Université Paris-Dauphine

M1 MMD, Processus Continus Approfondis

2010-2011

Examen du Lundi 30 Mai, 15h30 - 18h Aucun document ni calculatrice n'est autorisé

Dans tous les exercices $B=B_t$ un mouvement brownien réel standard défini sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$ et $\mathcal{F} = \mathcal{F}_t^B$ est la filtration canonique associée.

Exercice 1

On définit $X_s := s B_{1/s}, s > 0, X_0 = 0.$

- a) Montrer que la loi de X_s est identique à celle de B_s pour tout s>0. Montrer que $X_s\to 0$ lorsque $s\to 0$ en loi et en probabilité. Peut-on en déduire que $X_s\to 0$ p.s. lorsque $s\to 0$?
- b) Enoncer précisément la loi forte des grands nombres. Montrer que B_n/n converge p.s. vers une limite (que l'on déterminera) lorsque $n \in \mathbb{N}$, $n \to +\infty$.
- c) On introduit la suite de va

$$\xi_n := \sup_{n < t \le n+1} |B_t - B_n|.$$

Montrer que les (ξ_n) forment une suite de va iid.

d) - Montrer que

$$\mathbf{E}(\xi_1) = \int_0^\infty \mathbf{P}(\xi_1 \ge \varepsilon) \, d\varepsilon \quad \text{et} \quad \mathbf{P}(\xi_1 \ge \varepsilon) \le 2 \, P(|B_1| \ge \varepsilon).$$

En déduire que $\xi_1 \in L^1$, que p.s. $\frac{1}{n} \sum_{i=1}^n \xi_i$ converge lorsque $n \to \infty$ vers une limite que l'on déterminera et enfin que

$$p.s. \qquad \frac{\xi_n}{n} \underset{n \to \infty}{\longrightarrow} 0.$$

e) Montrer que

$$p.s.$$
 $\frac{B_t}{t} \underset{t \to \infty}{\longrightarrow} 0$

et que X_s est un mouvement Brownien.

Exercice 2

Pour $a \in \mathbb{R}^*$, on définit

$$T_a := \inf\{t > 0; \quad B_t = a\}.$$

- a) Que peut-on dire de T_a ?
- b) Enoncer précisément le théorème d'arrêt pour une martingale à temps continu.
- c) On suppose a>0. Montrer que la transformée de Laplace de T_a est donnée par:

$$\forall \lambda > 0, \quad \mathbf{E}[e^{-\lambda T_a}] = e^{-a\sqrt{2\lambda}}.$$

- d) Calculer la transformée Laplace de la loi sur \mathbb{R}_+^* de densité $f(x) = \frac{a}{\sqrt{2\pi x^3}} e^{-a^2/(2x)} \mathbf{1}_{\{x>0\}}$. En déduire la loi de T_a .
- e) Quelle est la loi de T_a si a < 0?

Exercice 3

On définit le processus $(Z_t)_{0 \le t \le 1}$ par la formule

$$Z_t := B_t - t B_1.$$

a) - Pour tous $0 \le t_1 < \dots < t_n \le 1$, montrer que le vecteur

$$(Z_{t_1},...,Z_{t_n},B_1)$$

est un vecteur gaussien et calculer sa matrice de covariance.

- b) Montrer que $(Z_t)_{0 \le t \le 1}$ est un processus gaussien indépendant de B_1 .
- c) Montrer que le processus $Z'_t = Z_{1-t}$, $0 \le t \le 1$, a même loi que Z.
- d) On définit $Y_t := (1 t) B_{t/(1-t)}, 0 \le t \le 1$.

Montrer que $Y_t \to 0$ p.s. lorsque $t \to 1$; on pose $Y_1 = 0$.

Montrer que Y_t , $0 \le t \le 1$, a même loi que Z.

Exercice 4

a) - Démontrer que si une variable aléatoire Y s'écrit sous la forme

$$Y = \sum_{i=1}^{n} \psi_i \, \Delta_i, \qquad \psi_i \in L^{\infty}, \ \Delta_i \in L^p, \ p \in [1, \infty],$$

alors $Y \in L^p$. En déduire que si $\psi \in \mathscr{E}sc(\operatorname{Prog}) \cap L^{\infty}$ alors le processus d'Itô

$$Y_t := \int_0^t \psi_s \, dB_s$$

appartient à tous les espaces L^p , $1 \le p < \infty$.

- b) Démontrer que si M^n est une suite de martingales et que $M^n_t \to M_t$ dans L^1 pour tout $t \ge 0$, alors M est encore une martingale.
- c) Soit $\phi \in L^2(\text{Prog})$. On rappelle qu'il existe $\phi^n \in \mathscr{E}sc(\text{Prog}) \cap L^{\infty}$ telle que $\phi^n \to \phi$ dans L^2 . On définit le processus d'Itô

$$(1) X_t := \int_0^t \phi_s \, dB_s.$$

Démontrer que $X_t^2 - \int_0^t \phi_s^2 ds$ est une martingale.

d) - Soit $\phi \in L^4(\text{Prog})$. Démontrer que le processus X défini par (1) satisfait $X_t \in L^4$ pour tout $t \geq 0$.

Exercice 5

Soit X un processus d'Itô qui s'écrit

$$\forall t \geq 0$$
 $X_t = X_0 + \int_0^t \phi_s \, dB_s + \int_0^t \psi_s \, ds = X_0' + \int_0^t \phi_s' \, dB_s + \int_0^t \psi_s' \, ds,$

avec $X_0, X_0' \in \mathcal{F}_0, \phi, \psi, \phi', \psi' \in L^2(\text{Prog})$. Le but de cet exercice est de montrer que $X_0 = X_0'$ p.s., $\phi_s = \phi_s'$ p.s. et $\psi_s = \psi_s'$ p.s.

a) - Montrer $X_0 = X'_0$ p.s.

On définit

$$Z_t := \int_0^t (\psi' - \psi) \, ds = \int_0^t (\phi_s - \phi_s') \, dB_s.$$

b) - Montrer que Z_t est une martingale et que pour tous $0=t_0 \leq t_1 < .. < t_n=t$

$$\mathbf{E}(Z_t^2) = \sum_{k=1}^n \mathbf{E} [Z_{t_k} - Z_{t_{k-1}}]^2.$$

En déduire que

$$\mathbf{E}(Z_t^2) \le \sup_{1 \le k \le n} (t_k - t_{k-1}) \mathbf{E} \left[\int_0^t (\psi_s - \psi_s')^2 ds \right],$$

et que $Z \equiv 0$.

c) - Montrer que pour toute fonction $\chi \in C^1([0,T])$ telle que $\chi(T)=0$, on a

$$\int_0^T \chi \left(\psi - \psi' \right) ds = 0 \ p.s.,$$

et en déduire $\psi = \psi'$ p.s.

d) - Montrer enfin que $\phi = \phi'$ p.s.

Exercice 6

Soient deux fonctions b, σ Lipschitziennes de \mathbb{R} dans \mathbb{R} , i.e.

$$\forall x, y \in \mathbb{R}$$
 $|b(y) - b(x)| \le L|x - y|, |\sigma(y) - \sigma(x)| \le L|x - y|,$

et une variable aléatoire X_0 indépendante de B définie sur le même espace $(\Omega, \mathcal{A}, \mathbf{P})$. On définit l'application qui à $X \in L^2([0, T]; \operatorname{Prog})$ associe $\Lambda(X) = Y$ le processus défini par

$$Y_t := X_0 + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dB_s.$$

- a) Montrer que $\Lambda: L^2([0,T]; \operatorname{Prog}) \to L^2([0,T]; \operatorname{Prog}).$
- b) Etant donnés deux processus $X_i \in L^2(\text{Prog}), i = 1, 2,$ et en notant $Y_i := \Lambda(X_i),$ montrer que

$$\int_0^T \mathbf{E}(|Y_{2t} - Y_{1t}|^2) dt \leq (T^2 + 2T) L^2 \int_0^T \mathbf{E}(|X_{2s} - X_{1s}|^2) ds.$$

c) - En déduire que pour T>0 assez petit, puis pour tout T>0, il existe un unique processus $X\in L^2([0,T];\operatorname{Prog})$ tel que

$$X_t = X_0 + \int_0^t b(X_s) ds + \int_0^t \sigma(X_s) dB_s.$$

d) - On note μ_t la loi de X_t . Montrer que pour tout $\varphi \in C_c^2([0,T]\times\mathbb{R})$ on a

$$\mathbf{E}(\varphi(T, X_T)) = \int_{\mathbb{R}} \varphi(0, .) \, \mu_0(dx) + \int_0^T \int_{\mathbb{R}} \left\{ \partial_t \varphi + b \, \partial_x \varphi + \frac{\sigma^2}{2} \, \partial_{xx}^2 \varphi \right\} (t, x) \, \mu_t(dx).$$

En supposant que $\mu_t(dx) = u(t,x) dx$ avec $u(t,x) \in C^2([0,T] \times \mathbb{R})$, en déduire l'équation aux dérivées partielles satisfaite par u.