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1 Introduction

Among the wide subject of structured population dynamics, age structured models play a central role.
They allow to represent the evolution of large populations through the density n(t, a) of individuals
with age a. The simpler and most famous McKendrick-Von Foerster model (see Metz et Dieckmann [13],
Murray [14], Webb [15]) has been very successful in mathematical demography (see for instance the survey
of Iannelli [10], the case with delay in Marcati [12] and the many references therein). It simply assumes
age dependent mortality rate D(a) and birth rate B(a) for the population. This model, however, does
not take into account aging processes which are of current biological interest for cells, microbial or virus
populations. For instance, degradation can occur in the reproduction stage based on genetic degeneracy
(see Edelstein-Keshet et al [9] for a general presentation of this aspect and especially for an explanation
in the case of stem cells). More empirically, different individual cells, under constant environmental
conditions, have been proved to exhibit highly variable intermitotic intervals (Lebowitz and Rubinow [11]
and the references therein) and this observation led those authors to postulate an improved mathematical
model where the population is also structured in term of a generation time τ , thus leading to the Partial
Differential Equation for the cell density n(t, a, τ)

∂
∂tn(t, a, τ) + ∂

∂an(t, a, τ) +D(a, τ)n(t, a, τ) = 0, t ≥ 0, a ≥ 0, τ ≥ 0,
n(t, a = 0, τ) =

∫
b(a, τ, τ ′)n(t, a, τ ′)da dτ ′

n(t = 0, a, τ) = n0(a, τ).
(1.1)

This evolution equation describes aging and death of individuals, while the boundary condition at a =
0 describes the birth process. Actually, the authors of [11] postulate that B(a, τ, τ ′) concentrate on
a = τ ′ where the biological explanation becomes clear: τ is indeed the generation time. Notice that
McKendrick-Von Foerster model (see the Appendix) is just recovered as an equation for the average
n̄(t, a) =

∫
n(t, a, τ) dτ in the simple case where B(a, τ, τ ′) = B(a) i.e. birth process neither alters nor

improves aging properties of the new born individuals.
A somewhat related, but more general, model is that of Rotenberg [17]. Then, the biological hidden

variable is a maturation velocity µ ∈ [0, 1], and the observable state a is the biological age, more relevant
than the physical age, according to general theories of senescence and aging (Arking [1]), in other words,
the degree of maturity (and then a/µ is the physical age in the previous models). Then, the density of
population n(t, a, µ) satisfies the transport equation

∂n

∂t
+ µ

∂n

∂a
+D(a, µ)n =

∫
K(a, µ, µ′)n(t, a, µ′)dµ′,

with again boundary conditions at a = 0, and initial data at t = 0,

n(t, a = 0, µ) = G0(µ)
∫
b(a′, µ′)n(t, a′, µ′)dµ′da′,

n(t = 0, a, µ) = n0(a, µ).

This model enhances the stochasticity of the time evolution of the population thanks to the kernel K
which allows a random change of the maturation velocity, and also, as in the previous models, in the
birth process. This feature seems essential to explain experimentally observed deviations from the usual
Gompertz law for mortality rates, see Weitz and Frazer [16].

We would like to point out that many other questions related to multi-structured population dynamics
have been raised in the recent literature, especially existence of the steady states, their stability, and
possible chaotic behavior of solutions. We refer, for instance, to Diekmann et al [7], Dyson et al [8] and
references therein.

Our purpose in this paper is to study several aspects of these models and of some natural nonlinear
versions. Since the mathematical structure in Rotenberg’s model is more interesting we will essentially
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focus on that model. In the second section we study the transport equation and exhibit a Malthus
parameter in the case of expanding populations and show the existence of an exponential profile i.e.
a steady state for the corresponding damped equation. We also study this steady state in detail, and
especially the age profile. The third section is devoted to the study of nonlinear effects which can be
interpreted as competition for resources. Even though we exhibit a quite general class of examples where
the steady states are nonlinearly stable, it turns out that the introduction of a global population based
pressure on reproduction can lead to a purely oscillatory behavior. We use methods relying on tools
introduced for transport equations by Bensoussan et al [3], Bardos et al [2] rather than the usual Laplace
transform methods that are not so well suited for our models. In order to make them more transparent
on a simple example, we treat in an appendix the McKendrick-Von Foerster model with this tool.
Acknowledgment. The first two authors wish to thank R. Ferrière and G. Paul for many discussions
and biological references. L. Ryzhik was supported in part by NSF grant DMS-9971742, and Alfred P.
Sloan Foundation.

2 The linear model

We consider first the linear model for the density n(t, a, µ) of population, of age a ≥ 0 and maturation
rate µ ∈ [0, 1]. The function n satisfies the linear transport equation

∂n

∂t
+ µ

∂n

∂a
+D(a, µ)n =

∫
K(a, µ, µ′)n(t, a, µ′)dµ′, (2.1)

with the boundary condition

n(t, a = 0, µ) = G0(µ)
∫
b(a′, µ′)n(t, a′, µ′)dµ′da′, (2.2)

and the initial data n(0, a, µ) = n0(a, µ) ≥ 0. Here G0(µ) is a fixed distribution of the maturation rates
among the new-born population,

G0(µ) ≥ 0, G0(µ) ∈ L∞([0, 1]), (2.3)

b(a, µ) is the rate at which species of age a and maturation velocity µ give birth. The non-negative
function K describes the probability of a change of maturation rate form µ′ to µ, and the function D
accounts both for transition from maturation rate µ to other maturation rates, and for the death rate.
We assume that D(µ, a) is continuous and positive, and the birth rate b(a, µ) and the symmetric kernel
K(a, µ, µ′) are continuous and bounded:

0 < D(a, µ) < +∞, 0 ≤ b(a, µ),K(a, µ, µ′) ≤ C,
∫
b(a, µ)dadµ < +∞,

K(a, µ, µ′) = K(a, µ′, µ), 0 < σ0 ≤ D(a, µ)−
∫
K(a, µ′, µ)dµ′,

(2.4)

so that in the absence of reproduction the total population vanishes exponentially fast in time.
Equation (2.1) has the form of the linear transport equation encountered, for example, in the theory of

neutron scattering, or multiple scattering of waves, where µ is particle velocity and takes values in [−1, 1].
One of the main features of (2.1) in the context of population dynamics is that maturation velocity µ ≥ 0
is non-negative. This allows to simplify the analysis significantly. In particular, we are interested in the
existence of the Malthus parameter γ such that e−γtn(t, a) remains bounded, and also in the precise large
time asymptotics of such quantity.
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2.1 The Malthus parameter

In order to study the growth or decay in time of solutions of the coupled system (2.1)–(2.2), we first
look for special solutions of the form n(t, a, µ) = eγtg(a, µ). The function g is then an eigenvector of the
corresponding stationary equation, and thus should satisfy

µ
∂g

∂a
+ [D(a, µ) + γ]g =

∫
K(a, µ, µ′)g(a, µ′)dµ′, (2.5)

g(a = 0, µ) = G0(µ)

with a normalization condition ∫
b(a′, µ′)g(a′, µ′)dµ′da′ = 1, (2.6)

that determines the eigenvalue γ (the Malthus parameter). A sufficient condition for the existence of the
eigenvalue γ is given in the following lemma.

We recall that, for γ ≥ −σ0 there exists a unique bounded solution gγ to (2.5), 0 ≤ gγ ≤ ‖G0‖L∞ ,
thanks to the classical theory of evolution PDEs (Dautray and Lions [6]).

Lemma 2.1 Assume (2.3), (2.4) and

1 ≤
∫
b(a, µ)g−σ0(a, µ)dadµ < +∞, (2.7)

here the function gγ denotes the solution to (2.5). Then, there is a unique γ ≥ −σ0 so that a solution to
(2.5)-(2.6) exists.

Proof. Let γ > γ̃ > −σ0, then we have thanks to the maximum principle,

0 < gγ(a, µ) < gγ̃(a, µ) < g−σ0(a, µ) < ‖G0‖L∞ . (2.8)

The last inequality being a consequence of the fact that ‖G0‖L∞ is a super-solution to equation (2.5) for
all γ ≥ −σ0. Furthermore, we can define the function

I(γ) :=
∫
b(a, µ)gγ(a, µ)dadµ ≥ 0.

Thanks to assumption (2.7) and the above inequalities, we have that I(γ) is finite and is decreasing. Also
gγ(a, µ) depends continuously on γ (locally in a) therefore, thanks to the Lebesgue dominated convergence
theorem, I(γ) is continuous. We know, still from (2.7), that I(−σ0) ≥ 1. It remains to show that as
γ → +∞, I(γ) → 0. To do that, we notice that gγ(a, µ) ≤ g̃γ(a, µ), with

µ
∂g̃γ
∂a

+ [D(a, µ) + µγ]g̃γ =
∫
K(a, µ, µ′)g̃γ(a, µ′)dµ′, (2.9)

g̃γ(a = 0, µ) = G0(µ).

And one also has, still using the maximum principle, that g̃γ(a, µ) ≤ g0(a, µ)e−γa. Therefore, as γ →∞,

I(γ) ≤
∫
b(a, µ)g0(a, µ)e−γadadµ→ 0

by Lebesgue dominated convergence theorem. This proves that (2.6) holds for some γ ≥ −σ0.
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2.2 Spatial decay of the steady state

We will assume below that (2.7) holds. If this condition is violated so that the birth rate is insufficient
to sustain growth, then solution of the evolution problem (2.1)-(2.2) decays exponentially in time. We
are going now to describe asymptotic properties in a for the solution to (2.5)– (2.6).

We may assume without loss of generality that γ = 0 is the eigenvalue given by Lemma 2.1. Otherwise,
if γ > −σ0 we may redefine n′(t, a, µ) = n(t, a, µ)eγt. The function n′ satisfies (2.1)-(2.2) with the
modified extinction rate D′ = D − γ, and the corresponding eigenvalue γ′ = 0.

We study now the asymptotic behavior of the steady state g0(a, µ) in the case when the extinction rate
D(a) = d is a constant, and the kernel K(a, µ, µ′) = k(µ, µ′) ≥ k0 > 0 is independent of a and positive.
We define an operator

Kg(µ) =
∫
k(µ, µ′)g(µ′)dµ′

and consider an auxiliary eigenvalue problem in C[0, 1] for b ≥ 0

1
d− bµ

Kψ(µ) = λ(b)ψ(µ). (2.10)

A positive eigenfunction ψ(µ) > 0 exists for each b according to the Krein-Rutman theorem. Integrating
(2.10) in µ we obtain 1− σ0/d ≤ λ(0) < 1, while

λ(b) ≥ k0

b
ln

d

d− b

blows up as b → d. Therefore there exists 0 < b0 < d such that λ(b0) = 1 and the corresponding
eigenfunction satisfies

−b0µψ(µ) + dψ(µ) =
∫
k(µ, µ′)ψ(µ′)dµ′.

We will normalize the function ψ so that ∫
µ|ψ(µ)|2dµ = 1.

Furthermore, since ψ(µ) > 0 there exists a constant C > 0 so that G0(µ) ≤ Cψ(µ). The comparison
principle implies that

g0(a, µ) ≤ Cψ(µ)e−b0a. (2.11)

We can now state our second result which makes more precise the asymptotic behavior of g0.

Lemma 2.2 With the above notation, and for γ = 0 achieved in Lemma 2.1, g0(a, µ) can be written as

g0(a, µ) = Q(a, µ)ψ(µ)e−b0a, 0 < b0 < d.

Moreover, let the constant q∞ be defined by

q∞ =
∫
µQ(a = 0, µ)|ψ(µ)|2dµ =

∫
µG0(µ)|ψ(µ)|dµ

then there exist constants α > 0 and C > 0 so that we have Q = q(a) + w(a, µ) and∫
e2αa|q(a)− q∞|2da+

∫
e2αa|w(a, µ)|2dµda ≤ C. (2.12)
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Proof. As a first step, we write the equation on Q. It satisfies

µ
∂Q(a, µ)

∂a
+ [d− b0µ]Q(a, µ) =

∫
k(µ, µ′)

ψ(µ′)
ψ(µ)

Q(a, µ′) dµ′, (2.13)

Q(a = 0, µ) = Q0(µ) =
G0(µ)
ψ(µ)

,

and is uniformly bounded as follows from (2.11). We define the operator L by

Lf(µ) =
∫
k(µ, µ′)

ψ(µ′)
ψ(µ)

f(µ′)dµ′ + b0µf(a, µ).

The constant function f = 1 is the eigenfunction of L corresponding to the eigenvalue λ = d: L1 = d · 1.
The operator L is self-adjoint in the space L2

ψ[0, 1] with the inner product

〈f, g〉ψ =
∫
f(µ)ḡ(µ)|ψ(µ)|2dµ.

The Krein-Rutman theorem implies that it has spectral radius d, and d is an isolated eigenvalue. Therefore
there exists a constant α0 so that

〈(d− L)w,w〉ψ ≥ α0‖w‖2L2
ψ[0,1], (2.14)

provided that 〈w, 1〉ψ = 0. We may decompose Q = w(a, µ) + q(a), with
∫
w(a, µ)|ψ(µ)|2dµ = 0.

In a second step, we prove that q(a) converges to a constant q∞ as a → 0, and w(a, µ) goes to zero
exponentially fast. We write Q = q∞+Q′(a, µ), so that the function Q′ satisfies (2.13) with the modified
initial data Q′(0, µ) = Q0(µ)− q∞, and in particular∫

µQ′(0, µ)|ψ(µ)|2dµ = 0.

This implies that ∫
µQ′(a, µ)|ψ(µ)|2dµ = 0 for all a ≥ 0. (2.15)

We decompose Q′(a, µ) = q′(a)+w(a, µ) with q′(a) = q(a)− q∞. Then we have from (2.15) for all a ≥ 0:

q′(a) = −
∫
µw(a, µ)|ψ(µ)|2dµ

and thus, by Cauchy-Schwartz inequality,

|q′(a)| ≤ C

(∫
w2(µ)dµ

)1/2

. (2.16)

Next we multiply equation (2.13) for Q′ by Q′e2αa with the constant α to be determined and obtain

1
2
µ
∂

∂a
(eαaQ′)2 +Q′eαaL [weαa] = αµ(Q′eαa)2.

We integrate this equation in µ and use (2.14) to obtain

1
2
∂

∂a

∫
µ (eαaQ′)2 dµ+ α0e

2αa

∫
w2(a, µ)dµ ≤ 2e2αa

∫
αµ(w2 + (q′)2)dµ.
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We use the bound (2.16) to conclude that for sufficiently small α > 0 we have

1
2

∫
e2αaQ2(a, µ)dµ+ C

∫
w2(a, µ)e2αadadµ ≤ 1

2

∫
Q2

0(µ)dµ

and in particular ∫
w2(a, µ)e2αadadµ ≤ C. (2.17)

Now (2.12) follows from (2.16) and (2.17).
One may improve the L2-exponential convergence to a constant in Lemma 2.2 to uniform convergence,

as in [2], or using the probabilistic techniques of [3], but we do not dwell on this here.

2.3 Large time asymptotics of n (exponential case)

The next proposition shows that n(t, a, µ) converges as t→ +∞ to a multiple of the steady state g0(a, µ)
(we still assume without further restriction that γ = 0 is achieved in Lemma 2.1). First we need to define
an auxiliary function H(a, µ) that solves the dual problem to (2.5)-(2.6), namely

µ
∂H

∂a
−D(a, µ)H = −

∫
K(a, µ′, µ)H(a, µ′)dµ′ − b(a, µ),∫

µG0(µ)H(0, µ) = 1, (2.18)

H(a, µ) → 0 as a→∞.

Existence of a non-negative solution to (2.18) is shown as follows. We let Hn(a, µ) = 0 for a ≥ n, while
on the interval 0 ≤ a ≤ n the function Hn is the solution of

µ
∂Hn

∂a
−D(a, µ)Hn = −

∫
K(a, µ′, µ)Hn(a, µ′)dµ′ − b(a, µ)χ

(a
n

)
, (2.19)

Hn(n, µ) = 0.

The function χ(a) is monotonically decreasing and smooth, and satisfies

χ(a) =
{

1, a ≤ 1/2
0, a ≥ 1.

The sequence Hn(a, µ) ≥ 0 is point-wise monotonically increasing to a limit H(a, µ) as n → ∞. Inte-
grating (2.19) we obtain ∫

µHn(0, µ)dµ+ σ0

∫
Hn(a, µ)dadµ ≤

∫
b(a, µ)dadµ,

so that Hn is a bounded sequence in L1, and thus the limit H(a, µ) ≥ 0 belongs to L1. The function
H satisfies the first and third equations in the dual problem (2.18). Furthermore, multiplying (2.18) by
g0(a, µ) we obtain ∫

µg0(0, µ)H(0, µ)dµ =
∫
b(a, µ)g0(a, µ)dadµ. (2.20)

Using the normalization condition (2.6) we obtain the second condition in (2.18). The following propo-
sition characterizes convergence of the solution of the time-dependent problem to the steady state.

7



Proposition 2.3 Under the assumptions of Lemma 2.1, with the value γ = 0 achieved in there, assume
that for some λ ≥ 0 we have b(a, µ) ≥ λH(a, µ) and let n(t, a, µ) be the solution of the initial value
problem (2.1)–(2.2) with the initial data n0(a, µ) ∈ L1 ∩ L∞(R+ × [0, 1]). Then we have∫

H(a, µ)|n(t, a, µ)− βg0(a, µ)|dadµ ≤ e−λt
∫
H(a, µ)|n0(a, µ)− βg0(a, µ)|dadµ.

The constant β is given by β =
∫
n0(a, µ)H(a, µ)dadµ∫
g0(a, µ)H(a, µ)dadµ

.

Proof. We let ñ(t, a, µ) = n(t, a, µ)− βg(a, µ) so that the function ñ satisfies (2.1)–(2.2) with the initial
data ñ0(a, µ) = n0(a, µ)− βg(a, µ). Then we have for all t ≥ 0:∫

ñ(t, a, µ)H(a, µ)dadµ = 0. (2.21)

The modulus |ñ| satisfies
∂|ñ|
∂t

+ µ
∂|ñ|
∂a

+D|ñ| ≤
∫
k(µ, µ′)|ñ(µ′)|dµ′, (2.22)

|ñ|(t, a = 0, µ) = G0(µ)
∣∣∣∣∫ b(a, µ)ñ(t, a, µ)dadµ

∣∣∣∣
= G0(µ)

∣∣∣∣∫ (b(a, µ)− λH(a, µ))ñ(t, a, µ)dadµ
∣∣∣∣

≤ G0(µ)
∫

(b(a, µ)− λH(a, µ))|ñ(t, a, µ)|dadµ.

Multiplying equation (2.22) by H(a, µ) we obtain from the above calculation

d

dt

∫
H(a, µ)|ñ(t, a, µ)|dadµ ≤

∫
µ|ñ(t, a = 0, µ)|H(0, µ)dµ−

∫
b(a, µ)|ñ(t, a, µ)|dadµ

≤
∣∣∣∣∫ b(a, µ)ñ(t, a, µ)dadµ

∣∣∣∣− ∫
b(a, µ)|ñ(t, a, µ)|dadµ

≤ −λ
∫
H(a, µ))|ñ(t, a, µ)|dadµ.

The result of Proposition 2.3 follows by Gronwall lemma.

2.4 Time asymptotic of n (general case)

The time asymptotics in Proposition 2.3 requires the assumption that b(a, µ) ≥ λH(a, µ). As shown
explicitly in the appendix, this is somewhat restrictive close to a = 0 where b(a, µ) cannot vanish. We
provide a more general result which uses the notations of Proposition 2.3.

Proposition 2.4 Under the assumptions of Lemma 2.1, with the value γ = 0 achieved in there, let
n(t, a, µ) be the solution of the initial value problem (2.1)–(2.2) with the initial data n0(a, µ) ≤ Cg0(a, µ).
Then we have ∫

H(a, µ)|n(t, a, µ)− βg0(a, µ)|dadµ→ 0 as t→ +∞.
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Proof. 1st step. Construction of a limit m(t, a, µ). Following the above proof, we arrive at

d

dt

∫
H(a, µ)|ñ(t, a, µ)|dadµ ≤

∣∣∣∣∫ b(a, µ)ñ(t, a, µ)dadµ
∣∣∣∣− ∫

b(a, µ)|ñ(t, a, µ)|dadµ. (2.23)

Therefore, P (t) =
∫
H(a, µ)|ñ(t, a, µ)|dadµ is a decreasing function of time, and the limit P∞ = limt→∞ P (t) ≥

0 exists. We claim that P∞ = 0. Indeed, as a consequence of (2.23), we have∫ ∞

0

[∫
b(a, µ)|ñ(t, a, µ)|dadµ−

∣∣∣∣∫ b(a, µ)ñ(t, a, µ)dadµ
∣∣∣∣] dt ≤ P (0). (2.24)

Furthermore, we have |ñ0(a, µ)| ≤ Cg0(a, µ) and thus |ñ(t, a, µ)| ≤ Cg0(a, µ) and is uniformly bounded
for all times. Therefore, we may choose a sequence of times tk → +∞ so that the sequence of functions
ñk(t, a, µ) = ñ(tk + t, a, µ) converges weak-* in L∞((0, T )× (0,∞)× (0, 1)), for any T > 0, to a function
denoted m(t, a, µ). From (2.24), we deduce∫ T

0

[∫
b(a, µ)|ñk(t, a, µ)|dadµ−

∣∣∣∣∫ b(a, µ)ñk(t, a, µ)dadµ
∣∣∣∣] dt→ 0 as k →∞. (2.25)

2nd step. Properties of m(t, a, µ). For any smooth function ϕ(a, µ), and using equation (2.1), we have
that

d

dt

∫
ñk(t, a, µ)ϕ(a, µ)dadµ is bounded in L∞(0,∞). (2.26)

Therefore, after approximating b by smooth functions, we deduce that
∫
b(a, µ)ñk(t, a, µ)dadµ converges

in C([0, T ]) to
∫
b(a, µ)m(t, a, µ)dadµ. Passing to the limit k →∞ in (2.26) we obtain∫ T

0

∫
b(a, µ)|ñk(t, a, µ)|dadµ→

∫ T

0

∫
b(a, µ)|m(t, a, µ)|dadµ. (2.27)

Next, using this and (2.25) we obtain by convexity,∫ T

0

[∫
b(a, µ)|m(t, a, µ)|dadµ−

∣∣∣∣∫ b(a, µ)m(t, a, µ)dadµ
∣∣∣∣] dt ≤ 0 and thus = 0.

This equality proves that the function m has a constant sign on the support of b. This concludes the
proof when supp(b) contains supp(H) thanks to (2.21) which also gives∫

m(t, a, µ)H(a, µ)dadµ = 0.

Indeed, this implies m = 0 which implies, from (2.27), strong convergence and thus the proof of Propo-
sition 2.4. We refer to the appendix for the extension of this proof to the general case.

3 Nonlinear problem

Several nonlinear versions of age structured models have been proposed and studied in the past. Existence
of solutions for instance was proved by Chipot [4]. Here we study more qualitative properties and try
to understand whether the asymptotic convergence toward a steady state still holds for the nonlinear
equation.
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3.1 A general stable case

Here we restrict our attention to the following non-linear version of the McKendrick-Von Foerster model

∂
∂tn(t, a) + ∂

∂an(t, a) +Dn(t, a) = 0, t ≥ 0, a ≥ 0,
n(t, a = 0) = τ(N(t))

∫
B(a)n(t, a)da,

N(t) =
∫
n(t, a) da,

n(t = 0, a) = n0(a).

(3.1)

The function τ(N) is assumed to be smooth and decreasing to zero as N → +∞ (the total size of the
population introduces a competition for resources which induces a pressure on birth).

In order to conduct explicit calculations, we choose exponential birth rate and constant mortality rate
and assume that the linear model with τ = τ(0) gives a growing population

B(a) = e−r a, D + r < τ(0).

We also use the notation β(t) =
∫
B(a)n(t, a)da. After integrating the equation on n we obtain a coupled

system of two equations
d
dtN(t) = −DN(t) + τ(N(t)) β(t),

d
dtβ(t) = (τ(N(t))−D − r) β(t).

(3.2)

The non-trivial steady state is given by the unique solution of the two equalities

τ(Ncrit) = D + r, βcrit = DNcrit/τ(Ncrit).

The linearized matrix at the equilibrium point is given by

Lcrit =
(
−D + τ ′(Ncrit)βcrit τ(Ncrit)

τ ′(Ncrit)βcrit 0

)
(3.3)

We observe that tr(Lcrit) < 0 and det(Lcrit) > 0 (since τ ′ < 0). Therefore the two eigenvalues have
negative real parts and thus the non-trivial critical point is indeed attractive.

This situation is preserved by small variations of the data and seems thus rather generic.

3.2 Periodic solutions

It is however possible to find cases where the same type of nonlinear model exhibits periodic solutions.
We need however more elaborate data. Therefore we choose

∂
∂tn(t, a) + ∂

∂an(t, a) = 0, t ≥ 0, a ≥ 0,
n(t, a = 0) = τ(Ñ(t))

∫
B(a)n(t, a)da,

Ñ(t) =
∫
ω(a)n(t, a) da.

(3.4)

Here ω ≥ 0 denotes a weight function which allows to refine modeling of total population pressure on
birth.

We are going to consider periodic solutions that are small perturbations around the steady state nst = 1,
which is achieved after renormalizing the data so that

1 = τ
(∫

ω(a) da
) ∫

B(a) da.

We look for periodic solutions in the form

nper = 1 + ε cos ν(t− a), (3.5)

10



and show that such solutions might exist. We assume for simplicity that τ is linear around the state
n = 1 so that

τ
(∫

ω(a) da+ x
)

= τ
(∫

ω(a) da
)
− λ1x

for sufficiently small x. We also assume that there exists ν ∈ R that satisfies∫
B(a) sin νa da =

∫
B(a) cos νa da = 0,

which means that the Fourier transform of B(a) vanishes at some point. This implies that∫
B(a)nper da =

∫
B(a) da

is independent of time. Therefore in order to verify that nper given by (3.5) satisfies (3.4) we only need
to check that

cos(νt) = −λ1

∫
ω(a) cos(ν(t− a)) da. (3.6)

This condition is fulfilled by the choice of λ1: (λ1)−1 = −
∫
ω(a) cos(νa)da > 0 (which is always possible)

provided that
∫
ω(a) sin(νa) da = 0.

Since Rotenberg’s model introduces more randomness and diffusion, it is interesting to check that such
periodic solutions exist for the more general case of equation

∂n

∂t
+ µ

∂n

∂a
+ σn = 0, (3.7)

n(t, a = 0, µ) = G0(µ)
∫
b(a′, µ′)n(t, a′, µ′)da′dµ′ τ

(∫
ω(a′, µ′)n(t, a′, µ′)da′dµ′

)
,

when maturation rate is not restricted to a single value. A steady state solution G(a, µ) for (3.7) exists
provided that

I =
∫
b(a, µ)G0(µ)e−σa/µdadµ >

1
τ(0)

and is given by n(a, µ) = mG0(µ) exp(−σa
µ ). The number m is the solution of

τ

(
m

∫
ω(a, µ)G0(µ)e−σa/µdadµ

)
=

1
I
.

We look for solutions in the form

n(t, a, µ) = φ

(
t− a

µ
, µ

)
e−σa.

We obtain from the boundary condition at a = 0:

φ(t, µ) = G0(µ)
∫
b(a, µ′)φ(t− a

µ′
, µ′)e−σadadµ′ τ

(∫
ω(a, µ′)φ(t− a

µ′
, µ′)e−σadadµ′

)
.

In order to be as explicit as possible we look for a perturbation of a steady state of the form

φ(t, µ) = mG0(µ) [1 + εζ (t)] .

11



This implies that

1 + εζ (t) =
∫
b(a, µ′)G0(µ′)

(
1 + εζ(t− a

µ′
)
)
e−σadadµ′

×τ
(
m

∫
ω(a, µ′)G0(µ′)e−σadadµ+mε

∫
ω(a, µ′)G0(µ′)ζ(t−

a

µ′
)e−σadadµ′

)
.

As before, in order to avoid technicalities we will impose conditions on the birth and consumption rates
that will ensure that ζ(t) = cos(γt) is an explicit solution. Let us denote Ñ0 =

∫
ω(a, µ′)G0(µ′)e−σadadµ

and assume that τ(mÑ0 + x) = λ0 − λ1x for sufficiently small x. Then we get

1 + ε cos (γt) =
∫
b(a, µ′)G0(µ′)

(
1 + ε cos γ(t− a

µ′
)
)
e−σadadµ′

×
(
λ0Ñ0 − λ1mε

∫
ω(a, µ′)G0(µ′) cos γ(t− a

µ′
)e−σadadµ′

)
.

We assume that ∫
b(a, µ)G0(µ)e−σa cos

(
γa

µ

)
=

∫
b(a, µ)G0(µ)e−σa sin

(
γa

µ

)
= 0.

This leads to

1 + ε cos(γt) =
∫
b(a, µ)G0(µ)e−σadadµ (3.8)

×
(
λ0 − λ1mε

∫
ω(a, µ′)G0(µ′) cos(γt− γa

µ′
)e−σadadµ′

)
.

Recall that we have
1 = λ0

∫
b(a, µ′)G0(µ′)e−σadadµ′

so that (3.8) holds if λ1 is chosen to be

λ1 = −
[
m

∫
b(a, µ)G0(µ)e−σadadµ

∫
ω(a, µ′)G0(µ′) cos(

γa

µ′
)e−σadadµ′

]−1

and ∫
ω(a, µ)G0(µ) sin(

γa

µ
)e−σadadµ = 0.

The conditions that we have imposed in this section on functions b, ω and τ are very restrictive. However,
they were imposed only to obtain explicit solutions, and existence of periodic solutions, though not of
such explicit form, does not rely on these specific assumptions. This is of course related to the relation
between such models and retarded differential equations which are known to lead to such kind of solutions
or even to chaotic behaviors.

3.3 The general existence of solutions and steady state

We discuss now existence of steady states of the nonlinear Rotenberg equation

∂n

∂t
+ µ

∂n

∂a
+D(a, µ)n =

∫
K(a, µ, µ′)n(t, a, µ′)dµ′, (3.9)

n(t, a = 0, µ) = G0(µ)
∫
b(a′, µ′)n(t, a′, µ′)da′dµ′ τ

(∫
ω(a′, µ′)n(t, a′, µ′)da′dµ′

)
.
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We refer to §3.1 and §3.2 for the meaning of the nonlinearity τ and of ω which we assume to satisfy

0 ≤ ω(a, µ) ≤ 1 τ(N) decreases to 0 as N →∞. (3.10)

A non-trivial steady state g(a, µ) must be of the form g(a, µ) = mG(a, µ) where G(a, µ) is the solution
of (see §2 for this problem)

µ
∂G(a, µ)

∂a
+D(a, µ)G(a, µ) =

∫
K(a, µ, µ′) G(a, µ′) dµ′, (3.11)

G(a = 0, µ) = G0(µ).

The constant m is the solution of

τ

(
m

∫
ω(a, µ)G(a, µ)dadµ

)
=

[∫
ω(a, µ)G(a, µ)dadµ

]−1

. (3.12)

Solution of (3.12) exists and is unique provided that∫
ω(a, µ)G(a, µ)dadµ ≥ 1. (3.13)

This means that birth rate ω(a, µ) has to be sufficiently large to overcome the competition for resource
term τ(N) in the boundary condition (2.2). The main difference between the linear and nonlinear
Rotenberg models is that in the non-linear case the steady state exists as long as (3.13) is satisfied, while
in the linear case typically one observes either growth or decay. In particular, while large enough birth
rate guarantees existence of a steady state in the nonlinear model, it leads to exponential growth in time
of solutions of the linear model.

Note that solutions of the non-linear problem remain bounded in time under very mild conditions.

Proposition 3.1 Assume (2.3), (2.4), (3.10) and 0 ≤ n0(a, µ) ∈ L1∩L∞(R+× [0, 1]). Then there exists
a constant C so that 0 ≤ n(t, a, µ) ≤ C for all t, a and µ,

∫
n(t, a, µ)dadµ ≤ C for all t ≥ 0.

Proof. Following classical arguments (see [4] for instance) local in time non-negative solutions exist and
we only need to provide a priori bounds. We show such bounds below in L1∩L∞. Note that since b(a, µ)
and G0(µ) are uniformly bounded, we have, after integrating (3.9),

dN

dt
+ σ0N ≤

∫
µn(t, a = 0, µ)dµ ≤ Cτ(N)N,

where N =
∫
n(t, a, µ)dadµ. This implies that there exists a constant C = C(N0) so that, by Gronwall’s

lemma, N(t) ≤ C. This provides the uniform L1 bound. Therefore the boundary term n(t, a = 0, µ) ≤ C
is uniformly bounded. Hence an appropriate multiple of the constant ‖G0‖∞ is a super-solution for
n(t, a, µ) (we consider that n satisfies the linear equation (3.9) with an upper bound for the boundary
term and initial data), and thus n(t, a, µ) is also uniformly bounded in L∞.

Of course, the examples of the previous subsections show that the time asymptotics cannot be simple
and we further refer to [8] for examples of chaotic behaviors.

4 Appendix

In this section, we consider the McKendrick-Von Foerster model and we investigate its long time asymp-
totic behavior by means of the simple tools of multiplicators and entropy methods. This is a simpler
model to explain with explicit calculations the methods used in this paper.
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We assume that the population is only age dependent and thus it is described by the density population
n(t, a) ≥ 0 with age a ∈ (0,∞) at time t ∈ (0,∞). Denoting by b(a) the birth rate and d(a) the death
rate, the evolution of the density writes

∂

∂t
n(t, a) +

∂

∂a
n(t, a) + d(a)n(t, a) = 0, t ≥ 0, a ≥ 0, (4.1)

n(t, a = 0) =
∫
b(a)n(t, a)da (4.2)

n(t = 0, a) = n0(a). (4.3)

On the sequel, we always make the following assumptions

0 ≤ d ∈ L∞loc(R+), 0 ≤ b ∈M1(R+), b 6≡ 0. (4.4)

Moreover, sometimes, we also make the additional assumption

b ∈ C(R+). (4.5)

We recall that the death rate d(a) can vary drastically for different species: for trees it is often constant,
for fish it decreases for small values of a (smaller fish are easier targets for predators) and increases for
larger a, for mammals it is often increasing and unbounded (Gompertz law gives an exponential growth).

Since we focus here on the qualitative properties of the solution, we merely accept that there exists a
solution n ∈ C([0,∞);L1(0,∞)) to (4.1)-(4.3) for any initial datum n0 ∈ L1(0,∞) and we refer to [4],
[13], [15], [10], [5] for a presentation of the existence theory.

The key information to analyse the long time behavior is the so-called Malthus parameter. We define
here a “generalized” Malthus parameter γ ∈ R by the following way

γ := inf{δ ∈ R, I(δ) =
∫ ∞

0

b(a) e−D(a)−δ a da ≤ 1}, (4.6)

with the notation D(a) =
∫ a

0

d(a′) da′.

Some comments are in order. The function I(·) is decreasing, I(0) is finite, I(δ) → 0 when δ → ∞,
I(δ) → ∞ when δ → −∞, so that the expression (4.6) effectively defines a unique γ ∈ R. Let us
emphasize that, thanks to Beppo-Levi Theorem B := I(γ) satisfies

either B = 1 or B < 1 and I(δ) = +∞ ∀ δ < γ. (4.7)

Also remark that B = 1 if one of the following general conditions holds: (i) d(a) → ∞ as a → ∞ and
b is bounded, (ii) b is compactly supported or (iii) more generally if for some γ0, 1 ≤ I(γ0) < ∞. An
example when B < 1 is a constant death rate d(a) = d ∈ R+ and the birth rate b(a) = β (1 + a2)−1 with
β ∈ (0, 2/π).

We also introduce the possibly infinite number

A† := inf{A > 0, supp b ⊂ [0, A]} ∈ (0,∞], (4.8)

which corresponds to the maximal age with which an individual can give birth.
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4.1 Exponential growth and decay of population

A first classical remark is that, for any constant n̄0, the function

n̄(t, a) = n̄0 e
−D(a)+γ (t−a), (4.9)

is a particular solution of (4.1)– (4.2) if and only if, B = 1. In that case, we easily verify that when
t → ∞, n̄(t, .) tends exponentially to 0 if γ < 0, n̄(t, .) tends exponentially to +∞ if γ > 0, and n̄ is a
stationary solution when γ = 0.

This function gives the long time pattern of any solution. To see this we set, for a given function ψ,

Mψ(t) =
∫ ∞

0

n(t, a)ψ(a) da.

Proposition 4.1 We assume (4.4), then there exists a positive function φ ∈ C0(R+), supp(φ) = [0, A†]
such that

Mφ(t) = Mφ(0) eγt if B = 1, (4.10)
Mφ(t) ≤Mφ(0) eγt if γ < 0, B < 1, (4.11)
Mφ(t) → 0, but MeD ↗ λ1 <∞ if γ = 0 and B < 1, (4.12)

For the last case (4.12) we need furthermore the additional assumption (4.5).

Since φ is positive on [0, A†] we see that Mφ is a measure of the population density. Then Proposition
4.1 says that the population grows exponentially if γ > 0 and decreases exponentially if γ < 0. The case
γ = 0 and B < 1 is interesting since the total density may be constant (for example when d = 0) but the
density of new generations (that Mφ measures) decreases. Therefore, the average age of the population
increases and tends to infinity, this can be interpreted as senescence.

Proof. For a given function φ, we get

d

dt

∫ ∞

0

n(t, a)φ(a) da =
∫ ∞

0

n(t, a) (b(a)φ(0) + φ′(a)− d(a)φ(a)) da. (4.13)

We use the function φ given by the dual problem

φ′ = (d+ γ)φ− b

B
, φ(0) = 1, (4.14)

so that

φ(a) =
eD(a)+γ a

B

∫ ∞

a

b(α) e−D(α)−γ α dα,

and 0 ≤ φ ∈ C(R+) with φ(a) → 0 when a→∞. With this choice of φ in (4.13) we get

d

dt
Mφ(t) = γMφ(t) + (1− 1

B
)Mb(t). (4.15)

Assertions (4.10) and (4.11) readily follow from (4.15).
We now deal with the case γ = 0 and B < 1, which implies that b is not compactly supported. First

observe that thanks to (4.15) we get

Mφ ↘ ` ≥ 0 and Mb ∈ L1(R+),

and we want to show that ` = 0. In order to prove it, we fix T > 0 and define nk(t, a) := n(tk + t, a) for
a given sequence (tk) ↗ +∞. Observing that inf(0,A) φ > 0 for any A > 0 and that supt≥0Mφ(t) < ∞,
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we conclude that (nk) is bounded in M1((0, T ) × (0, A)) for any A > 0. As a consequence, up to the
extraction of a subsequence, there exists n∗ ∈ M1((0, T ) × (0, A)) such that nk ⇀ n∗ in the sense of
weak convergence of measure σ(M1((0, A)× (0, T )), C([0, A]× [0, T ]))∗. Then, we may pass to the limit∫ T

0

∫ A

0

b n∗ dadt ≤ lim inf
∫ T

0

∫ A

0

b nk dadt ≤ lim inf
∫ ∞

tk

Mb(t) dt = 0,

so that
∫ T
0

∫∞
0
b n∗ dadt = 0 and n∗ = 0 on (0, T )× supp b. since n∗ satisfies the transport equation (4.1),

we deduce that n∗ ≡ 0, which in turn implies

n(t, .) ⇀ 0 σ(M1(0, A), C([0, A])) ∗ for any A > 0. (4.16)

Therefore ` = 0. On the other hand, choosing ψ to be the solution of ψ′ = dψ, ψ(0) = 1 as a multiplicator
in (4.13) we get

d

dt
MeD = Mb.

Since Mb ∈ L1 we deduce that MeD ↗ λ1 < ∞. Moreover, since eD ≥ 1 and φ → 0, assertion (4.12)
follows from (4.16).

We can be slightly more precise thanks to the following maximum principle.

Proposition 4.2 We assume (4.4) and (b− d)+ ∈ L∞. For any solutions n1 and n2 of (4.1)-(4.3) such
that n1(0, a) ≤ n2(0, a) ∀ a ≥ 0, there holds

n1(t, a) ≤ n2(t, a) ∀ t, a ≥ 0.

Proof. Define j(s) = (s)+ and set n = n2 − n1. By assumption, n satisfies

∂t n+ ∂a n = −dn, n(t, 0) =
∫ ∞

0

n b da, n(0, a) ≤ 0.

Multiplying that equation by j′(n) and integrating with respect to the age variable, we get

d

dt

∫ ∞

0

j(n) da = j

(∫ ∞

0

n b da

)
−

∫ ∞

0

dn j′(n) da

≤ ‖(b− d)+‖L∞
∫ ∞

0

j(n) da.

We conclude, thanks to Gronwall lemma, that
∫ ∞

0

j(n) da = 0 and that concludes the proof.

Remark As an immediate consequence we get: If γ < 0 and 0 ≤ n0 ≤ M e−D(a)−γ a for some M > 0
then

0 ≤ n(t, a) ≤M e−D(a)+γ (t−a) → 0.

If γ > 0 and n0 ≥ me−D(a)−γ a for some m > 0 then

n(t, a) ≥ m e−D(a)+γ (t−a) → ∞.

By regularization arguments we may even go further and prove that there exists at least a solution which
satisfies the above conclusion without the assumption (b− d)+ ∈ L∞.
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4.2 Equilibrium case

We now focus on the case γ = 0 and B = 1. Remark that, defining the new density ñ(t, a) := n(t, a) eγ t,
we are reduced to this case under the assumption B = 1.

Proposition 4.3 We assume (4.4),
∫
b(a)eD(a)da = 1, b > 0 a.e. on some interval ]a0, a1[. Then, for

any n0 ∈ L∞(0, A†) the solution n(t, .) satisfies

n(t, .) −→
t→∞

n∗ e−D, in L1
loc(R+), (4.17)

with n∗ the constant uniquely determined thanks to the conservation law

Mφ(t) = Mφ(0) = n∗
∫ ∞

0

e−D da, φ′ = dφ− b, φ(0) = 1. (4.18)

If additionally, we assume that for some µ > 0, we have be−D ≥ µφ, then∫ ∞

0

|n(t, a)− n∗e−D| da ≤ e−µ t
∫ ∞

0

|n(0, a)− n∗e−D| da.

Remarks 1. Concerning the assumption on the positivity of b, we recall that for b = δ(a = a†) (Dirac
mass), there are periodic solutions and the conclusion of the theorem is wrong
2. We recall that an exponential rate of convergence can be proved under more general assumptions
using Laplace transform (see the above references). We present this new method here in order to show
on a simple example the arguments used for Rotenberg model.

Proof. We first prove the generic convergence result. Fix a convex function j : R+ → R+ such that
j(0) = 0. A direct computation shows that

∂

∂t
(φ j(n eD) e−D) +

∂

∂a
(φ j(n eD) e−D) = −b j(n eD) e−D.

Therefore, defining the entropy functional J and the entropy dissipation term J by

J(n) :=
∫ ∞

0

φ j(n eD) e−D da,

J (n) :=
∫ ∞

0

j(n eD) b e−D da− j

(∫ ∞

0

(n eD) b e−D da
)
≥ 0,

the following H-Theorem holds
d

dt
J(n(t, .)) = −J (n(t, .)) ≤ 0.

For any given sequence (tk) ↗ +∞, we define nk(t, a) = n(t + tk, a). Thanks to the H-Theorem we
have ∫ ∞

0

{
j

(∫ ∞

0

(nk eD) b e−D da
)
−

∫ ∞

0

j(nk eD) b e−D da
}
dt → 0,

which implies, after extracting subsequences (recall that n is uniformly bounded thanks to Proposition
4.2),

nk′ ⇀ n̄, with n̄ = ϕ(t) e−D b -a.e. R+ × R+.

Since, on R+×]a0, a1[, there holds

0 = ∂tn̄+ ∂an̄− d n̄ = ϕ′(t) e−D
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so that ϕ(t) = ϕ0 is a constant. Using now that the equation is satisfied by n̄ on R+ × R+, we get
n̄(t, a) = ϕ0 e

−D (this requires a simple truncation argument when A† = ∞). Thanks to the conservation
laws established in the proof of Proposition 4.1 we may identify ϕ0 = n∗. By uniqueness, we conclude
that the full family

n(t+ tk, a) ⇀
k→∞

n∗ e−D(a) L∞(R+ × R+)− w.

It yields

n(t+ tk, 0) =
∫ A

0

b n(t, a) da ⇀
k→∞

n∗ L∞(R+)− w.

On the other hand, for any ϕ ∈ C1
c (0, A), there holds

d

dt

∫ A

0

n(t, a)ϕda =
∫ A

0

(d+ ϕ′)nda ∈ L∞(R+),

so that, by standard arguments, for all T > 0,

n(t+ tk, 0) →
k→∞

n∗ C([0, T ]).

Writing
d

dt

∫ A

0

|n− n̄|(t+ tk, a) da = |n(t+ tk, 0)− n̄(t+ tk, 0)| da,

we conclude that

sup
[0,T ]

∫ A

0

|n− n̄|(t+ tk, a) da ≤ T sup
[0,T ]

|n(t+ tk, 0)− n∗| → 0,

and the first asymptotic result is proved.

We now prove the exponential decay. First, by linearity, we can replace n by n−n∗e−D in the equation
and thus

∫∞
0
n(t, a)φ(a)da = 0. Then, using j(n) = |n| we find

d

dt

∫ ∞

0

φ |n(t)| da = −
∫ ∞

0

b(a) |n(t)| da+ |
∫ ∞

0

b(a)n(t) da|

= −
∫ ∞

0

b(a) |n(t)| da+ |
∫ ∞

0

(b(a)− µφ)n(t) da|

≤ −
∫ ∞

0

b(a) |n(t)| da+
∫ ∞

0

(b(a)− µφ) |n(t)| da

= −µ
∫ ∞

0

φ |n(t)| da.

And we conclude again by Gronwall lemma.
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