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1. Introduction.

In this paper we are interested in the maximisation problem for the quantum or non-quantum entropy functional

(1.1) H(g) :=
∫

R3
h(g(p)) dp, h(g) = τ−1 (1 + τ g) ln (1 + τ g)− g ln g, τ ∈ R,

under the relativistic or non-relativistic moments constraint

(1.2)

 N(g)
P (g)
E(g)

 :=
∫

R3

 1
p
E(p)

 g(p) dp =

 N
P
E

 ,

where N > 0 is the total number (or mass) of particles, P ∈ R3 is the mean momentum and E > 0 is the total energy.
Depending of whether particles are considered to be relativistic or not the energy E(p) of a particle having momentum
p ∈ R3 is defined by

(1.3) E(p) = Enr(p) =
|p|2

2 m
,

for a non-relativistic particle, and by

(1.4) E(p) = Er(p) = γmc2; γ =

√
1 +

|p|2
c2m2

,

for a relativistic particle. The entropy H corresponds to the classical Boltzmann-Maxwell entropy (of non quantum
particles) when τ = 0, it corresonds to the Bose-Einstein entropy (of quantum particles of Bose type) when τ > 0 (and
for the sake of simplicity we will restrict ourself to τ = 1, in the sequel) and it corresonds to the Fermi-Dirac entropy
(of quantum particles of Fermi type) when τ < 0 (and again, we only consider the case τ = −1).

Considering one of the above entropies H and one of the above energies E we are therefore looking for a density
function G ≥ 0 satisfying the moments constraint (1.2) and

(1.5) H(G) = max
g satisfying (1.2)

H(g).

The above entropy maximisation problem is a very fundamental problem of statistical physic since its solution G
corresponds to the microscopic momentum distribution of a gas of particles at the rest whose macroscopic observable
mass, momentum and energy are N , P and E. The density distribution G is called the thermal equilibrium state. Out
of rest, the evolution of the momentum gas distribution is usually discribed by a Boltzmann equation. The equilibrium
state G is then (at least formally) a steady state to the associated Boltzmann equation. Moreover, any solution to the
Boltzmann equation associated to an initial datum of macroscopic mass N , momentum P and energy E is expected
to converge to the corresponding equilibrium state G in the large time asymptotic. For more details on this huge and
difficult subject, we refer to [4], [22] and the many references therein for the classical Boltzmann equation, to [7], [18],
[19] for the Fermi-Boltzmann equation, to [17], [11] for the Boltzmann equation associated to a gas of Bose particles and
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to [14], [8], [15], [1] for the relativistic Boltzmann equation. We also refer to [12] for a general mathematical presentation
of the Boltzmann equation in a quantum and relativistic framework. A classical physical reference is [16].

A first simple and heuristic remark is that if ḡ solves the entropy maximisation problem with constraint (1.2), there
exists Lagrange multipliers µ ∈ R, β0 ∈ R and β ∈ R3 such that

< ∇H(ḡ), ϕ > =
∫

R3
h′(ḡ) ϕ dp = < β0 E(p)− β · p− µ, ϕ > ∀ϕ,

which implies
ln (1 + τ ḡ)− ln ḡ = β0 E(p)− β · p− µ,

and in turn leads to

(1.6) ḡ(p) =
1

eν(p) − τ
with ν(p) := β0 E(p)− β · p− µ .

The function ḡ is called a Maxwellian when τ = 0, a Bose-Einstein distribution when τ = 1 and a Fermi-Dirac distribution
when τ = −1.

Let us consider for a moment the case τ = 0, i.e. the classic (non-quantum non-relativistic) maximisation problem. In
that case, the following result is known (and it is almost trivial).

Theorem 1. For any measurable function G ≥ 0 on R3 such that

(1.7)
∫

R3
G (1, p,

|p|2

2
) dp = (N,P, E)

for some N,E > 0, P ∈ R3, the following assertions are equivalent:

(i) G is the Maxwellian MN,P,E = M[ρ, u,Θ] =
ρ

(2 π Θ)3/2
exp

(
−|p− u|2

2 Θ
)

where (ρ, u,Θ) is

uniquely determined by N = ρ, P = ρ u, E =
ρ

2
(|u|2 + 3 Θ);

(ii) G is the solution of the maximisation problem

H(G) = max{H(g), g satisfies the moments constraint (1.2)},

where H(g) = −
∫

R3
g log g dp stands for the classical entropy.

Our main result is the extension of Theorem 1 to the quantum non-relativistic and quantum relativistic framework,
or in other words, we solve the maximisation problem (1.1)–(1.5) in the most general case. Before stating it, we would
like to make some elementary remarks to convince the reader how differents are the non quantum, the Bose and the
Fermi cases.

On the one hand, the natural functional spaces to look for the density f are the spaces of distribution f ≥ 0 such
that the “physical” quantities are bounded:∫

R3
f (1 + E(p)) dp < ∞ and H(f) < ∞.

In the Fermi case where τ = −1, h(f) = +∞ if f /∈ [0, 1] and so H(f) < ∞ provides a strong L∞ bound on f . While
in the Bose case, i.e. for τ = 1, h(f) ∼ ln f when f → ∞, so that the entropy bound does not give any additional
information than the moments bound. This provides very different conditions since we obtain:

f ∈ L1
s ∩ L log L in non quantum case, relativistic or not

f ∈ L1
s ∩ L∞ in the Fermi case, relativistic or not

f ∈ L1
s in the Bose case, relativistic or not,

where L1
s = {f ∈ L1(R3);

∫
R3 (1 + |p|s) |f(p)| dp < ∞}}, and s = 2 in the non relativistic case, s = 1 in the relativistic

case.

On the other hand, it was already observed by Bose and Einstein ([2], [9], [10]) that for systems of Bose particles
in thermal equilibrium a careful analysis of the statistical physics of the problem leads to enlarge the class of steady
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distributions to include also the solutions containing a Dirac mass. More precisely, the class of Bose distributions ḡ given
by (1.6) has to be enlarged to the class of generalized Bose-Einstein relativistic distributions B defined by

(1.8) B(p) = b + α δp
MC

=
1

eν(p) − 1
+ α δp

MC
, α ≥ 0, p

MC
∈ R3.

Moreover, and still concerning the Bose case, considering any fixed vector a ∈ R3 and any approximation of the identity
(ϕn) centered in a, it is shown in [3], see also Lemma 2.0, that for any f ∈ L1

2 the quantity H(f + ϕn) is well defined
and

N(f + αϕn) → N(f) + α and H(f + ϕn) → H(f) as n →∞.

This indicates that the entropy H may be extended to nonnegative measures and that, moreover, the singular part of
the measure does not contributes to the entropy. We will come back to this question in section 3 below.

In the Fermi case, the strong uniform bound entailed by the entropy on the Fermi distributions leads to include in
the family of Fermi steady states the so called-degenerate states. Therefore, one has to enlarge the class of Fermi-Dirac
states given by (1.6) to the class of distributions (see for instance [21])

(1.9) F(p) =
1

eν(p) + 1
and χ(p) = 1{β0 E(p)−β·p≤1}.

Our main result reads as follows.

Theorem 2. For every possible choice of (N,P, E) such that the set K defined by

g ∈ K if and only if

∫
R3

g (1, p, E(p)) dp = (N,P,E),

is non empty, there exists a unique solution G to the entropy maximisation problem:

G ∈ K, H(G) = max{H(g); g ∈ K}.

Moreover, G is the unique thermal equilibrium, i.e. G = ḡ given by (1.6) in the nonquantum case, G = B given (1.8) in
the Bose case, and G = F given (1.9) in the Fermi case, satisfying the moments constraint (1.2).

We refer to Theorem 2.1, Theorem 3.2 and Theorem 4.1 for more precise statements. It is of course looked as an
evidence, in the physicist community, that equilibrium states (1.6), (1.8) and (1.9) are the solution to the associated
entropy maximisation problem. Nevertheless, in the quantum case, we were not able to find a convincing proof of this
fact. Indeed, it is not clear at all how to obtain an explicit expression of the thermal equilibrium G (i.e. values of β0, β,
µ, ...) as a function of the macropic quantities N , P , E. Our aim is to give here a rigorous and detailed proof of it.

The paper is organized as follows. In section 2 we treat the relativistic non quantum case. In fact, this case was yet
completely solved by R. Glassey and W. A. Strauss in [14], see also R. Glassey in [13] and [5]. However, we present here
another proof, which uses in a crucial way, the Lorentz invariance and may be adapted to the quantum relativistic case.

We then deal with the Bose-Enstein gas in section 3 and with the case of a Fermi-Dirac gas in section 4. For each
of these two kind of gases, we first consider in detail the relativistic case and then briefly the non relativistic case, which
is simplest since, by Galilean invariance, it can be reduced to P = 0.

Acknowledgments. We would like to thank A. Chambolle for useful discussions on maximisation problems and J. J. L.
Velazquez for his encouragement and helpful comments during the elaboration of this work. We were partially supported
by CNRS and UPV through a PIC between the Universidad del Pais Vasco and the Ecole Normale Superieure. The
work of M.E. is supported by TMR contract HCL # ERBFMRXCT960033, DGES grant PB96-0663 and UPV 127.310-
EB035/99.

2. Relativistic non-quantum gas.

In this section, we consider the Maxwell-Boltzmann entropy

(2.1) H(g) = −
∫

R3
g ln g dp,

of a non quantum gas. From the heuristic argument presented in the introduction, the solution to (1.2)-(1.5) is expected
to be a relativistic Maxwellian distribution, which means that it is expected to be of the form

(2.2) M(p) = e−β0 p0+β·p−µ,

3



where we introduce the notation
p0 = E(p) = c

√
c2m2 + |p|2, p ∈ R3.

Our result is the following.

Theorem 2.1. (i) Given E,N > 0, P ∈ R3, there exists a least one function g ≥ 0 which realizes the moments equation
(1.2), (1.4) if, and only if,

(2.3) m2 c2 N2 + |P |2 < E2.

When (2.3) holds we will say that (N,P, E) is admissible.
(ii) For any admissible (N,P, E) there exists at least one relativistic Maxwellian distribution M given by (2.2)

corresponding to these moments, i.e. satisfying (1.2).
(iii) Let M be a relativistic Maxwellian distribution. For any function g ≥ 0 with the same moments, i.e. satisfying

(2.4)
∫

R3

 1
p
p0

 g(p) dp =
∫

R3

 1
p
p0

 M(p) dp,

one has

(2.5) H(g)−H(M) = H(g|M) :=
∫

R3
[g ln

g

M
− g +M] dp.

Moreover, H(g|M) ≤ 0 and vanishes if, and only if, g = M.
(iv) As a conclusion, for any admissible (N,P, E), the entropy problem (1.2)-(1.5)-(2.3)-(2.1) has a unique solution,

and this one is the relativistic Maxwellian constructed just above.

Remark 2.2. The relativistic Maxwell distribution M belongs to L1(R3) if, and only if, β0 > 0 and |β| < β0. In this
case, all the moments of M are well defined and M takes its maximum at the point p

MC
such that

p
MC

p0
MC

=
β

β0
, and thus p

MC
:=

m cβ√
β02 − |β|2

.

We do not prove this claim, since we do not need it in the sequel and its proof is the same as that of Lemma 3.1 that
we present in the next subsection.

We split the proof of Theorem 2.1 in three parts corresponding to the three first intermediary results (assertions (i),
(ii), (iii) of Theorem 2.1). The last and main result (assertions (iv) of Theorem 2.1) is then an immediate consequence
of the preceding ones.

Proof of Theorem 2.1. -(i) Since that F (p)/N dp is a probability measure whose support is not a single point,
and because the function r 7→ C(r) =

√
m2 c2 + r2 is strictly convex, the Jensen inequality (which is therefore a strict

inequality) implies √
m2 c2 +

∣∣∣ P

N

∣∣∣2 = C
(∫

R3
p

F (p) dp

N

)
<

∫
R3
C(p)

F (p) dp

N
=

E

N
.

Proof of Theorem 2.1. -(ii) Given (N,P, E) admissible, we look for a relativistic Maxwellian M (which means
that we look for β0 > 0, β ∈ R3 and µ ∈ R) such that

(2.6) N(M) = N, P (M) = P, E(M) = E.

By symmetry the second equation implies that β must be collinear to P . Therefore, in all the sequel, P will denote the
norm |P | instead of a vector, so that the second equation as to be understood as a scalar equation.
The idea is now to reduce the system of three scalar equations (2.6) to a system of equations with less unknowns. A first
way is to eliminate the µ dependence since the term e−µ can be factorised. This is the most classic way, which is used
for instance by Glassey [13], but we do not follow it, since we do not know how to generalize it to the quantum case.

We begin introducing two new unknowns (β̄, u) with β̄ > 0, u ∈ R3, |u| < c, which correspond to the 4-vector
(β0, β) ∈ R4 with |β| < β0, by the following bijection

(2.7) u := c β/β0, β̄2 := (β0)2 − |β|2,
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and thus
β0 = γ β̄, β = γ β̄ u/c, where γ :=

1√
1− (u/c)2

.

From the results recalled in the Appendix 1, we know that there is a Lorentz transformation Λu associated to the velocity
u such that (

β0

β

)
= Λu

(
β̄
0

)
.

In the initial frame, the identities (A.12), (A.13), (A.14) written for M give

(2.8)


N(M) = A1 γ β̄

E(M) = A2 + A3 (γ β̄)2

P (M) = A3 (γ β̄) (γ β̄
u

c
),

where
N(φ) =

∫
R3

φdp, P (φ) =
∫

R3
φ p dp, E(φ) =

∫
R3

φ p0 dp, G(φ) = m2 c2

∫
R3

φ
dp

p0
,

and where Ai are invariant by change of frame under a Lorentz transform, see Lemma A.5.
Let us now introduce the Maxwellian M̄ in the rest frame, i.e. we define

(2.9) M̄(p) = e−β̄ p0−µ.

In the rest frame, identities (A.12), (A.13), (A.15) written for M̄ are

(2.10)


N(M̄) = A1 β̄

E(M̄) = A2 + A3 β̄2

G(M̄) = 4 A2 + A3 β̄2.

Inverting the two systems, we get
A1 β̄ = N(M)/γ

A2 = E(M)− P (M) c/u

A2 + A3 β̄2 = E(M)− P (M) u/c

and


A1 β̄ = N(M̄)
A2 = −H(M̄)

A2 + A3 β̄2 = E(M̄),

where we have defined

(2.11) H(φ) := (E(φ)−G(φ))/3 =
∫

R3
φ
|p|2

3 p0
dp.

Therefore, the fundamental relation between the relativistic MaxwellianM in the initial frame and the reduced relativistic
Maxwellian M̄ in the rest frame is

(2.12)


N(M) = N(M̄) γ(u)
P (M) c/u− E(M) = H(M̄)
E(M)− P (M) u/c = E(M̄).

To find M such that equation (2.6) holds is therefore equivalent to find β̄ > 0, µ ∈ R and u ≥ 0 such that

(2.13)

 E = E(β̄, µ) + P
u

c

(
=: ΣE(β̄, µ)

)
N = N(β̄, µ) γ(u)

(
=: ΣN (β̄, µ)

)
,

where u is given by

(2.14) u = u(β̄, µ) :=
P c

E + H(β̄, µ)
,

and where we have defined L(β̄, µ) := L(M̄) = L(e−β̄ p0
) e−µ for L = N,E, G,H.
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Existence of a solution to (2.13),(2.14) is given by the following result which we state below and prove at the end of the
section.
Lemma 2.3. 1. For all µ ∈ R the function ΣE(., µ) : R?

+ → R is continuous, decreasing and such that ΣE(β̄, µ) → +∞
when β̄ → 0 and ΣE(β̄, µ) → 0 when β̄ → +∞. Therefore, for any µ there exists a unique β̄ = β̄(µ) > 0 such that
ΣE(β̄, µ) = E.

2. The function β̄ : R → R is continuous, decreasing, β̄(µ) → +∞ when µ → −∞ and β̄(µ) → 0 when µ → +∞.
3. The function Σ̄N : R → R, Σ̄N (µ) := ΣN (β̄(µ), µ) is continuous and decreasing. Moreover, Σ̄N (µ) →√

E2 − P 2/m c when µ → −∞ and Σ̄N (µ) → 0 when µ → +∞. In particular, under the admissible condition (2.3),
there exists µ? ∈ R such that Σ̄(µ?) = N . As a conclusion, setting µ = µ?, β̄ = β̄(µ?), u = u(β̄(µ?), µ?), we have
constructed a solution (β̄, µ, u) to (2.13),(2.14).

Assertion 3 of Lemma 2.3 states precisely that there exists a relativistic MaxwellianM satisfying (2.6), and this concludes
the proof of assertion (ii) of Theorem 2.1.

Proof of Theorem 2.1.-(iii) Since that lnM = −β0 p0 + β · p− µ and using the moments equation (2.4), we get

H(g|M) = −
∫

R3
g ln g dp +

∫
R3

g lnM dp +
∫

R3
(M− g) dp

= −
∫

R3
g ln g dp +

∫
R3
M lnM dp = H(g)−H(M).

Furthermore, the function hs(t) := t ln(t/s)+ s− t satisfies h′s(t) = ln(t/s) and h′′s (t) = 1/t so that hs is strictly concave
and hs(t) < hs(s) = 0 for any t 6= s.

Proof of Lemma 2.3.-(1) For L = N,E, G,H the function L : R∗
+ → R∗

+, β̄ 7→ L(β̄) is C1, decreasing, L(β̄) → +∞
when β̄ → 0 and L(β̄) → 0 when β̄ → +∞. Then, u(β̄, µ) : R?

+ × R → R is continuous, increasing with respect to the
two variables, u(β̄, µ) → 0 when β̄ → 0 (for fixed µ) and when µ → −∞ (for fixed β̄), u(β̄, µ) → cP/E (< c) when
β̄ → +∞ (for fixed µ) and when µ → +∞ (for fixed β̄). Last, γ(β̄, µ) := γ(u(β̄, µ)) : R?

+ × R → R is continuous,
increasing with respect to the two variables, γ(β̄, µ) → 1 when β̄ → 0 (for fixed µ) and when µ → −∞ (for fixed β̄),
γ(β̄, µ) → γ(cP/E) (< +∞) when β̄ → +∞ (for fixed µ) and when µ → +∞ (for fixed β̄).

We come now to study of the function ΣE . We clearly have ΣE : R?
+ × R → R is C1 and the derivate Σ′

E with
respect to the variables β̄ or µ satisfies

(2.15)
Σ′

E(β̄, µ) =
P

c
u′(β̄, µ) + E′(β̄, µ) =

P

c
(−P c)

H ′(β̄, µ)
(E + H(β̄, µ))2

+ E′(β̄, µ)

=
(u(β̄, µ)

c

)2
[
G′(β̄, µ) + E′(β̄, µ)

((E

P
+

H(β̄, µ)
P

)2 − 1
3

)]
< 0

since E/P > 1, E′(β̄, µ) < 0 and G′(β̄, µ) < 0. This implies that ΣE is decreasing in both β̄ and µ. Moreover
ΣE(β̄, µ) → +∞ when β̄ → 0 (for fixed µ) or when µ → −∞ (for fixed β̄), ΣE(β̄, µ) → P 2/E when β̄ → +∞ (for fixed
µ) or when µ → +∞ (for fixed β̄). Since E > P and then E > P 2/E, for any µ ∈ R there exists an unique β̄ = β̄(µ)
such that ΣE(β̄, µ) = E.

Proof of Lemma 2.3.-(2) By the implicit function theorem, we know that µ 7→ β̄(µ) is C1 and moreover

β̄′(µ) = −∂ΣE

∂µ
/
∂ΣE

∂β̄
< 0,

so that β̄ is decreasing. Assume by contradiction, that there is β̄? > 0 such that β̄(µ) ≥ β̄? for any µ ∈ R. Then
L(β̄(µ), µ) ≤ L(β̄?, µ) → 0 when µ → +∞ and therefore ΣE(β̄(µ), µ) → P 2/E < E which is in contradiction with the
definition of β̄(µ). Therefore β̄(µ) → 0 when µ → +∞. Next, assume by contradiction that there is β̄? < +∞ such
that β̄(µ) ≤ β̄? for any µ ∈ R. Then ΣE(β̄(µ), µ) ≥ E(β̄(µ), µ) ≥ E(β̄?, µ) → +∞ when µ → −∞ which is again in
contradiction with the definition of β̄(µ). Therefore β̄(µ) → +∞ when µ → −∞.

Proof of Lemma 2.3.-(3) It is clear that Σ̄N is continuous as a composition of continuous functions. Since
|p| ≤ p0 ≤ |p|+ m c, we have the estimates

N(β̄, µ) ≤ e−µ

∫
R3

e−β̄ |p| dp = CN
e−µ

β̄3
,

E(β̄, µ) ≥ e−µ

∫
R3
|p| e−β̄ (|p|+m c) dp = CE

e−µ−β̄ m c

β̄4
,
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where CN =
∫

R3
e−|z| dz and CE =

∫
R3
|z| e−|z| dz. Then, using that E ≥ E(β̄(µ), µ) for any µ, it yields

Σ̄N (µ) ≤ CN
e−µ

β̄3
γ(

cP

E
) ≤ E

CN

CE
β̄(µ) eβ̄ m c γ(

cP

E
) → 0

when µ → +∞ (and thus β̄(µ) → 0).
We now claim that, there is α ≥ 0 and a sequence (µn) such that µn → −∞ and

(2.16) M̄n(p) := e−β̄(µn) p0−µn ⇀
n→+∞

α δ0

in the sense of measure, and in fact, most precisely < M̄n, ϕ >→ α ϕ(0) for any ϕ ∈ C(R3) such that (1+|p|−m)ϕ(p) → 0
when p → ∞ for some m ≥ 0. Indeed, on one hand if for some p̄ ∈ R3\{0} we have Mn(2 p̄) ≥ θ > 0 for any n ≥ 0,
then for any p ∈ B(0, |p̄|) we have

Mn(p) = M(2 p̄) eβ̄(µn) ((2 p̄)0−p0) ≥ θ eβ̄(µn) ((2 p̄)0−p̄0) → +∞

so that E(β̄(µn), µn) → +∞ which is in contradiction with the bound E(β̄(µn), µn) ≤ E. Therefore, M̄n(p) → 0 when
n → +∞ for any p ∈ R3\{0}. On the other hand, fix p̄ ∈ R3\{0}. We have already proved that there is some Θ such
that Mn(p̄) ≤ Θ for any n ≥ 0. Therefore, for any p ∈ R3 such that |p| > |p̄| we have

Mn(p) = M(p̄) e−β̄(µn) (p0−p̄0) ≤ Θ e−(p0−p̄0).

Combining this with the bound E(β̄(µn), µn) ≤ E, we get (2.14) and in particular

N(β̄(µn), µn) → α, H(β̄(µn), µn) → 0, E(β̄(µn), µn) → m cα.

Now, passing to the limit in (2.11)-(2.12) we get E = m cα +
P 2

E
so that

lim
µ→−∞

ΣN (µ) = α γ(
P c

E
) =

E2 − P 2

m cE

1√
1− (P/E)2

=
√

E2 − P 2

m c
.

3. Bose gas.

We consider in this section the case of Bose particles. Let us start with the proof of the following remark, already
stated in the introduction.

Lemma 3.0. Let a ∈ R3 be any fixed vector and (ϕn)n∈N an approximation of the identity:

(ϕn)n∈N is a non negative sequence of D(R3) such that ϕn → δa in D′(R3).

For any f ∈ L1
2 and any n ∈ N, the quantity H(f + ϕn) is well defined by (1.1), and

H(f + ϕn) → H(f) as n →∞.

Proof of Lemma 3.0. Suppose indeed, for the sake of simplicity that: ϕn ≡ 0 if |p− a| ≥ 2/n. Therefore:

H(f + ϕn) =
∫
|p−a|≥2/n

h(f(p, t), p)dp

+
∫
|p−a|≤2/n

h((f(p, t) + ϕn(p), p)dp.

Since |(1 + z) ln(1 + z)− z ln z| ≤ c
√

z,∫
|p−a|≤2/n

|h(f(p, t) + ϕn(p))|dp

≤ c
2√
n3

(∫
|p−a|≤2/n

(f(p, t) + ϕn(p)dp
)1/2 → 0.
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Finally,

|
∫

R3
h(f(p, t), p)dp−

∫
|p−a|≥2/n

h(f(p, t), p)dp|

≤
∫
|p−a|≤2/n

|h(f(p, t), p)|dp → 0,

which ends the proof.

Lemma 3.0 thus indicates that the expression of H given in (1.1) may be extended to nonnegative measures and that,
moreover, the singular part of the measure does not contributes to the entropy. We refer to [6] and [11] for a detailed
proof of this claim. More precisely, for any non negative measure F of the form F = gdp+G, where g ≥ 0 is an integrable
function and G ≥ 0 is singular with respect to the Lebesgue measure dp, we define the Bose-Einstein entropy of F by

(3.1) H(F ) := H(g) =
∫

R3

[
(1 + g) ln(1 + g)− g ln g

]
dp.

On the other hand, the heuristic argument presented in the introduction has shown that the regular solution to the
maximum entropy problem should be Bose relativistic distributions

(3.2) b(p) =
1

eν(p) − 1
with ν(p) = β0 p0 − β · p + µ.

The following result explains simply where the Dirac masses have now to be placed.

Lemma 3.1. The Bose relativistic distribution b is non negative and belongs to L1(R3) if, and only if, β0 > 0, |β| < β0

and µ ≥ µβ̄ with µβ̄ := −m c β̄, β̄ > 0 and β̄2 = (β0)2−|β|2. In this case, all the moments of b are well defined. Finally,

(3.3) ν(p) > ν(p
MC

) ≥ 0 ∀p 6= p
MC

:=
m cβ√

β0 2 − |β|2
.

Proof of Lemma 3.1. First, a necessary and sufficient condition for b to be non negative is that ν(p) ≥ 0 for any
p ∈ R3. Taking p = t e, where e ∈ S2, β = |β| e we see that lim ν(t e)/t = β0 − |β| when t →∞, and therefore |β| ≤ β0.
We want now to prove that b ∈ L1(R3) implies that β0 > 0 and |β| < β0. The fact β0 > 0 is obvious: in the contrary,
β = β0 = 0 and b(p) is a positive constant, and thus do not belongs to L1(R3).

Let first assume, by contradiction, that

(3.4) β = β0 e, e ∈ S2 and β0 m c + µ = 0.

Performing a spherical change of coordinates with e-axes, i.e. writing p = e r cos θ + ..., we obtain

N(b) =
∫

R3

dp

eβ0 (p0−p·e)+µ − 1
= 2π

∫ ∞

0

∫ π

0

r2 sin θ dθ dr

eβ0 (E(r)−r cos θ)+µ − 1

≥ 2 π

∫ ∞

0

∫ 1

−1

r2 drdt

eβ0 (m c+r−t r)+µ − 1
≥ 2 π

∫ ∞

0

∫ 2

0

r2 drds

eβ0 r s eβ0 m c+µ − 1

≥ 2 π

∫ r0

0

∫ s0

0

r2 drds

2 β0 r s
,

choosing s0 and r0 small enough. Since the last expression is +∞, we see that (3.4) can not hold.

Now assume, again by contradiction, that

(3.5) β = β0 e, e ∈ S2 and β0 m c + µ > 0.

Writing p = t e + q with q ∈ R3, |q| ≤ 1 and q ⊥ e we compute

N(b) =
∫

R3

dp

eβ0 (p0−p·e)+µ − 1
≥

∫
R

dt

∫
R2

dq

eβ0 (m c+
√

t2+|q|2−t)+µ − 1

≥ 2 π

∫
R

dt

eβ0 (
√

t2+1−t) eβ0 m c+µ − 1
≥ 2 π

∫ +∞

t0

dt

e(β0 m c+µ)/2 − 1

8



choosing t large enough. Once again the last expression is +∞, so that (3.5) does not hold. Finally, since β0 m c + µ =
ν(0) ≥ 0, we must have |β| < β0. From the preceding computations, we deduce that ν(p) → +∞ when |p| → +∞ and
therefore ν(p) reaches its minimum at a point p

MC
which satisfies

∇pν(p
MC

) = β0 p
MC√

m2 c2 + |p
MC
|2
− β = 0.

The unique solution of this equation is p
MC

given in (3.3). As a conclusion, we get ν(p) > ν(p
MC

) for any p 6= p
MC

and
the condition ν(p

MC
) ≥ 0 implies µ ≥ −m c β̄.

We define now the generalized Bose-Einstein relativistic distribution B by

(3.6) B(p) = b + α δp
MC

=
1

eν(p) − 1
+ α δp

MC

with

(3.7) ∀p 6= p
MC

ν(p) = β0 p0 − β · p + µ > ν(p
MC

) ≥ 0

and the condition α ν(p
MC

) = 0.

For the Bose case, our main result reads as follows.

Theorem 3.2. 1. Given E,N > 0, P ∈ R3, there exists at least one measure F ≥ 0 which realizes the moments
equation (1.2) if, and only if,

(3.8) m2 c2 N2 + |P |2 ≤ E2.

When (3.8) holds we will say that (N,P, E) is a admissible.
2. For any admissible (N,P, E) there exists at least one relativistic Bose-Einstein distribution B corresponding to

these moments, i.e. satisfying (1.2).
3. Let B be a relativistic Bose-Einstein distribution. For any measure F ≥ 0 satisfying

(3.9)
∫

R3

 1
p
p0

 dF (p) =
∫

R3

 1
p
p0

 dB(p),

one has

(3.10) H(F )−H(B) = H1(g|b) + H2(G|b)

where

(3.11) H1(g|b) :=
∫

R3

(
(1 + g) ln

1 + g

1 + b
− g ln

g

b

)
dp and H2(G|b) := −

∫
R3

ν(p) dG(p).

Moreover, H(F |B) ≤ 0 and vanishes if, and only if, F = B. In particular, H(F ) < H(B) if F 6= B.
4. As a conclusion, for any admissible (N,P, E), the entropy problem (1.5), (3.1), (1.4) has a unique solution, and

this one is the relativistic Bose-Einstein distribution constructed just before.

The proof of part 1 of Theorem 3.2 is the same as the proof of (i) in Theorem 2.1. except that the Jensen inequality
may be not strict since we deal with measures which can be concentrated at a single point. We present the proof of
parts 2 and 3 pointing out the main differences with respect to the proof of (ii) and (iii) of Theorem 2.1. Then point 4
is an immediate consequence of the previous steps.

Proof of Theorem 3.2.-2. We use the same notations as in the proof of part (ii) in Theorem 2.1. Given (N,P,E)
admissible, we look for B = b + α δp

MC
such that

(3.12)


N = N(B) = N(b) + α

E = E(B) = E(b) + α p0
m,c

P = P (B) = P (b) + α p
MC

.
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We introduce again the variables (β̄, u) and the Bose-Einstein distribution in the rest frame

b̄(p) =
1

eβ̄ p0+µ − 1
.

We easily verify that
p

MC
= m γ u, p0

m,c = m cγ.

By (2.8), with M replaced by b and M̄ replaced by b̄, to find B such that (3.12) holds is equivalent to find (β̄, u, µ, α)
which satisfies

(3.13)


N = N(β̄, µ) γ + α

P
c

u
− E = H(β̄, µ)

E − P
u

c
− α m

c

γ
= E(β̄, µ),

where now L(β̄, µ) stands for L(b̄). Setting

u = u(β̄, µ) :=
c P

E + H(β, µ)
, γ(β, µ) = γ(u(β, µ)),

the system (3.13) is equivalent to

(3.14)

 E − α
m c

γ(β̄, µ)
= E(β̄, µ) +

P

c
u(β̄, µ)

N − α = N(β̄, µ) γ(β̄, µ).

Let us define the functions

(3.15)


ΓE(β̄, α) := α

m c

γ(β̄)
+ E(β̄) +

P

c
u(β̄), ΓN (β̄, α) := N(β̄) γ(β̄) + α

ΣE(β̄, µ) := E(β̄, µ) +
P

c
u(β̄, µ), ΣN (β̄, µ) := N(β̄, µ) γ(β̄, µ),

with the notation L(β̄) := L(β̄, µβ̄), µβ̄ = −mcβ̄ as in Lemma 3.1, for any L = N,E, G,H. The properties of ΓE , ΣE

and ΣN are then summarized in the following Lemma.

Lemma 3.3. 1. There is a continuous function β̄? : [0, N ] → (0,+∞), α 7→ β̄?(α), such that for any
α ∈ [0, N ], ΓE(β̄?(α), α) = E , and β̄? = β̄?(α) is the unique solution of ΓE(β̄?, α) = E.

2. We set µ? := µβ̄?(0) = −m c β̄?(0). There is a continuous function β̄ : [µ?,+∞) → (0,+∞), µ 7→ β̄(µ), such
that ΣE(β̄(µ), µ) = E for any µ ≥ µ?, and β̄ = β̄(µ) is the unique solution of the equation ΣE(β̄, µ) = E. Moreover, the
map β̄ is not increasing and β̄(µ) → 0 when µ → +∞. Last, the function µ 7→ Σ̄N (µ) := ΣN (β̄(µ), µ) is continuous on
[µ?,+∞) and Σ̄N (µ) → 0 when µ → +∞.

Let us use Lemma 3.3 to conclude the proof of part 2 of Theorem 3.2. Its proof is postponed to the end of the proof of
Theorem 3.2.

End of the Proof of part 2 of Theorem 3.2 In order to obtain the solution (β̄, u, µ, α) to (3.13) we consider the
two cases: N > ΓN (β̄?(0), 0) and N ≤ ΓN (β̄?(0), 0).

- If N > ΓN (β̄?(0), 0), we remark that

ΓN (β̄?(N), N) = N(β̄?(N)) γ(β̄?(N)) + N > N.

Therefore, by the intermediary value Theorem there exists α? ∈]0, N [ such that ΓN (β̄?(α?), α?) = N . Therefore, we
define

β̄? := β̄?(α?), u? := u(β̄?), µ? := 0.

- If N ≤ ΓN (β̄?(0), 0), we remark that Σ̄N (µ?) = ΓN (β̄?(0), 0) ≥ N and Σ̄N (µ) → 0 when µ → +∞, and by the
intermediate value Theorem there exists µ? ∈ [µ?,+∞) such that Σ̄N (µ?) = N . We define now

β̄? := β̄E(µ?), u? := u(β̄?, µ?) α? := 0.
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In both cases (β?, µ?, u?, α?) is a solution of (3.13), and the associated relativistic Bose state is a solution of (3.12).

Proof of part 3 of Theorem 3.2. Using the conditions on the moments, we compute

H(b) =
∫

R3
ln (1 + b) dp +

∫
R3

b ln
1 + b

b
dp =

∫
R3

ln (1 + b) dp +
∫

R3
b ν(p) dp

=
∫

R3
ln (1 + b) dp +

∫
R3

(g + G− α δp
MC

) ν(p) dp

=
∫

R3
ln (1 + b) dp +

∫
R3

g ln
1 + b

b
dp +

∫
R3

(G− α δp
MC

) ν(p) dp

=
∫

R3

(
(1 + g) ln (1 + b)− g ln b

)
dp +

∫
R3

ν(p) dG(p),

from where we deduce (3.10),(3.11). On the other hand, for any y > 0, the function x 7→ h(x|y) defined for any x ≥ 0 by

h(x|y) := (x + 1) ln
x + 1
y + 1

− x ln
x

y
,

satisfies h′(x|y) = 0 if, and only if, x = y, 1(y|y) = 0 and h(x|y) < 0 for any x 6= y. Thus, H(g | B) ≤ 0 and H(g | B) = 0
if and only if, g = b. Moreover, from (3.7), we obviously have H(G | B) ≤ 0 and H(G | B) = 0 if, and only if,G = α δp

MC

with α = 0 if µ > 0 and α = m−M(b) if µ ≥ 0.

Proof of Lemma 3.3.

Let us prove point 1 of Lemma 3.3. To this end, consider the function ΓE(β̄, α). Notice first that for L = N, E, G, H
the function L(β̄) is nothing but L(Pβ̄) where Pβ̄ is the distribution

Pβ̄ =
1

eβ̄ (p0−m c) − 1
.

Moreover, the maps L = N, E, G, H are defined on the set

O = { (β̄, µ); β̄ > 0, µ ≥ µβ̄} = {(β̄, µ); µ ∈ R, β̄ ≥ β̄µ = max(0,−µ/mc) }.

Since,

L′(β̄) =
d

dβ̄
L(β̄) ≡ ∂L

∂β̄
−mc

∂L

∂β̄
,

we immediately obtain that the maps β̄ 7→ L(β̄) are C1, decreasing, L(β̄) → +∞ when β̄ → β̄µ and L(β̄) → 0 when
β̄ → +∞. Moreover for any fixed α

∂ΓE(β̄, α)
∂β̄

= {αmc

γ(β̄)
}′ + E′(β̄) +

P

c
u′(β̄)

A straightforward computation gives:

E′(β̄) +
P

c
u′(β̄) = (Eβ̄ −mcEµ)

(
1− 1

3
(
u(β̄)

c
)2

)
+ (

u(β̄)
c

)2
Gβ̄ −mcGµ

3
< 0

and

{αmc

γ(β̄)
}′ =

α m u3(β̄)
P c2

γ−1(β̄)(Hβ̄ −mcHµ) < 0.

We deduce that, for any fixed α ∈ [0, N ], the map β̄ 7→ ΓE(β̄, α) is C1, decreasing, ΓE(β̄, α) → +∞ when β̄ → β̄µ and

ΓE(β̄, α) → α
m c

γ(c P/E)
+

P 2

E
when β̄ → +∞.

On the other hand, for any α ∈ [0, N ], the admissibility condition (3.8) on (N,P, E) gives(
α

m c

γ(c P/E)

)2

≤
(
N m c

√
1−

(
P/E

)2
)2

≤ (E2 − P 2)
(
1−

(
P/E

)2) =
(
E − P 2

E

)2

.
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Therefore, we get limβ̄→+∞ ΓE(β̄, α) ≤ E. Using once more the intermediate value Theorem, there exists a unique
β̄? = β̄?(α) ≥ β̄µ such that E = ΓE(β̄?(α), α). Finally, the function α 7→ β̄?(α) is continuous (by the implicit function
Theorem, for instance).

Let us prove now part 2. Here the proof is the same as that of Lemma 2.1. The only difference is that the maps L
are only defined on the set

O = { (β̄, µ); β̄ > 0, µ ≥ µβ̄} = {(β̄, µ); µ ∈ R, β̄ ≥ β̄µ = max(0,−µ/mc) }.

Actually, we are only interested by
O? = { (β̄, µ); µ ≥ µ?, β̄ ≥ β̄µ }.

We prove without any difficulty that for any µ ≥ µ? and any function L = E, N, G and H, the functions L(., µ) :
(β̄µ,+∞) → (0,+∞), β̄ 7→ L(β̄, µ) are C1, decreasing, L(β̄, µ) → 0 when β̄ → +∞ and L(β̄, µ) → +∞ when β̄ → β̄µ.
We deduce ΣE(., µ) : (β̄µ,+∞) → (0,+∞) is C1, decreasing, ΣE(β̄, µ) → +∞ when β̄ → β̄µ and ΣE(β̄, µ) → P 2/E ≤ E
when β̄ → +∞. As a consequence, for any µ ≥ µ?, there exists a unique β̄ = β̄(µ) such that E = ΣE(β̄?(µ), µ).

On the other hand, one can also verify that for any β̄ > 0 and any L = E, N, G and H, L(β̄, .) : (µ?,+∞) → (0,+∞)
is C1, decreasing and L(β̄, µ) → 0 when µ → +∞ . Therefore, as in Lemma 2.3, (ii), one checks that ΣE(β̄, µ) is C1

and decreasing in both variables. We deduce that the function µ 7→ β̄(µ) is decreasing and β̄(µ) → 0 when β̄ → +∞.
Finally, Σ̄N is continuous and satisfies Σ̄N (µ) → 0 when µ → +∞.

Nonrelativistic Bose particles. For non relativistic particles the energy is E(p) = |p|2/2m. By Galilean invariance
the problem (1.2) is then equivalent to the following simpler one: given three quantities N > 0, E > 0, P ∈ R3 find F (p)
such that

(3.16)
∫

R3


1

p− P
N

|p− P
N |

2

2m

 F (p) dp =

 N
0

E − |P |2
2mN

 .

It is rather simple, using elementary calculus, to prove that for any E,N > 0, P ∈ R3 there exists a distribution of the
from

(3.17) F (p) =
1

ea|p− P
N |2+b+ − 1

− b−δ P
N

with a ∈ R, b ∈ R, ν ∈ R, b+ = max(b, 0), b− = −max(−b, 0) which satisfies (3.16).

Once such a solution (3.17) of (3.16) is obtained, the following Bose-Einstein distribution

(3.18) B(p) =
1

eν(p) − 1
+ αδp

MC
, ν(p) = a|p|2 − 2a

N
· p + (b+ +

a|P |2

N2
)

solves (1.2).

This shows that for non relativistic particles Theorem 3.2 remains valid under the unique following change: the points
1 and 2 have to be replaced by

1’. For every E,N > 0, P ∈ R3, there exists one relativistic Bose Einstein distribution defined by (3.17) corresponding
to these moments, i.e. satisfying (1.2).

Points 3 and 4 of Theorem 3.2 remain unchanged.

It is particularly simple to observe in this case that, for E > 0 and P ∈ R3 fixed, there is no regular Bose Einstein state
for particle numbers N larger than a critical value N∗. This easily follows from the fact that by (3.18),

E ≥
∫

R3

|p|2

ea|p− P
N |2 − 1

dp =
∫

R3

|q|2

ea|q|2 − 1
dq +

|P |2

N

=
1
a2

∫
R3

|p|2

e|p|2 − 1
dp +

|P |2

N

=
1

a5/2

∫
R3

|p|2

e|p|2 − 1
dp + |P |2a3/2[

∫
R3

dp

e|p|2 − 1
]−1.
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In particular,

a ≥ [
1
E

∫
R3

|p|2

e|p|2 − 1
dp]2/5 =: a0,

and therefore
N =

∫
R3

dp

ea|p− P
N |+b+ − 1

≤
∫

R3

dq

ea0|q|2 − 1
= N∗.

4. Fermi-Dirac gas.

In this section we are interested in a Fermi-Dirac gas, which means that we consider the maximum entropy problem
for the Fermi-Dirac entropy

(4.1) HFD(f) := −
∫

R3

(
(1− f) ln(1− f) + f ln f

)
dp.

In particular, this implies the constraint 0 ≤ f ≤ 1 on the density f of the gas.
From the heuristics argument presented in the introduction, we know that the solution F of (1.2)-(2.3), (4.1) is the

Fermi-Dirac distribution

(4.2) F(p) =
1

eν(p) + 1
with ν(p) = β0 p0 − β · p + µ.

We also introduce the “saturated” Fermi-Dirac (SFD) density

(4.3) χ(p) = χβ0,β(p) = 1{β0 p0−β·p≤1} = 1E with E = {β0 p0 − β · p ≤ 1},

with β ∈ R3 and β0 > |β|.

Our main result is the following.

Theorem 4.1.
1. For any P and E such that |P | < E there exists an unique SFD state χ = χP,E such that P (χ) = P and

E(χ) = E. This one realizes the maximum of particles number for given energy E and mean momentum P . More
precisely, for any f such that 0 ≤ f ≤ 1 one has

(4.4) P (f) = P, E(f) = E implies N(f) ≤ N(χP,E).

As a consequence, given (N,P, E) there exists g satisfying the moments equation (1.2) if, and only if, E > |P | and
0 ≤ N ≤ N(χP,E). In this case, we say that (N,P, E) is admissible.

2. For any (N,P, E) admissible there exists a Fermi-Dirac state F (“saturated” or not) which realizes the moments
equation (1.2).

3. Let F be a Fermi-Dirac state. For any f such that 0 ≤ f ≤ 1 and

∫
R3

f(p)

 1
p
p0

 dp =
∫

R3
F(p)

 1
p
p0

 dp,

one has

(4.5) HFD(f)−HFD(F) = HFD(f |F) :=
∫

R3

(
(1− f) ln

1− f

1−F
− f ln

f

F
)
dp.

4. As a conclusion, for any admissible (N,P, E) the entropy problem (1.5), (1.2), (4.1), (1.4) has a unique solution,
and this one is the relativistic Fermi-Dirac distribution constructed just above.

The new difficulty with respect to the classic or Bose case is to manage with the constraint 0 ≤ f ≤ 1. Before proving
Theorem 4.1 we present several auxiliary results.

Proposition 4.2.
1. For any P ∈ R3 and E > 0 such that |P | < E there exists a unique SFD state χ = χP,E such that P (χ) = P

and E(χ) = E. Moreover, for fixed P ∈ R3, the map E 7→ N(χP,E) is increasing.
2. For any N > 0 and P ∈ R3 there exists an unique SFD state χ̃ = χ̃N,P such that N(χ̃) = N and P (χ̃) = P .

Moreover, for fixed P ∈ R3, the map N 7→ E(χ̃N,P ) is increasing.
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Proof of Proposition 4.2. We start with part 1. From (2.8) we know that for any SFD state χ of the form (4.3) we
have

(4.6)


P (χ) c/u− E(χ) = H(β̄)
E(χ)− P (χ) u/c = E(β̄)
N(χ) = N(β̄) γ.

where L(β̄) = L(χ̄), χ̄(p) = 1Ē , Ē = {β̄ p0 ≤ 1} and (β̄, u) is associated to (β0, β) thanks to (2.7).

On the other hand, from the two first equations in (4.6), to find χ such that, for given P ∈ R3 and E > |P |2, P (χ) = P
and E(χ) = E is equivalent to find (β̄, u) such that β̄ satisfies

(4.7) E = Ξ(β̄, E) := E(β̄) +
P 2

E + H(β̄)

and we recover u by

u = u(β̄) :=
P c

E + H(β̄)
.

We have already done the analysis of such a function Ξ in Lemma 2.1. It is easy to verify that E(β̄), H(β̄) are smooth,
decreasing for β̄ ∈ (0, 1/mc), E(β̄),H(β̄) → 0 when β̄ → 1/mc, E(β̄),H(β̄) →∞ when β̄ → 0 and

∂Ξ
∂β̄

(β̄, E) = E′(β̄)− P 2

(E + H(β̄))2
H ′(β̄) < 0.

Moreover, Ξ(β̄, E) →∞ when β̄ → 0 (since Ξ(β̄, E) ≥ E(β̄)) and Ξ(β̄, E) → P 2/E when β̄ → 1/mc. This implies that
there is a unique β̄ ∈ (0, 1/mc) such that (4.7) holds (when |P |2 < E), we note β̄ = β̄(E). Finally,

(4.8)
∂

∂E
N(χP,E) =

d

dE
N(β̄(E)) = N ′(β̄(E))

dβ̄

dE
> 0,

since N ′(β̄) < 0 and dβ̄
dE < 0, and therefore E 7→ N(χP,E) is inceassing (for fixed P ∈ R3).

Let us prove now part 2. We eliminate the energy E(χ) in (4.6) to get
1
γ2

P (χ) c/u = E(β̄) + H(β̄)

N(χ) = N(β̄) γ.

Therefore, for given N > 0 and P ∈ R3, find χ such that N(χ) = N and P (χ) = P is equivalent to find (β̄, u) such that
β̄ satisfies

N = N(β̄) γ(u(β̄))

where u is defined by

(4.9) u(β̄) =
c P

N2

N2(β̄)
E(β̄) + H(β̄)

In order to simplify the computations in what follow we introduce the variable a = 1/β̄ and we define L̃(a) = L(1/β̄).
We make the elementary computations

Ñ(a) =
(a2 − 1)3/2

3
, Ñ ′(a) = 4aπ (a2 −m2c2)1/2

Ẽ(a) ≥ (a2 − 1)2

4
, Ẽ′(a) = 4πa2 (a2 −m2c2)1/2

H̃(a) ≥ 0, G̃′(a) = 4π(a2 −m2c2)1/2.

We look now for a solution a ∈ (1,∞) to

(4.10) N = Ξ(a,N) := Ñ(a) γ(ũ(a)),

14



where the dependency of Ξ with respect to N comes from the dependence of ũ(a) on N in (4.9). For fixed N > 0, the
function a 7→ Ñ(a) is continuous and the same holds for the functions a 7→ ũ(a) and a 7→ γ(ũ(a)). Moreover,

lim
a→1

Ñ(a) γ(ũ(a)) ≤ γ(ũ(2)) lim
a→1

Ñ(a) = 0

and
lim

a→+∞
Ñ(a) γ(ũ(a)) ≥ γ(ũ(2)) lim

a→+∞
Ñ(a) = +∞.

Therefore, for any N > 0 the equation (4.10) has a solution a ∈ (0,∞). This provides a solution (1/a, u(1/a)) for (4.9)
and thus a SFD distribution χ̃ such that N(χ̃) = N and P (χ̃) = P .

In order to show that the map N 7→ E(χ̃N,P ) is increasing, we argue as follows. First, we notice that the map
N 7→ a(N) with a(N) such that N = Ξ(a(N), N) is continuous and thus the map E(χ̃.,P ) is also continuous. Moreover,
this map is injective. Indeed, if N,N ′ > 0 are such that E(χ̃N,P ) = E(χ̃N ′,P ) =: E, then using the uniqueness proved
in part 1 (or also Lemma 4.3 below), we obtain χ̃N,P = χ̃N ′,P = χP,E , and then N = N ′. This implies that E(χ̃.,P ) is
a monotonous function of R+. Since

E(χ̃N,P ) ≥ m cN →∞ when N →∞,

it follows that it may only be increasing.

Lemma 4.3. For any SFD state χ = 1E , E = {β0 p0 − β · p ≤ 1} and any Borel set B, we have

(4.11) N(1B) = N(χ), P (1B) = P (χ) implies E(1B) ≥ E(χ)

where the inequality is strict if B 6= E a.e., and

(4.12) P (1B) = P (χ), E(1B) = E(χ) implies N(1B) ≤ N(χ),

and the inequality is strict if B 6= E a.e.

Remark 4.4. As a consequence of Lemma 4.3, we recover that for any given N > 0 and P ∈ R3 there exists at most
one SFD state χ such that N(χ) = N and P (χ) = P and that for any given P ∈ R3 and E > 0 there exists at most one
SFD state χ such that P (χ) = P and E(χ) = E. Indeed, for example for the first claim, if χ = 1E and χ′ = 1E′ are
two SFD distributions such that N(χ) = N(χ′) and P (χ) = P (χ′), we have, using twice Lemma 4.3, E(χ) = E(χ′) and
therefore E = E ′ a.e., so that χ = χ′.

Proof of Lemma 4.3. We only prove (4.11) since the proof of (4.12) is exactly the same. Given a SFD χ = 1E and a
Borel set B satisfying N(1B) = N(χ), P (1B) = P (χ) , we just compute

E(1B)− E(χ) =
∫

B

p0 dp−
∫
E

p0 dp =
∫

B\E
p0 dp−

∫
E\B

p0 dp

≥ 1
β0

[∫
B\E

(1 + β · p) dp−
∫
E\B

(1 + β · p) dp
]

≥ 1
β0

[∫
B

(1 + β · p) dp−
∫
E
(1 + β · p) dp

]
= 0,

and the inequality is strict if B 6= E a.e.

Lemma 4.5. Let consider ε : R2 → R a radial and increasing (with respect to the radius) function. For any 0 ≤ g ∈
L1(R2) we define ρ ≥ 0 and 0 ≤ g? ∈ L1(R2) by

(4.13) π ρ2 =
∫

R2
g(p′) dp′, g? = 1{|p′|≤ρ},

and for any 0 ≤ φ ∈ L1
ε(R2) = L1(R2; (1 + ε(p′)) dp′) we also define

(4.14) n(φ) :=
∫

R2
φ(p′) dp′, e(φ) :=

∫
R2

φ(p′) ε(p) dp′.

Then, for any g ∈ L1
ε there holds

(4.15) n(g?) = n(g) and e(g?) ≤ e(g).
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Proof of Lemma 4.5. It is done is several steps.
Step 1. Assume that g(p′) = λ1{a≤|p′|≤b} with 0 < λ < 1, and define gλt

(p′) = λt 1{a≤|p′|≤bt} with bt = b − t and λt

defined by the condition n(gλt
) = n(g) ∀ t ≥ 0. This condition implies that

d

dt
[n(gλt

)] =
d

dt
[λt

∫ bt

a

r dr ] = λ′t

∫ bt

a

r dr + λt bt b′t = 0,

and thus

λ′t

∫ bt

a

r dr = λt bt.

Then, we compute
d

dt
[e(gλt)] =

d

dt
[λt

∫ bt

a

ε(r) r dr ] = λ′t

∫ bt

a

ε(r) r dr + λt ε(bt) bt b′t

=
λt bt∫ bt

a
r dr

∫ bt

a

(ε(r)− ε(bt)) r dr ≤ 0,

and therefore, in particular, the function g1 = 1{a≤|p′|≤c}, uniquely defined by n(g1) = n(g), satisfies e(g1) ≤ e(g).
Step 2. Assume now that g(p′) = 1{a≤|p′|≤b} and let define gt(p′) = 1{at≤|p′|≤bt} with at = a− t and bt defined by the
condition n(gt) = n(g) ∀ t ≥ 0. This condition implies

d

dt
[n(gt)] =

d

dt
[
∫ bt

at

r dr ] =
1
2
(bt b′t − at a′t) = 0,

so that bt b′t = −at. Then, we compute

d

dt
[e(gt)] =

d

dt

∫ bt

at

ε(r) r dr = −at (ε(bt)− ε(at)) ≤ 0,

and therefore, for any t ≥ 0, we have n(gt) = n(g), e(gt) ≤ e(g).
Step 3. Assume now that g is a step function, of the form

(4.16) g(p′) =
K∑

k=1

λk 1{ak≤|p′|≤bk}

with 0 < λk ≤ 1 and a1 < b1 ≤ a2 < b2 ≤ ... ≤ aK < bK . Using Step 1 we construct g1 of the form

g1(p′) =
K∑

k=1

1{ak≤|p′|≤ck},

with a1 < c1 ≤ a2 < c2 ≤ ... ≤ aK < cK , such that n(g1) = n(g) and e(g1) ≤ e(g). By induction on k = 1, ...,K, using
Step 2 on each function 1{ak≤|p′|≤ck} we obtain that (4.15) holds for any step function g.
Step 4. For a radial function g we argue by density. We consider a sequence (gn) of step functions of the form (4.16)
and such that gn → g in L1

ε(R2), in particular n(gn) → n(g) and e(gn) → e(g). This implies that ρn → ρ, where ρ and
(ρn) are defined by (4.12), and therefore that g?

n = 1{|p′|≤ρn} → g? = 1{|p′|≤ρ} in L1
ε(R2). By Step 3, we already know

that (4.13) holds for the sequence (gn) and we can pass to the limit: (4.13) is proved for any radial function.

Step 5. Finally, for a general function g we define the radial function g̃ by

g̃(p′) :=
1

2 π

∫
S1

g(|p′|ω) dω.

Since ε is radial we get n(g̃) = n(g) and e(g̃) = e(g). We then apply Step 4 to conclude.

Proposition 4.6. For any SFD state χ and any f such that 0 ≤ f ≤ 1, we have

N(f) = N(χ), P (f) = P (χ) implies E(f) ≥ E(χ).
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Proof of Proposition 4.6. Let introduce e1 ∈ S2 such that P = |P | e1 and let us write p = (p1, p
′) := p1 e1 + p′ with

p′ ⊥ e1. We have

(4.17)
N(f) =

∫
R
n(f(p1, .)) dp1, P (f) =

∫
R

p1 n(f(p1, .)) dp1,

E(f) =
∫

R
e(f(p1, .), p1) dp1,

where for any φ ≥ 0 measurable, n(φ) is defined by (4.12) and

e(φ, p1) =
∫

R2
φ(p′)

√
m2 c2 + |p1|2 + |p′|2 dp′.

For a.e. p1 ∈ R we define ρ(p1) by

π ρ(p1)2 =
∫

R2
f(p1, p

′) dp′, f?(p) = 1B(0,ρ(p1))(p
′) = 1B ,

where B is the set B := {p ∈ R3, p1 ∈ R, p′ ∈ B(0, ρ(p1))}. Of course, N(f?) = N(f) and P (f?) = P (f). Therefore
thanks to Lemma 4.5, we obtain that 1B satisfies

N(1B) = N(f), P (1B) = P (f) E(1B) ≤ E(f),

and we conclude thanks to Lemma 4.3.

Proof of part 1 of Theorem 4.1. From Proposition 4.2 we already know that for any P ∈ R3 and E > |P | there
exists a unique SFD state χP,E such that P (χP,E) = P and E(χP,E) = E. Consider now f such that 0 ≤ f ≤ 1 and
define

N := N(f), P := P (f) and E := E(f),

we have just to prove that
N(f) ≤ N(χP,E).

Thanks to Proposition 4.2 we know that there exists an unique SFD state χP,E such that

P (χP,E) = P, and E(χP,E) = E,

and there also exists an unique SDF state χ̃
N,P

such that

N(χ̃N,P ) = N, and P (χ̃N,P ) = P.

Moreover, from Proposition 4.6
E(χP,E) = E(f) ≥ E(χ̃N,P ).

But since from Proposition 4.2 the map N 7→ E(χ̃N,P ) is increasing this implies that

N(χP,E) ≥ N(χ̃N,P ) = N(f),

and this conclude the proof.

Proof of part 2 of Theorem 4.1. We only need to prove that for any P ∈ R3 and any E > 0 such that |P | < E and
for any N ∈]0, N(χP,E)[ there exists F a Fermi-Dirac distribution such that

(4.18) N(F) = N, P (F) = P, E(F) = E.

It is straightforward to check that F realizes the moments equations (4.18) if, and only if

(4.19)


N = N(β̄, µ) γ(u)

E − P

u
= −H(β̄, µ)

E − P u = E(β̄, µ),
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where
L(β̄, µ) = L(F̄), F̄ = Fβ̄,0,µ =

1
eβ̄ p0+µ + 1

.

We then define,

(4.20) u = u(β̄, µ) :=
P

E + H(β̄, µ)

and reduce the system (4.19) to

(4.21)

 ΣE(β̄, µ) := E(β̄, µ) +
P 2

E + H(β̄, µ)
= E

ΣN (β̄, µ) := N(β̄, µ) γ(u(β̄, µ)) = N.

We conclude thanks to the following result.

Lemma 2.13.
1. For any fixed µ the function ΣE(., µ) : R?

+ → R is continuous, decreasing, ΣE(β̄, µ) → +∞ when β̄ → 0 and
ΣE(β̄, µ) → 0 when β̄ → +∞. Therefore, for any µ there exists a unique β̄ = β̄(µ) > 0 such that ΣE(β̄, µ) = E.

2. The function β̄ : R → R is continuous and decreasing, β̄(µ) → +∞ and β̄(µ) + µ → +∞ when µ → −∞ and
β̄(µ) → 0 when µ → +∞.

3. The function Σ̄ : R → R, Σ̄(µ) := ΣN (β̄(µ), µ) is continuous, decreasing, N(F) → N(χP,E) when µ → −∞ and
Σ̄(µ) → 0 when µ → +∞.

Proof of Lemma 2.13. The proofs of the two first points are very similar to those of the same points in Lemma 2.3
and Lemma 3.3. We therefore do not repeat them. The only new point is the third, and more precisely the behavior of
ΣN for µ → −∞. In order to prove it, let (µn) be a decreasing sequence such that µn → −∞ and set β̄n = β̄(µn).

Step 1. We write

0 < E − P ≤ E(β̄, µ) =
∫

R3

p0

eβ̄ (p0−1)+β̄+µ + 1
dp.

When µ → −∞ we have β̄ = β̄(µ) → +∞, and this implies that β̄ + µ → −∞. In particular, we have β̄ + µ ≤ 0 so that

(4.22) − µ

β̄(µ)
≥ 1.

Step 2. Since ∫
R3

|z|
e|β̄mc+µ| (|z|−1) + 1

dz ≥
∫

B1

|z|
e|β̄mc+µ| (|z|−1) + 1

dz ≥
∫

B1

|z|
2

dz =: CE > 0,

we deduce

E ≥ E(β̄, µ) ≥
∫

R3

|p|
eβ̄ (|p|+mc)+µ + 1

dp =
( |β̄mc + µ|

β̄

)4 ∫
R3

|z|
e|β̄mc+µ| (|z|−1) + 1

dz

≥
( |β̄mc + µ|

β̄

)4
CE .

Therefore ∣∣∣µn

β̄n

∣∣∣ ≤ mc +
∣∣∣mc +

µn

β̄n

∣∣∣ ≤ ( E

CE

)1/4

+ mc,

and there exists a ∈ R and a subsequence (n′) such that

µn′

β̄n′
→ −a,

and by (4.22) a ≥ 1.

Step 3. We remark now that if n is large enough βn ≥ 1 and |µn|/βn ≤ 2 a, from where we deduce that

0 ≤ 1
eβn (p0−|µn|/βn) + 1

≤ 1p0≤2 a +
1

ep0−2 a + 1
1p0≥2 a ∈ L1(R3).
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Moreover, for a.e. p ∈ R3 we have

Fn =
1

eβn (p0−|µn|/βn) + 1
→ 1{p0≤a}.

We conclude by dominated convergence Lebesgue Theorem that

L(β̄n′ , µn′) = L(F̄n′) → L̃(a) := L(1{p0≤a}) for L = N,E, G,H.

Step 4. Passing to the limit in (4.20) and (4.21) we obtain

E = Ẽ(a) + P
ũ(a)

c
, ũ(a) =

P

E + H̃(a)

and
lim

µ→−∞
Σ̄N (µ) = Ñ(a) γ(ũ(a)).

By (4.6) this means precisely that the SFD state associated to (β̄, u) = (1/a, ũ(1/a)) satisfies

lim
µ→−∞

Σ̄N (µ) = N(χ), P (χ) = P, E(χ) = E.

Therefore, χ = χP,E and Σ̄N (µ) = N(F) → N(χP,E).

Nonrelativistic Fermi-Dirac particles. Here again, since the energy is E(p) = |p2|/2m the problem (1.2) is equiva-
lent to (3.16): given three quantities N > 0, E > 0, P ∈ R3 find f(p) such that 0 ≤ f ≤ 1 and satisfying (3.16).

On the other hand, given N > 0 and P ∈ R3, we have

min
{0≤f≤1,

∫
fdp=N,

∫
pf(p)dp=P}

1
2m

∫
R3
|p|2f(p)dp

= min
{0≤g≤1,

∫
gdp=N,

∫
(p− P

N )g(p)dp=0}

1
2m

∫
R3
|p− P

N
|2g(p)dp,

and this minimum is reached for a distribution of the form g(p) = 1{|p− P
N |≤c}, for some c > 0 and for a distribution of

the form f(p) = 1{|p|≤c}. Since ∫
R3

1{|p|≤c}dp = ω2
c3

3
and

∫
R3
|p2|1{|p|≤c}dp = ω2

c5

5

we deduce that the problem (1.2) has a solution f satisfying 0 ≤ f ≤ 1 only if

(4.23) E ≥ 35/3(4π)2/3

5
N5/3.

On the other hand, it is simple, using elementary calculus, to prove that for any E,N > 0, P ∈ R3 such that (4.21)
holds, there exists a distribution of the from

(4.24) F (p) =


1

ea|p− P
N |2+b + 1

if E >
35/3(4π)2/3

5
N5/3,

1{|p− P
N |≤c} if E =

35/3(4π)2/3

5
N5/3

with a ∈ R, b ∈ R and c ∈ R such that ω2c
3/3 = N satisfying (3.16).

Then, for every E,N > 0 and P ∈ R3 satisfying (4.23), the Fermi Dirac distribution:

(4.25) F(p) =


1

eν(p) + 1
, ν(p) = a|p|2 − 2a

N
P · p + (b +

a|P |2

N2
) if E >

35/3(4π)2/3

5
N5/3,

1{|p− P
N |≤c} if E =

35/3(4π)2/3

5
N5/3
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solves (1.2).

This shows that for non relativistic particles Theorem 4.1 remains valid under the unique following change: the points
1 and 2 have to be replaced by

1’. For every E,N > 0, P ∈ R3, satisfying (4.23) there exists a non relativistic fermi Dirac state, saturated or not,
defined by (4.25) corresponding to these moments, i.e. satisfying (1.2).

Points 3 and 4 of Theorem 4.1 remain unchanged.

Appendix. Minkowsky space and Lorentz transform.

For the convenience of the reader, we sumarize some of well known facts on Minkowsky space and Lorentz transform
that we have systematically used in the construction of the equilibrium states with prescribed moments. We refer to [20]
for a more detailed exposition on the subject.

Let us denote P = (P 0, p) ∈ R4 with P 0 ∈ R, p ∈ R3 or indifferently P = (Pµ). We define the Lorentz metric as
follows:

(A.1) < P, Q >= P 0 Q0 − p · q ∀P,Q ∈ R4.

We also write

< P, Q >= Pµ Qµ = P> η Q =
4∑

µ,ν=0

ηµν Pµ Qν , with Qµ = ηµν Qµ,

where

(A.2) η = (ηµν) =
(

1 0>

0 −I3

)
is the Minkowsky matrix. The inner product <,> on R4 is symmetric, non degenerated but not positive.

Definition A.1 A Lorentz transform is a linear operator Λ : R4 → R4 such that

(A.3) < Λ P,Λ Q > = < P, Q > ∀P,Q ∈ R4.

Example 1: Rotations. For any rotation R of R3 (R ∈ SO(3)),

(A.4) Λ =
(

1 0>

0 R

)
is a Lorentz transform.

Example 2: Boosts. For any v ∈ R3 such that v := |v| < 1,

(A.5) Λ =
(

γ γ v>

γ v I + γ−1
v2 v v>

)
, γ =

1√
1− v2

.

is a Lorentz transform.

Remark A.2. Any Lorentz transform is the composition of a boost and a rotation.

For (β0, β) ∈ R4 with β0 > |β| we define β̄ > 0 and u ∈ R3 by

(A.6) β̄2 := (β0)2 − |β|2, u

c
:=

β

β0
.

Then, setting

(A.7) γ :=
1√

1− (u/c)2
, we have (βµ) = (β0, β) =

(
γ β̄, γ β̄

u

c

)
.

For such a 4-vector (β0, β) we define the boost transform Λ = Λ(βµ) associated to v := u/c. It satisfies

(A.8) Λ
(

β̄
0

)
=

(
β0

β

)
.
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Lemma A.3 Any Lorentz transform Λ satisfies detΛ = ±1.

Proof of Lemma A.3. Define

Λ? =
(

a −c>

−b d>

)
for Λ =

(
a b>

c d

)
with a ∈ R, b, c ∈ R3 and d ∈ M(R3). We easily verify that

< Λ P,Q > = < P, Λ? Q > for any P,Q ∈ R4.

In particular, by definition of a Lorentz transform, one has

< Λ? Λ P,Q > = < Λ P,Λ Q > = < P, Q > for any P,Q ∈ R4,

so that Λ? Λ = Id4. Since det Λ? = det Λ, we get (det Λ)2 = 1.

Definition A.4 For s ∈ R we define the hyperboloid

(A.9) Ms
+ := {P ∈ R4, < P, P > = s, P 0 > 0} = {(

√
s + |p|2, p), p ∈ R3}.

We write Λ ∈ L↑+, if Λ is a Lorentz transform such that det Λ = +1 and (Λ P )0 > 0 for any P ∈ Ms
+, with s > 0.

The boost Λ associated to (β0, β) belongs to L↑+ since detΛ = 1 and

(Λ P )0 = γ p0 + γ u · p =
1
β̄

[β0 p0 + β · p] ≥ 1
β̄

[β0 |p| − |β| |p|] ≥ 0

for any P ∈ Ms
+ with s > 0.

Lemma A.5 Let f : R → R and (βµ) = (β0, β) ∈ R4 such that β̄2 := β02 − |β|2 > 0. We define F : R3 → R by
F (p) = f(βµ pµ) = f(β0 p0 − β · p) with p0 :=

√
s + |p|2, s > 0. There is some constants Ai = Ai(f, β̄) such that∫

R3
pµ F

dp

p0
= A1 βµ(A.10) ∫

R3
pµ pν F

dp

p0
= A2 ηµν + A3 βµ βν .(A.11)

In particular, one has

N(F ) :=
∫

R3
F dp = A1 β0(A.12)

P (F ) :=
∫

R3
F p dp = A3 β0 β(A.13)

E(F ) :=
∫

R3
F p0 dp = A2 + A3 (β0)2(A.14)

G(F ) := s

∫
R3

F
dp

p0
= 4 A2 + A3 β̄2.(A.15)

Before proving this result, let recall and prove the following elementary distributionnal Lemma.

Lemma A.6. For any a, b ∈ R, a 6= b,

(A1.3) δ(x−a) (x−b) =
1

|b− a|
(δx−a + δx−a).

Proof of Lemma A.6. Let (ρε) be a sequence of L1(R) such that ρε ⇀ δ in D′(R). Then

< δ(x−a) (x−b), φ > := lim
ε→0

< ρε((x− a) (x− b)), φ >

= lim
ε→0

∫
R

ρε((x− a) (x− b))φdx = lim
ε→0

Iε + Jε,
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with

Iε =
∫ a+b

2

−∞
ρε((x− a) (x− b))φ dx, Jε =

∫ ∞

a+b
2

ρε((x− a) (x− b))φdx.

Without loss of generality we may assume that a < b. Set y = (x−a) (x−b) = x2−(a+b) x+a b. The function x 7→ y(x)
is monotonous for any x ≤ (a+b)/2 so that it is an allowed change of variable. We compute 2x = a+b±

√
4 y + (a− b)2

and dy = [2 x− (a + b)] dx = ±
√

4 y + (a− b)2 dx, and hence

Iε =
∫ ∞

−(b−a)2
4

ρε(y) φ
( a + b

2
±

√
y +

(a− b

2
)2

) dy√
4 y + (a− b)2

−→ 1
|b− a|

φ
(a + b− |a− b|

2
)

=
φ(a)
|b− a|

.

Similarly, we prove Jε −→
φ(a)
|b− a|

.

Proof of Lemma A.5. Using Lemma A.6 we have, denoting by H the Heavisde function,

δP 2=s H(P 0) = δ(P 0)2−s 1P 0>0 =
1

2
√

s + |p|2
δ
P 0−

√
s+|p|2 .

Therefore, we get the fundamental identity∫
R4

F (P ) δP 2=s H(p0) dP =
∫

R3

{∫
R

F (P )
1

2
√

s + |p|2
δ
P 0−

√
s+|p|2 P 0

}
dp

=
∫

R3
F (p0, p)

dp

p0
.

For Λ ∈ L↑+ we get ∫
R3

F (Λ(p0, p))
dp

p0
=

∫
R4

F (Λ P ) δP 2=s H(p0) dP

=
∫

R4
F (Q) δQ2=s H(q0) dQ =

∫
R3

F (p0, p)
dp

p0
.

Now we choose as Λ the boost associated to (βµ) and using (A.8) we have, setting P = Λ Q, we get∫
R3

pµf(βν pν)
dp

p0
=

∫
R3

pµf(β̄ (Λ−1P )0)
dp

p0

= Λµ

∫
R3

qf(β̄ q0)
dq

q0
= Λµ

(
β̄ A1

0

)
,

with
A1 :=

1
β

∫
R3

q0f(β̄ q0)
dq

q0
,

since ∫
R3

qif(β̄ q0)
dq

q0
= 0

for i = 1, 2, 3 by rotation symmetry. This proves (A.10).
Similarly, ∫

R3
pµ pν f(βσ pσ)

dp

p0
= Λµ

µ′Λ
ν
ν′

∫
R3

qµ′ qν′ f(β̄ q0)
dq

q0
= Λµ

µ′Λ
ν
ν′ αµ′ δµ′ν′

with
α0 =

∫
R3

(q0)2 f(β̄ q0)
dq

q0
α1 = α2 = α3 =

∫
R3

(q1)2 f(β̄ q0)
dq

q0
.

Just compute

Λ2 =
(

2 γ2 − 1 2 γ2 v>

2 γ2 v I + 2 γ2 v v>

)
= −(η)µν + 2

(
γ2 γ (γ u/c)>

γ (γ u/c) (γ u/c) (γ u/c)>

)
= −(η)µν +

2
β̄2

βµβν ,
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and

Λµ
0 =

(
γ

γ u/c

)
=

βµ

β̄
.

Therefore ∫
R3

pµ pν f(βσ pσ)
dp

p0
= α1 Λµ

µ′Λ
ν
µ′ + (α0 − α1) Λµ

0Λν
0

= α1 (Λ2)µν + (α0 − α1) Λµ
0Λν

0

= −α1 ηµν +
α0 + α1

β̄2
βµβν ,

and (A.11) is proved. The points (A.12), (A.13) and (A.14) follow. Finally, we compute, thanks to (A.11),∫
R3

ηµν pµ pν f
dp

p0
= A1 ηµν ηµν + A2 βµ βν ηµν ,

so that ∫
R3

((p0)2 − |p|2) f
dp

p0
= 4A1 + A2 [(β0)2 − |β|2] = 4 A1 + A2 β̄2,

and (A.15) follows, remarking that (p0)2 − |p|2 = s.
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