Landau equation for Coulomb potentials near Maxwellians and related problems

S. Mischler

(Université Paris-Dauphine)

Workshop interactions between PDEs & functional inequalities
Institut Mittag-Leffler, September 12-16, 2016
Results are picked up from

- Carrapatoso, M. *Landau equation for very soft and Coulomb potentials near Maxwellians*, submitted
- Kavian, M., *The Fokker-Planck equation with subcritical confinement force*, submitted
- M., *Semigroups in Banach spaces - factorization approach for spectral analysis and asymptotic estimates*, in progress

Generalize to a **weak dissipativity** framework some related previous works available in a dissipativity framework, in particular:

- Gualdani, M., Mouhot, *Factorization for non-symmetric operators and exponential H-Theorem*, arXiv 2010

which in turn formalize several reminiscent ideas from Bobylev 1975, Voigt 1980, Arkeryd 1988, Gallay-Wayne 2002, Mouhot 2006, ...
Outline of the talk

1. Introduction and main result
 - Hypodissipativity vs weak hypodissipativity
 - The Fokker-Planck equation with weak confinement
 - Landau equation with Coulomb potential near Maxwellians

2. Weak hypodissipativity in an abstract setting
 - From weak dissipativity to decay estimate
 - From decay estimate to weak dissipativity
 - Functional space extension (enlargement and shrinkage)
 - Spectral mapping theorem
 - Krein-Rutman theorem

3. About the proof for the Fokker-Planck equation
 - $F = \nabla V$
 - general forces

4. About the proof for the Landau equation
 - Estimates on the nonlinear problem and natural large space
 - Splitting trick, dissipativity and decay estimates on the linear operators
Outline of the talk

1. Introduction and main result
 - Hypodissipativity vs weak hypodissipativity
 - The Fokker-Planck equation with weak confinement
 - Landau equation with Coulomb potential near Maxwellians

2. Weak hypodissipativity in an abstract setting
 - From weak dissipativity to decay estimate
 - From decay estimate to weak dissipativity
 - Functional space extension (enlargement and shrinkage)
 - Spectral mapping theorem
 - Krein-Rutman theorem

3. About the proof for the Fokker-Planck equation
 - $F = \nabla V$
 - general forces

4. About the proof for the Landau equation
 - Estimates on the nonlinear problem and natural large space
 - Splitting trick, dissipativity and decay estimates on the linear operators
Hypodissipative framework

With Mouhot, Gualdani and Scher, we have recently revisited the spectral theory of operators and semigroups in an hypodissipative and abstract general Banach framework, providing a set of results including:

- **Spectral mapping Theorem**
- **Weyl’s Theorem** about distribution of eigenvalues under compact perturbation
- **Stability of the spectrum Theorem** under small perturbation
- **Krein-Rutman Theorem**
- **Functional space extension (enlargement and shrinkage) Theorem**

These results were motivated by linear and nonlinear evolution PDEs to which they have been applied:

- Asymptotic behavior of linear PDEs in large space (Growth-Fragmentation, Kinetic Fokker-Planck, Run-and-Tumble in $W^{r,p}(m), -1 \leq r \leq 1 \leq p \leq \infty$)
- Optimal (= linearized) exponential decay estimates for nonlinear PDE (homogeneous (inelastic) Boltzmann, Parabolic-elliptic Keller-Segel)
- Existence, uniqueness and stability results in perturbative regime (inhomogeneous (inelastic) Boltzmann, Parabolic-parabolic Keller-Segel, kinetic FitzHugh-Nagumo and others neuronal networks)
Main feature and next step 1

- Our theory is suitable for semigroups S_{Λ} which split as

$$S_{\Lambda}(t) = S_1(t) + S_2(t) = \sum_{\text{finite}} S_{\Lambda_j}(t)\Pi_j + O(e^{at})$$

with S_1 has asymptotically dominant finite dimensional range and S_2 is asymptotically negligible

with $\Lambda_j = \Lambda|_{\Pi_j}$, $\Sigma(\Lambda_j) = \{\lambda_j\}$, $\Re\lambda_j > a$, Π_j commutes with Λ and $\dim \Pi_j < \infty$

We establish a suitable **characterisation** of such semigroups **with spectral gap** \simeq quantified principal spectral mapping theorem

- Next step 1 (open problems): take into account PDEs with boundary conditions such as the transport equation

$$\partial_t f + \partial_x f + a(x)f = 0, \quad f(t, 0) = \int_0^\infty a(y) f(t, y) \, dy, \quad a = \text{step function}$$

with applications to neurons network models as in Pakdaman-Perthame-Salort works, or kinetic PDEs

$$\partial_t f + \nu \cdot \nabla_x f = C(f) + \text{Maxwell boundary condition}$$

as in Guo and Briant-Guo works.
Reminder about dissipativity and hypodissipativity

For a semigroup $S_{\mathcal{B}}$ with generator \mathcal{B} the following properties are “equivalent”:

1. \mathcal{B} is dissipative:
 $$\langle f^*, \mathcal{B} f \rangle_X \leq a \|f\|_X^2,$$
 for any $f \in X_1^\mathcal{B}$ and $f^* \in X'$ dual element;

2. $S_{\mathcal{B}}$ satisfies the growth estimate
 $$\|S_{\mathcal{B}}(t)\|_{X \rightarrow X} \leq e^{at};$$

3. \mathcal{B} is hypodissipative:
 $$\langle f^*, \mathcal{B} f \rangle_X \leq a \|f\|_X^2,$$
 for an equivalent norm $\|\cdot\|_X$ on X;

4. $S_{\mathcal{B}}$ satisfies the growth estimate
 $$\|S_{\mathcal{B}}(t)\|_{X \rightarrow X} \leq C e^{at}, \quad C \geq 1.$$
Reminder about dissipativity and hypodissipativity

For a semigroup S_B with generator B the following properties are “equivalent”:

1. B is dissipative:
 $$\langle f^*, Bf \rangle_X \leq a \|f\|^2_X,$$
 for any $f \in X_1^B$ and $f^* \in X'$ dual element;

2. S_B satisfies the growth estimate
 $$\|S_B(t)\|_{X \to X} \leq e^{at};$$

3. B is hypodissipative:
 $$\langle f^*, Bf \rangle_X \leq a \|f\|^2_X,$$
 for an equivalent norm $\|\cdot\|_X$ on X;

4. S_B satisfies the growth estimate
 $$\|S_B(t)\|_{X \to X} \leq C e^{at}, \quad C \geq 1.$$

$(1) \Rightarrow (2)$: consequence of Gronwall lemma and the closed differential inequality

$$\frac{1}{2} \frac{d}{dt} \|f_t\|^2_X = \langle f_t^*, Bf_t \rangle \leq a \|f_t\|^2_X,$$

$f_t := S_B(t)f_0.$
Reminder about dissipativity and hypodissipativity

For a semigroup S_B with generator B the following properties are “equivalent”:

1. B is dissipative:
 \[\langle f^*, Bf \rangle_X \leq a \| f \|_X^2, \] for any $f \in X_1^B$ and $f^* \in X'$ dual element;

2. S_B satisfies the growth estimate
 \[\| S_B(t) \|_{X \to X} \leq e^{at}; \]

3. B is hypodissipative:
 \[\langle f^*, Bf \rangle_X \leq a \| f \|_X^2, \] for an equivalent norm $\| \cdot \|_X$ on X;

4. S_B satisfies the growth estimate
 \[\| S_B(t) \|_{X \to X} \leq C e^{at}, \quad C \geq 1. \]

(4) \Rightarrow (3): one may choose the equivalent handy norm defined by
 \[\| f \|_X^2 := \eta \| f \|_X^2 + \int_0^\infty \| S_B(\tau)f \|_X^2 e^{-b\tau} \, d\tau, \quad \eta > 0, \ b > a. \]
Next step 2: weakly hypodissipative framework

Possible extension to a weakly dissipative framework?
We do not assume the dissipativity inequality (1) but the weaker inequality
\[\langle f^*, Bf \rangle_Y \leq a \|f\|_Z^2, \quad Y \subset Z, \quad a < 0. \]

▷ We cannot close a differential inequality with this only information.
However, assuming the additional (dissipativity) inequality
\[\langle f^*, Bf \rangle_X \leq 0, \quad X \subset Y, \]
we may exploit these two inequalities together with an interpolation argument in order to get some rate of decay to 0 (as for the Allen-Cahn equation)

That corresponds to the (no spectral gap) situation:
\[\Sigma_P(B) \cap \bar{\Delta}_0 = \emptyset, \quad \Sigma(B) \cap \bar{\Delta}_0 \neq \emptyset. \]

In this weakly dissipative framework, we will present:
• some (not all) abstract spectral analysis results
• some application to the Fokker-Planck equation with weak confinement force
• some application to the Landau equation for Coulomb potential near Maxwellians in the torus
The Fokker-Planck equation with weak confinement

Consider the Fokker-Planck equation

$$\partial_t f = \Lambda f = \Delta_v f + \text{div}_v(F f)$$

on $f = f(t, v) \in \mathbb{R}$, $t \geq 0$, $v \in \mathbb{R}^d$, with a weak confinement force field term F such that

$$F(v) \approx v \langle v \rangle^{\gamma-2}, \quad \gamma \in (0, 1) \quad \text{(say =)}$$

and an initial datum

$$f(0) = f_0 \in W^{r,p}(m) \quad \text{(means } m f_0 \in W^{r,p}).$$

Here $p \in [1, \infty]$, $r = 0$ and m is a polynomial weight

$$m = \langle v \rangle^k, \quad k > k^*(p, r, \gamma),$$

or an exponential weight

$$m = e^{\kappa \langle v \rangle^s}, \quad s \in (0, \gamma], \quad \kappa > 0.$$
Statement of the decay theorem

Theorem 1. (Kavian & M.)

There exists a unique “smooth”, positive and normalized steady state f_∞. For any $f_0 \in L^p(m)$

$$
\| f(t) - \langle f_0 \rangle f_\infty \|_{L^p} \leq \Theta(t) \| f_0 - \langle f_0 \rangle f_\infty \|_{L^p(m)},
$$

with

$$
\Theta(t) = \frac{C}{\langle t \rangle^K}, \quad K = \frac{k - k^*(p)}{2 - \gamma} \quad \text{if} \quad m = \langle x \rangle^k
$$

$$
= Ce^{-\lambda t^\sigma}, \quad \sigma = \frac{s}{2 - \gamma} \quad \text{if} \quad m = e^{\kappa \langle x \rangle^s}.
$$

Improves (better rate and/or larger class of initial data) earlier results by Toscani, Villani, 2000 (based on log-Sobolev inequality) & Röckner, Wang, 2001 (based on weak Poincaré inequality).

Both works deal with a force field $F = \nabla V$ what is not necessary here.
Consider the Landau equation

\[\partial_t f + \mathbf{v} \cdot \nabla_x f = Q(f, f) \]

\[f(0, .) = f_0 \]

on density of the plasma \(f = f(t, x, \mathbf{v}) \geq 0 \), time \(t \geq 0 \), position \(x \in \mathbb{T}^3 \) (torus), velocity \(\mathbf{v} \in \mathbb{R}^3 \)

\(Q = \) the Landau (binary) collisions operator

\[Q(g, f) = \partial_j \int_{\mathbb{R}^3} a_{ij}(\mathbf{v} - \mathbf{v}_*)(g_\ast \partial_j f - f \partial_j g_\ast) \, d\mathbf{v}_\ast \]

for the Coulomb potential cross section

\[a_{ij}(z) = |z|^{\gamma + 2}(\delta_{ij} - \frac{z_i z_j}{|z|^2}), \quad \gamma = -3. \]
around the H-theorem

We recall that $\varphi = 1, \nu, |\nu|^2$ are collision invariants, meaning

$$\int_{\mathbb{R}^3} Q(f, f) \varphi \, d\nu = 0, \quad \forall f.$$

\Rightarrow laws of conservation

$$\int_{\mathbb{R}^6} f \begin{pmatrix} 1 \\ \nu \\ |\nu|^2 \end{pmatrix} = \int_{\mathbb{R}^6} f_0 \begin{pmatrix} 1 \\ \nu \\ |\nu|^2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$

We also have the H-theorem, namely

$$\int_{\mathbb{R}^3} Q(f, f) \log f \begin{cases} \leq 0 \\ = 0 \Rightarrow f = \text{Maxwellian} \end{cases}$$

From both pieces of information, we expect

$$f(t, x, \nu) \underset{t \to \infty}{\longrightarrow} \mu(\nu) := \frac{1}{(2\pi)^{3/2}} e^{-|\nu|^2/2}.$$
Existence, uniqueness and stability in small perturbation regime

Theorem 2. (Carrapatoso, M.)

Take an “admissible” weight function m such that

$$\langle v \rangle^{2+3/2} < m < e|v|^2.$$

There exists $\varepsilon_0 > 0$ such that if

$$\|f_0 - \mu\|_{H^2_x L^2_v(m)} < \varepsilon_0,$$

there exists a unique global solution f to the Landau Coulomb equation and

$$\|f(t) - \mu\|_{H^2_x L^2_v} \leq \Theta_m(t),$$

with

$$\Theta_m(t) \sim \begin{cases}
t^{-(k-2-3/2)/|\gamma|} & \text{if } m = \langle v \rangle^k \\
e^{-\lambda t^{s/|\gamma|}} & \text{if } m = e^{\kappa |v|^s} \end{cases}$$
Comments on the main Theorem 2

• Improves (larger space) Guo and Strain’s results (CMP 2002, CPDE 2006, ARMA 2008) who proved a similar theorem in the higher order and strongly confinement Sobolev space $H^{8}_{x,v}(\mu^{-\theta})$, $\theta > 1/2$. Based on high order nonlinear (hypercoercivity) energy estimates.

• A corollary improves (faster rate) Desvillettes and Villani’s result (Invent. Math 2005) who proved polynomial rate of convergence for a priori suitably bounded solutions in a space inhomogeneous setting. Based on entropy and hypocoercivity methods.

• A corollary improves (faster rate) Carrapatoso, Desvillettes and He result (arXiv 2015) who proved polynomial and exponential rate for weak solutions in a space homogeneous setting. Based on an entropy method.

• Our proof mixes
 - Simple nonlinear estimates and trap argument in large space (no self-adjointness)
 - Decay and dissipativity estimates in appropriate norms for the linearized equation
Outline of the talk

1. Introduction and main result
 - Hypodissipativity vs weak hypodissipativity
 - The Fokker-Planck equation with weak confinement
 - Landau equation with Coulomb potential near Maxwellians

2. Weak hypodissipativity in an abstract setting
 - From weak dissipativity to decay estimate
 - From decay estimate to weak dissipativity
 - Functional space extension (enlargement and shrinkage)
 - Spectral mapping theorem
 - Krein-Rutman theorem

3. About the proof for the Fokker-Planck equation
 - \(F = \nabla V \)
 - General forces

4. About the proof for the Landau equation
 - Estimates on the nonlinear problem and natural large space
 - Splitting trick, dissipativity and decay estimates on the linear operators
For a given Banach space X, we want to develop a spectral analysis theory for operators Λ enjoying the splitting structure

$$\Lambda = A + B, \quad A \prec B, \quad B \text{ weakly hypodissipative.}$$

We will

• clarify the links between dissipativity and decay;
• present an extension of the decay estimate result;
• present a possible version of spectral mapping theorem;
• present a possible version of Krein-Rutman theorem.

• We do not present any version of Weyl’s theorem or perturbation theorem.

Prop 1.

Consider three “regular” Banach spaces $X \subset Y \subset Z$ and a generator Λ. Assume

$$\forall f \in Y_1^\Lambda, \quad \langle f_Y^*, \Lambda f \rangle_Y \lesssim -\|f\|^2_Z$$

$$\forall f \in X_1^\Lambda, \quad \langle f_X^*, \Lambda f \rangle_X \leq 0 \quad \text{(or S_Λ is bounded X)}$$

$$\forall R > 0, \quad \varepsilon_R \|f\|^2_Y \leq \|f\|^2_Z + \theta_R \|f\|^2_X, \quad \varepsilon_R, \frac{\theta_R}{\varepsilon_R} \to 0.$$

There exists a decay function Θ such that

$$\|S_\Lambda(t)\|_{X \to Y} \leq \Theta(t) \to 0.$$

- We say that a Banach space E is regular if $\varphi : E \to \mathbb{R}, f \mapsto \|f\|^2_E/2$ is G-differentiable and

 $$\{f^* \in E', \quad \langle f^*, f \rangle_E = \|f\|^2_E = \|f^*\|^2_{E'} \} = \{f^*_E\}, \quad f^*_E := D\varphi(f).$$

Hilbert spaces and L^p spaces, $1 < p < \infty$, are regular spaces.

- We denote $E_s^\Lambda := \{f \in E, \quad \Lambda^s f \in E\}$ the abstract Sobolev spaces
Prop 1.

Consider three “regular” Banach spaces $X \subset Y \subset Z$ and a generator Λ. Assume

\[\forall f \in Y_1^\Lambda, \quad \langle f_Y^*, \Lambda f \rangle_Y \lesssim -\|f\|_Z^2 \]

\[\forall f \in X_1^\Lambda, \quad \langle f_X^*, \Lambda f \rangle_X \leq 0 \quad \text{(or } S_\Lambda \text{ is bounded } X) \]

\[\forall R > 0, \quad \varepsilon_R \|f\|_Y^2 \leq \|f\|_Z^2 + \theta_R \|f\|_X^2, \quad \varepsilon_R, \frac{\theta_R}{\varepsilon_R} \to 0. \]

There exists a decay function Θ such that

\[\|S_\Lambda(t)\|_{X \to Y} \leq \Theta(t) \to 0. \]

- We say that m is an admissible if $m = \langle v \rangle^k$ or $m = e^{\kappa \langle v \rangle^s}$. We then write $m_0 \prec m_1$ or $m_1 \succ m_0$ or if $m_0/m_1 \to \infty$.

- For $X = L^p(m_1)$, $Y = L^p(m_0)$, $Z = L^p(m_0 \langle v \rangle^{\alpha/p})$, with $\alpha < 0$ and $m_1 \succ m_0$, we get

\[\Theta(t) \sim \begin{cases}
 t^{-(k_1-k_0)/|\alpha|} & \text{if } m_i = \langle v \rangle^{k_i} \\
 e^{-\lambda t^{s/|\alpha|}} & \text{if } m_1 = e^{\kappa |v|^s}
\end{cases} \]
Proof of Proposition 1

We define \(f_t := S_\Lambda(t)f_0, \) \(f_0 \in X, \) and we compute

\[
\frac{d}{dt}\|f_t\|^2_X \leq 0 \quad \Rightarrow \quad \|f_t\|_X \leq C\|f_0\|_X, \quad C \geq 1,
\]

\[
\frac{d}{dt}\|f_t\|^2_Y \precsim -\|f_t\|^2_Z
\]

\[
\precsim -\varepsilon R\|f_t\|^2_Y + \theta R\|f_0\|^2_X,
\]

and from Gronwall lemma

\[
\|f_t\|^2_Y \precsim e^{-\varepsilon R t}\|f_0\|^2_Y + \frac{\theta R}{\varepsilon R}\|f_0\|^2_X
\]

\[
\precsim \Theta(t)^2\|f_0\|^2_X,
\]

with

\[
\Theta(t)^2 := \inf_{R > 0} \left(e^{-\varepsilon R t} + \frac{\theta R}{\varepsilon R} \right).
\]
Prop 2. Consider three “regular” Banach spaces $X \subset Y \subset Z$ and a generator L. Assume

- $\|S_L(t)\|_{X \to Z} \leq \Theta(t)$, with $\Theta \in L^2(\mathbb{R}_+)$ a decay function (i.e. which tends to 0)
- $L = A + B$, $A \prec B$, with

\[
\forall f \in X^B_1, \quad \langle f^*, Bf \rangle_X \lesssim -\|f\|^2_Y \\
\forall f \in X^A_1, \quad \langle f^*, Af \rangle_X \lesssim \|f\|^2_Z.
\]

Then, L is weakly hypodissipative

\[
\langle \langle f^*, Lf \rangle \rangle_X \lesssim -\|f\|^2_Y
\]

for the duality product $\langle \langle, \rangle \rangle_X$ associated to the norm defined by

\[
\|f\|^2 := \eta \|f\|^2_X + \int_0^\infty \|S_L(\tau)f\|^2_Z d\tau,
\]

for $\eta > 0$ small enough. That norm is equivalent to the initial norm in X.
Proof of Proposition 2

We observe that $\| \cdot \| \sim \| \cdot \|_X$ because $\Theta \in L^2(\mathbb{R}_+)$.

We set $f_t := S_{\mathcal{L}}(t)f_0$ and we compute

$$
\frac{d}{dt} \| f_t \|^2 = 2\eta \langle f_t^*, \mathcal{L}f_t \rangle_X + \int_0^\infty \frac{d}{d\tau} \| S_{\mathcal{L}}(\tau + t)f_0 \|^2_Z \ d\tau
$$

$$
= 2\eta \langle f_t^*, Bf_t \rangle_X + \eta \langle f_t^*, Af_t \rangle_X - \| f_t \|^2_Z
$$

$$
\leq -2\eta C_1 \| f_t \|^2_Y + (\eta C_2 - 1) \| f_t \|^2_Z
$$

$$
\geq -\| f_t \|^2_Y
$$

as well as

$$
\frac{d}{dt} \| f_t \|^2 \sim \langle \langle f_t^*, \mathcal{L}f_t \rangle \rangle_X
$$
Prop 3. Consider a decay function Θ such that
\[
\Theta^{-1}(t) \lesssim \Theta^{-1}(t - s)\Theta^{-1}(s) \quad \text{for any } 0 < s < t.
\]
We consider two sets of Banach spaces $X_1 \subset X_0$ and $Y_1 \subset Y_0$ and a generator Λ. We assume

- $\|S_\Lambda(t)\|_{X_1 \to X_0 \Theta^{-1}} \in L^\infty$
- $\Lambda = A + B$, $A \prec B$, with

\[
\forall \ell, \quad \|S_B \ast (AS_B)^{(*\ell)}\|_{Y_1 \to Y_0 \Theta^{-1}} \in L^\infty
\]
\[
\exists n, \quad \|(AS_B)^{(*n)}\|_{Y_1 \to X_1 \Theta^{-1}} \in L^1 \quad \text{if } X_0 \subset Y_0 \quad \text{(enlargement)}
\]
\[
\exists n, \quad \|(S_B A)^{(*n)}\|_{X_0 \to Y_1 \Theta^{-1}} \in L^1 \quad \text{if } Y_1 \subset X_1 \quad \text{(shrinkage)}
\]

Then,
\[
\|S_\Lambda(t)\|_{Y_1 \to Y_0 \Theta^{-1}} \in L^\infty.
\]
Proof of Proposition 3

Enlargement result. We iterate the Duhamel formula

\[S_\Lambda = S_B + S_\Lambda \ast (A S_B) \]

to get a “stopped Dyson-Phillips series” (the D-P series corresponds to \(n = \infty \))

\[S_\Lambda = \sum_{\ell=0}^{n-1} S_B \ast (A S_B)^{(*\ell)} + S_\Lambda \ast (A S_B)^{(*n)} =: S_1 + S_2. \]

From the assumptions, we immediately have

\[\| S_\Lambda \|_{Y_1 \to Y_0 \Theta^{-1}} \leq \| S_1 \|_{Y_1 \to Y_0 \Theta^{-1}} + \| S_\Lambda \Theta^{-1} \|_{X_1 \to X_0} \ast \| (A S_B)^{(*n)} \Theta^{-1} \|_{Y_1 \to X_1} \in L^\infty \]

Shrinkage result. We argue similarly starting with the iterated the Duhamel formula / stopped Dyson-Phillips series

\[S_\Lambda = \sum_{\ell=0}^{n-1} S_B \ast (A S_B)^{(*\ell)} + (S_B A)^{(*n)} \ast S_\Lambda. \]
Prop 4. (rough version) We consider two Banach spaces $X \subset Y$ and a generator Λ. We assume $X^{1}_{\Lambda} \subset Y$ is compact and $\Theta(t) \approx e^{-\lambda t^{1/(1+j)}}$

- $\Sigma_{P}(\Lambda) \cap \tilde{\Delta}_{0} = \emptyset$, with $\Delta_{0} := \{z \in \mathbb{C}; \Re z > 0\}$
- $\Lambda = \mathcal{A} + \mathcal{B}$, with $\mathcal{A} \in \mathcal{B}(Y, X)$, $\zeta \in (0, 1]$ and

(a1) $\forall \ell$, $\|S_{\mathcal{B}} \ast (\mathcal{A}S_{\mathcal{B}})^{(*\ell)}\|_{X \rightarrow Y} \Theta^{-1} \in L^{\infty}$

(a2) $\forall \ell$, $\sup_{z \in \tilde{\Delta}_{0}} \|(R_{\mathcal{B}}(z))^{\ell}\|_{X \rightarrow Y} \leq C (\ell!)^{j}$

(a3) $\forall \ell$, $\sup_{z \in \tilde{\Delta}_{0}} \|R_{\mathcal{B}}(z)\|_{Y \rightarrow X^{\Lambda}_{\zeta}} \leq C (\ell!)^{j}$

Then,

$\|S_{\Lambda}(t)\|_{X \rightarrow Y} \Theta^{-1} \in L^{\infty}$.
Proof of Proposition 4

We start again with the stopped Dyson-Phillips series

\[S_\Lambda = \sum_{\ell=0}^{N-1} S_B * (A S_B)^{(*\ell)} + S_\Lambda * (A S_B)^{(*N)} = S_1 + S_2 \]

The first \(N - 1 \) terms are fine. For the last one, we use the inverse Laplace formula

\[S_2(t)f = \frac{i}{2\pi} \int_{\uparrow_0} e^{zt} R_\Lambda(z)(AR_B(z))^N f \, dz \]

\[\approx \frac{1}{t^k} \int_{\uparrow_0} e^{zt} \frac{d^k \Phi}{dz^k} \, dz f \]

\[\lesssim \frac{C^k}{t^k} k! \int_{\uparrow_0} \sup_{|\alpha| \leq k} \left\{ \|R_\Lambda^{1+\alpha_1}(z)\|_{X \to Y} \right\}_{\in L^\infty(\uparrow_0)} \left\{ \|AR_B^{1+\alpha_1} ... AR_B^{1+\alpha_N}(z)\|_{X \to X} \right\}_{\in L^1(\uparrow_0)} dz \|f\|_X, \]

where \(\uparrow_0 := \{ z = 0 + iy, y \in \mathbb{R} \} \) and because

\[\frac{d^k \Phi}{dz^k} \approx \sum_{|\alpha| \leq k} \alpha! R_\Lambda^{1+\alpha_0} AR_B^{1+\alpha_1} ... AR_B^{1+\alpha_N} \]
Key estimates

• Using (a2), (a3), the compact embedding $X^1_{\Lambda} \subset Y$ and the fact that there is not punctual spectrum in $\bar{\Delta}_0$, we get

$$
\sup_{z \in \bar{\Delta}_0} \| R_{\Lambda}(z)^{\ell} \|_{X \to Y} \leq C (\ell!)^j
$$

• $A \in \mathcal{B}(Y, X)$ and the resolvent identity

$$
R_B(z) = \frac{1}{z} (R_B(z)B - I) \in \mathcal{B}(X_1, X)
$$

imply

$$
\| AR_B(z) \|_{X \to X} \leq C / |z| \quad \forall z \in \bar{\Delta}_0.
$$

Together with (a2) (where we assume that $\zeta = 1$ in order to make the proof simpler) we get

$$
\| AR_B(z)^{\ell_1} AR_B(z)^{\ell_2} \|_{X \to X} \leq C (\ell_1!)^j (\ell_2!)^j \langle z \rangle^{-1}
$$

• Choosing $N = 4$ and gathering the two estimates, we get

$$
\| \frac{d^k \Phi}{dz^k} (z) \|_{X \to Y} \leq C^k (k!)^j \langle z \rangle^{-2} \in L^1(\uparrow_0).
$$
Coming back to the term S_2, we have

\[
S_2(t) \lesssim C^k k^{(1+j)k} t^{-k}.
\]

\[
\lesssim e^{-\lambda t^{1/(1+j)}} = \Theta(t),
\]

by choosing appropriately $k = k(t)$.
Prop 5.

Consider a semigroup generator Λ on a Banach lattice X, and assume

1. Λ such as the spectral mapping Theorem holds (for $\|f\|_Y = \langle |f|, \phi \rangle$);
2. $\phi \in D(\Lambda^*)$, $\phi \succ 0$ such that $\Lambda^*\phi = 0$;
3. S_Λ is positive (and Λ satisfies Kato’s inequalities);
4. $-\Lambda$ satisfies a strong maximum principle.

There exists $0 < f_\infty \in D(\Lambda)$ such that

$$\Lambda f_\infty = 0, \quad \Sigma_P(\Lambda) \cap \tilde{\Delta}_0 = \{0\}, \quad \Sigma_P(\Lambda_1) \cap \tilde{\Delta}_0 = \emptyset$$

with $\Lambda_1 := \Lambda|_{X_1}$, $X_1 = R(I - \Pi_0) = (I - \Pi_0)X$,

$$\Pi_0 f = \langle f, \phi \rangle f_\infty \quad \forall f \in X.$$

Moreover the decay function Θ defined in the spectral mapping Theorem :

$$\|S_\Lambda(t)(I - \Pi_0)f_0\|_Y \lesssim \Theta(t) \|(I - \Pi_0)f_0\|_X \quad \forall t \geq 0, \forall f_0 \in X.$$
Outline of the talk

1. Introduction and main result
 - Hypodissipativity vs weak hypodissipativity
 - The Fokker-Planck equation with weak confinement
 - Landau equation with Coulomb potential near Maxwellians

2. Weak hypodissipativity in an abstract setting
 - From weak dissipativity to decay estimate
 - From decay estimate to weak dissipativity
 - Functional space extension (enlargement and shrinkage)
 - Spectral mapping theorem
 - Krein-Rutman theorem

3. About the proof for the Fokker-Planck equation
 - $F = \nabla V$
 - general forces

4. About the proof for the Landau equation
 - Estimates on the nonlinear problem and natural large space
 - Splitting trick, dissipativity and decay estimates on the linear operators
Elements of proof of Theorem 1 - The case: $F = \nabla V$, $V = |v|^{\gamma}/\gamma$

- Weak Poincaré inequality

$$\langle \Lambda f, f \rangle_{E_0} \lesssim -\|f\|^2_{E_*}, \quad \forall f \in E_0, \ 〈f〉 = 0,$$

with $E_0 := L^2(f_{\infty}^{-1/2})$, $f_{\infty} := e^{-V}$, and $E_* := L^2(⟨v⟩^{-1}f_{\infty}^{-1/2})$.

- By the generalized relative entropy inequality

$$\forall f, \forall p \geq 1, \quad \langle \Lambda f, (f/f_{\infty})^{p-1} \rangle \leq 0,$$

and passing to the limit as $p \to \infty$, we deduce the semigroup (of contractions) estimate

$$\|f_t\|_{E_1} \leq \|f_0\|_{E_1}, \quad E_1 := L^\infty(f_{\infty}^{-1}).$$

- For any $f_0 \in E_1$, $〈f_0〉 = 0$, both inequalities and an interpolation argument imply (as in Prop 1)

$$\|f_t\|_{E_0} \leq \Theta(t)\|f_0\|_{E_1}, \quad \Theta(t) \simeq e^{-t^2/\gamma}.$$
We introduce the splitting \(\Lambda = A + B \), with \(A \) a multiplication operator

\[
Af = M\chi_{R}(v)f, \quad \chi_{R}(v) = \chi(v/R), \quad 0 \leq \chi \leq 1, \quad \chi \in \mathcal{D}(\mathbb{R}^{d})
\]

\(\triangleright \) \(A \in \mathcal{B}(X_{0}, X_{1}), X_{i} = W^{r,p}(m_{i}), m_{1} \geq m_{0} \)

\(\triangleright \) \(B \) is not \(a \)-dissipative in \(X = W^{r,p}(m) \) with \(a < 0 \). However, it is weakly dissipative. For \(p \in (1, \infty) \), and \(M, R > 0 \) large enough, we have

\[
\langle f^{*}, Bf \rangle_{L^{p}} \lesssim -\|f\|^{2}_{L^{p}(m(v)(\gamma-2+s)/p)}, \quad s := 0 \text{ for polynomial weight}
\]

That is a consequence of the identity

\[
\int (\Lambda f)^{p-1} m^{p} = (1 - p) \int |\nabla(fm)|^{2}(fm)^{p-1} + \int (fm)^{p} \psi
\]

\[
\psi = \left(\frac{2}{p} - 1 \right) \frac{\Delta m}{m} + 2(1 - \frac{1}{p}) \frac{|\nabla m|^{2}}{m^{2}} + (1 - \frac{1}{p}) \text{div}F - F \cdot \frac{\nabla m}{m}
\]

\[
\sim -F \cdot \frac{\nabla m}{m} \sim -(v)^{s+\gamma-2}
\]
• the estimate
\[\| S_B \ast (AS_B)^{(*\ell)} \|_{X_1 \to X_0} \leq \Theta(t) \]
follows from Proposition 1.

• the estimate
\[\|(AS_B)^{(*n)}\|_{B(L^1(m_1), H^1(m_2))} \leq \Theta(t) \]
follows from (1) and the use a “Nash + regularity” trick for small time. More precisely, introducing
\[F(t, h) := \| h \|^2_{L^1(m)} + t^\bullet \| h \|^2_{L^2(m)} + t^\bullet \| \nabla v h \|^2_{L^2(m)} \]
we are able to prove (for convenient exponents \(\bullet > 1 \))
\[\frac{d}{dt} F(t, S_B(t)h) \leq 0 \quad \text{and then} \quad \| S_B(t)h \|^2_{H^1(m)} \leq \frac{1}{t^\bullet} \| h \|^2_{L^1(m)} \]

• In the case \(F = \nabla V \), we conclude thanks to Prop 3 (enlargement argument)

• For the general case, we use the Krein-Rutman theory. The Fokker-Planck semigroup is obviously mass conservative and positive and the Fokker-Planck operator satisfies the strong maximum principle. The last point in order to apply Proposition 5 is to verify that assumption (a2) in Proposition 4 is satisfied.
Outline of the talk

1. Introduction and main result
 - Hypodissipativity vs weak hypodissipativity
 - The Fokker-Planck equation with weak confinement
 - Landau equation with Coulomb potential near Maxwellians

2. Weak hypodissipativity in an abstract setting
 - From weak dissipativity to decay estimate
 - From decay estimate to weak dissipativity
 - Functional space extension (enlargement and shrinkage)
 - Spectral mapping theorem
 - Krein-Rutman theorem

3. About the proof for the Fokker-Planck equation
 - $F = \nabla V$
 - general forces

4. About the proof for the Landau equation
 - Estimates on the nonlinear problem and natural large space
 - Splitting trick, dissipativity and decay estimates on the linear operators
Strategy of proof of Theorem 2

The method consists in introducing the variation function \(g = f - \mu \) and the corresponding Landau equation

\[
\partial_t g = \bar{L} g + Q(g, g),
\]

\[
\bar{L} = -\nu \cdot \nabla_x + \mathcal{L}, \quad \mathcal{L} = Q(\cdot, \mu) + Q(\mu, \cdot)
\]

• As a starting point, we use the known weak dissipativity estimate

\[
(Lg, g)_{L^2(\mu^{-1/2})} \lesssim -\|\Pi g\|^2_{H^1_\ast} \approx H^1(\mu^{1/2}(v)(\gamma + 2)/2),
\]

\(\Pi := I - \Pi_0, \ \Pi_0 := \text{projector on } N(\mathcal{L}), \)

• in order to prove the weak hypodissipativity estimate

\[
(\bar{L}g, g)_{H^1_{x,v}(\mu^{-1/2})} \lesssim -\|\bar{\Pi} g\|^2_{H^1_{x}H^1_{v}} \approx H^1_{x,v}(\mu^{1/2}(v)(\gamma + 2)/2),
\]

\(\bar{\Pi} := I - \bar{\Pi}_0, \ \bar{\Pi}_0 := \text{projector on } N(\bar{L}), \)

• and next factorization and semigroup tricks in order to get similar information in the space \(\mathcal{X} := H^2_x L^2(m) \).
Estimate on nonlinear operator

A classical result asserts that for any weight functions \(m, m_1 \succ \langle v \rangle^{2+3/2} \) and \(m_0 \succ \langle v \rangle^2 \)

\[
\langle Q(f, g), h \rangle_{L^2(m)} \lesssim \left(\| f \|_{L^2(m)} \| g \|_{H^1_*(m_1)} + \| f \|_{H^1(m_0)} \| g \|_{L^2(m)} \right) \| h \|_{H^1_*(m)}
\]

with

\[
\| f \|_{H^1_*(m)}^2 := \| f \|_{L^2(m, \langle v \rangle^{(\gamma+\sigma)/2})}^2 + \| \tilde{\nabla} f \|_{L^2(m, \langle v \rangle^{\gamma/2})}^2,
\]

and

\[
\tilde{\nabla}_v f = P_v \nabla_v f + \langle v \rangle (I - P_v) \nabla_v f, \quad P_v \xi = \left(\xi \cdot \frac{v}{|v|} \right) \frac{v}{|v|}.
\]

As a consequence, we have

Prop 6.

for \(m \succ \langle v \rangle^{2+3/2} \), defining \(X := H^2_x L^2_v(m) \), \(Y := H^2_x H^1_v,*(m) \), \(Z := H^2_x H^{-1}_v,*(m) \), we have

\[
\langle Q(f, g), h \rangle_X \lesssim \left(\| f \|_X \| g \|_Y + \| f \|_Y \| g \|_X \right) \| h \|_Y
\]

\[
\| Q(f, g) \|_Z \lesssim \left(\| f \|_X \| g \|_Y + \| f \|_Y \| g \|_X \right).
\]
Nonlinear a priori estimate

A introduce the equivalent norm on $R\bar{\Pi}$

$$
\|g\|_X^2 := \eta \|g\|_X^2 + \int_0^\infty \|S_{\bar{L}}(\tau)g\|_{X_0}^2 d\tau,
$$

with $X_0 := H^2_x L^2_v$, $Y_0 := H^2_x H^1_v$, $Z_0 := H^2_x H^{-1}_v$ (without weight!)

We consider a solution g to the Landau equation

$$
\frac{d}{dt}g = \bar{L}g + Q(g, g)
$$

and we compute

$$
\frac{1}{2} \frac{d}{dt} \|g\|_X^2 = \langle \langle \bar{L}g, g \rangle \rangle_X + \eta \langle Q(g, g), g \rangle_X
$$

$$
+ \int_0^\infty \langle S_{\bar{L}}(\tau)Q(g, g), S_L(\tau)g \rangle_{X_0} d\tau =: T_1 + T_2 + T_3.
$$

From Propositions 1, 2, 3, we expect to have

$$
T_1 \lesssim -\|g\|_Y^2.
$$

Thanks to the choice of the norm and Proposition 6, we have

$$
T_2 \leq C \|g\|_X \|g\|_Y^2.
$$
Nonlinear a priori estimate (continuation)

For the last term, thanks to Proposition 6, we have

\[
T_3 = \int_0^\infty \langle S_L(\tau)Q(g,g), S_L(\tau)g \rangle \chi_0 \, d\tau
\]

\[
\lesssim \int_0^\infty \|S_L(\tau)Q(g,g)\|_{Z_0} \|S_L(\tau)g\|_{Y_0} \, d\tau
\]

\[
\lesssim \|Q(g,g)\|_{Z} \|g\|_{Y} \int_0^\infty \Theta(\tau)^2 \, d\tau \lesssim \|g\|_{X} \|g\|_{Y}^2,
\]

under the condition that

\[
t \mapsto \|S(\tau)\|_{Y \to Y_0}, \|S(\tau)\|_{Z \to Z_0} \in L^2(\mathbb{R}_+).
\]

We conclude with

\[
\frac{d}{dt} \|g\|_{X}^2 \lesssim \|g\|_{Y}^2 (1 - C \|g\|_{X})
\]

We deduce

▷ a priori uniform estimate for \(\|g_0\|_{X}^2 \) small, and then classically existence and uniqueness

▷ considering two weight functions \(m \succ \tilde{m} \), the above a priori estimate implies

\[
\frac{d}{dt} \|g\|_{X}^2 \lesssim -\|g\|_{Y}^2, \quad \frac{d}{dt} \|g\|_{X}^2 \lesssim 0,
\]

and we get decay estimate just repeating the proof of Proposition 1.
Splitting of the operator

We introduce the splitting $\bar{L} = A + B$

$$A g := Q(g, \mu) + M_{\chi_R} g = (a_{ij} \ast g) \partial_{ij} \mu - (c \ast g) \mu + M_{\chi_R} g,$$

$$B g := Q(\mu, g) - M_{\chi_R} g - \nu \cdot \nabla_x g = (a_{ij} \ast \mu) \partial_{ij} g - (c \ast \mu) g - M_{\chi_R} g - \nu \cdot \nabla_x g,$$

with

$$b_i(z) = \partial_j a_{ij}(z) = -2 |z|^\gamma z_i, \quad c(z) = \partial_j a_{ij}(z) = -8\pi \delta_0$$

We show

- Weak dissipativity of B in many spaces (twisting trick, duality trick)

$$\langle B f, f \rangle_{H^2_x L^2(m)} \lesssim - \|f \|_{H^2_x H^1_*, \nu(m)}^2$$

$$\langle B f, f \rangle_{H^2_x H^1_\nu(m)} \lesssim - \|f \|_{H^2_x H^1(m, \nu(\gamma+2)/2)}^2$$

$$\langle B^* f, f \rangle_{H^2_x H^1_\nu(m)} \lesssim -...$$

- Decay estimate of S_B in many spaces by Proposition 1.

- Regularization property of S_B in many spaces by using “Hormander-Hérau-Villani” hypoelliptic trick. More precisely, introducing

$$F(t, h) := \|h\|_{L^2(m)}^2 + t^\bullet \|\nabla h\|_{L^2(m)}^2 + t^\bullet (\nabla h, \nabla h)_{L^2(m)} + t^\bullet \|\nabla h\|_{L^2(m)}^2$$

we get (for convenient exponents $\bullet \geq 1$)

$$\frac{d}{dt} F(t, S_B(t)h) \leq 0, \quad \forall t \in [0, 1].$$
and factorization trick

- \(A \in B(H^\alpha_x H^\beta_v(m_0), H^\alpha_x H^\beta_v(m_1)) \) for any weight functions \(m_1 \succeq m_0 \).
- In the space of self-adjointness \(L^2(\mu^{-1/2}) \) we have the nice dissipativity estimate

\[
\langle Lg, g \rangle_{L^2(\mu^{-1/2})} \lesssim -\| \Pi g \|^2_{H^1_x(\mu^{-1/2})}
\]

from which we deduce thanks to the twisting hypocoercivity Nier-Hérau-Villini trick

\[
\langle \langle \tilde{L}g, g \rangle \rangle_{H^1_{x,v}(\mu^{-1/2})} \lesssim -\| \tilde{\Pi} g \|^2_{H^1_x H^1_{x,v}(\mu^{-1/2})}
\]

We deduce

- \(S_{\tilde{\mathcal{L}}} \) is bounded in many spaces because \(S_{\tilde{\mathcal{L}}} \) is bounded in one space and \(\tilde{\mathcal{L}} \) splits in a suitable way (Proposition 3 of extension).
- \(S_{\tilde{\mathcal{L}}} \) is fast decaying in one space \(B(H^1_{x,v}(\mu^{-3/2}, H^1_{x,v}(\mu^{-3/2})) \) because it is bounded in \(H^1_{x,v}(\mu^{-3/2}) \) and weakly dissipative in \(H^1_{x,v}(\mu^{-1/2}) \) (Proposition 1).
- \(S_{\tilde{\mathcal{L}}} \) is decaying in many space because \(S_{\tilde{\mathcal{L}}} \) is decaying in one space and \(\tilde{\mathcal{L}} \) splits in a suitable way (Proposition 3 of extension).
As a conclusion, we are able to prove

- On the one hand,
 \[\| S_L \|_{x \to x_0} \leq \Theta(t), \]
 and \(L = A + B \) with
 \[\langle f, Bf \rangle_x \lesssim -\| f \|_Y^2, \quad \langle f, Af \rangle_x \lesssim -\| f \|_{x_0}^2 \]
 in order to use Proposition 2 and define the weak dissipative norm \(\| \cdot \|_x \) for \(\tilde{L} \)
- On the other hand,
 \[t \mapsto \| S_L \|_{Y \to Y_0}, \| S_L \|_{Z \to Z_0} \in L^2(\mathbb{R}_+) \]

\(\triangleright \) That are the needed properties in order to get the a priori nonlinear estimate!
Open problems:

• Suitable spectral analysis theory in an abstract setting and a weakly dissipative framework?

• What about the Boltzmann equation without Grad’s cut-off (~ fractional diffusion in the velocity variable)?
 ▷ Work in progress by Hérau, Tonon, Tristani, ...

• What about the grazing collisions limit (from Boltzmann to Landau)?