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1 Théorémes de Carathéodory

Définition 1.1 On dit que p* : P(E) — [0,00] est une mesure extérieure si
(i) 1 () = 0
(i1) p* est croissante : p*(A) < u*(B) si AC B;
(i) u* est o-sous-additive : pour toute suite (A,) de P(E), on a

H* ( U An) < Z .U*(An)~
neN neN

Théoréme 1.2 (Carathéodory) Ftant donnée une mesure extérieure sur un ensemble E, on
définit l’ensemble de parties

A= {AC E; u*(C) = u*(C N A) + u*(CNA°) VC C E}.

Alors
(i) A est une tribu;
(i1) p:=p*|a: A —[0,00] est une mesure positive.

Idée de la preuve. @ Pour A, Be€ Aet C C E,on a
p(CN(AUB)) = p*(CN(AUB)NA)+u (CN(AUB)N A
p (CNA)+p*(CNnBNAS).
On en déduit
p(CN(AUB))+u* (CN(AUB)) =
p (CNA)+p (CNBNA®) + u*(CNA°N B
p(CNA)+p"(CNA%)+ ™ (CNAY) = p*(0),



ce qui prouve que A est stable par union finie. On en déduit immédiatement que A est une algébre.

e On se donne maintenant une suite (By)r>1 d’éléments de A deux & deux disjoints. On montre
par récurrence que pour tout C' C F et tout n > 1

w( Zu (C'NBy) + p* (Cm(O ))

k=1
Par croissance de u*, on a alors
T >Z” (CNBy) +pu"(CNB°), UBk,
k=1

pour tout n > 1, et donc

oo

> (CNBy)+p*(CNB°). (1.1)

k=1

Par o-sous-additivité de p*, cela prouve
p*(C) = p*(CNB) 4 p*(CNB°).

Par o-sous-additivité de p*, I'inégalité inverse est immeédiate, ce qui prouve que B € A. Si (Ag)k>1
est une suite quelconque de A, on définit la suite (By)g>1 d’éléments de A deux & deux disjoints,
en posant By := Ay, ..., By := Ag\Bi—_1 et on observe que UA; = UBy € A, ce qui termine la
preuve du fait que A est une tribu.

o Soit & nouveau (Bj)r>1 une suite d’éléments de A deux & deux disjoints. En prenant C := UBy,
dans (1.1) et en utilisant la notation B := UBj), on trouve

()£ () a0

Par hypothése de o-sous-additivité de p*, cette inégalité est en fait une égalité, c’est-a-dire que p*
est o-additive sur les éléments de A. I

hE

1 (Br)-

o>~
Il

1

Théoréme 1.3 (Carathéodory) Soient
(i) B une semi-algébre de E ;
(ii) p* : B — [0,00] une application o-finie et o-additive au sens ot
— il existe une suite (B,,) de B telle que U,B,, = E and u(B,) < 00 ;
— pour toute suite (B,,) d’éléments disjoints de B telle que U, B, € B on a

(U B.) = 3 k(B

Alors il existe une unique mesure o-finie p sur o(B) telle que pp = uh.

Idée de la preuve. Pour tout A € #(E), on définit

w(A): 1nf{z,u By); By € B, ACUBk}.
k=1

On vérifie que p* est une mesure extérieure. Le Théoréme 1.2 nous dit que 'on peut construire
une tribu A et une mesure u sur A a partir de la mesure mesure extérieure. On vérifie alors que
B C A, ce qui permet de conclure. 1]



2 Construction de la mesure de Lebesgue

Théoréme 2.1 (Lebesgue) Il existe une mesure X borélienne sur R? telle que

d
May,bi[ ... xJag, bal) = [ [ (b — a:),

=1

pour tout pavé |ay,bi[x .. ]Jag, ba|C R, De plus, pour toute fonction f € C.(RY), on a

/Rfd)\:/Rf(x)dm, (2.1)

ot le terme de droite désigne l’intégrale au sens de Riemann.

Ebauche de la preuve (Cas d = 1 pour simplifier, on peut alors passer au cas de la dimension
supérieure d > 2 a I'aide de la théorie du Fubini-Tonelli). Pour un intervalle (a,b) de R, a < b, on
pose
N((a,b)) =b—a.

Ici, les parenthéses ( et ) désignent indistinctement les crochets [ et |. On sait (depuis le Chapitre 1)
que ’ensemble B des unions finies d’intervalles forme une semi-algébre. On peut appliquer le
Théoréme 1.3 de Carathéodory qui nous dit qu'il existe une tribu .Z(R) contenant B et une mesure
A sur .Z(R) qui coincide avec A* sur B. En particulier .Z(R) contient également la tribu borélienne
Z(R) qui a été définie comme étant la plus petite tribu contenant B. Enfin, pour f € C.(R), on a

™= X1,
/RfdA:ngn;O /R _Z F) s ey dA = lim > ~ ()= /Rf(a:)d:c,

1=—00 1=—00

ou on utilise le théoréme de convergence dominée pour justifier la premiére limite et la définition
de l'intégrale de Riemann pour justifier la seconde limite. On notera que les deux sommes sont en
fait finies pour tout n > 1 fixé. [0

3 Complétion d’une tribu

Soit (E, <7, 1) un espace mesuré.

Définition 3.1 - On dit que N C E est u-négligeable (ou simplement négligeable) si N C A € of
et u(A) =0.
- La tribu o7 est dite compléte pour la mesure pu si elle contient tous les négligeables.

Proposition 3.2 L’ensemble # := {AUN, A € o/, N négligeable} est la plus petite tribu complete
contenant o/ . La mesure u peut étre prolongée d’une unique facon en une mesure u* sur B. La
mesure u* est appelée la mesure complétée de pu.

Exemples 3.3 Sur R, on définit la mesure extérieure
A (A) := inf{p*(0); O ouvert, AC O}, p*(Ja,b]) =b—a.

On appelle tribu de Lebesgue, on note L (R), la tribu que l'on obtient & partir de \* grdce au
Théoreme 1.2. C’est aussi celle que 'on obtient en appliquant successivement les Théorémes 4.1 et
2.1. La tribu de Lebesgue £ (R) est la tribu complétée de la tribu de Borel B(R), et L (R) # B(R).
Pour voir ce dernier point, on définit l’ensemble de Cantor C de la maniére suivante : on note
Co = [Oa 1]; ¢, = [0’1/3] U [2/37 1}7 Cy = [071/9] U [2/971/3] U [2/3v 7/9] U [8/971]; cey pULS
C = lim,, C,,. 1l est clair que C est négligeable et on peut montrer qu’il n’est pas dénombrable.
Donc l'ensemble des parties de C est de cardinal strictement supérieur & la puissance du continu
et le cardinal de L(R) n’est donc pas plus petit. D’autre part, on peut montrer que le cardinal de
PBR) est celui de R. On a donc card £ (R) > card B(R). On peut montrer & l'aide de l’aziome du
choizx qu’il existe des sous-ensembles de R qui ne sont pas Lebesgue mesurable.



4 Théorémes de représentation de Riesz-Markov

Théoréme 4.1 (Riesz-Markov) Soit T une forme linéaire positive sur C.(R?), c’est-a-dire, une
application T : C.(R?) — R telle que

(i) T est linéaire : T(¢p + ap) = T(¢) + T (1) pour tout o € R, ¢, € C.(RY) ;

(ii) T est positive : T(¢) >0 si ¢ € C.(RY) et ¢ > 0.
Alors, il existe une unique mesure borélienne pu sur R? telle que

T(¢) = | o(x)pu(dz).
Rd
Idée de la preuve. e Pour un ouvert non vide @ C R?, on définit

1*(0) == sup{T(¢); ¢ € C.(R?), 0 < ¢ < 1, supp¢ C O}

et p*(@) = 0. On vérifie que
( ) M*(Ol )< pu (OQ) si 01 C Oy
(b) n (01U02) < p*(01) + p* (02
(c) p*(UO,) <>, 1*(Oy), pour toute suite d’ouverts (Oy).

e Pour un ensemble quelconque A C R?, on définit
w*(A) = inf{u"(0); O ouvert, A C O}

On vérifie que p* est une mesure extérieure. On note o7 la tribu associée et définie dans le Théo-
réme 1.2 de Carathéodory.

e On montre ensuite que la famille .7 des ouverts est incluse dans & et que p* est réguliére au
sens ou pour tout A € & et tout € > 0, il existe O ouvert et K compact tels que

KCcACO et p(O)—e<pu(A) <u(K)+e.

e On peut alors conclure que 7 contient la tribu borélienne % et qu’il existe une mesure p définie
sur <7, donc sur %, par restriction de u*. Pour 0 < ¢ € C,(R?) fixé, on observe que

1 1
~D Lozim <6< Y Losjme
n 4 n -
Jj=1 720
Par régularité de u, on a
*Zu{¢>3/n}<T ZM{¢>J/”})
i>1 "5i>0

On conclut que
T(¢) = lim —Zu {¢>i/n} = lim *Z“ {¢>3/”}_/ ¢ dp-

n—oo n
j>1 j>1

L’unicité a été démontrée en TD. In

Remarque. On peut également déduire la construction de la mesure de Lebesgue a partir du
Théoréme 4.1 de représentation de Riesz-Markov comme alternative au Théoréme 2.1. On procéde
de la maniére suivante. On définit Papplication T : C.(R) — R par

_ /R () do

ot le terme de droite désigne l'intégrale de Riemann (obtenue comme limite de séries de Riemann).
Cette application est évidemment une forme linéaire positive. Le Théoréme 4.1 permet de conclure a



lexistence d’une mesure positive (de Lebesgue) telle que (2.1). Pour [a, b] C R on définit ¢,, € C.(R)
affine par morceaux telle que ¢,(x) = 1 pour tout = € [a,b] et ¢, \ 1{q,)- On obtient

A([a, b)) = hrILn/R(b”d)\ = liTILn/qun(a:) dx =b— a,

en utilisant le théoréme de convergence dominée de Lebesgue dans la premiére limite et un calcul
élémentaire (aires de triangles) pour la deuxiéme limite. I

Théoréme 4.2 (variante 1) Soit T une forme linéaire sur Co(R?). Alors, il existe deuzr mesures
boréliennes finies p+ sur R? telle que

76) = | 0@ pi(dn) = [ o) (o)

Ce couple est unique si on suppose de plus p4 + p— “minimal”. On dit que o 1= py — p_ est une
mesure signée.

Théoréme 4.3 (variante 2) Soit T une forme linéaire sur LP(R?), 1 < p < oco. Alors il existe
une unique fonction f € LP (R?) telle que

7(¢) = | o) f(o) o

5 Théorémes de Prokhorov et de Lévy
Théoréme 5.1 (Prokhorov) Soit (u,) une suite de mesures de probabilité qui est tendue, c’est-

a-dire qui vérifie
Ve>0,3R>0, VvneN, pu,(Bg) <e.

Alors, il existe une sous-suite (jin, ) et une de mesure de probabilité i telle que pn,, — p faiblement.

Ebauche de la preuve. Pour tout ¢ € C.(R%), on peut extraire une sous-suite (u,/) et un réel £,

tels que
/ odpin — L.
Rd

Par un argument de séparabilité de C.(R?) (existence d’un sous-ensemble dénombrable et dense
dans Cc(Rd)) et d’extraction diagonale de Cantor, on peut trouver une sous-suite (p,, ) telle que
cette convergence a lieu pour tout ¢ € C.(R?) (on inverse I'ordre des quantificateurs). Il est alors
facile de voir que T': C.(R?) — R, ¢ + T(p) := £, est une application linéaire et positive. D’aprés
le Théoréme 4.1 de Riesz-Markov, il existe une mesure positive telle que

T(p) = /R | pdn

Comme pour une suite (yg) de C.(R%), 15, < x < 1p,,, on a

u(Br) < [ xndp=tim [ xndp <1
R4 n Rd

et en fixant € > 0 et choisissant R convenablement gréice au critére de tension, on a

w(Bag) > /

XRd,u:lim/ XRApn > 1 —lim dip, > 1 —¢,
R4 n Rd n

By

on en déduit pu(R?) = 1. Soit donc x est une mesure de probabilité. 0]



Théoréme 5.2 (de Lévy - version forte) Soit (u,) une suite de mesures de probabilité telle
que i, — ¢ ponctuellement avec ¢ continue en 0. Alors ¢ est la transformation de Fourier d’une
mesure p et p, — W faiblement.

Ebauche de la preuve. Le point essentiel est d’établit la tension de la suite (u,,). Pour tout v > 0

(petit), on écrit
i/i(l%(ﬁ))dé‘ - [/ 7€) dpy (1) d

//_ — %) de dp ()
[
— 9 /R (1 - Singu)) dpun ()
/RZ(I — sinx(zu)) 1ou>1 dpn (),

ou on a utiliser le théoréme de Fubini & la deuxiéme ligne. En définissant

K = inf 2(1 . Smy) >0,
ly|>1 Y

Y

on obtient

U —Uu
Par hypotheése de convergence de ¢,, vers ¢ et de continuité de ¢ en 0, on a ¢(0) = 1 et ¢(s) > 1—¢/2

pour tout € > 0 et tout |s| > u, u assez petit, de sorte que

=11/ < K73 [ (0= (e dg < K7

pour tout n assez grand. Cela prouve la tension de (u,,). Grace au Théoréme 5.1 de Prokhorov , on
en déduit existence d’une sous-suite (g, ) et d’'une mesure de probabilité u telles que pn, — p
faiblement. On obtient alors ¢,, — i = ¢, et par injectivité de la transformation de Fourier, et
donc unicité de la limite, on obtient que u, — p. 1]

6 Loi conditionnelle

Définition 6.1 Soient (E,&) et (F,F) deuz espace mesurables. On appelle probabilité (ou noyau)
de transition de E dans F' une application

K:ExF — [0,1]

telle que
— pour tout © € E, K(x,-) est une mesure de probabilité sur (F,F);
— pour tout A € F, K(-, A) est une application mesurable sur (E,E).

Si f est mesurable et bornée sur (F,F) et A est une mesure de probabilité sur (F, &), on définit la
fonction mesurable K f sur E et la mesure de probabilité AK sur F' par

/f (z,dy), (AK)(A) ::/EK(:C,A)/\(dx).



Définition 6.2 Soient X une variable aléatoire & valeurs dans (E,&) et Y une variable aléatoire
a valeurs dans (F,F). On appelle loi conditionnelle de Y sachant X tout noyau de transition K
telle que pour toute fonction mesurable et bornée sur (F,F), on a

Ewwwmzﬁwmmx@»

Théoréme 6.3 (de Jirina) Soient X et Y deux variables aléatoires réelles. Il existe alors une loi
conditionnelle de Y sachant X.

7 Suite de variables aléatoires

La derniére question que ’on se pose est de comment exhiber une suite de var iid, ou méme plus
généralement, une suite de var indépendantes de lois prescrites. On se donne donc une suite de
mesures (u,) sur (R, B(R)).

Commengons par un cas plus simple. Pour tout N € N*, on peut définir la “mesure produit” vy

sur RN, par
N
VN = H/’le
i=1

donc Dexistence est assurée par la théorie de Fubini-Tonelli. On construit alors une famille (X, ),
1 < n < N, de var indépendantes telle que X,, ~ j, de la maniére suivante. On pose Q := RV,
o = BRY), P :=vy,et X, : Q = R, X,,(w) = wy, la niéme coordonnée de w = (wy,...,wy),
puisqu’alors

P(X,€A)= /

1%@wmm=/m@wmwzwm»
RN R

Venons-en au cas d’une suite (dénombrable). La plus grosse difficulté est de construire la mesure de
probabilité sur RY. On munit RY de la tribu produit définie comme la plus petite tribu engendrée
par les tribus boréliennes sur chaque coordonnée. Sur 'algébre des “cylindres”, c’est-a-dire, des
ensembles de la forme

A=A X...x Ay xRx...xRx..., A; € BR),

on définit

N
pH(A) == v (ANRY) = HMi(Ai)-

On applique le Théoréme 1.3 de Carathéodory afin d’obtenir une mesure p sur RY qui coincide
avec puf sur P'algébre des cylindres. On conclut de maniére similaire au cas précédent. 1]

Remarques. (1) La tribu sur RV est également la tribu borélienne associée 4 la distance

d(z,y) = Z 27" (|zn —ynl A1),
n=1

pour toutes suites z = (z,,), ¥y = (yn) € RV.

(2) On introduit la suite (vx) de mesures de probabilités sur RY définies par

N
vn(A) = [ ri(ANRY).
i=1
Si on sait montrer que (vy) est tendue et que l'on étend le Théoréme 5.1 de Prokhorov en une
version valable sur RY, on en déduit I'existence d’une mesure p obtenue comme limite d’une suite
extraite des (vy) ... .



