(ε, β, λ, µ), 0 < µ, ε, β ≤ δ0, βλ = ε} , (46)

with δ0 � 1.

Proposition 3.4. Let t0>
d
2 , N ≥ max(1, t0) + 3, U0 ∈ EN0 , P ∈W 1,∞(R+;ḢN+1(Rd))

and b ∈ W 3,∞(R+;HN (Rd)). We suppose (19) and (29) are satisfied initially. Then,
there exists T > 0, such that for all (ε, β, λ, µ) ∈ ALW , there exists a solution U =
(ζ, ψ) ∈ ENT√

δ0

to the water waves equations with initial data U0 and this solution is

unique. Furthermore, for all α ∈
[
0, 1

3

)
,

∣∣∣ζ − ζ̃∣∣∣
L∞

([
0, T
δα0

]
;HN−4(Rd)

) +
∣∣∣∇ψ −∇ψ̃∣∣∣

L∞
([

0, T
δα0

]
;HN−2(Rd)

) ≤ Tδ1−3α
0 C̃,

where

C̃ = C

(
EN
(
U0
)
,

1

hmin
,

1

amin
, |b|

W 3,∞
t HN

X
, |∇P |

W 1,∞
t HN

X

)
,

and with, (ζ̃, ψ̃) solution of the waves equation{
∂tζ̃ + ∆X ψ̃ = ∂tb,

∂tψ̃ + ζ̃ = −P,
(47)

with initial data U0.
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Proof. First, the system (47) is wellposed since it can be symmetrized thanks to the
energy

E(t) =
∣∣∣ζ̃∣∣∣2

L2
+
∣∣∣∇ψ̃∣∣∣2

L2
.

Using Theorem 2.4 we get a uniform time of existence T√
δ0
> 0 for the water waves

equation and for all parameters in ALW . Then, using Proposition 3.1, Remark 3.2,
Proposition B.8 and C.1 and standard controls we get that{

∂tζ + ∆Xψ = ∂tb+R1,

∂tψ + ζ = −P +R2,
(48)

with

 |R1|HN−4 ≤ C
(
ε|ζ|HN , |b|L∞t HN

X

)
(|(εζ, βb)|HN + µ) max

(
|Pψ|

HN− 1
2
, |∂tb|HN

)
,

|R2|HN−1 ≤ εC
(
ε|ζ|HN , |b|L∞t HN

X

)
max

(
|Pψ|2

HN− 1
2
, |∂tb|2HN

)
.

If we denote ζ1 = ζ − ζ̃ and ψ1 = ψ − ψ̃, we see that (ζ1, ψ1) satisfies{
∂tζ1 + ∆Xψ1 = R1,

∂tψ1 + ζ1 = R2.

Differentiating the energy

EN (t) =
1

2
|ζ1|2HN−4 +

1

2
|∇ψ1|2HN−2 ,

we get the estimate thanks to Proposition 2.5 and energy estimate in Theorem 2.4.

This model is well-known in the physics literature (see [25]).

3.1.2 Resonance in shallow waters when β is small

We consider the equation (47) for d = 1. We transform it in order to have a unique
equation for h := ζ̃ − b, 

∂2
t h− ∂2

Xh = ∂2
X (P + b) ,

h|t=0 = −b(0, .),
∂th|t=0 = 0.

(49)

We denote f(t,X) := (P + b) (t,X), which represents a disturbance. We want to un-
derstand the resonance for landslide and meteo tsunamis. In both cases, it is a linear
respond, in the shallow water case, of a body of water due to a moving pressure or a
moving bottom, when the speed of the storm or the landslide is close to the typical wave
celerity (here 1). We can compute h thanks to the d’Alembert’s formula
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h(t,X) =−1

2
(b(0, X − t) + b(0, X + t))︸ ︷︷ ︸

hT (t,X)

+
1

2

∫ t

0
∂Xf(τ,X + t− τ)dτ︸ ︷︷ ︸

:=hL(t,X)

− 1

2

∫ t

0
∂Xf(τ,X − t+ τ)dτ︸ ︷︷ ︸

:=hR(t,X)

.

We are interesting in disturbances f moving from the left to the right (propagation to a
coast). Therefore, we study only hR. The following Proposition shows that a disturbance
moving with a speed equal to 1 makes appear a resonance.

Proposition 3.5. Let f ∈ L∞(R+;H1(Rd)) and ∂Xf ∈ L∞t×X(R × Rd). Then, for all
X ∈ R, t > 0,

|hR(t,X)| ≤ t

2
|∂Xf |∞ .

Furthermore, if f(t,X) = f0(X − t), f0 ∈ H1(Rd) and |f ′0(X0 − t0)| = |f ′|∞ the equality
holds for (t0, X0). If f(t,X) = f0(X − Ut) with f0 ∈ H1(Rd) and U 6= 1,

|hR|∞ ≤ min

(
|f0|∞
|1− U |

,
t

2

∣∣f ′0∣∣∞) .
Proof. If f(t,X) = f0(X − Ut),

hR(t,X) = −1

2

∫ t

0
f ′0(X − t+ (1− U)τ)dτ,

and the result follows.

This Proposition corresponds to the historical work of J. Proudman ([25]). We rediscover
the fact that the resonance occurs if the speed of the disturbance is 1. For a disturbance
with a speed different from 1, we notice a saturation effect (also pointed out in [28]).
The graph in Figure 1, gives the typical evolution of |h(t, ·)|∞ with respect to the time
t for different values of the speed. We can see the saturation effect. We compute h
with a finite difference method and we take f(t,X) = e−

1
2

(X−Ut)2 . We see also that
the landslide resonance and the Proudman resonance have the same effects. There are
however two important differences that we exposed in the introduction of this part. The
first one is the duration of the resonance. A landslide is quicker than a meteorological
effect. The second one, is the fact that the typical size of the landslide (few dm) is bigger
than the size of a storm (few hPa). For instance, for a moving storm which creates a
variation of the pressure of 3 hPa during 15t0, the final wave can reach a amplitude of
13 cm (it is for example the case of the meteotsunami in Nagasaki in 1979, see [24]).
Conversely, an offshore landslide with a thickness of 1 m that lasts t0, can create a wave
of 50 cm (which corresponds to the results in [28]). Therefore, we see that the principal
difference between an offshore landslide and a moving storm is the size.
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Figure 1: Evolution of the maximum of h, solution of equation (49), with different values
of the speed U .

3.2 A shallow water model when β is large

3.2.1 Linear asymptotic

In this case, we suppose only that ε and µ are small. We recall that βb(t,X) = βb0(X)+
βλbm(t,X). Then, we assume also that 1 − b0 ≥ hmin > 0. In the following, we denote
h0 := 1− βb0. The asymptotic regime is

ALVW = {(ε, β, λ, µ), 0 < ε, µ ≤ δ0, 0 < β ≤ 1, βλ = ε} , (50)

with δ0 � 1. We can now give a asymptotic model.

Proposition 3.6. Let t0 >
d
2 , N ≥ max(1, t0) + 4, b ∈ W 3,∞(R+;HN (Rd)), U0 =

(ζ0, ψ0) ∈ EN0 , and P ∈W 1,∞(R+;ḢN+1(Rd)). We suppose that (19) and (29) are sat-
isfied initially. We suppose also that b0 ∈ HN (Rd) and that h0 = 1− βb0 ≥ hmin. Then,
there exists T > 0, such that for all (ε, β, λ, µ) ∈ ALVW , there exists a unique solution
U = (ζ, ψ) ∈ ENT to the water waves equations with initial data U0. Furthermore, for V
as in (45),

|ζ − ζ1|L∞([0,T ];HN−4(Rd)) +
∣∣V − V 1

∣∣
L∞([0,T ];HN−4(Rd))

≤ Tδ0C̃,

where

C̃ = C

(
EN
(
U0
)
,

1

hmin
,

1

amin
, |b|

W 3,∞
t HN

X
, |∇P |

W 1,∞
t HN

X

)
,

and (ζ1, V 1) solution of the waves equation
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∂tζ1 +∇ ·

(
h0V 1

)
= ∂tbm,

∂tV 1 +∇ζ1 = −∇P,

(ζ1)|t=0 = ζ0, (V1)|t=0 = V
[
εζ0, βb|t=0

] (
ψ0, (∂tb)|t=0

)
.

(51)

Proof. The system (51) is wellposed since it can be symmetrized thanks to the energy

E(t) =
1

2
|ζ1|2L2 +

1

2

(
h0V 1, V 1

)
L2 .

For the inequality, we proceed as in Proposition 3.4, differentiating the energy

EN (t) =
1

2
|ζ2|2HN−4 +

1

2

(
h0ΛN−4V 2,Λ

N−4V 2

)
L2 ,

with ζ2 = ζ − ζ1 and V 2 = V − V 1. Using Gronwall’s Lemma, Proposition 3.3 and
standard controls, we get result.

This model is well-known in the physics literature to investigate the landslide tsunami
phenomenon (see [28]).

3.2.2 Amplification in shallow waters when β is large

In this part, d = 1 and we suppose that P = 0. The same study can be done for a non
constant pressure. For the sake of simplicity, we assume also that initially the velocity
of the landslide is zero and hence that (∂tbm)|t=0 = 0 (the bottom does not move at the
beginning). We transform the system (51) in order to get an equation for ζ1 only. We
obtain that ζ1 satisfies

∂2
t ζ1 − ∂X (h0∂Xζ1) = ∂2

t bm, (52)

with (ζ1)|t=0 = 0 and (∂tζ1)|t=0 = 0. We wonder now if we can catch an elevation of the
sea level with this asymptotic model. Therefore, we are looking for solutions of the form

ζ2(t,X) = tζ3(t,X). (53)

The following proposition gives example of such solutions for bounded moving bottoms
(with finite energy).

Proposition 3.7. Suppose that h0 ≥ hmin > 0 with h0 ∈ H1(R). Let
(
ζ3, V 3

)
be a

solution of {
∂tζ3 + ∂X

(
h0V 3

)
= 0,

∂tV 3 + ∂Xζ3 = 0,

with
(
ζ3, V 3

)
|t=0

= (0, f ′) with f ∈ H1(R). Then, ζ1(t,X) = tζ3(t,X) is a non trivial

solution of (52) with
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bm(t,X) = 2

∫ t

0
ζ3(s,X)ds, (54)

and bm(t, ·) is bounded in L2(Rd) and in L∞(Rd) uniformly with respect to t

|bm(t, ·)|L2 + |bm(t, ·)|L∞ ≤ C,

where C is independent on t.

Proof. Plugging the expression of ζ and bm in (52), we get the first result. We have to
show that ζ3 ∈ L1(R+;L2(Rd)). Consider the linear hyperbolic equation{

∂tη + ∂X (h0W ) = 0,

∂tW + ∂Xη = 0,

with (η,W )|t=0 = (−f, 0). This system has a unique solution (η,W ) ∈ C0(R;H1(R)).

Furthermore, (∂tη, ∂tW ) ∈ C0(R;L2(R)), and (∂tη, ∂tW ) satisfies the same linear hyper-
bolic system as

(
ζ3, V 3

)
. By uniqueness, ζ3 = ∂tη and

bm(t,X) = 2η(t,X) + 2f(X).

Since, for all t, ∫
R
η(t,X)2 + h0(X)W (t,X)2dX =

∫
R
f(X)2dX,

and h0 ≥ hmin > 0, we get the control of |bm(t, ·)|L2 . Finally, η satisfies the waves
equation

∂2
t η − ∂X (h0∂Xη) = 0,

with (η, ∂tη)|t=0 = (−f, 0) ∈ H1(Rd). Then, for all t,∫
R
|∂tη(t,X)|2 + h0(X) |∂Xη(t,X)|2 dX =

∫
R
h0(X)f ′(X)2dX.

Therefore, |η|H1 (and |η|L∞ by Sobolev embedding) is controlled uniformly with respect
to t.

In the following, we compute numerically some solutions of Equations (52) of the form
(53) with a finite difference method. We take b0(X) = − tanh(X), β = 1

2 and (∂tζ3)|t=0 =

(4X2 − 2)e−X
2
. The figure 2 is the evolution of the maximum of ζ1. The figure 3 is

the graph at different times of the waves and the landslide. The dashed curves are the
landslide, the solid curves are the waves and the dotted curve is the slope. Therefore,
we see that an important elevation of the sea level is possible even if we do not consider
that the seabed is flat.
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Remark 3.8. In order to simplify, we consider that the system is initially at rest. But
our study can easily be extended to waves with non trivial initial data. In particular, we
can study a wave amplified by a landslide. This is what happened during the tsunami in
Fukushima in 2011 (see [27]). We compute numerically this amplification. We consider a
wave moving with a speed equal to 1 (typical speed in the sea after nondimensionalization)
that is amplified by a landslide. Figure 4 represents the evolution of the maximum of
this wave. We can see an amplification.

Figure 2: Evolution of the maximum of ζ1, solution of (52), for a non flat bottom b0.

Figure 3: Evolution of the surface ζ1 (solid line), solution of (52), and the landslide bm
(dashed line).

Figure 4: Evolution of the maximum of h, solution of (52), with non trivial initial data
and with bm like in Figure 3.
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3.3 Linear asymptotic and resonance in intermediate depths

In this case, we consider only that ε, β are small. Physically, this means that we consider
small amplitudes for the surface and the bottom (compared to the mean depth) and that
the depth is not small compared to wavelength of the waves. In this part, we generalize
the Proudman resonance in deeper waters. The asymptotic regime is

ALWW = {(ε, β, λ, µ), 0 < ε, β ≤ δ0, βλ = ε and 0 < µ ≤ µmax} , (55)

with δ0 � 1 and 0 < µmax. Using the energy

E(t) =
1

2
|ζ|2L2 +

1

2

(
1

µ
Gµ[0, 0](ψ), ψ

)
L2

,

and proceeding as in Proposition 3.4 (we need also Proposition 3.12 in [19]), we get a
new asymptotic model.

Proposition 3.9. Let t0 >
d
2 , N ≥ max(1, t0) + 3, b ∈ W 3,∞(R+;HN (Rd)), U0 =

(ζ0, ψ0) ∈ EN0 and P ∈ W 1,∞(R+;ḢN+1(Rd)). We suppose that (19) and (29) are
satisfied initially. Then, there exists T > 0, such that for all (ε, β, λ, µ)∈ALWW , there
exists a unique solution U = (ζ, ψ)∈ ENT√

δ0

to the water waves equations with initial data

U0. Furthermore, for all α ∈
[
0, 1

3

)
,

∣∣∣ζ − ζ̃∣∣∣
L∞

([
0, T
δα0

]
;HN−2(Rd)

) +

∣∣∣∣∣ |D|√
1 + |D|

(
ψ − ψ̃

)∣∣∣∣∣
L∞

([
0, T
δα0

]
;HN−2(Rd)

) ≤ Tδ1−3α
0 C̃,

where

C̃ = C

(
EN
(
U0
)
,

1

hmin
,

1

amin
, µmax, |b|W 3,∞

t HN
X
, |∇P |

W 1,∞
t HN

X

)
,

where
(
ζ̃, ψ̃

)
is a solution of the waves equation ∂tζ̃ −

1

µ
Gµ[0, 0](ψ̃) = GNNµ [0, 0](∂tb),

∂tψ̃ + ζ̃ = −P,
(56)

with initial data U0.

The Proudman resonance is a phenomenon which occurs in shallow water regime. We
wonder if there is also a resonance in deeper waters. In this part, we only work with a
non constant pressure and hence ∂tb = 0. The same study can be done for a moving
bottom. We consider the equation (56) for d = 1. Since, the initial data does not affect
the possible resonance, we suppose in the following that U0 = 0. We transform the
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system (56) in order to have a unique equation for ζ̃ (in the following we denote ζ̃ by ζ
to simplify the notation) ∂2

t ζ +
1

µ
Gµ[0, 0](ζ) = − 1

µ
Gµ[0, 0](P ),

ζ|t=0 = 0, ∂tζ|t=0 = 0.

We can solve explicitly the previous equation, we get that

ζ̂(t, ξ) =
i

2

∫ t

0
ξ

√
tanh(

√
µ|ξ|)

√
µ|ξ|

P̂ (τ, ξ)e
i(t−τ)ξ

√
tanh(

√
µ|ξ|)√

µ|ξ| dτ︸ ︷︷ ︸
:=ζ̂L(t,ξ)

− i

2

∫ t

0
ξ

√
tanh(

√
µ|ξ|)

√
µ|ξ|

P̂ (τ, ξ)e
i(τ−t)ξ

√
tanh(

√
µ|ξ|)√

µ|ξ| dτ︸ ︷︷ ︸
:=ζ̂R(t,ξ)

.

In order to find a resonant pressure, we suppose that P has the form e−ita(D)P0, where a is
a real smooth odd function which is sublinear, there exists C > 0 such that |a(ξ)| ≤ C|ξ|.
We also suppose that the phase velocity of the disturbance is positive, a(ξ)

ξ ≥ 0. P0 is

a smooth function in a Sobolev space with P̂0(0) 6= 0. We denote ω(ξ) =
√

tanh(ξ)
ξ . A

simple computation gives that

|ζL(t, ·)| ≤ |ζ̂L(t, ·)|L1 ≤
∣∣∣P̂0

∣∣∣
L1
.

Furthermore, we have

|ζ̂R(t, ξ)| = 1

2

∣∣∣∣∫ t

0
ξω(
√
µξ)P̂0(ξ)eiτ(ξω(

√
µξ)−a(ξ))dτ

∣∣∣∣
≤ t

2

∣∣∣ξω(
√
µξ)P̂0(ξ)

∣∣∣ ,
with an equality if and only if a(ξ) = ξω(

√
µξ). Hence, it is natural to consider that

P̂ (t, ξ) = e−itξω(
√
µξ)P0(ξ). (57)

A simple computation gives

ζR(t,X) = − it
2

∫
R
ξω(
√
µξ)P̂0(ξ)e−itξω(

√
µξ)eiXξdξ. (58)

We wonder now if a resonance occurs. We need a dispersion estimate for the linear water
waves equation.
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Proposition 3.10. Let f ∈W 1,1(R) such that f̂(0) = 0. Then,

∣∣∣∣∫
R
e−itξω(

√
µξ)eiXξ f̂(ξ)dξ

∣∣∣∣ ≤ C√
t

 1
√
µ

∣∣∣∣∣ 1√
|ξ|

(
f̂
)′∣∣∣∣∣

L1(R)

+ µ
1
8

∣∣∣∣|ξ| 34 (f̂)′∣∣∣∣
L1(R)

 .

Proof. We denote I(t),

I(t) :=

∫
R
e−itξω(

√
µξ)eiXξ f̂(ξ)dξ

=
1
√
µ

∫
R
e
−i t√

µ(yω(y)−X
t
y)
f̂

(
y
√
µ

)
dy.

We denote φ,

φ(y) = yω(y)− X

t
y,

and y0 the unique minimum of φ′′. Figure 5 represents φ′′ on [0,+∞[.

Figure 5: Profile of φ′′ .

To estimate I(t) we decompose I(t) into four parts.

I1(t) =
1
√
µ

∫ y0

0
e
−i t√

µ
φ(y)

f̂

(
y
√
µ

)
dy

=
1
√
µ

∫ y0

0
− d

dy

(∫ y0

y
e
−i t√

µ
φ(z)

dz

)
f̂

(
y
√
µ

)
dy

=
1

µ

∫ y0

0

∫ y0

y
e
−i t√

µ
φ(z)

dz
(
f̂
)′( y
√
µ

)
dy.
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Then, using Van der Corput’s Lemma (see [26]) and the fact that for z ∈ [y, y0],
|φ′′(z)| ≥ |φ′′(y)| and |φ′′(z)| ≥ Cz,

|I1(t)| ≤ C

µ
3
4

√
t

∫ y0

0

∣∣∣∣ 1
√
y

(
f̂
)′( y
√
µ

)∣∣∣∣ dy
≤ C
√
µ
√
t

∫ +∞

0

∣∣∣∣ 1√
ξ

(
f̂
)′

(ξ)

∣∣∣∣ dξ.
Furthermore, for M > y0 large enough,

I2(t) =
1
√
µ

∫ M

y0

e
−i t√

µ
φ(y)

f̂

(
y
√
µ

)
dy

=
1
√
µ

∫ M

y0

d

dy

(∫ y

y0

e
−i t√

µ
φ(z)

dz

)
f̂

(
y
√
µ

)
dy

=

∫ M

y0

e
−i t√

µ
φ(z) dz√

µ
f̂

(
M
√
µ

)
− 1

µ

∫ M

y0

∫ y

y0

e
−i t√

µ
φ(z)

dz
(
f̂
)′( y
√
µ

)
dy.

Then, using Van der Corput’s Lemma and the fact that for z ∈ [y0, y],

|φ′′(z)| ≥ |φ′′(y)| and |φ′′(z)| ≥ Cz−
3
2 ,

|I2(t)| ≤
∣∣∣∣M√µf̂

(
M
√
µ

)∣∣∣∣+
C

µ
3
4

√
t

∫ M

y0

∣∣∣∣y 3
4

(
f̂
)′( y
√
µ

)∣∣∣∣ dy
≤
∣∣∣∣f̂ ′(M

√
µ

)∣∣∣∣+
Cµ

1
8

√
t

∫ +∞

0

∣∣∣∣ξ 3
4

(
f̂
)′

(ξ)

∣∣∣∣ .
Tending M to +∞ we get the result. The control for ξ < 0 is similar.

Therefore, in the linear case, we have also a resonance.

Corollary 3.11. Let P0 ∈ H3(R) ∩W 2,1(R) such that XP0 ∈ H3(R) and let
0 < µ ≤ µmax. Consider,

ζR(t,X) = − it
2

∫
R
ξω(
√
µξ)P̂0(ξ)e−itξω(

√
µξ)eiXξdξ.

Then,

|ζR(t, ·)|∞ ≤ C(µmax)

√
t

µ
(|P0|H3 + |P0|L1 + |XP0|H3) ,

and

lim
t�+∞

∣∣∣∣ 1√
t
ζR(t, ·)

∣∣∣∣
∞
≥ C(P0) > 0.
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Proof. We take f̂(ξ) = ξω(
√
µξ)P̂0(ξ). Then,∣∣∣∣(f̂)′(ξ)∣∣∣∣ ≤ (1 +

√
µ|ξ|)

∣∣∣P̂0(ξ)
∣∣∣+ |ξ|

∣∣∣∣(P̂0

)′
(ξ)

∣∣∣∣ ,
and the first inequality follows from the previous Proposition. For the second inequality,
we use a stationary phase approximation. We denote φ(ξ) = ξω(ξ). Let ξ0 > 0, such

that
∣∣∣ξ0P̂0(ξ0)

∣∣∣ =
∣∣∣ξP̂0

∣∣∣
L∞

, and Xµ < 0, such that φ′(
√
µξ0) = Xµ. Then, we have,

lim
t�+∞

∣∣∣∣ 1√
t
ζR(t, tXµ)

∣∣∣∣ = lim
t�+∞

√
t

2µ

∣∣∣∣∫
R
ξω(ξ)P̂0

(
ξ
√
µ

)
e
−i t√

µ
ξ(ω(ξ)−Xµ)

dξ

∣∣∣∣
=

√
2π

2µ
1
4

∣∣∣∣∣ω(ξ0
√
µ)ξ0P̂0(ξ0)√
|φ′′(ξ0

√
µ)|

∣∣∣∣∣ .

Since |φ′′(ξ)| ≤ C|ξ| and ω(ξ0
√
µ) ≥ C(ξ0)

√
µ, we get the result.

Remark 3.12. Notice that for all s ∈ R,∣∣∣∣ζR(t, ·) +
t

2
P ′0(· − t)

∣∣∣∣
Hs

≤ √µt2 |∇P0|Hs+2 .

Hence, by tending formally µ to 0, we rediscover the result we get in the shallow water
case (section 3.1).

Remark 3.13. Notice that for a general pressure term P (t,X) we can show that the
amplitude ζ satisfying

ζ̂(t, ξ) =
i

2

∫ t

0
ξ

√
tanh(

√
µ|ξ|)

√
µ|ξ|

P̂ (τ, ξ)e
i(t−τ)ξ

√
tanh(

√
µ|ξ|)√

µ|ξ| dτ

− i

2

∫ t

0
ξ

√
tanh(

√
µ|ξ|)

√
µ|ξ|

P̂ (τ, ξ)e
i(τ−t)ξ

√
tanh(

√
µ|ξ|)√

µ|ξ| dτ,

satisfies also

|ζ(t, ·)|∞ ≤ C(µmax)

√
t

µ

(
|P |L∞(R+;L1(Rd)) + |P |L∞(R+;H3(Rd) + |XP |L∞(R+;H3(Rd)

)
.

Hence, contrary to the shallow water case, we can not hope a linear amplification with
respect to the time t. Corollary 3.11 also shows that the factor of amplification of

√
t is

optimal.
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Hence, we observe that in intermediate water depths, a resonance can occur but with a
factor of amplification of

√
t and not t. But we saw that in the shallow water case, the

resonance occurs for a moving pressure with a speed equal to 1, P (t,X) = P0(X − t).
We wonder if this pressure can create a resonance. The following Proposition shows that
the previous pressure can create a resonance with a factor of amplification of t

1
3 .

Proposition 3.14. Let 0 < µ ≤ µmax. Let P0 ∈ L1(R) ∩ H1(R) such that P̂0(0) 6= 0.
Consider, the amplitude ζR created by P (t,X) = P0(X − t),

ζ̂R(t, ξ) = − i
2
ξω(
√
µξ)P̂0(ξ)e−itξ

∫ 0

−t
eisξ(ω(

√
µξ)−1)ds. (59)

Then,

|ζR(t, ·)|∞ ≤ C(µmax)

(
t
1
3

µ
|P0|L1 + µ

1
4 |P0|H1

)
.

Furthermore, if XP0 ∈ H1(R),

lim
t�+∞

∣∣∣∣ 1

t
1
3

ζR(t, ·)
∣∣∣∣
∞
≥ C

µ
2
3

∣∣∣P̂0(0)
∣∣∣ .

Proof. We have

ζR(t,X) = − i
2

∫
R
ξω(
√
µξ)P̂0(ξ)e−itξ

∫ 0

−t
eisξ(ω(

√
µξ)−1)eiXξdsdξ

= − i
2

1

µ

∫
R
ξω(ξ)P̂0

(
ξ
√
µ

)
e
−i t√

µ
ξ
∫ 0

−t
e
i s√

µ
ξ(ω(ξ)−1)

e
i X√

µ
ξ
dsdξ.

We decompose this integral into 3 parts.

|I1(t)| =

∣∣∣∣∣ 1µ
∫
|ξ|≤t−

1
3

ξω(ξ)P̂0

(
ξ
√
µ

)
e
−i t√

µ
ξ
∫ 0

−t
e
i s√

µ
ξ(ω(ξ)−1)

e
i X√

µ
ξ
dξds

∣∣∣∣∣
≤ t

1
3

µ

∣∣∣P̂0

∣∣∣
∞
.

Furthermore, since |ω(ξ)− 1| ≥ Cξ2 for 0 ≤ |ξ| ≤ 1, we have

|I2(t)| =

∣∣∣∣∣ 1µ
∫
t−

1
3≤|ξ|≤1

ξω(ξ)P̂0

(
ξ
√
µ

)
e
−i t√

µ
ξ
∫ 0

−t
e
i s√

µ
ξ(ω(ξ)−1)

e
i X√

µ
ξ
dξds

∣∣∣∣∣
=

∣∣∣∣∣ 1
√
µ

∫
t−

1
3≤|ξ|≤1

e
i X√

µ
ξ ω(ξ)

ω(ξ)− 1
P̂0

(
ξ
√
µ

)(
e
−i t√

µ
ξ − e−i

t√
µ
ξω(ξ)

)
dξ

∣∣∣∣∣
≤ C t

1
3

√
µ

∣∣∣P̂0

∣∣∣
∞
.
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Finally,

|I3(t)| =

∣∣∣∣∣ 1µ
∫
|ξ|≥1

ξω(ξ)P̂0

(
ξ
√
µ

)
e
−i t√

µ
ξ
∫ 0

−t
e
i s√

µ
ξ(ω(

√
µξ)−1)

e
i X√

µ
ξ
dξds

∣∣∣∣∣
=

∣∣∣∣∣ 1
√
µ

∫
|ξ|≥1

e
i X√

µ
ξ ω(ξ)

ω(ξ)− 1
P̂0

(
ξ
√
µ

)(
e
−i t√

µ
ξ − e−i

t√
µ
ξω(ξ)

)
dξ

∣∣∣∣∣
≤ C

∫
|ξ|≥ 1√

µ

∣∣∣P̂0(ξ)
∣∣∣ dξ,

≤ Cµ
1
4 |P0|H1 ,

and the first inequality follows. For the second inequality, we use a stationary phase
approximation. We denote φ(ξ) := ξ(ω(ξ)−1). We recall that φ(ξ) = −1

6ξ
3+o(ξ3). Using

a generalization of Morse Lemma at the order 3, there exists a > 0 and ψ ∈ C∞ ([−a, a]),
such that for all |y| ≤ a,

φ(ψ(y)) =
1

6
φ′′′(0)y3, ψ(0) = 0 and ψ′(0) = 1.

Then,

I(s) :=

∫
R
ω(ξ)ξP̂0

(
ξ
√
µ

)
e
i s√

µ
ξ(ω(ξ)−1)

dξ

=

∫ a

−a
ψ′(y)ω(ψ(y))ψ(y)P̂0

(
ψ(y)
√
µ

)
e
i s
6
√
µ
y3
dy + o(s−

2
3 )

=

(
6
√
µ

s

) 2
3

P̂0(0)

∫
z∈R

zeiz
3
dz + o(s−

2
3 ).

Therefore,

lim
t�+∞

∣∣∣∣ 1

t
1
3

ζR(t, t)

∣∣∣∣ =
C

µ
2
3

∣∣∣P̂0(0)
∣∣∣ .

Then, in intermediate water depths, a traveling pressure with a constant speed equal to 1
is also resonant, but it takes more time to obtain a significant elevation of the level of the
sea. In the following, we compute numerically some solutions. We take P0(X) = −e−X2

and µ = 1. The figure 6 is the evolution of a water wave because of a pressure of the
form (57). The solid curve is the wave and the dashed curve is the moving pressure.
The figure 7 is the evolution is a water wave when the pressure moves with a speed 1.
The figure 8 compares the evolution of the maximum of the resonant case and the case
when the speed is equal to 1.
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Figure 6: Evolution of the surface elevation ζR in (58) (solid line) because of a resonant
moving pressure P in (57) (dashed line).

Figure 7: Evolution of the surface elevation ζR in (59) (solid line) because of a moving
pressure P with a speed of 1 (dashed line).

Figure 8: Evolution of the maximum of ζR in the resonant case (solid line) and the
moving pressure with a speed of 1 (dashed line).

Remark 3.15. In our work, we neglect the Coriolis effect. However, in view of the
duration of the meteotsunami phenomenon, it would be more realistic to consider it. It
will be studied in a future work ([22]) based on the work of A. Castro and D. Lannes ([8]
and [9]).
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A The Laplace problem

A.1 Formulation of the problems

In this part, we recall some results of Chapter 2 in [19] and Section 4 of [16] and study
the Laplace problem (17) in the Beppo Levi spaces. We suppose that the parameters ε,
µ and β satisfy Condition (18). The Laplace problem (17) is{

∆µ
X,zΦ

B = 0 in Ωt ,

ΦB
|z=εζ = 0 ,

√
1 + β2|∇b|2∂nΦB

|z=−1+βb = B,

where B = ∂tb. Notice that ∂n is here the upward conormal derivative

∂nΦB = n ·
(√

µId 0
0 1

)
∇µX,zΦ

B
|z=−1+βb.

For the study of (15) we refer to [19]. We work with Beppo Levi spaces. We refer to
[13] and Proposition 2.3 in [19] for general results about these spaces. We recall that,
for s ≥ 0,

Ḣs(Rd) :=
{
ψ ∈ L2

loc(Rd), ∇ψ ∈ Hs−1(Rd)
}
,

that Ḣ1(Rd × (−1, 0))/R is a Hilbert space for the norm |∇X,z · |L2 and that Hs(Rd) is
dense in Ḣs(Rd). In order to fix the domain, we transform the problem into variable
coefficients elliptic problem on S := Rd × (−1, 0) (the flat strip). We introduce a reg-
ularizing diffeomorphism. Let θ : R � R be a positive, compactly supported, smooth,
even function equal to one near 0. For δ > 0 we define

Σ :=
S −→ Ω

(X, z) 7→ (X, z + σ(X, z)) ,

and

σ(X, z) := [θ(δz|D|)εζ(X)− θ(δ(z + 1)|D|)βb(X)] z + εθ(δz|D|)ζ(X).

We omit the dependence on t here. In the following, we denote by M a constant of the
form

M = C

(
1

hmin
, µmax, ε|ζ|Ht0+1(Rd), β|b|Ht0+1(Rd)

)
.

In order to study the Laplace problems in S, we have to treat the regularity in the
direction X and in the direction z one at a time. We introduce the following spaces.

Definition A.1. Let s ∈ R. We define
(
Hs,1(S), |·|s,1

)
and

(
Hs,0(S), |·|0,1

)
Hs,1(S) := L2

zH
s
X(S) ∩H1

zH
s−1
X (S), and |u|2Hs,1 = |Λsu|2L2 + |Λs−1∂zu|2L2 ,
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and

Hs,0(S) := L2
zH

s
X(S), and |u|2Hs,0 = |Λsu|2L2 .

Remark A.2. We have the following embedding (see Proposition 2.10 in [19]) for s ∈ R

Hs+ 1
2
,1(S) ⊂ L∞z Hs

X(S).

In the following, we fix δ > 0 small enough. Then, we can transform our equations. We
denote φB := ΦB◦Σ and we get that{

∇µX,z · P (Σ)∇µX,zφ
B = 0 in S,

φB|z=0 = 0 , ∂nφ
B
|z=−1 = B,

(60)

with P (Σ) = Id+1×d+1 +Q(Σ) and

Q(Σ) :=

(
∂zσId×d −√µ∇Xσ
−√µ∇Xσt −∂zσ+µ|∇Xσ|2

1+∂zσ

)
. (61)

Notice that P (Σ) is well defined if δ is small enough and that ∂n := ez · (P (Σ)∇µX,z · ).
We have to know the regularity of P (Σ). It is the subject of the next proposition (see
Proposition 2.18 and Lemma 2.26 in [19]).

Proposition A.3. Let t0 >
d
2 , ζ, b ∈ Ht0+1(Rd) such that Condition (19) is satisfied.

Then,

|Q(Σ)|
Ht0+

1
2 ,1

,
∣∣Λt0Q(Σ)

∣∣
L∞z L

2
X(S)

,
∣∣Λt0−1∂zQ(Σ)

∣∣
L∞z L

2
X(S)

≤M.

Furthermore, P (Σ) is coercive. There exist a constant k(Σ) > 0 such that 1
k(Σ) ≤M and

∀Θ ∈ Rd+1 , ∀(X, z) ∈ S , P (Σ)(X, z)Θ ·Θ ≥ k(Σ)|Θ|2.

We have a variational formulation of the Laplace problem (60). We introduce

H1
0,surf (S) := D(S ∪ {z = −1}) | |H1(S) = D(S ∪ {z = −1}) | |Ḣ1(S) .

See Proposition 2.3 (3) in [19] for a proof of the second equality.

Definition A.4. Let B ∈ H−
1
2 (Rd). We say that φ ∈ H1

0,surf (S) is a variational

solution of (60) if for all ϕ ∈ H1
0,surf (S),∫

S
∇µX,zφ · P (Σ)∇µX,zϕ = −〈B,ϕ|z=−1〉H− 1

2−H
1
2
.

We have also the following trace result that we can prove easily using a density argument.
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Lemma A.5. For all ϕ ∈ H1
0,surf (S) we have∣∣∣∣√1 +
√
µ|D| ϕ|z=−1

∣∣∣∣
L2(Rd)

≤ 2
∣∣∣∇µX,zϕ∣∣∣

L2(S)
.

We can now establish existence and uniqueness results.

Proposition A.6. Let B ∈ H−
1
2 (Rd) and ζ, b ∈ Ht0+1(Rd) satisfying (19). Then, the

problem (60) has a unique variational solution named Bd ∈ H1
0,surf (S).

Proof. Because S is bounded in the direction z and that P (Σ) is uniformly coercive, the
results follow from the Lax-Milgram theorem and Poincaré inequality in H1

0,surf (S).

In this part, we study the Laplace problem (17), but the same work can be done for (15)
(see Chapter 2 in [19]) and we can transform (17) as follows{

∇µX,z · P (Σ)∇µX,zφ
S = 0 in S,

φS|z=0 = ψ , ∂nφ
S
|z=−1 = 0.

(62)

In the following, we denote by ψh, the unique solution of (62).

A.2 Regularity estimates of the solutions

In this part, we give some regularity estimates.

Theorem A.7. Let t0 > d
2 and 0 ≤ s ≤ t0 + 1

2 . Let ζ, b ∈ Ht0+1(Rd) be such that

Condition (19) is satisfied. Then, for all B ∈ Hs− 1
2 (Rd), we have

∣∣∣Λs∇µX,zBd
∣∣∣
L2(S)

≤M

∣∣∣∣∣ 1√
1 +
√
µ|D|

B

∣∣∣∣∣
Hs

.

Futhermore, if s ≥ max(0, 1− t0), we have

∣∣∣Λs−1∂z∇µX,zB
d
∣∣∣
L2(S)

≤M

∣∣∣∣∣ 1√
1 +
√
µ|D|

B

∣∣∣∣∣
Hs

.

Proof. Let δ > 0 and χ be a smooth compactly supported real function that is equal
to 1 near 0. We introduce the smoothing operator Λsδ := χ(δΛ)Λs. We know that
Bd ∈ H1

0,surf (S). Therefore, using Λ2s
δ B

d a test function, we have∫
S
∇µX,zB

d · P (Σ)∇µX,zΛ
2s
δ B

d = −
∫
Rd
B(Λ2s

δ B
d)|z=−1.

Since P (Σ) is symmetric, Λsδ commutes with ∇µX,z and is independent of z we obtain
that
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∫
S
P (Σ)Λsδ∇

µ
X,zB

d · ∇µX,zΛ
s
δB

d =−
∫
S

[Λsδ, Q(Σ)]∇µX,zB
d · ∇µX,zΛ

s
δB

d

−
∫
Rd

Λsδ√
1 +
√
µ|D|

B

(√
1 +
√
µ|D|ΛsδBd

)
|z=−1

.

Then by coercivity of P (Σ) and trace inequality A.5

k(Σ)
∣∣∣Λsδ∇µX,zBd

∣∣∣2
L2(S)

≤
∣∣∣[Λsδ, Q(Σ)]∇µX,zB

d
∣∣∣
L2

∣∣∣Λsδ∇µX,zBd
∣∣∣
L2(S)

+ 2
∣∣∣Λsδ∇µX,zBd

∣∣∣
L2(S)

∣∣∣∣∣ Λsδ√
1 +
√
µ|D|

B

∣∣∣∣∣
L2

,

and

k(Σ)
∣∣∣Λsδ∇µX,zBd

∣∣∣
L2(S)

≤
∣∣∣[Λsδ, Q(Σ)]∇µX,zB

d
∣∣∣
L2(S)

+ 2

∣∣∣∣∣ Λsδ√
1 +
√
µ|D|

B

∣∣∣∣∣
L2

.

We have to distinguish two cases.

a) 0 ≤ s ≤ t0 :

The commutator estimate C.6 (with T0 = t0) and Proposition A.3 give

k(Σ)
∣∣∣Λsδ∇µX,zBd

∣∣∣
L2(S)

≤ C |Q(Σ)|
L∞z H

t0
X (S)

∣∣∣Λs−εδ ∇
µ
X,zB

d
∣∣∣
L2(S)

+ 2

∣∣∣∣∣ Λsδ√
1 +
√
µ|D|

B

∣∣∣∣∣
L2

≤M
∣∣∣Λs−εδ ∇

µ
X,zB

d
∣∣∣
L2(S)

+ 2

∣∣∣∣∣ Λsδ√
1 +
√
µ|D|

B

∣∣∣∣∣
L2

for some ε > 0 small enough (ε < t0 − d
2). Using a finite induction on s and taking the

limit when δ goes to 0, the first inequality follows. For the second estimate, we only
need to give a control of ∂2

zB
d. We use Equation (60) satisfied by Bd. We express P (Σ)

as

P (Σ) :=

(
(1 + a(X, z))Id×d q(X, z)

qt(X, z) 1 + qd+1(X, z)

)
.

A simple computation gives

(1 + qd+1)∂2
zB

d =−√µ∇X ·
(
(1 + a)

√
µ∇XBd

)
−√µ∇X ·

(
∂zB

dq
)

−√µ∂zq · ∇XBd −√µ∂z∇XBd · q− ∂zqd+1∂zB
d.

40



We have a, q, qd+1 ∈ L∞z H
t0
X (S), ∂zq, ∂zqd+1 ∈ L∞z H

t0−1
X (S) and 1 + qd+1 ≥ k(Σ).

Then, since s ≥ 1− t0 and ∇XBd ∈ Hs,1(S), by the product estimates C.3 and C.4 (with
T0 = t0), we obtain the result.

b) t0 ≤ s ≤ t0 + 1
2 :

The commutator estimate C.7 (with T0 = t0 + 1
2 and t1 >

1
2) and Proposition A.3 give

k(Σ)
∣∣∣Λsδ∇µX,zBd

∣∣∣
L2(S)

≤M

[ ∣∣∣∣Λs+ 1
2
−t1

δ ∇µX,zB
d

∣∣∣∣
L2(S)

+

∣∣∣∣Λs−1+ 1
2
−t1

δ ∂z∇µX,zB
d

∣∣∣∣
L2(S)

+ 2

∣∣∣∣∣ Λsδ√
1 +
√
µ|D|

B

∣∣∣∣∣
L2

]
.

We denote ε := 1
2 − t1. We obtain the first inequality for t0 ≤ s ≤ t0 + ε thanks to the

previous case. Furthermore, we saw that

(1 + qd+1)∂2
zB

d =−√µ∇µX ·
(
(1 + a)

√
µ∇XBd

)
−√µ∇X ·

(
∂zB

dq
)

−√µ∂zq · ∇XBd −√µ∂z∇XBd · q− ∂zqd+1∂zB
d.

We have a, q, qd+1 ∈ L2
zH

t0+ 1
2

X (S), ∂zq, ∂zqd+1 ∈ L2
zH

t0− 1
2

X (S) and 1 + qd+1 ≥ k(Σ).

Then, since s ≥ 1− t0 and ∇XBd ∈ L∞z H
s− 1

2
X (S), by the product estimates C.3 and C.5

(with T0 = t0), and we obtain the second inequality for t0 ≤ s ≤ t0 + ε. Using a finite
induction, we obtain the first and the second inequality.

B The Dirichlet-Neumann and the Neumann-Neumann op-
erators

We refers to Chapter 3 of [19] for more details about the Dirichlet-Neumann operator
and Section 3 in [16] for the study of these operators.

B.1 Main properties

We can express the Neumann-Neumann operator with the formalism of the previous
section. For ψ ∈ Ḣ

3
2 (Rd) and B ∈ H

1
2 (Rd) we have

Gµ[εζ, βb](ψ) =
(
ez · P (Σ)∇µX,zψ

h
)
|z=0

, (63)

and

GNNµ [εζ, βb](B) =
(
ez · P (Σ)∇µX,zB

d
)
|z=0

. (64)
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Remark B.1. Notice that (see Proposition 3.2 in [16])

1

µ
Gµ[0, 0](ψ) = |D|2

tanh(
√
µ|D|)

√
µ|D|

ψ and GNNµ [0, 0](B) =
1

cosh(
√
µ|D|)

B.

We recall thatGµ[εζ, βb] is symmetric and maps continuously Ḣ
1
2 (Rd) into

(
Ḣ

1
2 (Rd)/R

)′
(see Paragraph 3.1. in [19]). We need an extension result in H−

1
2 (Rd) in order to give

a dual formulation of the Neumann-Neumann operator.

Definition B.2. Let ϕ ∈ H−
1
2 (Rd). We define ϕ# as

ϕ# =
sinh([z + 1]

√
µ|D|)

sinh(
√
µ|D|)

ϕ.

Remark B.3. ϕ# satisfies weakly{
∆µ
X,zϕ

# = 0 in S,

ϕ#
|z=0 = ϕ, ϕ#

|z=−1 = 0.

We can prove easily regularity results for ϕ# similar to ϕh.

Proposition B.4. Let s ≥ 0 and ϕ ∈ Hs− 1
2 (Rd). Then,

∣∣∣Λs−1∇µX,zϕ
#
∣∣∣
L2(S)

+
1
√
µ

∣∣∣Λs−2∂z∇µX,zϕ
#
∣∣∣
L2(S)

≤ C
∣∣∣∣√1 +

√
µ|D|ϕ

∣∣∣∣
Hs−1

.

We can now give a dual formulation of the Neumann-Neumann operator. We introduce
the Dirichlet-Dirichlet operator, for ψ ∈ H

1
2 (Rd),

GDDµ [εζ, βb](ψ) :=
(
ψh
)
|z=−1

. (65)

The following result is Proposition 3.3 in [16].

Proposition B.5. Let t0 >
d
2 , B ∈ H−

1
2 (Rd) and ζ, b ∈ Ht0+1(Rd) such that (19) is

satisfied. GNNµ [εζ, βb](·) can be extended to H−
1
2 (Rd) with the dual formulation

GNNµ [εζ, βb](B) =


H

1
2 (Rd) −→ R

ϕ 7−→
∫
S
P (Σ)∇µX,zB

d · ∇µX,zϕ
#.

(66)

Furthermore, the adjoint of GNNµ [εζ, βb] is GDDµ [εζ, βb]. For all B ∈ H−
1
2 (Rd) and

ϕ ∈ H
1
2 (Rd),(

GNNµ [εζ, βb](B), ϕ
)
H−

1
2−H

1
2

=
(
B,GDDµ [εζ, βb](ϕ)

)
H−

1
2−H

1
2
.
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In order to study shape derivatives of the Dirichlet-Neumann and the Neumann-Neumann
operators, we have to introduce the Neumann-Dirichlet operator. For B ∈ H−

1
2 (Rd), we

define

GNDµ [εζ, βb](B) :=
(
Bd
)
|z=−1

. (67)

The following result is a symmetry property and a dual formulation of the Neumann-
Dirichlet operator.

Proposition B.6. Let B ∈ H−
1
2 (Rd) and ζ, b ∈ Ht0+1(Rd) such that (19) is satisfied.

GNDµ [εζ, βb](B) can be view as

GNDµ [εζ, βb](B) =


H−

1
2 (Rd) −→ R

C 7−→ −
∫
S
P (Σ)∇µX,zB

d · ∇µX,zC
d.

(68)

Furthermore, GNDµ [εζ, βb](·) is a negative symmetric operator and, for all B1, B2 in

H−
1
2 (Rd),

(
GNDµ [εζ, βb](B1), B2

)
(H−1/2)′−H−1/2 =

(
GNDµ [εζ, βb](B2), B1

)
(H−1/2)′−H−1/2 .

We refer to Proposition 3.3 in [16] for a proof of this result.

B.2 Regularity Estimates

In this part we give some controls the Neumann-Neumann operators.

Proposition B.7. Let t0 >
d
2 , 0 ≤ s ≤ t0 + 1

2 and ζ, b ∈ Ht0+1(Rd) such that Condition

(19) is satisfied. Then, GNNµ [εζ, βb] maps continuously Hs− 1
2 (Rd) into itself

|GNNµ [εζ, βb](B)|
Hs− 1

2
≤M |B|

Hs− 1
2
.

Proof. This Proposition follows by Theorem A.7 and by using the same arguments that
Theorem 3.15 in [19].

We can extend these estimates to w[εζ, βb], the vertical velocity at the surface and
to V [εζ, βb] the horizontal velocity at the surface. These operators appear naturally
when we differentiate the Dirichlet-Neumann and the Neumann-Neumann operator with
respect to the surface ζ. We define

w[εζ, βb] :=


Ḣs+ 1

2 (Rd)×Hs− 1
2 (Rd)→ Hs− 1

2 (Rd)

(ψ,B) 7→
Gµ[εζ, βb](ψ) + µGNNµ [εζ, βb](B) + εµ∇ζ · ∇ψ

1 + ε2µ|∇ζ|2
,

(69)
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and

V [εζ, βb] :=

{
Ḣs+ 1

2 (Rd)×Hs− 1
2 (Rd)→ Hs− 1

2 (Rd)
(ψ,B) 7→ ∇ψ − εw[εζ, βb](ψ,B)∇ζ.

(70)

Proposition B.8. Let t0 >
d
2 , 0 ≤ s ≤ t0 + 1

2 and ζ, b ∈ Ht0+1(Rd) such that Con-

dition (19) is satisfied. Then, w[εζ, βb] maps continuously Ḣs+ 1
2 (Rd) ×Hs− 1

2 (Rd) into

Hs− 1
2 (Rd)

|w[εζ, βb](ψ,B)|
Hs− 1

2
≤M

(
µ

3
4 |Pψ|Hs + µ|B|

Hs− 1
2

)
.

Furthermore, if 1 ≤ s ≤ t0, w[εζ, βb] maps continuously Ḣs+1(Rd) × Hs− 1
2 (Rd) into

Hs− 1
2 (Rd)

|w[εζ, βb](ψ,B)|
Hs− 1

2
≤Mµ

(
|Pψ|

Hs+1
2

+ |B|
Hs− 1

2

)
.

Finally, we have the same continuity result for V [εζ, βb].

We can also give some regularity estimates for GDDµ [εζ, βb] since it is the adjoint of

GNNµ [εζ, βb].

Proposition B.9. Let t0 >
d
2 , 0 ≤ s ≤ t0 + 1

2 and ζ, b ∈ Ht0+1(Rd) such that Condition

(19) is satisfied. Then, GDDµ [εζ, βb] maps continuously Ḣs+ 1
2 (Rd) into itself∣∣∇GDDµ [εζ, βb](ψ)

∣∣
Hs− 1

2
≤M |∇ψ|

Hs− 1
2
.

Finally, we can give some regularity estimates for GNDµ [εζ, βb].

Proposition B.10. Let t0 >
d
2 , 0 ≤ s ≤ t0+ 1

2 and ζ, b ∈ Ht0+1(Rd) such that Condition

(19) is satisfied. Then, GNDµ [εζ, βb] maps continuously Hs− 1
2 (Rd) into Hs+ 1

2 (Rd)∣∣GNDµ [εζ, βb](B)
∣∣
Hs+1

2
≤M |B|

Hs− 1
2
.

In the same way, we can extend also these estimates to w̃[εζ, βb], the vertical velocity at
the bottom and to Ṽ [εζ, βb] the horizontal velocity at the bottom. These operators ap-
pear naturally when we differentiate the Dirichlet-Neumann and the Neumann-Neumann
operator with respect to the bottom b

w̃[εζ, βb](ψ,B) =
µB + βµ∇b · ∇

(
GDDµ [εζ, βb](ψ) + µGNDµ [εζ, βb](B)

)
1 + β2µ|∇b|2

, (71)

and

Ṽ [εζ, βb](ψ,B) = ∇
(
GDDµ [εζ, βb](ψ) + µGNDµ [εζ, βb](B)

)
− βw̃[εζ, βb](ψ,B)∇b. (72)
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Proposition B.11. Let t0 >
d
2 , 0 ≤ s ≤ t0 + 1

2 and ζ, b ∈ Ht0+1(Rd) such that Con-

dition (19) is satisfied. Then, w̃[εζ, βb] maps continuously Ḣs+ 1
2 (Rd) ×Hs− 1

2 (Rd) into

Hs− 1
2 (Rd)

|w̃[εζ, βb](ψ,B)|
Hs− 1

2
≤M

(
|∇ψ|

Hs− 1
2

+ µ|B|
Hs− 1

2

)
.

Finally, we have the same continuity result for Ṽ [εζ, βb].

B.3 Shape derivatives

Let t0 >
d
2 . Given B ∈ H

1
2 (Rd). We denote by Γ the set of functions (ζ, b) in Ht0+1(Rd)

satisfying (19). We introduce the map

GNNµ (B) :=

{
Γ → H

1
2 (Rd)

(ζ, b) 7→ GNNµ [εζ, βb](B),
(73)

which is the Neumann-Neumann operator. We can also define Gµ(ψ), w(ψ,B) and
V (ψ,B).

Remark B.12. When no confusion is possible and to the sake of simplicity, we write
Gµ(ψ), GNNµ (B), w(ψ,B) and V (ψ,B) instead of Gµ[εζ, βb](ψ), GNNµ [εζ, βb](B),
w[εζ, βb](ψ,B) and V [εζ, βb](ψ,B).

In order to linearize the water waves equations, we need a shape derivative formula for the
Dirichlet-Neumann and the Neumann-Neumann operators. The following proposition is
a summarize of Theorems 3.5 and 3.6 in [16] and Theorem 3.21 in [19].

Proposition B.13. Let t0 >
d
2 , ζ, b ∈ Ht0+1(Rd), ψ ∈ Ḣ

3
2 (Rd) and B ∈ H

1
2 (Rd). Then,

Gµ(ψ) and GNNµ (B) are Fréchet differentiable. For (h, k) ∈ Ht0+1(Rd), we have

dGµ(ψ).(h, 0) + µdGNNµ (B).(h, 0) =− εGµ[εζ, βb](hw[εζ, βb](ψ,B))

− εµ∇ · (hV [εζ, βb](ψ,B)),

and

dGµ(ψ).(0, k) + µdGNNµ (B).(0, k) = βµGNNµ [εζ, βb]
(
∇ ·
(
k Ṽ [εζ, βb](ψ,B)

))
.

Furthermore,

dGDDµ (ψ).(h, 0) + µdGNDµ (B).(h, 0) = −εGDDµ [εζ, βb](hw[εζ, βb](ψ,B)).

Thanks to these formulae we can give some controls to the first shape derivatives of the
operators. For instance, we give an estimate for dw̃ and dṼ .
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Proposition B.14. Let t0 > d
2 and (ζ, b) ∈ Ht0+1(Rd) such that Condition (19) is

satisfied. Then, for 0 ≤ s ≤ t0 + 1
2 , for ψ ∈ Ḣs+ 1

2 (Rd) and B ∈ Hs− 1
2 (Rd), we have

∣∣∣dṼ (ψ,B).(h, k)
∣∣∣
Hs− 1

2
, |dw̃(ψ,B).(h, k)|

Hs− 1
2
≤M |(h, k)|Ht0+1

(
|∇ψ|

Hs− 1
2

+ |B|
Hs− 1

2

)
.

Proof. This result follows from Proposition B.13 and Proposition B.7.

We end this part by giving some controls of the shape derivatives of Gµ and GNNµ . We
do not use the previous method, we differentiate j times directly the dual formulation
of both operators. We refer to Proposition 3.28 in [19] for a control of djGµ.(h,k)(ψ).

Proposition B.15. Let t0 > d
2 and (ζ, b) ∈ Ht0+1(Rd) such that Condition (19) is

satisfied. Then for all 0 ≤ s ≤ t0 + 1
2 and B ∈ Hs− 1

2 (Rd), we have∣∣djGNNµ .(h, k)(B)
∣∣
Hs− 1

2
≤M

∏
i≥1

|(εhi, βki)|Ht0+1 |B|
Hs− 1

2
.

Furthermore, if 0 ≤ s ≤ t0 and B ∈ Ht0(Rd),

∣∣djGNNµ .(h, k)(B)
∣∣
Hs− 1

2
≤M |(εh1, βk1)|

Hs+1
2

∏
i≥2

|(εhi, βki)|Ht0+1 |B|Ht0 .

We do not prove this Proposition here (which is based on a shape derivative of Bd). We
refer to [21].

C Useful Estimates

In this part, we give some useful estimates, product and commutator estimates. We
refer to Appendix B in [19], [18] and Chapter II in [5] for the proofs. The first estimates

are useful to control Pf . We recall that P = |D|√
1+
√
µ|D|

.

Proposition C.1. Let f ∈ H1(Rd) and g ∈ H
1
2 (Rd). Then,

|Pg|L2 ≤ µ−
1
4 |g|

H
1
2

, |Pf |
H

1
2
≤ max(1, µ−

1
4 )|∇f |L2 and |∇f |L2 ≤ max(1, µ

1
4 )|Pf |

H
1
2
.

Proof. The first inequality follows from the fact that 1 +
√
µ|ξ| ≥ √µ|ξ|, the second

inequality from (1+|ξ|2)
1
4√

1+
√
µ|ξ|
≤ max(1, 1

µ
1
4

) and the third from

√
1+
√
µ|ξ|√

1+|ξ|
≤ max(1, µ

1
4 ).

We need some product estimates in Rd. The following Proposition is Proposition 2.1.2
in [5].
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Proposition C.2. Let s, s1, s2 ∈ R such that s ≤ s1, s ≤ s2, s1 + s2 ≥ 0 and s <
s1 + s2 − d

2 . Then, there exists a constant C > 0 such that for all f ∈ Hs1(Rd) and for
all g ∈ Hs2(Rd), we have fg ∈ Hs(Rd) and

|fg|Hs ≤ C|f |Hs1 |g|Hs2 .

We also need some product estimates in S := Rd × (−1, 0). The following Proposition
is the Corollary B.5 in [19].

Proposition C.3. Let s, s1, s2 ∈ R such that s ≤ s1, s ≤ s2, s1 +s2 ≥ 0, s < s1 +s2− d
2

and p ∈ {2,+∞}. Then, there exists a constant C > 0 such that for all f ∈ L∞z H
s1
X (S)

and for all g ∈ LpzHs2
X (S), we have fg ∈ LpzHs

X(S) and

|Λs (fg) |LpzL2
X(S) ≤ C|Λs1f |L∞z L2

X(S)|Λs2g|LpzL2
X(S).

The following propositions gives estimates for 1/(1 + g) in the flat strip S. We refer to
Corollary B.6 in [19].

Proposition C.4. Let T0 >
d
2 , −T0 ≤ s ≤ T0, k0 > 0 and p ∈ {2,+∞}. Then, for all

f ∈ LpzHs
X(S) and g ∈ L∞z H

T0
X (S) with 1 + g ≥ k0, we have∣∣∣∣Λs f

1 + g

∣∣∣∣
LpzL2(S)

≤ C
(

1

k0
, |g|

L∞z H
T0
X

)
|Λsf |LpzL2(S).

Proposition C.5. Let T0 >
d
2 , s ≥ −T0 and k0 > 0. Then, for all f ,g ∈ L∞z H

T0
X (S) ∩

Hs,0(S) with 1 + g ≥ k0, we have∣∣∣∣ f

1 + g

∣∣∣∣
Hs,0

≤ C
(

1

k0
, |g|

L∞z H
T0
X

)(
|f |Hs,0 + 1{s>T0}|f |L∞z H

T0
X

|g|Hs,0

)
.

Notice that if s ≤ T0, f ∈ Hs,0(S) is enough.

We need some commutator estimates in S. The following Propositions are Corollary
B.17 in [19].

Proposition C.6. Let T0 >
d
2 , δ ≥ 0, 0 < t1 ≤ 1 with t1 < T0− d

2 and −d
2 < s ≤ T0 +t1.

Then for all u ∈ L∞z H
T0
X and v ∈ Hs−t1,0(S) we have

|[Λsδ, u] v|L2(S) ≤ C
∣∣∣ΛT0δ u∣∣∣

L∞z L
2
X(S)

∣∣Λs−t1δ v
∣∣
L2(S)

.

Proposition C.7. Let T0 >
d
2 , δ ≥ 0, 0 < t1 ≤ 1 with t1 < T0− d

2 and −d
2 < s ≤ T0 +t1.

Then for all u ∈ HT0,0 and v ∈ L∞z H
s−t1
X we have

|[Λsδ, u] v|L2(S) ≤ C
∣∣∣ΛT0δ u∣∣∣

L2(S)

∣∣Λs−t1δ v
∣∣
L∞z L

2
X(S)

.
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