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Orders of magnitude, perfect gas

eFor a monatomic gas at room temperature and atmospheric pressure,
about 1029 gas molecules with radius ~ 10~8cm are to be found in any
volume of 1cm3

eExcluded volume (i.e. the total volume occupied by the gas molecules if
tightly packed): 1020 x 2% x (1078)~3 ~ 5. 10~ %cm3 <« 1cm?

EXCLUDED VOLUME NEGLIGEABLE = PERFECT GAS

eEquation of state for a perfect gas:

p = kpb, where k =Boltzmann’s constant= 1.38 - 10~23J/K




Notion of mean-free path

eRoughly speaking, the average distance between two successive colli-
sions for any given molecule in the gas

eintuitively, the higher the gas density, the smaller the mean-free path;
likewise, the bigger the molecules, the smaller the mean-free path; this
suggests

mean-free path ~ 1

where ' =number of gas molecules per unit volume and A =area of the
section of any individual molecule



eFor the same monatomic gas as before (at room temperature and atmo-

spheric pressure), N' = 1029 molecules/cm3, while A = 7 x (1078)2 ~

3 - 10~16cm?; hence the mean-free path is ~ 3 - 10~%cm < 1cm.

SMALL MEAN-FREE PATH REGIMES CAN OCCUR IN PERFECT GASES

eWhile keeping the same temperature, lower the pressure at 10~ %atm;
then A/ = 106 molecules/cm® and the mean-free path becomes ~ cm

which is comparable to the size of the 1cm3 container

DEGREE OF RAREFACTION MEASURED BY KNUDSEN NUMBER

K — mean free path
" macroscopic length scale




Kinetic vs. fluid regimes

eKinetic regimes are characterized by | Kn = O(1) |; since the gas is more
rarefied, there are not enough collisions per unit of time for a local thermo-
dynamic equilibrium to be reached. However, also because of rarefaction,
correlations are weak = state of the gas is adequately described by the
distribution function:

F = F(t,xz,v) single-particle phase-space density

The density (with respect to the Lebesgue measure dxdv) of particles
which, at time ¢, are to be found at the position x with velocity wv.



Macroscopic observables

eMacroscopic quantities (observables) are computed by averaging the cor-
responding quantity for a single particle w.r.t. the measure F' (¢, z, v)dxdv:
density = /F(w,t,v)dv = p(x, 1)

momentum = /’UF(t,:c,v)dv = p(z,t)u(x,t),

1
energy-temperature = /%|v|2F(t, z,v)dv = p(:r;,t)(§|u(a?, )% + ge(x,t))



The Boltzmann equation

eThe number density F' is governed by the Boltzmann equation: in the
absence of external force

OF +v-ViF = B(F,F)

where B(F, F) is the Boltzmann collision integral.
eBecause of rarefaction, collisions other than BINARY are neglected.
oAt the kinetic level of description, the size of particles is neglected every-

where but in the expression of the mean-free path: collisions are LOCAL
and INSTANTANEOUS

=  B(F, F) operates only on the v-variable in F’




The collision integral -hard potential.

B(F, F)(v)= / /R3Xs2(F(fu’)F(v;) — F(0)F(0:)) b(v — ve, w)dwdvs

where the velocities v’ and v/, are defined in terms of v, v« and w by

vV =0 (0,06, w) = v — (U — vg) - wWw

vl = vl (v, V5, w) = v + (U — V) - WW

(Fy, F'and F) = (F(vs), F(v') and F(v.)
(v —v*)

v —v¥|

Grad cutt off /82 b(w.n)dw < oo . hard spheres b(w,v —v*) = |(v — v*) - w|

b(w,v —v™) = |v— v*\ﬁg(w.n) =




Pre- to post-collision relations

eGiven any velocity pair (v, v«) € RO, the pair (v/(v, v+, w), v.(v, Vs, w))
runs through the set of solutions to the system of 4 equations

v 4 vl = v+ v conservation of momentum
[0/|2 4+ [vh|? = |v|? 4 |v«|?  conservation of kinetic energy

as w runs through S2.



Geometric interpretation of collision relations

The geometric interpretation of these formulas is as follows: in the ref-
erence frame of the center of mass of the particle pair, the velocity pair
before and after collisions is made of two opposite vectors, :t%(v’ — v})
and :t%(v — Vx).

Conservation of energy implies that |[v — v«| = |0’ — v.|.

eHence v — v, and v/ — v}, are exchanged by some orthogonal symmetry,
whose invariant plane is orthogonal to +w.



Symmetries of the collision integral

e The collision integrand is invariant if one exchanges v and vx:

/R3 B(F. F)odv = / / / (F'F! — FF)éb(v — v, w)dwdvsdy
— ///(F/F,ﬁ — FF*)¢ _; ¢*b(v — Uk, w)dwdvsdv
eThe collision integrand is changed into its opposite if, given w € S2, one
exchanges (v, v«) and (v, v.) (in the center of mass reference frame, this
IS a symmetry, and thus an involution).

eFurther, (v,vs) — (v/,v.) is an isometry of R® (conservation of kinetic
energy), so that | dvdv, = dv’dv’ |




Symmetries of the collision integral 2

Theorem. Assume that F € L1 (R3) is rapidly decaying at infinity, i.e.
F(v) =0(v|™) as|v| = oo foralln > 0
while ¢ € C(R3) has at most polynomial growth at infinity, i.e.
d(v) = O(1 + |[v|™) as |v| = +oo for some m > 0

Then, one has:

(v — vx) - w|dwdvsdv

/R3B(F,F)gbdv:// FF*¢+¢*;¢/_¢;

IRV,
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Collision invariants

eThese are the functions ¢ = ¢(v) € C(R3) such that

H(v) 4+ d(vs) — d(V') — p(v.) = 0 for all (v,vx) € R3and w € S?

Theorem. Any collision invariant is of the form

¢(v) = a4 brvy + bovo + bzvz + c|v]®, a,by,bo,b3,c ER

olf ¢ is any collision invariant and F € L1(R3) is rapidly decaying, then

/R3 B(F, F)édv = 0




Proof of the Theorem (Perthame).

Assume ¢ > 0 with (1 4 |vl?)¢ € L1(R3) with
QS/Cb; = ooy fora.e. (v, v4,w) € R3 « R3 x §2
Normalize with
/R3 ¢(v)dv =1 /R3 vp(v)dv = 0

Fourier transform (with w fixed) of ¢« is continuous.

BB =[], o@e(w)e T dudo,
B //R3><R3 $(v)p(vl)e U s du
=[5 e $@B(wIe T

B //R3 R3 B (v)(vs) e VTV (EE) W) ((0=ve) ) gy gy,
X



Since the first term is independant of w differentiating with respect to w
gives for (£ — &x)Lw

0= //R3><R3 Qb(v)ﬁb(v*)e_i@_ig*v* (v — v4) - wdvdvs
for any & # &, and w € S2 such that w1 (£_&)

WL(E— &) = (Ve — Ver)d(€)P(Ex) Luw

= (Ve — V) d(€)B(&)[ (€ — &)

$(0) =1,V¢(0) =0 = Vh(8)[€ = 6(&) = ¥(|¢])
&' (€1 (|€4]2) — (€1 (|& D (€ — €%)

N AGERE(TRELIGERIACTR

= ¢/ (1€]%) = By (|€]?)



Local conservation laws

eln particular, if F' = F(t,x,v) is a solution to the Boltzmann equation that
is rapidly decaying in the v-variable

— — 1, .2 -
/R3 B(F, F)dv = /R3 v B(F, F)dv = /R3 Lo]2B(F, F)dv = 0

fork=1,2,3.

e [ herefore, one has the local conservation laws:

o /R3 Fdv + div, /R3 vFdy =0, (mass)

c%/ vFdv + divx/ v¥?Fdv =0, (momentum)
R3 R3

- 2
O /R3%|v|2de + divy /R3 v%|v| Fdv =0, (energy)




Boltzmann’s H Theorem

eAssume that 0 < F € L1(R3) is rapidly decaying and such that In F' has
polynomial growth at infinity. Then

/ B(F, F)In Fdy =
R3

F'F!
— %///R3><R3><SQ(F/F4 — FFy)In (FF*> (v — v4) - wldwdvdvsx < 0

*

e The following conditions are equivalent:

/R3 B(F,F)InFdv=0 & B(F,F)=0ae. < FisaMaxwellian

i.e. F'(v) is of the form

[o—ul?
% 9’0)3/26_ 26~ for some p,6 > 0 and u € R>
7T

F(v) = Mp,u,@(v) L=




Implications of conservation laws + H Theorem

olff ' = F(t,z,v) > 0 is a solution to the Boltzmann equation that
is rapidly decaying and such that In F' has polynomial growth in the v-
variable, then

o) /R3 Fdv + divy /R3 vFdv = 0, (mass)
8t/ vFdv + divx/ vE2 Fdy = O, (momentum)
R3 R3
: 1,2
Ot /R3 %|fu|2Fd’U + divy /R3 vsv[“Fdv =0, (energy)

o /R3 Fln Fdv 4 divy /RS vFInFdv <0, (entropy)

The last differential inequality bearing on the entropy density is reminiscent
of the Lax-Friedrichs entropy condition that selects admissible solutions of
hyperbolic systems of conservation laws.




Dimensionless form of the Boltzmann equation

eChoose macroscopic scales of time 17" and length L, and a reference
temperature ©; this defines 2 velocity scales:

L
V = (macroscopic velocity) , and ¢ = v/ © (thermal speed)

Finally, set \V to be the total number of particles.

eDefine dimensionless time, position, and velocity variables by

.t . v
t—=—, T=—, UV=-—
T L C
and a dimensionless number density
S L33
F(t,z,v) = F(t,z,v)




Dimensionless form of the Boltzmann equation 2

eOne finds that
—TGAF +0-VzF = —//(F Fl — FE)|(D — 94) - w|dwdvs
C
e The pre-factor multiplying the collision integral is
2 L 1
L x N = = —

L3 7w x mean free path  7Kn
e The pre-factor multiplying the time derivative is

1
TXL

= St, (kinetic Strouhal number)
C

A~ ~_ 1 SIEl BB\ (A~ ~
StoF + v - VzF = m//R?’XSQ(F F, — FF)|[(0 — %) - w|dwdvs




Compressible Euler scaling

e This scaling limit corresponds to |[St = 1 |and| 7Kn =: e < 1, leading
to the singular perturbation problem

1 1
OtFe+v-ViFe = ;B(Fe, Fe) = ;//(FE’FE/* — FeFes) | (v — vy) - w|dwdvs

eOne expects that, as ¢ —+ 0, Fc — F and B(Fe, Fe) — B(F,F) = 0;
hence F'(t, x,-) is a Maxwellian for all (¢, x), i.e.

p(tyx) - leoulto)®
e

E(t,z,v) = My ) u(t),0tz) (V) = (om0t 2))32 20(t,7)

In other words, F'is a local equilibrium.

eProblem: to find the governing equations for p(¢, x), u(t,x) and 6(t, x).




Formal Euler limit by the moment method

eAssume that F¢ is rapidly decaying and such that In Fe has polynomial
growth for large v’s; assume further that F. — F', and that the decay
properties above are uniform in this limit.

eH Theorem implies that F' is a local Maxwellian M, ,, :

“+ o0
/O //B(Fe,FE) |n Fedvdxdt — 6//F€|ﬂ FE

—¢ lim //FelnFe
t——+o0

i Od:vdv

tdacdv — 0
as e — 0; hence

—+ o0
/O / B(F. F) In Fdvdadt = 0



ePassing to the limit in the local conservation laws + the entropy differential
inequality leads to the system of conservation laws for (p, u, 6)

B} /R3 M,y gdv + divy /R3 M, gdv = 0
O [ 3 vMpupdv + dive [ v¥2M,,, gdv = 0

R
1, .2 : 2
B /33 Lw2M,, , gdv + dive /R3 v3[v2M,, gdv = 0

as well as the differential inequality

O [ 3 Mo 10 My gdv + diva [ v, 010 M, gdv < O




e The following formulas for the moments of a Maxwellian

/M 0,000 = p, /vMp,u,Hdv — pPU,

| 92 My = p(u®2 +01), [ 30 M, v = 3p(ful® + 30)

[ w3100, pdv = Fpu(|ul? + 56)

and for its entropy and entropy flux

_ P 3
| Myug1n My pdv = pir ((%9)3/2) -3,

_ P 3
/UMP,U,H In M, pdv = puln <(27T9>3/2> —2pPu

show that (p, u, ) is an admissible solution of Euler’s system.




Compressible / Incompressible Navier -Stokes equation and scaling

The derivation of the compressble Euler equation is independent of the
cross section! Properties of the cross section appear in the compressible
Euler which is an higher order approximation with ¢ being the Knudsen

number

Op + dive(pu) = 0
Or(pu) + diVx(P(u)®2) + Vaz(p0) = edive(uD(u))
9 (p(5lul? +30)) + dive (pu(3|ul® + 30)) = ediva(kV.0)
+edivy(uD(u) - u)




With m the Mach number : Small fluctuations
p=14+mp,u=mu, 0= 14+ mo

and change of scale in time (adapted to w) t — t/m

divyi=0 G4+5=0

Byt + dive (i ® @) + Vap = %mxa
5 _ _
28,0 + divg (i) = — kA0
2 m

Hence the Von Karman relation
Mach
Knudsen

Reynolds ~



The incompressible Navier-Stokes scaling

eConsider the dimensionless Boltzmann equation in the incompressible
Navier-Stokes scaling, i.e. with|[St = 7nKn = e < 1|

1
€8tF€ _I_ U - V{,UFE — _B(F67 Fe)
€

eStart with an initial data that is a perturbation of some uniform Maxwellian
(say, the centered reduced Gaussian M = My g 1) with Mach number

Ma = O(e) |:

F'™ = My01 + ef™

eExample 1: pick v'» € L2(R3) a divergence-free vector field; then the
distribution function

F™M(@,0) = My in(ay1 )
is of the type above.



eExample 2: If in addition 6 € L2 N L°>°(R3), the distribution function

(v)

€ ( ) 1—69177’(33)716_297;7(;6(35)’1—69]73n(33)

is also of the type above. (Pick 0 < € < HemlHLoo’ then 1 — 6" > 0 a.e.).



FORMAL INCOMPRESSIBLE LIMITS

€Fe+v-VF.=1B(F.,F) ¢>1

€

FEZMGEZM(l_I_Gge).



The linearized collision operator

eViscosity and heat diffusion given linearization at a Maxwellian M =
M1 o1 (the centered, reduced Gaussian) of Boltzmann’s collision integral

Layrp = —2M~1B(M, M)
=[5 0@+ & = ¢ = $DI(v = vs) - wldwMados

The operator L, takes the form

(Lp¢)(v) = A (Ju))p(v) — (Kpre)(v)

where A(|v|) is the collision frequency, while ICj; is an integral operator

A(Jv]) =27 /R3 v — v | Mydvs, Ky =Ky p — Koy




with
LA+ ) <A <@+ o))

Kimo =2 //R3><82 ¢ |(v — vy) - w|dwMyduv

K27M¢ s 27'(' /R3 ¢*|’U — ’U>|<|M>}<d’U>|<

Theorem. The operator Ly; is a nonnegative, unbounded self-adjoint
Fredholm operator on L2(Mdv) (scalar product denoted (.,.)) with do-

main L2(\(|v|)2Mdv). Further, its nullspace is the set of collision invari-
ants, i.e.

ker L7 = span{1,vq,vo,vs,|v]°}.
Moreover, there exists cq > 0 such that, for each ¢ € L2(A\(|v|) Mdv):

b Lker Lo = (¢, d) = / SLy dMdv > CO/ &2\ (Jv]) Mdo .




eFredholm’s alternative: Consider the (integral) equation £,,¢ = . Either

e /| ker L, = there exists a unique solution ¢q_L ker £, (denoted
by ¢o = CLJQW); all solutions are of the form ¢g+n withn € ker Lj;;

e otherwise, there exists no solution ¢ to the above equation.

eBasic examples: Consider the vector field B and the tensor field A defined
by

A(v) = v%2 — 3L, B(v) = 50(|v|* — 5)

Notice that AL ker L, B1 ker L, and AL B; there exist ,C]TjAL ker Ly
and £} BL ker Ly



e Rotational invariance of B|Let R € O3(R); it acts on functions f on R3,
on vector fields U on R3, and on 2-contravariant tensors fields S on R3 as
follows:

fr(v) = f(R'v), Ugr(w) = RU(R'v), Sgr(v)= RS(R'v)R"

e The Boltzmann collision integral is rotationally invariant:

B(Fg, Fr) = B(F,F)p, therefore Ly, o ,¢r = (Lpry o, PR

since M g1 Is a radial function.

eOne has Ap = Aand Br = B; hence (£K41A)R = £]T41A and (EJTjB)R =
LI]T;B. Therefore, there exist o = a(|v|) and 8 = 8(|v]|) s.t.

LA =a(w)A@), £y} Bw) = B(jv])B(v)




(.9) = [, F@g@IM@)dv =5 [ f@)g(o)e™ Z do

(2m)2

Theorem. Let Fe(t,z,v) = MG = M (1 + ege) be a sequence of non-
negative solutions to the scaled kinetic equation and (2) with “good,
reasonable” convergence properties then: Then the limiting g has the form

1 5 5
o . — ——@’
g=v-ut (Gl =7)

where the velocity u is divergence free and the density and temperature
fluctuations, p and 0, satisfy the Boussinesq relation

Vu=20, Vz(p+6)=0.



Moreover, the functions p, u and 6 are weak solutions of the equations
5 .
oru + uVu+ Vp = pAu, 5(8,59—|—u-V0) =rA0, ifg=1;
ou+uVu+Vp=0, 00+4+u-VO0=0, Iifg>1;
With . and k given by the formulas:

u=%/a(|fu|)A:AMdv, m:%/5(|v|)B:BMdv. (3)

Proof. Start from
1 1
€0tge +v - Vge + E—qﬁ(ge) — ¢! QEM 1B(Mg€, M ge)

Multiply by €9,

1 3
Ho:ﬂg)=o:»g=p+v-u+<5|v|2—5>e



€0t{ge) + V(vge) = 0=V - -u=0

€ 0t(vge) + Viv®wvge) = 0= V(p+60)=0.

For the moments:

1
Ot(vge) + ;Vx@ ® vge) = 0

1 11
O{vge) + ~ValA(v) ® vge) + Vz<§|v|296> =0

o (01 ~ 5)ge) + -~ Va(B(v) © vge) = 0



Use £ 1Aand £ 1B

S(A)g) = (L7 Aw)Lgd

= —c1(LT A()Drge) — €T IVH(LTHA()vge) + (LT A)B(Mge, Mge))
H(B()g) = (LT B)Lgd

= —e/(L7IB)dge) — eIV (LTIB(W)vge) + (L71B(0)B(Mge, Mge))
lim 1<A(fu)g,5> = — |Iim eq_lvx<ﬁ_1A(’U)’Ug> + <£_1A(U)B(Mg, Mag))

e—0 € e—0

lim 1<B(v)ge> =—lim eIV (LT B(w)vg) + (L7 B(v)B(Mg, Mg))

e—0 €



/Oé(lvl)Az’j(v)Akz(v)Mdv = (001 + 816k — 56i50k1)

[ BUvDBi()Bj(v)Mdv = k85
Forq € ker Ly,

1
B(Mg,Mg) = §L’M(92)

= (LT A@)B(Mg, Mg)) = ~(A(0)g?) = u©u— _[uf?.

(B()g?) = ~ub

N =N -

= (L71B(v)B(Mg, Mg)) =



Convergence

eLet F'™ > 0 be any sequence of measurable functions satisfying the
entropy bound H(F™|M) < C"e?, and let F. be a renormalized solution
of the scaled Boltzmann equation

—_ m
t=0 ke
eLet g¢ = ge(x,v) be such that Ge := 1 4 ege > 0 a.e.. We say that
ge — g entropically at rate e as e — O |ff

1
€atF€+'UVQjF€ :_B(Fe,Fe), Fe
€

: 1
ge — ginw — Llloc(Mdvd:c) , and S H(MGe|M) — %// g° M dvdx
€

Theorem. Assume that
Fi™(z,v) — M(v)
eM (v)

y () - v




entropically at rate e. Then the family of bulk velocity fluctuations
1
— vFedv
e JR3
is relatively compact inw — L (dtdz) and each of its limit points as e — O

loc
is a Leray solution of

8tu+dlvx(u®u)+vxp:VAxU, divxu:O, u‘t:o :uin

H(F|M) = // F Iog(%) — F + M)dzdv

= [[ (100G ) ~ () + Do



