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1 Théorèmes de Carathéodory
Définition 1.1 On dit que µ∗ : P(E)→ [0,∞] est une mesure extérieure si

(i) µ∗(∅) = 0 ;
(ii) µ∗ est croissante : µ∗(A) ≤ µ∗(B) si A ⊂ B ;
(i) µ∗ est σ-sous-additive : pour toute suite (An) de P(E), on a

µ∗
(⋃
n∈N

An

)
≤
∑
n∈N

µ∗(An).

Théorème 1.2 (Carathéodory) Etant donnée une mesure extérieure sur un ensemble E, on
définit l’ensemble de parties

A :=
{
A ⊂ E; µ∗(C) = µ∗(C ∩A) + µ∗(C ∩Ac) ∀C ⊂ E

}
.

Alors
(i) A est une tribu ;
(ii) µ := µ∗|A : A → [0,∞] est une mesure positive.

Idée de la preuve. • Pour A,B ∈ A et C ⊂ E, on a

µ∗(C ∩ (A ∪B)) = µ∗(C ∩ (A ∪B) ∩A) + µ∗(C ∩ (A ∪B) ∩Ac)
= µ∗(C ∩A) + µ∗(C ∩B ∩Ac).

On en déduit

µ∗(C ∩ (A ∪B)) + µ∗(C ∩ (A ∪B)c) =

= µ∗(C ∩A) + µ∗(C ∩B ∩Ac) + µ∗(C ∩Ac ∩Bc)
= µ∗(C ∩A) + µ∗(C ∩Ac) + µ∗(C ∩Ac) = µ∗(C),
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ce qui prouve que A est stable par union finie. On en déduit immédiatement que A est une algèbre.
• On se donne maintenant une suite (Bk)k≥1 d’éléments de A deux à deux disjoints. On montre
par récurrence que pour tout C ⊂ E et tout n ≥ 1

µ∗(C) =

n∑
k=1

µ∗(C ∩Bk) + µ∗
(
C ∩

( n⋃
k=1

Bk

)c )
.

Par croissance de µ∗, on a alors

µ∗(C) ≥
n∑
k=1

µ∗(C ∩Bk) + µ∗
(
C ∩Bc

)
, B :=

∞⋃
k=1

Bk,

pour tout n ≥ 1, et donc

µ∗(C) ≥
∞∑
k=1

µ∗(C ∩Bk) + µ∗
(
C ∩Bc

)
. (1.1)

Par σ-sous-additivité de µ∗, cela prouve

µ∗(C) ≥ µ∗
(
C ∩B

)
+ µ∗

(
C ∩Bc

)
.

Par σ-sous-additivité de µ∗, l’inégalité inverse est immédiate, ce qui prouve que B ∈ A. Si (Ak)k≥1
est une suite quelconque de A, on définit la suite (Bk)k≥1 d’éléments de A deux à deux disjoints,
en posant B1 := A1, . . ., Bk := Ak\Bk−1 et on observe que ∪Ak = ∪Bk ∈ A, ce qui termine la
preuve du fait que A est une tribu.
• Soit à nouveau (Bk)k≥1 une suite d’éléments de A deux à deux disjoints. En prenant C := ∪Bk
dans (1.1) et en utilisant la notation B := ∪Bk, on trouve

µ∗
( ∞⋃
k=1

Bk

)
≥
∞∑
k=1

µ∗
(( ∞⋃

k=1

Bk

)
∩Bk

)
+ µ∗

(
B ∩Bc

)
=

∞∑
k=1

µ∗
(
Bk
)
.

Par hypothèse de σ-sous-additivité de µ∗, cette inégalité est en fait une égalité, c’est-à-dire que µ∗
est σ-additive sur les éléments de A. ut

Théorème 1.3 (Carathéodory) Soient
(i) B une semi-algèbre de E ;
(ii) µ] : B → [0,∞] une application σ-finie et σ-additive au sens où

— il existe une suite (Bn) de B telle que ∪nBn = E and µ(Bn) <∞ ;
— pour toute suite (Bn) d’éléments disjoints de B telle que ∪nBn ∈ B on a

µ]
(⋃
n

Bn
)

=
∑

µ](Bn).

Alors il existe une unique mesure σ-finie µ sur σ(B) telle que µ|B = µ].

Idée de la preuve. Pour tout A ∈P(E), on définit

µ∗(A) := inf
{ ∞∑
k=1

µ](Bk); Bk ∈ B, A ⊂
⋃
k

Bk
}
.

On vérifie que µ∗ est une mesure extérieure. Le Théorème 1.2 nous dit que l’on peut construire
une tribu A et une mesure µ sur A à partir de la mesure mesure extérieure. On vérifie alors que
B ⊂ A, ce qui permet de conclure. ut
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2 Construction de la mesure de Lebesgue
Théorème 2.1 (Lebesgue) Il existe une mesure λ borélienne sur Rd telle que

λ(]a1, b1[× . . .× ]ad, bd[) =

d∏
i=1

(bi − ai),

pour tout pavé ]a1, b1[× . . .]ad, bd[⊂ Rd. De plus, pour toute fonction f ∈ Cc(Rd), on a∫
R
f dλ =

∫
R
f(x) dx, (2.1)

où le terme de droite désigne l’intégrale au sens de Riemann.

Ebauche de la preuve (Cas d = 1 pour simplifier, on peut alors passer au cas de la dimension
supérieure d ≥ 2 à l’aide de la théorie du Fubini-Tonelli). Pour un intervalle (a, b) de R̄, a < b, on
pose

λ]((a, b)) = b− a.
Ici, les parenthèses ( et ) désignent indistinctement les crochets [ et ]. On sait (depuis le Chapitre 1)
que l’ensemble B des unions finies d’intervalles forme une semi-algèbre. On peut appliquer le
Théorème 1.3 de Carathéodory qui nous dit qu’il existe une tribu L (R) contenant B et une mesure
λ sur L (R) qui coïncide avec λ] sur B. En particulier L (R) contient également la tribu borélienne
B(R) qui a été définie comme étant la plus petite tribu contenant B. Enfin, pour f ∈ Cc(R), on a∫

R
f dλ = lim

n→∞

∫
R

+∞∑
i=−∞

f(
i

n
)1( i

n ,
i+1
n ) dλ = lim

n→∞

+∞∑
i=−∞

1

n
f(
i

n
) =

∫
R
f(x) dx,

où on utilise le théorème de convergence dominée pour justifier la première limite et la définition
de l’intégrale de Riemann pour justifier la seconde limite. On notera que les deux sommes sont en
fait finies pour tout n ≥ 1 fixé. ut

3 Complétion d’une tribu
Soit (E,A , µ) un espace mesuré.

Définition 3.1 - On dit que N ⊂ E est µ-négligeable (ou simplement négligeable) si N ⊂ A ∈ A
et µ(A) = 0.
- La tribu A est dite complète pour la mesure µ si elle contient tous les négligeables.

Proposition 3.2 L’ensemble B := {A∪N, A ∈ A , N négligeable} est la plus petite tribu complète
contenant A . La mesure µ peut être prolongée d’une unique façon en une mesure µ∗ sur B. La
mesure µ∗ est appelée la mesure complétée de µ.

Exemples 3.3 Sur R, on définit la mesure extérieure

λ∗(A) := inf{µ∗(O); O ouvert, A ⊂ O}, µ∗(]a, b[) = b− a.

On appelle tribu de Lebesgue, on note L (R), la tribu que l’on obtient à partir de λ∗ grâce au
Théorème 1.2. C’est aussi celle que l’on obtient en appliquant successivement les Théorèmes 4.1 et
2.1. La tribu de Lebesgue L (R) est la tribu complétée de la tribu de Borel B(R), et L (R) 6= B(R).
Pour voir ce dernier point, on définit l’ensemble de Cantor C de la manière suivante : on note
C0 = [0, 1], C1 = [0, 1/3] ∪ [2/3, 1], C2 := [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1], ..., puis
C := limn Cn. Il est clair que C est négligeable et on peut montrer qu’il n’est pas dénombrable.
Donc l’ensemble des parties de C est de cardinal strictement supérieur à la puissance du continu
et le cardinal de L(R) n’est donc pas plus petit. D’autre part, on peut montrer que le cardinal de
B(R) est celui de R. On a donc cardL (R) > cardB(R). On peut montrer à l’aide de l’axiome du
choix qu’il existe des sous-ensembles de R qui ne sont pas Lebesgue mesurable.
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4 Théorèmes de représentation de Riesz-Markov
Théorème 4.1 (Riesz-Markov) Soit T une forme linéaire positive sur Cc(Rd), c’est-à-dire, une
application T : Cc(Rd)→ R telle que

(i) T est linéaire : T (φ+ αψ) = T (φ) + αT (ψ) pour tout α ∈ R, φ, ψ ∈ Cc(Rd) ;
(ii) T est positive : T (φ) ≥ 0 si φ ∈ Cc(Rd) et φ ≥ 0.

Alors, il existe une unique mesure borélienne µ sur Rd telle que

T (φ) =

∫
Rd

φ(x)µ(dx).

Idée de la preuve. • Pour un ouvert non vide O ⊂ Rd, on définit

µ∗(O) := sup{T (φ); φ ∈ Cc(Rd), 0 ≤ φ ≤ 1, suppφ ⊂ O}

et µ∗(∅) = 0. On vérifie que
(a) µ∗(O1) ≤ µ∗(O2) si O1 ⊂ O2 ;
(b) µ∗(O1 ∪ O2) ≤ µ∗(O1) + µ∗(O2 ;
(c) µ∗(∪On) ≤

∑
n µ
∗(On), pour toute suite d’ouverts (On).

• Pour un ensemble quelconque A ⊂ Rd, on définit

µ∗(A) := inf{µ∗(O); O ouvert, A ⊂ O}

On vérifie que µ∗ est une mesure extérieure. On note A la tribu associée et définie dans le Théo-
rème 1.2 de Carathéodory.
• On montre ensuite que la famille T des ouverts est incluse dans A et que µ∗ est régulière au
sens où pour tout A ∈ A et tout ε > 0, il existe O ouvert et K compact tels que

K ⊂ A ⊂ O et µ(O)− ε ≤ µ(A) ≤ µ(K) + ε.

• On peut alors conclure que A contient la tribu borélienne B et qu’il existe une mesure µ définie
sur A , donc sur B, par restriction de µ∗. Pour 0 ≤ φ ∈ Cc(Rd) fixé, on observe que

1

n

∑
j≥1

1φ≥j/n ≤ φ ≤
1

n

∑
j≥0

1φ>j/n.

Par régularité de µ, on a

1

n

∑
j≥1

µ({φ > j/n} ≤ T (φ) ≤ 1

n

∑
j≥0

µ({φ ≥ j/n}).

On conclut que

T (φ) = lim
n→∞

1

n

∑
j≥1

µ({φ > j/n} = lim
n→∞

1

n

∑
j≥1

µ({φ > j/n} =

∫
Rd

φdµ.

L’unicité a été démontrée en TD. ut

Remarque. On peut également déduire la construction de la mesure de Lebesgue à partir du
Théorème 4.1 de représentation de Riesz-Markov comme alternative au Théorème 2.1. On procède
de la manière suivante. On définit l’application T : Cc(R)→ R par

T (φ) :=

∫
R
φ(x) dx,

où le terme de droite désigne l’intégrale de Riemann (obtenue comme limite de séries de Riemann).
Cette application est évidemment une forme linéaire positive. Le Théorème 4.1 permet de conclure à
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l’existence d’une mesure positive (de Lebesgue) telle que (2.1). Pour [a, b] ⊂ R on définit φn ∈ Cc(R)
affine par morceaux telle que φn(x) = 1 pour tout x ∈ [a, b] et φn ↘ 1[a,b]. On obtient

λ([a, b]) = lim
n

∫
R
φndλ = lim

n

∫
R
φn(x) dx = b− a,

en utilisant le théorème de convergence dominée de Lebesgue dans la première limite et un calcul
élémentaire (aires de triangles) pour la deuxième limite. ut

Théorème 4.2 (variante 1) Soit T une forme linéaire sur C0(Rd). Alors, il existe deux mesures
boréliennes finies µ± sur Rd telle que

T (φ) =

∫
Rd

φ(x)µ+(dx)−
∫
Rd

φ(x)µ−(dx).

Ce couple est unique si on suppose de plus µ+ + µ− “minimal”. On dit que σ := µ+ − µ− est une
mesure signée.

Théorème 4.3 (variante 2) Soit T une forme linéaire sur Lp(Rd), 1 ≤ p < ∞. Alors il existe
une unique fonction f ∈ Lp′(Rd) telle que

T (φ) =

∫
Rd

φ(x) f(x) dx.

5 Théorèmes de Prokhorov et de Lévy
Théorème 5.1 (Prokhorov) Soit (µn) une suite de mesures de probabilité qui est tendue, c’est-
à-dire qui vérifie

∀ ε > 0, ∃R > 0, ∀n ∈ N, µn(BcR) ≤ ε.

Alors, il existe une sous-suite (µnk
) et une de mesure de probabilité µ telle que µnk

⇀ µ faiblement.

Ebauche de la preuve. Pour tout ϕ ∈ Cc(Rd), on peut extraire une sous-suite (µn′) et un réel `ϕ
tels que ∫

Rd

ϕdµn′ → `ϕ.

Par un argument de séparabilité de Cc(Rd) (existence d’un sous-ensemble dénombrable et dense
dans Cc(Rd)) et d’extraction diagonale de Cantor, on peut trouver une sous-suite (µnk

) telle que
cette convergence a lieu pour tout ϕ ∈ Cc(Rd) (on inverse l’ordre des quantificateurs). Il est alors
facile de voir que T : Cc(Rd)→ R, ϕ 7→ T (ϕ) := `ϕ est une application linéaire et positive. D’après
le Théorème 4.1 de Riesz-Markov, il existe une mesure positive telle que

T (ϕ) =

∫
Rd

ϕdµ.

Comme pour une suite (χR) de Cc(Rd), 1BR
≤ χ ≤ 1B2R

, on a

µ(BR) ≤
∫
Rd

χRdµ = lim
n

∫
Rd

χRdµn ≤ 1,

et en fixant ε > 0 et choisissant R convenablement grâce au critère de tension, on a

µ(B2R) ≥
∫
Rd

χRdµ = lim
n

∫
Rd

χRdµn ≥ 1− lim
n

∫
Bc

R

dµn ≥ 1− ε,

on en déduit µ(Rd) = 1. Soit donc µ est une mesure de probabilité. ut
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Théorème 5.2 (de Lévy - version forte) Soit (µn) une suite de mesures de probabilité telle
que µ̂n → φ ponctuellement avec φ continue en 0. Alors φ est la transformation de Fourier d’une
mesure µ et µn ⇀ µ faiblement.

Ebauche de la preuve. Le point essentiel est d’établit la tension de la suite (µn). Pour tout u > 0
(petit), on écrit

1

u

∫ u

−u
(1− φn(ξ)) dξ =

1

u

∫ u

−u

∫
R

(1− eixξ) dµn(x) dξ

=
1

u

∫
R

∫ u

−u
(1− eixξ) dξ dµn(x)

=
2

u

∫
R

(
u− eixu − e−ixu

2iξ

)
dµn(x)

= 2

∫
R

(
1− sin(xu)

xu

)
dµn(x)

≥
∫
R

2
(

1− sin(xu)

xu

)
1xu≥1 dµn(x),

où on a utiliser le théorème de Fubini à la deuxième ligne. En définissant

K := inf
|y|≥1

2
(

1− sin y

y

)
> 0,

on obtient

1

u

∫ u

−u
(1− φn(ξ)) dξ ≥ K

∫
R
1xu≥1 dµn(x) = Kµn

(
[−1/u, 1/u]c

)
.

Par hypothèse de convergence de φn vers φ et de continuité de φ en 0, on a φ(0) = 1 et φ(s) ≥ 1−ε/2
pour tout ε > 0 et tout |s| ≥ u, u assez petit, de sorte que

µn
(
[−1/u, 1/u]c

)
≤ K−1 1

u

∫ u

−u
(1− φn(ξ)) dξ ≤ K−1 ε,

pour tout n assez grand. Cela prouve la tension de (µn). Grâce au Théorème 5.1 de Prokhorov , on
en déduit l’existence d’une sous-suite (µnk

) et d’une mesure de probabilité µ telles que µnk
⇀ µ

faiblement. On obtient alors φnk
→ µ̂ = φ, et par injectivité de la transformation de Fourier, et

donc unicité de la limite, on obtient que µn ⇀ µ. ut

6 Loi conditionnelle
Définition 6.1 Soient (E, E) et (F,F) deux espace mesurables. On appelle probabilité (ou noyau)
de transition de E dans F une application

K : E ×F → [0, 1]

telle que
— pour tout x ∈ E, K(x, ·) est une mesure de probabilité sur (F,F) ;
— pour tout A ∈ F , K(·, A) est une application mesurable sur (E, E).

Si f est mesurable et bornée sur (F,F) et λ est une mesure de probabilité sur (E, E), on définit la
fonction mesurable Kf sur E et la mesure de probabilité λK sur F par

(Kf)(x) :=

∫
E

f(y)K(x, dy), (λK)(A) :=

∫
E

K(x,A)λ(dx).
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Définition 6.2 Soient X une variable aléatoire à valeurs dans (E, E) et Y une variable aléatoire
à valeurs dans (F,F). On appelle loi conditionnelle de Y sachant X tout noyau de transition K
telle que pour toute fonction mesurable et bornée sur (F,F), on a

E(ϕ(Y )|X) =

∫
F

ϕ(y)K(X, dy).

Théorème 6.3 (de Jirina) Soient X et Y deux variables aléatoires réelles. Il existe alors une loi
conditionnelle de Y sachant X.

7 Suite de variables aléatoires
La dernière question que l’on se pose est de comment exhiber une suite de var iid, ou même plus
généralement, une suite de var indépendantes de lois prescrites. On se donne donc une suite de
mesures (µn) sur (R,B(R)).
Commençons par un cas plus simple. Pour tout N ∈ N∗, on peut définir la “mesure produit” νN
sur RN , par

νN :=

N∏
i=1

µi,

donc l’existence est assurée par la théorie de Fubini-Tonelli. On construit alors une famille (Xn),
1 ≤ n ≤ N , de var indépendantes telle que Xn ∼ µn de la manière suivante. On pose Ω := RN ,
A := B(RN ), P := νN , et Xn : Ω → R, Xn(ω) = ωn, la nième coordonnée de ω = (ω1, . . . , ωN ),
puisqu’alors

P(Xn ∈ A) =

∫
RN

1xn∈A dνN (x) =

∫
R
1y∈A dµn(y) = µn(A).

Venons-en au cas d’une suite (dénombrable). La plus grosse difficulté est de construire la mesure de
probabilité sur RN. On munit RN de la tribu produit définie comme la plus petite tribu engendrée
par les tribus boréliennes sur chaque coordonnée. Sur l’algèbre des “cylindres”, c’est-à-dire, des
ensembles de la forme

A := A1 × . . .×AN × R× . . .× R× . . . , Ai ∈ B(R),

on définit

µ](A) := νN (A ∩ RN ) =

N∏
i=1

µi(Ai).

On applique le Théorème 1.3 de Carathéodory afin d’obtenir une mesure µ sur RN qui coïncide
avec µ] sur l’algèbre des cylindres. On conclut de manière similaire au cas précédent. ut

Remarques. (1) La tribu sur RN est également la tribu borélienne associée à la distance

d(x, y) :=
∑
n=1

2−n(|xn − yn| ∧ 1),

pour toutes suites x = (xn), y = (yn) ∈ RN .
(2) On introduit la suite (νN ) de mesures de probabilités sur RN définies par

νN (A) :=

N∏
i=1

µi(A ∩ RN ).

Si on sait montrer que (νN ) est tendue et que l’on étend le Théorème 5.1 de Prokhorov en une
version valable sur RN , on en déduit l’existence d’une mesure µ obtenue comme limite d’une suite
extraite des (νN ) ... .
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