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Abstract—In this paper, we call and study a classical equa-
tion modeling the refraction and diffraction phenomena of
water waves in harbors. This equation is called the mild-slope
equation. By using a family of bottom profiles, we construct
analytically an approximate solution of this linear equation and
perform, with various norm comparisons, a parametric study
of this approximate solution. We evaluate ∇·u for the resulting
irrotational flow using various parameters, such as the mean
slope, the averaged water depth...

Keywords- Mild-slope equation; Potential equation; Geomet-
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I. INTRODUCTION

The motion of a fluid in a domain Ω̃ = {(x, y, z), (x, y) ∈
]0, L[×]0, l[,−h(x, y) < z < η(x, y, t)} with a free surface
is characterized by a linearized model deduced from the
Euler equation with a free surface and defined in Ω =

{(x, y, z), (x, y) ∈]0, L[×]0, l[,−h(x, y) < z < 0}. A deriva-
tion of this model can be found in Lamb [10] and it is
called the potential system of equations:

∆φ(x, y, z) = 0 in Ω, (1)

∂φ

∂z
(x, y, z)−

ω2

g
φ(x, y, z) = 0 at z = 0, (2)

∂φ

∂x
(x, y, z)

∂h

∂x
(x, y)

+
∂φ

∂y
(x, y, z)

∂h

∂y
(x, y) +

∂φ

∂z
(x, y, z) = 0 at z = −h(x, y), (3)

where the unknown φ is the velocity potential, h is the
given water depth (depending on (x, y)), ω the imposed

time frequency and g the gravity acceleration.

In the case where the water depth h is constant, equation
(3) reduces to:

∂φ

∂z
(x, y, z) = 0 at z = −h, (4)

and a solution of the potential system is:

φ(x, y, z) = Z(h, z) cos(k x), (5)

where k is the wave number satisfying the following disper-
sion relation:

ω2 = g k tanh
(
k h
)
, (6)

with

Z(h, z) =
cosh

(
k (z + h)

)
cosh

(
k h
) . (7)

In the general case, one defines k(x, y) as the unique
positive solution of:

ω2 = g k(x, y) tanh(k(x, y)h(x, y)). (8)

One hopes to construct a solution of the potential system
similar to (5). Indeed, for a slowly varying bottom:

∇h(x, y)

h(x, y)
<< 1, (9)

Berkhoff [1, 2] seeks solutions under the form :

φ(x, y, z) = Z
(
h(x, y), z

)
ϕ(x, y). (10)

After algebraic manipulations and approximations that will
be detailed hereafter, he obtains an approximate equation in



the horizontal domain ]0, L[×]0, l[ on ϕ, called the mild-
slope equation [1, 2]:

∇ ·
(
T (x, y)∇ϕ(x, y)

)
+ k2 T (x, y)ϕ(x, y) = 0 in Ωh, (11)

where

T (x, y) =

(
h(x, y) +

sinh
(
2 k(x, y)h(x, y)

)
2 k(x, y)

)
2 cosh2

(
k(x, y)h(x, y)

) . (12)

Equation (11) has been studied by many authors. Booij
[3] computed numerically the solution ϕb of (11), and
compared ϕbZ(h(x, y), z) with the solution of the potential
equation with the same boundary data. In the present paper,
we only considered slopes smaller than 1

3 , limiting value
obtained by Booij.

In this paper, we exhibit an analytical approximate so-
lution of the mild-slope equation for a family of slopes
depending on two parameters: the mean slope and the
averaged water depth defined thereafter. We evaluate various
norms for this solution. We restrict ourselves to the case
where the mean slope is smaller than 1

3 .
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Figure 1. Example of one domain

For simplicity’s sake, this study is performed in a 2d
domain Ω2d = {(x, z), x ∈]0, L[,−h(x) < z < 0}. We restrict
ourselves to the case where the function kh(x) is linear.
Note that in this case x→ h(x) is not linear. This particular
form is the key tool for obtaining an analytical approximate
solution of the mild-slope equation in particular for an
exact expression of the phase θ given in (14). Moreover,
for small slopes the water depth is very close to its linear
approximation.

This analytical approximate solution deduced from ideas
of geometrical optics [13] is:

ϕa(x) =
1√

k(x)T (x)
cos
(
θ(x) + c

)
, (13)

where
θ(x) =

∫ x

0

k(x′) dx′. (14)

with the constant c is chosen according to the boundary
conditions.

Let us define the following operators: Be(ϕ)(x) = 0 is
the mild-slope equation. L(ϕ)(x, z) = 0 corresponds to the
Laplace equation. Bo(ϕ)(x, 0) = 0 is the equation satisfied
on z = −h(x).

For the approximate solution ϕa, we study Be(ϕa), L(ϕa)

and Bo(ϕa). These are the remainder terms in the corre-
sponding equation

‖Be
(
ϕ
)
‖L2([0,L]) ≤ C1

∥∥∥(∂h
∂x

)∥∥∥2
∞
, (15)

‖L
(
ϕ
)
‖L2([0,L],[−h(x),0]) ≤ C2

∥∥∥∂h
∂x

∥∥∥
∞
, (16)

‖Bo
(
ϕ
)
‖L2([0,L]) ≤ C3

∥∥∥∂h
∂x

∥∥∥
∞
. (17)

The main result of our study is that we have the respective
order of magnitude of these terms. We observe theoretically
or numerically that the remainder terms are small.

II. MODEL BACKGROUND

The mild-slope equation (11) models the refraction and
diffraction phenomena of an harmonic in time wave in
harbors and coastal areas and is based on the assumption
(9) and we describe its derivation.

A. Euler equations with free surface
Let us consider an inviscid and incompressible fluid and

an irrotational flow. The velocity u and the pressure p are
given by the Euler equation with free surface:

∂u

∂t
(x, z, t) +

(
u(x, z, t) · ∇

)
u(x, z, t)

+
∇p(x, z, t)

ρ
= g in Ω2d, (18)

∇ · u(x, z, t) = 0 in Ω2d, (19)
∂η

∂t
(x, t) + u(x, z, t) · ns = 0 at z = η(x, t), (20)

u(x, z, t) · nb = 0 at z = −h(x), (21)

where ρ is the given density, η the unknown free surface,
ns and nb the outward normals at the free surface and at
the bottom.

Due to irrotationality, we have (Hodge theorem [8]):
u(x, z, t) = ∇Φ(x, z, t) in Ω2d, (22)

where Φ is the velocity potential (defined up to a constant).

We deduce the Euler potential equation:

∆Φ(x, z, t) = 0 in Ω2d, (23)

∂Φ

∂t
(x, z, t) +

1

2

(
∇Φ(x, z, t)

)2

+
p(x, z, t)

ρ
+ g z = 0 in Ω2d, (24)

∂η

∂t
(x, t) +∇Φ(x, z, t) · ns = 0 at z = η(x, t), (25)

∇Φ(x, z, t) · nb = 0 at z = −h(x). (26)



An additional equation is needed on the unknown free
surface η. For this, we consider equation (24) written at the
free surface, by assuming p(x, z = η(x, t), t) = 0:

∂Φ

∂t
(x, z, t) +

1

2

(
∇Φ(x, z, t)

)2

+ g η(x, t) = 0 at z = η(x, t). (27)

B. Potential equation

Let us put A = ‖ϕ‖∞ and assume:
A

hmoy
<< 1, (28)

A

hmoy

h2moy

L2
0

<< 1, (29)

where A is the amplitude, hmoy the averaged water depth
and L0 the characteristic length of the wave.

We linearize the equations (25) and (27) under (28-29)
and re-write them at z = 0:

∂η(x, t)

∂t
−
∂Φ(x, 0, t)

∂z
= 0, (30)

∂Φ(x, 0, t)

∂t
+ g η(x, t) = 0. (31)

We deduce:
∂2Φ(x, z, t)

∂t2
+ g

∂Φ(x, z, t)

∂z
= 0 at z = 0. (32)

Assume:
Φ(x, z, t) = φ(x, z) cos(ω t), (33)

where φ is still called the velocity potential. By replacing
(33) in equations (23), (26) and (32), we obtain the potential
equation (1-3).

C. Mild-slope equation

Assume in this section that the slope is characterized by:

σ∗ = max
D∈[0,L],x∈[0,L−D]

(
h(x+D)− h(x)

D

)
. (34)

The value of σ∗ is assumed to be small. Note that this is a
mathematical characterization of the hypothesis of Berkhoff
[1, 2].

Recall that in the case of a flat bottom, (5) is an exact
solution of the potential system of equations (1-3). By
analogy, in the case of a mild-slope bottom, a solution of
the system (1-3) is as following:

φ(x, z) = Z(h(x), z)ϕ(x, z). (35)

Berkhoff then assumes, using the equation at the free
surface (2) that:

∆
(
Z(h(x), z)ϕ(x, z)− Z(h(x), z)ϕ0(x)

)
= O(σ2

∗), (36)

where
ϕ(x, 0) = ϕ0(x). (37)

Notice that, after integration by parts:

∫ 0

−h(x)
Z(h(x), z′) ∆

(
Z(h(x), z′)ϕ0(x)

)
dz′ = Be(ϕ0)(x)

+O(h′′, h′2). (38)

From:
∆
(
Z(h(x), z)ϕ(x, z)

)
= 0, (39)

and the assumption of Berkhoff (36), one obtains:

O(σ2
∗) + Be(ϕ0)(x) +O(h′′, h′2) = 0. (40)

Notice that:

‖h′‖∞ ≥ c1 σ∗, (41)

‖h′′‖∞ ≥ c2 σ2
∗. (42)

We observe that the action of the mild-slope operator on
the approximate analytical solution is of order of magnitude
O(h′′, h2). We also observe that the action of the Laplace
operator on Z ϕ0 yields an order of magnitude O(σ∗), hence
it seems that the assumption of Berkhoff (36) is not valid.

It is the consequence of our numerical experiments.

However, if we neglect O(σ∗) and O(h′′, h′2) in (38), we
get the mild-slope equation:

∇
(
T (x)∇ϕ0(x)

)
+ k2 T (x)ϕ0(x) = 0. (43)

Finding an explicit solution of (43) is not easy because
k and T are known implicitly through (8). In the
literature, many authors studied the dispersion relation
and found explicit approximate solutions. These works
include the approximations of Hunt [9], Eckart [6],
Nielsen [12],Venezian [14]. A review of these different
approximations has been made by Fenton and McKee [7].

In our case, we need to know k to compute the
approximate analytical solution (see next section). The
expression of k is also needed for computing the remainder
term Be(ϕ).

Let us assume:

(kh)(x) = k(0)h(0) +
k(L)h(L)− k(0)h(0)

L
x. (44)

The water height is thus given by:

h(x) =
g

ω2
(kh(x) tanh

(
(kh)(x)

)
. (45)

Hence:
k(x) =

ω2

g

1

tanh
(
(kh)(x)

) . (46)

Therefore, we have expressions for all the needed quan-
tities thanks to:

k(x) =
ω2

g

(kh)′(x)

tan
(
kh(x)

)
(kh)′(x)

, (47)



which implies (see (66) below)

θ(x) =
ω2

g (kh)′(x)
log
( sinh(kh(x))

sinh(kh(x))

)
. (48)

III. APPROXIMATE ANALYTICAL SOLUTION

In this section, we describe a strategy to find an
approximate analytical solution at the order 0 for the
mild-slope equation. This comes from the geometrical
optics method where a description of the method can be
find in the book of Rauch [13].

One recalls that, for the partial differential equation

T (x)ϕ′′ε (x) + T ′(x)ϕ′ε(x) +
k2(x)

ε2
T (x)ϕε(x) = 0, (49)

depending on ε assumed to be small, a classical method to
derive asymptotic solutions at the order 0 is to assume that

ϕε(x) = a0(x) cos

(
θ(x)

ε
+ c

)
, (50)

where, plugging (50) into (49), one gets:
1

ε2

(
k2(x)− θ′(x)2

)
T (x)a0(x) cos

(
θ(x)

ε

)
+

1

ε

(
− a′0(x) θ′(x)T − (a0(x)θ′′(x) + a′0(x)θ′(x))T (x)

− a0(x)T ′(x)θ′(x)
)

sin

(
θ(x)

ε

)
+
(
∆a0(x)T (x) + a′0(x)T ′(x)

)
cos

(
θ(x)

ε

)
= 0. (51)

One then solves the cascade of equations:

• coefficients in 1

ε2
:

θ′(x)2 = k2, (52)

• coefficients in 1

ε
:(
a20(x)T (x) k(x)

)′
= 0. (53)

Then, we obtain a0(x) =
1√

k(x)T (x)
.

If (a0, θ) satisfies (53-52), then (50) is an approximate
analytical solution of (49) with a remainder term equal to:

∇ ·
(
T (x, y)a′0(x, y)

)
cos

(
θ(x, y)

ε

)
. (54)

In the case ε = 1, equation (49) reduces to equation (43).
Therefore relation (50), with ε = 1 defines an approximate
solution of equation (43) with a remainder term:

∇ ·
(
T (x)a′0(x)

)
cos (θ(x)) . (55)

One can also consider functions of the form:

ϕ(x, y) = a0(x) cos
(
θ(x)
)

+ b0(x) sin
(
θ(x)
)
, (56)

where the remainder term is:

∇ ·
(
T (x)a′0(x)

)
cos (θ(x))

+∇ ·
(
T (x, y)b′0(x)

)
sin (θ(x)) . (57)

or
ϕ(x) = m(x) cos(θ(x) + c), (58)

where c is a constant. In this case, the remainder term is:(
T (x)a′0(x)

)′
cos (θ(x) + c) . (59)

IV. PARAMETRIC STUDY OF THE ACCURACY OF THE
APPROXIMATE ANALYTICAL SOLUTION

In this section, we study the accuracy of the approximate
analytical solution (58). Let us recall that Be(ϕ) is
the remainder term of the mild-slope equation. The
expression L(ϕ) and Bo(ϕ) represent the remainder terms
for the potential equation and the equation of the bottom
z = −h(x).

For this, we developed a numerical code taking into
account the physical parameter ω (time frequency) and the
two extreme values of the water depth h(0) and h(L). Note
that, when:

h(L)− h(0)

L
<< 1, (60)

h(L)+h(0)
2 is a good approximation of the average of the

water depth, and h(L)−h(0)
L is a good approximation of the

slope.

One denotes, if needed,

hmoy =
h(L) + h(0)

2
, (61)

and
σ =

h(L)− h(0)

L
. (62)

The tool returns graphics of the approximate analytical
solution and computes the quantities Be(ϕ), L(ϕ) and Bo(ϕ)

in order to analyze them.

A. Quantitative study

In this case, we study a domain of length L = 30 m
and hmoy = 3 m. We consider an inhomogeneous Dirichlet
condition at x = 0 and a homogeneous Neumann condition
at x = L:

ϕ(0) = 1, (63)

ϕ′(L) = 0. (64)

1) Approximate geometrical optics solution: In this case,
the approximate analytical solution (56) reads:

ϕ1,b(x) =
α√
kT (x)

cos(θ(x)) +
β√
kT (x)

sin(θ(x)), (65)

with

θ(x) =

∫ x

L

k(x′)dx′,

=
g

ω2

L

kh(L)− kh(0)
ln

(
sinh(kh(L))

sinh (kh(x))

)
, (66)

and



α =

√
kT (0)(

cos(θ(0)) +
1

2

(kT (L))′

kT (L) k(L)
sin(θ(0))

) , (67)

β =
1

2

(kT (L))′

(kT (L))
3
2

√
kT (L)

k(L)
α. (68)
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Figures (2) and (3) represent ϕ1,b (crosses) and
1000 × Be

(
ϕ1,b(x)

)
(line) for different time frequencies ω.

On both test cases, we observe that the remainder term
Be(ϕ1,b

)
is extremely small compared with the function

ϕ1,b (see figure (2,3)). We deduce from this observation that
the analytical approximate solution is a good approximation
of a solution of the mild-slope equation. Note that the
functions −Be(ϕ1,b

)
and ϕ1,b have approximatively the

same phase. These results are coherent with the expression

of the remainder term (57) for which we can prove that the
order is order that is O(h′′, h′2) as described below.

Slope ‖Be(ϕ1,b)‖L2 ‖L(ϕ1,b)‖L2 ‖Bo(ϕ1,b)‖L2

10−1 9.22× 10−4 1.25× 10−1 1.21× 10−1

10−2 1.72× 10−5 1.65× 10−2 1.29× 10−2

10−3 1.72× 10−7 1.67× 10−3 1.30× 10−3

10−4 1.72× 10−9 1.66× 10−4 1.30× 10−4

Table I
REMAINDER TERMS IN L2-NORM COMPARED TO SLOPES WITH ϕ1,b -

ω2

g
= 1 M−1 - kmoy = 1.0048 M−1

Slope ‖Be(ϕ1,b)‖L2 ‖L(ϕ1,b)‖L2 ‖Bo(ϕ1,b)‖L2

10−1 9.20× 10−4 4.67× 10−2 7.68× 10−2

10−2 9.85× 10−6 4.19× 10−3 7.64× 10−3

10−3 9.81× 10−8 4.16× 10−4 7.58× 10−4

10−4 9.80× 10−10 4.16× 10−5 7.58× 10−5

Table II
REMAINDER TERMS IN L2-NORM COMPARED TO SLOPES WITH ϕ1,b -

ω2

g
= 0.1 M−1 - kmoy = 0.1922 M−1

Tables (I) and (II) represent the L2-norm of Be(ϕ1,b),
L(ϕ1,b) and Bo(ϕ1,b) for different slopes σ. We observe that
mild-slope operator applied to the approximate analytical
solution is of size O(h′′, h′2) in L2-norm. This result is
coherent with the expression of the remainder term (57) for
which we can prove order that is the same. The operators
of the potential system L(ϕ1,b) and Bo(ϕ1,b) are size of
O(h′).

2) Solution of flat bottom: Let us consider a classical
solution of the mild-slope equation with a flat bottom:

ϕ′′(x) + k20 ϕ(x) = 0, (69)

such as

ϕ′(0) = 1, (70)

ϕ′(L) = 0. (71)

One has:

ϕ1,f (x) = cos(k0 x) +
sin(k0 L)

cos(k0 L)
sin(k0 x). (72)

One replaces ϕ1,f in the mild-slope operator Be(ϕ) and one
obtains the following results.

The tables (III) and (IV) represent the L2-norm of
remainder terms Be(ϕ1,f ), L(ϕ1,f ) and Bo(ϕ1,f ) for different
slopes σ. In this case, all the remainder terms are of size
O(h′) in L2-norm. The order of magnitude given by the



Slope ‖Be(ϕ1,f )‖L2 ‖L(ϕ1,f )‖L2 ‖Bo(ϕ1,f )‖L2

10−1 1.75× 10−1 2.70× 10−1 1.34× 10−1

10−2 2.03× 10−2 3.30× 10−2 1.30× 10−2

10−3 2.04× 10−3 3.48× 10−3 1.29× 10−3

10−4 2.03× 10−4 3.67× 10−4 1.29× 10−4

Table III
REMAINDER TERMS IN L2-NORM COMPARED TO SLOPES WITH ϕ1,f -

ω2

g
= 1 M−1 - kmoy = 1.0048 M−1

Slope ‖Be(ϕ1,f )‖L2 ‖L(ϕ1,f )‖L2 ‖Bo(ϕ1,f )‖L2

10−1 1.41× 10−1 9.10× 10−2 5.58× 10−2

10−2 1.80× 10−2 1.13× 10−2 7.45× 10−3

10−3 1.81× 10−3 1.14× 10−3 7.56× 10−4

10−4 1.80× 10−4 1.08× 10−4 7.57× 10−5

Table IV
REMAINDER TERMS IN L2-NORM COMPARED TO SLOPES WITH ϕ1,f -

ω2

g
= 0.1 M−1 - kmoy = 0.1922 M−1

mild-slope equation is not obtained in the Laplace equation
and in the equation at z = −h(x).

In this quantitative study, the approximate analytical so-
lution (65) yields global remainder terms (L(ϕ) – Bo(ϕ)) of
the same accuracy as the flat bottom solution (72). However,
one observes in the next section that the functions obtained
do not have the same qualitative behavior.

B. Qualitative study

In this section, the study is done for the following physical
parameters:

• L = 70 m,

• hmoy = 0.6 m,

• σ = 0.01,

•
ω2

g
= 0.5 m−1.

At x = 0, we consider the following boundary conditions:

ϕ2(0) =
1√

k(0)T (0)
, (73)

ϕ′2(0) = 0. (74)

We consider an approximate geometrical optic solution:

ϕ2,b(x) =
1√

k(x)T (x)
cos(θ(x)), (75)

where

θ(x) =

∫ x

0

k(x′) dx′. (76)

On a flat bottom h0, we define:

ϕ2,f (x) =
1√

k(0)T (0)
cos(k0 x). (77)

Let us define the free surface functions:

η2,b(x, t) = Re
(
i
ω2

g
Z(x, 0)ϕ2,b(x)eiωt

)
, (78)

η2,f (x, t) = Re
(
i
ω2

g
Z(x, 0)ϕ2,f (x)eiωt

)
. (79)
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Figure 4. Functions η2,b(x, 10) and η2,f (x, 10))

Figure (4) represents η2,b(x, 10) (line) and η2,f (x, 10)

(cross) in function of x. In the case of the approximate
analytical solution (75), the phase evolution due to the vari-
ation of the bottom is correctly taken into account and the
amplitude of the solution increases. These two phenomena
are closer to the physical observations.

CONCLUSION

In this paper, we studied the mild-slope equation allowing
to model the refraction and diffraction phenomena of water
waves in harbors. Thus, we developed an approximate
analytical solution deduced from ideas of geometrical optics
and perform a parametric study of this approximate solution
in various norm comparisons. A quantitative and qualitative
study have been performed. Hence, we observed that for
a approximative analytical solution ϕ, Be(ϕ) is size of
O(h′2, h′′). However, the accuracy of the remainder term in
the Laplace equation as well as in the relation on z = −h(x)

is worse that was assumed by Berkhoff for the global
equation. Recall that the expression,

∆
(
Z(h(x), z)ϕ(x, z)− Z(h(x), z)ϕ0(x)

)
was assumed to be of order O(σ∗). We deduce that a solution
of the mild-slope equation is not appropriate to compare
with a solution of the potential system of equations, or
more generally with the Euler equation. Qualitatively, we



observe that the variations of the amplitude and the phase
are correctly taken into account. These phenomena are closer
to the physical observations and appear due to the variation
of the bottom. This implies an approximate solution of the
mild-slope equation is an interesting solution to represent
physical phenomena in the case of slowly varying bottom.
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