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Abstract

We study existence and stability of steady solutions of the isentropic compress-
ible Navier-Stokes equations on a finite interval with noncharacteristic boundary
conditions, for general not necessarily small-amplitude data. We show that there
exists a unique solution, about which the linearized spatial operator possesses (i) a
spectral gap between neutral and growing/decaying modes, and (ii) an even num-
ber of nonstable eigenvalues λ (with a nonnegative real part). In the case that
there are no nonstable eigenvalues, i.e., of spectral stability, we show this solution to
be nonlinearly exponentially stable in H2 ×H3. Using “Goodman-type” weighted
energy estimates, we establish spectral stability for small-amplitude data. For large-
amplitude data, we obtain high-frequency stability, reducing stability investigations
to a bounded frequency regime. On this remaining, bounded-frequency regime, we
carry out a numerical Evans function study, with results again indicating universal
stability of solutions.

1 Introduction

In this paper, we initiate in the simplest setting of 1D isentropic gas dynamics, a system-
atic study of existence and stability of steady solutions of systems of hyperbolic parabolic
equations on a bounded domain, with noncharacteristic inflow or outflow boundary con-
ditions, and data and solutions of amplitudes that are not necessarily small. We have in
mind the scenario of a “shock tube”, or finite-length channel with inflow-outflow bound-
ary conditions, which in turn could be viewed as a generalization of the Poisseuille flow
in the incompressible case.

Our conclusions in the present, isentropic case, obtained by rigorous nonlinear and
spectral stability theory, augmented in the large-amplitude case by numerical Evans
function analysis, are that for any choice of data there exists a unique solution, and this
solution is linearly and nonlinearly time-exponentially stable in H2 ×H3. These results
suggest a number of interesting directions for further investigation in 1 and multi-D.
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1.1 Setting

We consider the 1D isentropic compressible Navier-Stokes equations{
ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + P (ρ)

)
x

= νuxx
(1)

on the interval [0, 1], with the noncharacteristic boundary conditions
ρ(t, 0) = ρ0 > 0,

u(t, 0) = u0 > 0,

u(t, 1) = u1 > 0.

(2)

Notice that we have an inflow boundary condition at x = 0 and an outflow boundary
condition at x = 1. We assume that the viscosity ν is positive and constant and that
the pressure P is a smooth function satisfying

P ′ > 0. (3)

Stability of steady states for hyperbolic parabolic systems has been studied by many
authors. For problems on the whole line, the reader can refer to [MZ03, BHRZ08] and
references within. In the case of noncharacteristic boundary conditions on the half line,
see for instance [CHNZ09, NZ09]. For studies of scalar conservation laws on a bounded
interval, one may see for instance [KK86, JP03]. Finally, we refer to [EGGP12] for the
study of boundary controllability of the 1D Navier-Stokes equations.

In this paper, we study the existence and stability of steady states of (1) satisfying
the boundary conditions (2). Section 2 is devoted to the existence and the uniqueness of
such steady states. In Section 3, we study the corresponding linearized problem about
the steady state. In section 4, we show that constant steady states and almost constant
steady states, see Condition (5), are spectrally stable. We also show that general steady
states are numerically spectrally stable. Section 5 is devoted to a local wellposedness
result for problem (1)-(2). Then, in section 6, we show the nonlinear stability of steady
states that are spectrally stable. Theorem 6.3 is the main result of this paper. Finally,
in section 7, we improve the previous theorem under more restrictive assumptions.

Remark 1.1. It is worth noting that boundary conditions (2) are not the only ones we
can deal with. For instance, the case

ρ(t, 1) = ρ0 > 0,

u(t, 0) = u0 < 0,

u(t, 1) = u1 < 0,

is equivalent by the change of variables x � 1− x and the change of unknowns (ρ̂, û) �
(ρ̂,−û). Moreover, these two possibilities are the only types of noncharacteristic bound-
ary conditions yielding physically realizable steady states. For, the first equation of
(1) yields that steady solutions have constant momentum ρu ≡ m, so that u(0) and
u(1) necessarily agree in sign. By similar reasoning, characteristic boundary conditions
u(0) = u(1) = 0 yield u ≡ 0 yield only trivial, constant steady states (ρ, u) ≡ (ρ0, 0).
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1.2 Discussion and open problems

As mentioned earlier, our goal in this paper is to open a line of investigation of large-
amplitude steady solutions for inflow-outflow problems on bounded domains. The main
technical contribution is our argument for nonlinear exponential stability of spectrally
stable solutions, which is both particularly simple and also applies to general hyper-
bolic parabolic systems of “Kawashima type”, as considered on the whole- and half-line
in [MZ03, BHRZ08, CHNZ09, NZ09]. Our goal, and the novelty of the argument as
compared to those for the whole- and half-line, was to take advantage of the spectral
gap to obtain a simple proof based on standard semigroup/energy methods. However,
a close reading will reveal that this is deceptively difficult to accomplish, involving the
introduction of a precisely chosen space (ρ, u) ∈ H1 ×L2 with norm strong enough that
we can carry out energy-based high-frequency resolvent estimates and different from the
usual Kawashima type estimates, but weak enough that the range of nonlinear terms is
densely contained.

The reduction of nonlinear to spectral stability gives a base for investigation of more
general systems such as full (nonisentropic) gas dynamics or (isentropic or nonisentropic)
MHD. Our results on uniqueness and universal stability on the other hand are likely
accidents of low dimension. For example, the demonstration of unstable large-amplitude
boundary layers in [SZ01, Zum10] is suggestive via the large-interval length limit from
bounded interval toward the half-line, that unstable large-amplitude steady solutions
might occur on bounded intervals for polytropic full gas dynamics in some parameter
regimes. Definitely, the example of unstable shock waves on the whole line in [BFZ15]
together with the asymptotic analysis in [SS00, Zum10] of spectra in the whole-line limit
shows that unstable steady solutions are possible on an interval for full gas dynamics
with an artificial equation of state satisfying all of the usual requirements imposed in
standard theory, including existence of a convex entropy, genuine nonlinearity of acoustic
modes, etc.

Moreover, due to the presence of spectral gap/absence of essential spectra in the
bounded-interval problem, differently from the whole- and half-line problems, changes
in stability of the type considered in [SZ01, Zum10], involving passage of a real eigenvalue
through zero, are associated necessarily with bifurcation/nonuniqueness, by Lyapunov-
Schmidt or center manifold reduction to the finite-dimensional case.(1) Thus, any such
violations of stability should yield also examples of large-amplitude nonuniqueness at the
same time. Small-amplitude uniqueness, on the other hand, follows readily by uniqueness
of constant solutions, as follows by energy estimates like those here, plus continuity.
The investigation of large-amplitude uniqueness and stability for larger systems thus

1See in particular the center manifold theory for generators of C0 semigroups in [HI11] or the still more
general Fredholm-based Lyapunov-Shmidt reduction of [Mon14, Appendix D] for closed densely defined
operators with an isolated crossing eigenvalue, along with the general finite-dimensional bifurcation
result of [BFZ15, Lemma 3.10]. This is to be contrasted with the case of the whole line discussed in
[Zum01, §6.2], for which λ = 0 is embedded in essential spectrum and a crossing eigenvalue at λ = 0 may
signal either steady state bifurcation as here or more complicated time-dependent bifurcations involving
far-field behavior and solutions of an associated inviscid Riemann problem.
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appears to be a very interesting direction for future exploration; likewise, the study of
the corresponding multi-D problem, for which existence/uniqueness of small-amplitude
solutions has been studied for example in [KK98, KK97, MP14]. In both 1- and multi-D,
a very interesting open problem would be to study the asymptotic structure of solutions
in the small-viscosity limit, particularly in the multi-D case analogous to Poiseuille flow.

Notation

In this paper, C(·) denotes a nondecreasing and positive function and C a generic no-
tation whose exact values are of no importance. | |2 refers to the L2-norm on (0, 1) and
| |Hn , for n ≥ 1, to the Hn-norm. | |∞ refers to the L∞-norm on [0, 1].

Acknowledgment

We would like to thank the anonymous referees for careful reading and for very valuable
comments on the manuscript.

2 Existence and uniqueness of steady states

2.1 Analytical results

In this part, we prove the following result.

Proposition 2.1. Assume that P is a smooth function. For any (ρ0, u0, u1), with ρ0 > 0,
u0 > 0 and u1 > 0, problem (1)-(2) has a unique steady solution (ρ̂, û) with ρ̂ > 0.

Proof. A steady solution (ρ̂, û) of (1)-(2) satisfies
(ρ̂û)x = 0,(
ρ̂û2 + P (ρ̂)

)
x

= νûxx,

ρ̂(0) = ρ0,

û(0) = u0 , û(1) = u1.

Thus, ρ̂û = ρ0u0 and {
νρ0u0ρ̂x = bρ̂2 − (ρ0u0)2ρ̂− ρ̂2P (ρ̂),

ρ̂(0) = ρ0

(4)

where b is a constant that has to be determined. We define the map

φ := b � ρ̂(1)− ρ0u0

u1

where ρ̂ is the unique solution of System (4). Notice that we only define φ when ρ̂ is
defined on [0, 1]. Then, we remark that φ(ρ0u

2
0 + P (ρ0)) = ρ0 − ρ0u0

u1
and that φ is

increasing. We also remark that if b1 is in the domain of φ, any b < b1 is in the domain
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of φ. Therefore, the domain of φ is an interval containing ρ0u
2
0 + P (ρ0). Furthermore,

φ is not bounded from above. Otherwise, one can show that ρ̂ is bounded uniformly
with respect to b and then that φ(b) > b for b large enough. One can also show that
lim
b�−∞

φ(b) = −ρ0u0
u1

. Therefore, there exists a unique b such that ρ̂(1) = ρ0u0
u1

and

ρ̂ > 0.

Notice that a solution of (1) is constant if and only if u0 = u1.

In the following, we study among other things the stability of almost constant steady
solutions of (1), by which we mean solutions satisfying

∃ε > 0 , ε� 1 and |u0 − u1| ≤ ε. (5)

For this, the following lemma will be useful.

Lemma 2.2. Assume that we are under the assumptions of Proposition 2.1. Then, the
unique steady solution (ρ̂, û) of problem (1)-(2) is smooth and if u1 6= u0 we have

ρ̂ > 0 , û > 0, (u1 − u0) ρ̂x < 0 , (u1 − u0) ûx > 0, lim
u1�u0

(|ρ̂x|∞ + |ûx|∞) = 0.

Proof. The first four inequalities are clear (notice that if u0 6= u1, |ûx| > 0). The last
inequality follows from a comparison argument and the continuity of the map φ.

We denote solutions as compressive when ûx > 0 and expansive when ûx < 0.

2.2 Numerical simulations

A steady solution (ρ̂, û) of (1)-(2) is characterized by system (4) where b is the unique
zero of φ. The numerical computation of such a solution is carried out in two steps:

- We compute b with a Newton’s method. We initiate the process with b = b0 where

b0 = ρ0u
2
0 + P (ρ0).

Note that for a small viscosity (ν ≤ 1), the initial starting point b = b0 ceases to be
relevant. Thus, in this case, we use a dichotomy method to find a better starting point.

- The solution of system (4) is computed with a four-order Runge-Kutta method.

We display the results of numerical simulations for a monatomic pressure law P (ρ) =
ρ1.4 with ν = 1. Figure 1 represents the expansive solution for u0 = 2, u1 = 3 and ρ0 = 3.
Figure 2 represents the compressive solution when u0 = 1.5, u1 = 1 and ρ0 = 2.
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Figure 1: A steady expansive solution of (1). Left: ρ ; Right: u

Figure 2: A steady compressive solution of (1). Left: ρ ; Right: u

3 Linear estimates

3.1 The eigenvalue problem

In order to study the stability of steady states, we linearize system (1) about the steady
state (ρ̂, û). Then, we study the corresponding eigenvalue problem for (r, v){

λr + (ρ̂v + ûr)x = 0,

λρ̂v +
(
ρ̂ûv + P ′(ρ̂)r

)
x

+ ûx (ûr + ρ̂v) = νvxx,
(6)

with
r(0) = v(0) = v(1) = 0. (7)

We define the linear unbounded operator

L (r, v) =

(
− (ρ̂v + ûr)x

νvxx − (ρ̂ûv + P ′(ρ̂)r)x − ûx (ûr + ρ̂v)

)
, (8)
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for (r, v) in the domain D(L) =
{

(r, v) ∈ H1 ×H2, r(0) = v(0) = v(1) = 0
}

and the
matrix

S =

(
1 0
0 ρ̂

)
. (9)

Remark 3.1. For constant steady states, the eigenvalue problem simplifies into{
λr + ρ̂vx + ûrx = 0,

λρ̂v + ρ̂ûvx + P ′(ρ̂)rx = νvxx.
(10)

In the following, we denote by σ(S−1L) the spectrum of
(
S−1L,D(L)

)
in L2(0, 1).

The following proposition shows that σ(S−1L) only contains eigenvalues.

Proposition 3.2. The inverse of L exists and is compact and σ(S−1L) only con-
tains eigenvalues. Furthermore, the spectrum of

(
S−1L,D(L) ∩H2 ×H3

)
in the space{

(r, v) ∈ H1, r(0) = v(0) = v(1) = 0
}

only contains eigenvalues.

Proof. First we show that 0 /∈ σ(L). For f and g in L2(0, 1), we solve

L(ρ, v) = (f, g) with r(0) = v(0) = v(1) = 0.

This leads to the system
ρ̂v + ûr = −

∫ x

0
f(y),

νvx = νvx(0) + ρ̂ûv − P ′(ρ̂)

û

(
ρ̂v +

∫ x

0
f

)
+

∫ x

0
g(y)−

∫ x

0
ûx

∫ y

0
f(y).

Then, we can solve the second equation with the initial condition v(0) = 0

v(x) =
1

ν

∫ x

0

exp

(
1

ν

∫ x

y

ρ̂û− P ′(ρ̂)

û
ρ̂dz

)(
νvx(0)− P ′(ρ̂)

û

∫ y

0

f +

∫ y

0

g −
∫ y

0

ûx

∫ z

0

f

)
dy.

Since v(1) = 0, we can compute vx(0) and it implies that L is invertible. Furthermore,
if f and g are bounded in L2(0, 1), we get from the previous equality that vx(0) is
bounded and that v is bounded in H1(0, 1). The first statement follows easily. The
second statement follows from similar computations.

Remark 3.3. Notice that (ρ̂′, û′) can not be an eigenfunction of S−1L for the eigenvalue
λ = 0 since it does not satisfy the boundary conditions (7). This differs from the whole
line case.

In order to prove the spectral stability of steady solutions, we need high frequency
estimates for problem (6)-(7). First, we establish a useful lemma.
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Lemma 3.4. For any (r, v) satisfying the boundary conditions (7) and |λ| large enough,
we have

|r̃|22 ≤
C

|λ|

(
|r|22 + |v|22 + |(λS − L) (r, v)1|22

)
,

|r|22 + |v|22 ≤
C

|λ|

(
|rx|22 + |vx|22 + |(λS − L) (r, v)|22

)
,

|vx|22 ≤
C

|λ|

(
|rx|22 + |vxx|22 + |(λS − L) (r, v)|2H1

)
,

where r̃(x) =
∫ x

0 r(y)dy.

Proof. If we denote (λS − L) (r, v) = (f, g) and f̃(x) =
∫ x

0 f(y)dy, we have
λr̃ + ρ̂v + ûr = f̃ ,

λr + (ρ̂v + ûr)x = f,

λρ̂v +
(
ρ̂ûv + P ′(ρ̂)r

)
x

+ ûx (ûr + ρ̂v) = νvxx + g.

(11)

Thus, we easily see that

|r̃|22 ≤
C

|λ|

(
|r|22 + |v|22 + |f |22

)
.

Furthermore, by integrating by parts, we get

|r|22 +
∣∣∣√ρ̂v∣∣∣2

2
=

1

|λ|

∣∣∣∣∫ 1

0

rλr

∣∣∣∣+
1

|λ|

∣∣∣∣∫ 1

0

vλρ̂v

∣∣∣∣ ≤ C

|λ|

(
|r|22 +

∣∣∣∣[û |r|2]1
0

∣∣∣∣+ |v|2H1 + |(f, g)|22

)
and the second inequality follows from Lemma A.2. Finally, by differentiating the second
equation of (11), we obtain

|(ρ̂v)x|
2
2

=
1

|λ|

∣∣∣∣∫ 1

0

(ρ̂v)xλ (ρ̂v)x

∣∣∣∣ ≤ C

|λ|

(
|r|2H1 + |v|2H2 +

∣∣∣[ρ̂vx (νvxx − P ′(ρ̂)rx)]
1
0

∣∣∣+ |(f, g)|2H1

)
.

Then, we notice that{
νvxx(0)− P ′(ρ0)rx(0) = ρ0u0vx(0)− g(0),

νvxx(1)− P ′(ρ̂(1))rx(1) = ρ̂(1)u1vx(1) + P ′′(ρ̂(1))ρ̂x(1)r(1) + ûx(1)u1r(1)− g(1)

and thanks to Lemma A.2, we get∣∣∣[ρ̂vx (νvxx − P ′(ρ̂)rx
)]1

0

∣∣∣ ≤ C |v|2H2 + C |r|2H1 + C |g|2H1 .

The result follows easily.

We can now establish a high frequency estimate in H1.

Proposition 3.5. Assume that P satisfies (3). There exists a constant α > 0 such that
if <(λ) > −α and |λ| is large enough,

|(r, v)|2H1 ≤ C |(λS − L) (r, v)|2H1×L2

for any (r, v) ∈
{

(r, v) ∈ H1 ×H1, r(0) = v(0) = v(1) = 0
}

.
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Proof. This proof is based on an appropriate Goodman-type energy estimate. In the
following we denote (λS − L) (ρ, v) = (f, g). We define the energy

E (r, v) =
1

2

∫ 1

0
φ1 |rx|2 + φ2 |(ρ̂v)x|

2

where φ1 and φ2 satisfy

φ1 > 0 , φ2 > 0 , φ1 = P ′(ρ̂)φ2 ,
1

2
(ûφ1)x − 2ûxφ1 < 0(2).

This energy is equivalent to the H1-norm by the Poincaré inequality (see Lemma A.1).
Then, we compute

2<(λ)E (r, v) = <
(∫ 1

0
φ1rxλrx

)
+ <

(∫ 1

0
φ2(ρ̂v)xλ (ρ̂v)x

)
.

Arguing by density, we assume that (r, v) ∈ H2 ×H3. We have

2<(λ)E (r, v) ≤−
∫ 1

0
< [φ1rx (ûrxx + ρ̂vxx + 2ûxrx]) + C |rx|2 (|r|2 + |v|H1 + |f |H1)

+

∫ 1

0
<
[
φ2ρ̂vx

(
νvxxx − P ′(ρ̂)rxx − ρ̂ûvxx

)]
+

∫ 1

0
φ2ρ̂vxgx

+

∫ 1

0
<
[
φ2ρ̂xv

(
νvxxx − P ′(ρ̂)rxx

)]
+ C |v|H1 (|r|H1 + |v|H1 + |vxx|2) .

Therefore, we have

2<(λ)E (r, v) ≤
∫ 1

0

−νρ̂φ2 |vxx|2 +

(
1

2
(ûφ1)x − 2ûxφ1

)
|rx|2 + <(rxvxx) (−ρ̂φ1 + ρ̂P ′(ρ̂)φ2)

+ <

([
−1

2
ûφ1 |rx|2 + φ2ρ̂vx (νvxx − P ′(ρ̂)rx + g)

]1
0

)
+ C |rx|2 (|r|2 + |v|H1 + |f |H1) + C |v|H1 (|r|H1 + |v|H1 + |vxx|2) + C |g|2 |vxx|2 .

Then, we notice that

u0rx(0) = −ρ0vx(0) + f(0),

νvxx(0)− P ′(ρ0)rx(0) + g(0) = ρ0u0vx(0),

νvxx(1)− P ′(ρ̂(1))rx(1) + g(1) = ρ̂(1)u1vx(1) +
(
P ′′(ρ̂(1))ρ̂x(1) + ûx(1)u1

)
r(1)

(12)

and thanks to Lemma A.2, we obtain

<

([
−1

2
ûφ1 |rx|2 + φ2ρ̂vx (νvxx − P ′(ρ̂)rx + g)

]1
0

)
≤ C |r|2 |rx|2 + C |vx|2 |vx|H1 + C |f |2H1 .

2For instance, φ1(0) = 1 and ûφ′1 = 3û′φ1 − δû for δ > 0 small enough.
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Then, using the second and the third inequality of Lemma 3.4 and Young’s inequality,
we can find a constant α > 0, such that for |λ| large enough,

2<(λ)E (r, v) ≤ −α |(rx, vxx)|22 + C |(λS − L) (r, v)|2H1×L2 .

Since E is a norm equivalent to the H1-norm, the inequality follows from the Poincaré-
Wirtinger inequality on vx.

3.2 The linear time evolution problem

In this part, we study the linearization of system (1) about the steady state (ρ̂, û)
S
(
r
v

)
t

− L
(
r
v

)
= 0,

(r, v)|t=0 = (r0, v0) ,

r(0) = v(0) = v(1) = 0.

We define for k ∈ N the spaces

Hk =

{
(r, v) ∈ Hk,

dlr

dxl
(0) =

dlv

dxl
(0) =

dlv

dxl
(1) = 0 , for any l < k

}
H1,0 =

{
(r, v) ∈ H1 × L2, r(0) = 0

}
.

The main goal of this subsection is to show a linear exponential stability in H1,0. This
will help us to show the nonlinear exponential stability (see Remark 6.4). The following
lemmas show that S−1L generates a C0-semigroup on Hk and H1,0.

Lemma 3.6. The operator
(
S−1L,D(L)

)
is closed densely defined on L2 and generates

a C0-semigroup. Similarly
(
S−1L,Hk ∩Hk+1 ×Hk+2

)
is closed densely defined on Hk

and generates a C0-semigroup.

Proof. The proof is similar to the proof of Proposition 2.2 in [MZ03]. In the following
we denote (f, g) = (λ− S−1L)(r, v). For λ > 0 and (r, v) ∈ D(L)

λ |r|22 +

(
λρ̂v,

1

ρ̂
v

)
2

= − (ρ̂rx, r)2 − (ûvx, r)2 + (f, r)2 + ν (vxx, v)2

−
(
P ′(ρ̂)rx, v

)
2
− (ρ̂ûvx, r)2 + (g, v)2 + C |(r, v)|22

≤ −ν |vx|22 + (f, r)2 + (g, v)2 + C |(r, v)|2 (|(r, v)|2 + |vx|2)

where we have integrated by parts and we have noticed a good sign for |r(1)|2. Applying
Young’s inequality, there exists a constant C0 > 0 such that

λ |r|22 + λ |v|22 ≤ C0 |(r, v)|22 + |(r, v)|2 |(f, g)|2 . (13)

Dividing by |(r, v)|2, we get

λ |(r, v)|2 ≤ C0 |(r, v)|2 +
∣∣(λ− S−1L)(r, v)

∣∣
2
,
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hence for λ > C0

|(r, v)|2 ≤
1

λ− C0

∣∣(λ− S−1L)(r, v)
∣∣
2
. (14)

Similarly, we have for (r, v) ∈ H1 ∩H2 ×H3

λ |rx|22+λ |vx|22 = (fx, rx)2+(gx, vx)2−(ûrxx, rx)2+(vxxx,
ν

ρ̂
vx)2+C (|vxx|2 + |(rx, vx)|2) |(r, v)|H1

and there exists a constant C1 > 0 such that for any λ > 0

λ |(rx, vx)|22 ≤ C1 |(r, v)|2H1 + |(rx, vx)|2 |(fx, gx)|2 . (15)

Summing (13) and (15), and noting that

|(r, v)|2 |(f, g)|2 + |(rx, vx)|2 |(fx, gx)|2 ≤ |(r, v)|H1 |(f, g)|H1

by Cauchy-Schwarz’ inequality, we get

λ |(r, v)|2H1 ≤ (C0 + C1) |(r, v)|2H1 + |(r, v)|H1

∣∣(λ− S−1L)(r, v)
∣∣
H1

hence for λ > C0 + C1,

|(r, v)|H1 ≤
1

λ− C0 − C1

∣∣(λ− S−1L)(r, v)
∣∣
H1 . (16)

Since we know from Proposition 3.2 that the spectrum of S−1L only contains eigen-
values, the inequalities (14) and (16) give resolvent bounds and it shows that S−1L
generates a C0-semigroup on L2 and H1 by the Hille-Yosida theorem (see also [Paz83]).
The case k ≥ 2 is a small adaptation of the previous estimates.

In the following, we denote this C0-semigroup by etS
−1L.

Lemma 3.7. There exists a constant ω > 0 such that for any (r0, v0) ∈ H1,0

|etS−1L(r0, v0)|H1×L2 ≤ eωt|(r0, v0)|H1×L2 . (17)

Furthermore, etS
−1L is a C0-semigroup on H1,0.

Proof. We argue by density and we take (r0, v0) ∈ H2. In the following, we denote
(r(t), v(t)) = etS

−1L(r0, v0). Notice that we have r(t, 0) = v(t, 0) = v(t, 1) = rx(t, 0) = 0
for any t ≥ 0. We define the energy

E(r, v) =
A

2

(
|r|22 + (ρ̂v, v)2

)
+
(
v, ρ̂2rx

)
2

+
ν

2
|rx|22 .

In the following we take A > 0 large enough. In particular, E is equivalent to the
H1 × L2-norm. We get

d

dt
E(r, v) ≤ νA (vxx, v)2 +AC |(r, v)|2 |(r, v)|H1 + (νvxx, ρ̂rx)2 −

(
v, ρ̂3vxx

)
2

−
(
v, ρ̂2ûrxx

)
2
− (νρ̂vxx, rx)2 − ν (ûrxx, rx)2 + C (|v|2 + |rx|2) |(r, v)|H1

≤ −Aν |vx|22 +
(
vx, ρ̂

3vx
)

2
+
ν

2
(ûxrx, rx)2 + C (A |(r, v)|2 + |rx|2) |(r, v)|H1

11



where we have used cancellation of the highest-order terms ± (νvxx, ρ̂rx)2, we have in-
tegrated by parts and we have noticed a good sign for rx(1)2. Then, applying Young’s
inequality, we obtain for some ω > 0 large enough,

d

dt
E(r, v) ≤ 2ω

(
|r|22 + |v|22 + |rx|22

)
≤ 2ωE .

The inequality (17) follows easily. Finally for any U0 ∈ H1,0 and V0 ∈ H1∣∣∣etS−1LU0 − U0

∣∣∣
H1×L2

≤
∣∣∣etS−1LV0 − V0

∣∣∣
H1

+ (1 + eωt) |U0 − V0|H1×L2

and continuity at t = 0 follows since etS
−1L is continuous at t = 0 on H1 and H1 is dense

in H1,0.

The following proposition gives linear exponential stability under the assumption of
a spectral gap. It is the main result of this subsection.

Proposition 3.8. Assume that P satisfies (3). Assume that there exists a constant
α > 0, such that <σ(S−1L) < −α. Then, there exist θ and C, 0 < θ < α, such that for
any (r0, v0) ∈ H1,0 ∣∣∣etS−1L(r0, v0)

∣∣∣
H1×L2

≤ Ce−θt |(r0, v0)|H1×L2 .

Proof. If (r0, v0) ∈ H1, since <σ(S−1L) < −α, Proposition 3.5 gives two constants C
and θ with 0 < θ < α such that for any λ ∈ C satisfying R(λ) ≥ −θ∣∣∣(λ− S−1L

)−1
(r0, v0)

∣∣∣
H1×L2

≤ C |(r0, v0)|H1×L2 .

The result follows by density and Prüss’ theorem (see for instance [Prü84, Yos78]).

4 Spectral stability

4.1 Constant and almost constant states

First, we study the spectral stability of constant states.

Proposition 4.1. Assume that (ρ̂, û) is a constant solution of (1) and that P satisfies
(3). Then, there exists α > 0, <σ(S−1L) ≤ −α.

Proof. Computing <
(
((10)1, P

′(ρ̂)r)L2 + ((10)2, ρ̂v)L2

)
, we get

<(λ)

(∣∣∣√P ′(ρ̂)r
∣∣∣2
2

+ |ρ̂v|22
)

+ νρ̂ |vx|22 +
1

2
P ′(ρ̂)û |r(1)|2 = 0.

Thus, <(λ) < 0. The result follows from Proposition 3.2 and Proposition 3.5.

12



We can now establish the main proposition of this part. We recall that (ρ̂, û) is a
steady solution of (1)-(2). We introduce the Evans function associated to (ρ̂, v̂)

D [ρ0, u0, u1] (λ) = v(1),

where (ρ, v) satisfies the ordinary differential equation
rx = −

λr + (ρ̂v)x + ûxr

û
,

νvxx = λρ̂v + (ρ̂ûv)x + P ′′(ρ̂)ρ̂xr − P ′(ρ̂)
λr + (ρ̂v)x + ûxr

û
+ ûx (ûr + ρ̂v)

(18)

with
r(0) = v(0) = 0 , v′(0) = 1.

One can easily show that D [ρ0, u0, u1] (λ) = 0 if and only if λ is an eigenvalue of (6).
We now establish the spectral stability of almost constant steady solutions of (1).

Proposition 4.2. Assume that P satisfies (3). Let (ρ̂, û) be the unique steady solution
of (1)-(2). Let ε > 0 be small enough. Then an eigenvalue λ of (6)-(7) has a negative
real part.

Proof. By Proposition 3.5, problem (6)-(7) does not have any eigenvalue of nonnegative
real part outside a compact set K. Furthermore, from Proposition 4.1, D [ρ0, u0, u0] does
not have any zero inside K ∩{< > 0}. Since the Evans function D depends continuously
on the boundary conditions, D [ρ0, u0, u1] never vanishes inside K ∩ {< > 0} for ε small
enough.

4.2 About general steady states

In the previous part, we only prove the spectral stability of almost constant states. In
this part, we show some theoretical and numerical arguments that support the spectral
stability of any steady states.

We know from previous works that the stability index criterion is a necessary con-
dition for the spectral stability (see for instance [AGJ90, PW94, GZ98]). The stability
index criterion states that

sgn (D [ρ0, u0, u1] (0)) sgn (D [ρ0, u0, u1] (+∞)) = 1.

The following proposition shows that this criterion is satisfied.

Proposition 4.3. For all steady states of problem (1)-(2), the stability index criterion
is satisfied.

Proof. First we compute sgn (D [ρ0, u0, u1] (0)). Proceeding as in Proposition 3.2, we get
the following system 

ρ̂v + ûr = 0,

ρ̂ûv +
ρ̂

û
P ′(ρ̂)v = νvx − νvx(0),

r(0) = v(0) = 0 , vx(0) = 1,

13



and we obtain

v(x) =

∫ x

0
exp

(
1

ν

∫ x

y
ρ̂û− P ′(ρ̂)

û
ρ̂dz

)
dy vx(0).

Then sgn v(1) = sgn vx(0) = 1. Secondly, we compute D [ρ0, u0, u1] (+∞). We have
λr + ûrx = f,

νvxx = λρ̂v + P ′(ρ̂)rx + g,

r(0) = v(0) = 0 , vx(0) = 1,

(19)

where |f |2 + |g|2 ≤ C (|r|2 + |v|2 + |vx|2). By solving the first equation of system (19)
we get for λ large enough

|r|2 ≤
C√
λ

(|v|2 +| vx |2) .

We can rewrite the second equation of system (19) as

νvxx = λρ̂v + P ′(ρ̂)rx + g̃ with v(0) = 0 , vx(0) = 1,

where |g̃|2 ≤ C (|v|2 + |vx|2). Then, we consider for s ∈ [0, 1] the equation

νwxx = λ ((1− s)ρ̂+ s)w + (1− s)P ′(ρ̂)rx + (1− s)g̃ with w(0) = w(1) = 0.

Multiplying by w and integrating, we notice that when λ is large enough the only solution
of this equation is w = 0. Therefore, for λ large enough, we define z solution of

νzxx = λz with z(0) = 0 , zx(0) = 1.

and v(1) and z(1) agree in sign. It follows that sgn v(1) = sgn z(1) = sgn zx(0) = 1.

This proposition also shows that problem (6)-(7) has an even number of nonstable
eigenvalues, i.e. eigenvalues with a nonnegative real part (see [AGJ90, PW94, GZ98]).

Thanks to Proposition 3.5, we can numerically check that σ(S−1L) does not contain
nonstable eigenvalues. Such verifications have for instance been done on the whole line
(see [BHRZ08]).

In the following, we display some numerical simulations for a monatomic pressure
law P (ρ) = ρ1.4. For any λ, we can compute the associated Evans function thanks to
system (18). We use a Runge Kutta 4 scheme. For each value of u0, u1, ρ0 and ν, we
compute the Evans function along semi-circular contours of radius M (see Figure 3).
We choose M large enough such that our domain contains the half ball of Lemma 3.4.
Figure 4 represents the image of the contour with M = 10, ν = 1, u0 = 3

2 , u1 = 1 and
ρ0 = 2. Figure 5 represents the image of the contour with M = 10, ν = 0.1, u0 = 3

2 ,
u1 = 1 and ρ0 = 2. We can see on these examples that the winding number of these
graphs are both zero. Several computations have been performed for other values of the
parameters ν ∈ [0.1, 10], u0 ∈ [1, 10], u1 ∈ [1, 10] and ρ0 ∈ [1, 10]. We could not find any
nonstable eigenvalues.

14



Figure 3: Contour in the complex plane.

Figure 4: Image of a contour mapped by the Evans function. ν = 1, u0 = 3
2 , u1 = 1,

ρ0 = 2.

Figure 5: Image of a contour mapped by the Evans function. ν = 0.1, u0 = 3
2 , u1 = 1,

ρ0 = 2.

5 Local existence

In this section, we state a local wellposedness result for problem (1)-(2) (see e.g. [MN82,
MN01]).
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Proposition 5.1. Let ρ0 > 0, u0 > 0 and u1 > 0. Assume that P satisfies (3). Let
(ρini, uini) ∈ H1 satisfying the boundary conditions (2) and ρini > 0. Then, there exists
a time T > 0 such that problem (1)-(2) has a unique solution (ρ, u) in C

(
[0, T ];H1(0, 1)

)
with

sup
[0,T ]
|(ρ, u) (t)|H1 ≤ 2 |(ρini, uini)|H1 and ρ(t, x) ≥ ρini(x)

2
, 0 ≤ t ≤ T , 0 ≤ x ≤ 1.

6 Nonlinear stability

For a solution (ρ, u) of problem (1)-(2), we define (r, v) = (ρ− ρ̂, u− û). We notice that
(r, v) satisfies the boundary conditions (7) and (L and S are defined in Section 3.1)

(
1 0
0 ρ

)(
r
v

)
t

− L
(
r
v

)
=

(
− (rv)x

−(ûv)xr − ρ̂vvx − vrvx − (P (ρ)− P (ρ̂)− P ′(ρ̂)r)x

)
. (20)

Then, we get

S
(
r
v

)
t

− L
(
r
v

)
= N with r(t, 0) = u(t, 0) = u(t, 1) = 0 (21)

where N1 = −(rv)x and

N2 =− ρ̂

ρ̂+ r

[
(ûv)xr + ρ̂vvx + vrvx +

(
P (r + ρ̂)− P (ρ̂)− P ′(ρ̂)r

)
x

]
+

r

ρ̂+ r

[(
ρ̂ûv + P ′(ρ̂)r

)
x

+ ûx (ûr + ρ̂v)− νvxx
]
.

Notice that N1(t, 0) = N2(t, 0) = 0 and that

N2(t, 1) = − [ûvxr + (P ′(ρ̂+ r)− P ′(ρ̂)− P ′′(ρ̂)r) (ρ̂+ r)x + P ′′(ρ̂)rrx] (t, 1).

The following proposition is a nonlinear damping estimate.

Proposition 6.1. Let T > 0 and consider a solution (r, v) ∈ C
(
[0, T ];H1

)
of (21) on

[0, T ]. Assume that P satisfies (3) and that there exists ε > 0 small enough such that

sup
[0,T ]
|(r, v)(t)|H1 ≤ ε.

Then, there exist some constants C > 0 and θ0 > 0 such that for all 0 ≤ t ≤ T and any
θ ≤ θ0,

|(r, v)(t)|2H1 ≤ Ce−θt |(r, v)(0)|2H1 + C

∫ t

0
e−θ(t−s) |(r, v)(s)|22 ds.

Furthermore, if (r, v) ∈ C
(
[0, T ];H2 ×H3

)
∩ C1

(
[0, T ];H1

)
and for ε small enough

sup
[0,T ]
|(r, v)(t)|H2×H3 ≤ ε,
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there exists some constants C > 0 and θ1 > 0, for any 0 ≤ t ≤ T and θ < θ1

|(r, v)(t)|2H2×H3 ≤ Ce−θt |(r, v)(0)|2H2×H3 + C

∫ t

0
e−θ(t−s) |(r, v)(s)|22 ds.

Proof. This proof is based on an appropriate Goodman-type energy estimate and is
similar to the proof of Proposition 3.5. We define the energy equivalent to the H1-norm
(by the Poincaré inequality A.1)

E (r, v) =
1

2

∫ 1

0
φ1 |rx|2 + φ2 |(ρ̂v)x|

2

where φ1 and φ2 satisfy

φ1 > 0 , φ2 > 0 , φ1 = P ′(ρ̂)φ2 ,
1

2
(ûφ1)x − 2ûxφ1 < 0.

Then, after some computations, we obtain

d

dt
E (r, v) ≤− ν

∫ 1

0

ρ̂φ2 |vxx|2 +

(
1

2
(ûφ1)x − 2ûxφ1

)
|rx|2 + rxvxx (−ρ̂φ1 + ρ̂P ′(ρ̂)φ2)

+

[
−1

2
ûφ1 |rx|2 + φ2ρ̂vx (νvxx − P ′(ρ̂)rx)

]1
0

+

∫ 1

0

φ1rx (N1)x + φ2 (ρ̂v)x (N2)x

+ C |rx|2 (|r|2 + |v|H1) + C |v|H1 (|r|H1 + |v|H1 + |vxx|2) .

Integrating by parts and using Lemma A.2 we get∫ 1

0
φ1rx (N1)x + φ2 (ρ̂v)x (N2)x ≤ [φ2ρ̂vxN2]10 + C |(r, v)|2H1 (|(r, v)|H1 + |vxx|2).

Then, since N1(t, 0) = N2(t, 0) = 0, we have

u0rx(t, 0) = −ρ0vx(t, 0),

νvxx(t, 0)− P ′(ρ0)rx(t, 0) = ρ0u0vx(t, 0),

νvxx(t, 1)− P ′(ρ̂(1))rx(t, 1) +N2(t, 1) = ρ̂(1)u1vx(t, 1) + P ′′(ρ̂(1))ρ̂x(1)r(t, 1) + ûx(1)u1r(t, 1).

Finally, thanks to the previous boundary equalities, Lemma A.2, Lemma A.3, Young’s
inequality and the fact that |(r, v)|H1 is small enough, we obtain

d

dt
E (r, v) ≤ −θ0 |(rx, vxx)|22 + C |(r, v)|22 .

The first inequality easily follows from the Poincaré-Wirtinger inequality. Similarly,
since (rt, vt) satisfies the boundary conditions (7), we get for ε and θ0 small enough

d

dt
E (rt, vt) ≤ −θ0 |(rtx, vtxx)|22 + C |(rt, vt)|22 .

Then, using (20) we notice that

|(rt, vt)|2 ≤ C |(r, v)|H1 + C |vxx|2 .
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Therefore using the Poincaré inequalities, we get for δ and θ1 small enough

d

dt
(E (r, v) + δE (rt, vt)) ≤ −θ1

(
|(rx, vx)|22 + |(rtx, vtx)|22

)
+ C |(r, v)|22 (22)

and the result easily follows from the fact that

|(r, v)|H2×H3 ≤ C |(r, v)|H1 + C |(rt, vt)|2 .

Remark 6.2. By taking further time-derivatives, we could obtain an estimate similar to
(22) in an arbitrarily high-regularity Sobolev space of mixed type Hr ×Hs, with s ∼ 2r
as r →∞. This observation repairs a minor error in [CHNZ09], citing an estimate with
r = s.

We can now state the main result of this paper.

Theorem 6.3. Let ρ0 > 0, u0 > 0 and u1 > 0. Let (ρ̂, û) be the unique steady solution
of problem (1)-(2). Assume that P satisfies (3). Assume that there exist α > 0 such that
<(σ(S−1L)) < −α. Then, there exists ε > 0 and θ > 0, for any (ρini, uini) ∈ H2 ×H3

satisfying the boundary conditions (2), the compatibility conditions

(ρiniuini)x(0) = 0,
(
ρiniu

2
ini + P (ρini)− νuini x

)
x
(0) = 0,

(
ρiniu

2
ini + P (ρini)− νuini x

)
x
(1) = 0

(23)

and
|(ρini, uini)− (ρ̂, û)|H2×H3 ≤ ε,

the unique solution (ρ, u) of problem (1)-(2) with the initial condition (ρini, uini) satisfies

|(ρ, u) (t)− (ρ̂, û)|H2×H3 ≤ C |(ρini, uini)− (ρ̂, û)|H2×H3 e
−θt.

Remark 6.4. As we will see in the proof, since we do not know if N2(t, 1) = 0, the
only way to use a linear damping estimate is to work in L2 for the v component. That
is why in Proposition 3.8 we used H1 × L2 and not H1. Notice also that we impose the
compatibility conditions (23) in order to get enough regularity.

Proof. We denote by U(t, x) = (ρ, u) (t) − (ρ̂, û) (t, x). Let T be the existence time of
Proposition 5.1. The Duhamel formulation of Equation (21) is, for 0 ≤ t ≤ T ,

U(t) = etS
−1LU(0) +

∫ t

0
e(t−s)S−1LS−1N (s)ds.

Noticing that N ∈
{

(r, v) ∈ H1 × L2, r(0) = 0
}

and that N contains at least quadratic
terms, Proposition 3.8 gives the existence of θ > 0

|U(t)|2 ≤ |U(t)|H1×L2 ≤ Ce−θt |U(0)|H1×L2 +

∫ t

0
e−θ(t−s) |U(s)|2H2 C (|U(s)|H2) ds.
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Then, the equality (20) gives

|U(t)|2 ≤ Ce
−θt |U(0)|H1×L2 +

∫ t

0
C (|U(s)|H2) e−θ(t−s)

(
|U(s)|2H1 + |Ut(s)|2H1

)
ds.

Furthermore, the compatibility conditions (23) imply that U ∈ C
(
[0, T ];H2 ×H3

)
.

Therefore, we can use the nonlinear damping estimate of Proposition 6.1 and by Propo-
sition 5.1 the H2-norm of U is controlled by the initial condition. We get for ε and θ > 0
small enough

|U(t)|2 ≤ C
(
|U(0)|H2×H3

)(
(1 + t)e−θt |U(0)|H2×H3 +

∫ t

0
(t− s)e−θ(t−s) |U(s)|22 ds

)
.

Denoting ζ0(t) = sup
[0,t]

e
θ
2
s |U(s)|2, we obtain that for 0 ≤ t ≤ T

ζ0(t) ≤ C
(
|U(0)|H2×H3

) (
ε+ ζ0(t)2

)
.

Furthermore, denoting ζ1(t) = sup
[0,t]

(
e
θ
2
s |U(s)|H1 + e

θ
2
s |Ut(s)|H1

)
and using Proposi-

tion 6.1, ζ1 is also controlled on [0, T ]. Finally, if ε is small enough, we can take T = +∞
and ζ1 is bounded on R+.

7 An improvement in some situations

The main result of this paper, Theorem 6.3, states that spectrally stable steady states
are stable in H2×H3. In this part, we prove that under more restrictive conditions, we
can state a stability result in H1 ×H2. To achieve that, we add another assumption

P ′′ > 0 if ûx > 0 (compressive solutions),

P ′′(y)

P ′(y)
<

2

y
and ρ̂x <

1

4
ρ̂ if ûx < 0 (small expansive solutions).

(24)

With this additional assumption, we can establish a high frequency estimate in L2.

Proposition 7.1. Assume that P satisfies (3) and that Condition (24) is satisfied.
There exists a constant α > 0 such that if <(λ) > −α and |λ| is large enough,

|(ρ, v)|22 ≤ C |(λS − L) (ρ, v)|22 ,

for any (ρ, v) satisfying the boundary conditions (7).

Proof. This proof is based on an appropriate Goodman-type energy estimate. In the
following we denote (λS − L) (ρ, v) = (f, g). We define the following energy

E (r, v) =
1

2

∫ 1

0
φ1 |r|2 + φ2ρ̂ |v|2
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where φ1 and φ2 satisfy

φ1 > 0 , φ2 > 0 , ρ̂φ1 = P ′(ρ̂)φ2.

Then, we compute

2<(λ)E (r, v) = <
(∫ 1

0
φ1rλr

)
+ <

(∫ 1

0
φ2ρ̂vλv

)
.

After some computations we get

2<(λ)E (r, v) ≤
∫ 1

0

−νφ2 |vx|2 +
1

2
û2
(
φ1
û

)
x

|r|2 + <(rvx) [P ′(ρ̂)φ2 − ρ̂φ1] + C |(f, g)|2 |(r, v)|2

+

∫ 1

0

[ν(φ2)xx − 2φ2ûxρ̂+ (φ2)xρ̂û]
|v|2

2
+ < (vr) [(φ2)xP

′(ρ̂)− φ1ρ̂x − φ2ûxû].

Then, we separately consider the three situations ûx > 0 (compressive solution), ûx = 0
(constant solution) and ûx < 0 (expansive solution).

- If ûx > 0, we take φ2 = 1, φ1 = P ′(ρ̂)
ρ̂ and we get

û2

(
φ1

û

)
x

= û(φ1)x− ûxφ1 =
P ′′(ρ̂)ρ̂xû

ρ̂
< 0 , ν(φ2)xx−2φ2ûxρ̂+(φ2)xρ̂û = −2ûxρ̂ < 0.

- If ûx = 0, we take φ1 = P ′(ρ̂)− βx, φ2 = ρ̂− β ρ̂
P ′(ρ̂)x with β > 0 small enough, and we

get

û(φ1)x − ûxφ1 = −βû < 0 , ν(φ2)xx − 2φ2ûxρ̂+ (φ2)xρ̂û = −β ρ̂2û

P ′(ρ̂)
< 0.

- If ûx < 0, we take φ2(x) =
√
M − 2x, M > 2 and φ1(x) = P ′(ρ̂)

ρ̂ φ2(x) and thanks to
Condition (24) we get

û(φ1)x − ûxφ1 =
φ2

ρ̂
P ′(ρ̂)û

(
P ′′(ρ̂)

P ′(ρ̂)
ρ̂x −

1

M − 2x

)
< 0,

ν(φ2)xx − 2φ2ûxρ̂+ (φ2)xρ̂û ≤ φ2û

(
2ρ̂x −

ρ̂

M − 2x

)
< 0.

Moreover, in any case, we have (denoting r̃(x) =
∫ x

0 r(y)dy)∫ 1

0
< (vr)

(
(φ2)xP

′(ρ̂)− φ1ρ̂x − φ2ûxû
)
≤ C |r̃|2 |v|H1 .

Thus, using the first inequality of Lemma 3.4, we can find a constant α > 0, for |λ| large
enough,

2<(λ)E (r, v) ≤ −α |(r, v)|22 + C |(λ− L) (ρ, v)|22 ,
and the inequality follows.
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Thanks to this L2 high frequency estimate, we can improve Proposition 3.8. Under
the assumption that Re

(
σ(S−1L

)
) ≤ −α < 0, we get∣∣∣etS−1L(r, v)

∣∣∣
2
≤ Ce−αt |(r, v)|2 .

Furthermore, thanks to the previous appropriate Goodman-type estimate, we can im-
prove the nonlinear damping estimate in Proposition 6.1. If (r, v) in C

(
[0, T ];H2 ×H1

)
is a solution of (21) on [0, T ] and

sup
[0,T ]
|(r, v)(t)|H1×H2 ≤ ε

for ε small enough, we have

|(rt, vt)(t)|22 ≤ Ce
−θt |(r, v)(0)|2H1×H2 + C

∫ t

0
e−θ(t−s) |(r, v)(s)|22 ds.

Finally, applying the Duhamel formulation in L2, we obtain the following theorem.

Theorem 7.2. Let ρ0 > 0, u0 > 0 and u1 > 0. Let (ρ̂, û) be the unique steady solution
of problem (1)-(2). Assume that P satisfies (3) and that Condition (24) is satisfied.
Assume that there exist α > 0 such that <(σ(S−1L)) < −α. Then, there exists ε > 0
and θ > 0, for any (ρini, uini) ∈ H1 ×H2 satisfying the boundary conditions (2) and

|(ρini, uini)− (ρ̂, û)|H1×H2 ≤ ε,

the unique solution (ρ, u) of problem (1)-(2) with the initial condition (ρini, uini) satisfies

|(ρ, u) (t)− (ρ̂, û)|H1×H2 ≤ C |(ρini, uini)− (ρ̂, û)|H1×H2 e
−θt.

A L∞ estimates and interpolation

In this appendix, we recall some basic results about Sobolev spaces in a bounded domain.
The first lemma is a Poincaré inequality.

Lemma A.1. For any f ∈ H1(0, 1) with f(0) = 0, we have

|f |2 ≤ 2 |fx|2 .

Proof. For any x, y ∈ [0, 1], we have

f(x)2 = f(y)2 + 2

∫ x

y
f(z)f ′(z)dz. (25)

Since f(0) = 0, we choose y = 0 and we obtain the result by integrating over x.

The following lemma allows us to control boundary terms and L∞-norms by appro-
priate Sobolev norms.
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Lemma A.2. For any f ∈ H1(0, 1), we have

|f |∞ ≤
√

2 |f |2 |fx|2 , if f(0) = 0,

|f |∞ ≤ |f |2 +
√

2 |f |2 |fx|2.

Proof. It is a direct consequence of the equality (25).

We also have the following derivative-interpolation theorem.

Lemma A.3. For any v ∈ H2(0, 1),

|vx|22 ≤ C |v|
2
2 + C |v|2 |vxx|2 .

Proof. Integrating by parts, we get∫ 1

0
v2
xdx = −

∫ 1

0
vvxxdx+ [vvx]10 .

The result follows from the previous lemma.
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[Prü84] J. Prüss. On the spectrum of C0-semigroups. Trans. Amer. Math. Soc., 284(2):847–857, 1984.

[PW94] R. L. Pego and M. I. Weinstein. Asymptotic stability of solitary waves. Comm. Math. Phys.,
164(2):305–349, 1994.

[SS00] B. Sandstede and A. Scheel. Absolute and convective instabilities of waves on unbounded and large
bounded domains. Phys. D, 145(3-4):233–277, 2000.

[SZ01] D. Serre and K. Zumbrun. Boundary layer stability in real vanishing viscosity limit. Comm. Math.
Phys., 221(2):267–292, 2001.

[Yos78] K. Yosida. Functional analysis. Springer-Verlag, Berlin-New York, fifth edition, 1978. Grundlehren
der Mathematischen Wissenschaften, Band 123.

[Zum01] K. Zumbrun. Multidimensional Stability of Planar Viscous Shock Waves, pages 307–516. Birkhäuser
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