Matrices muotones:

A poositive $(A \geqslant 0)$ ssi $a_{y j} \geqslant 0$.
A monotore ssi A inversible et $A^{-1} \geqslant 0$.

1) Soit $A \in d b_{n}(\mathbb{R})$. Mtq $A \geqslant 0 \Leftrightarrow\left(\forall x \in \mathbb{R}^{n}: x \geqslant 0 \Rightarrow A x \geqslant 0\right)$:

Soit $x \geqslant 0$. Le rectens $v=A x=\left(\sum_{j=1}^{n} a_{i j} x_{j}\right)_{\text {1Kism }}$ a toos ses coefs positils care $a_{i j}$ et $v_{j} \geqslant 0 \forall i, j$
O_{4} a $\forall x \in \mathbb{R}^{u}: x \geqslant 0 \Rightarrow A_{x} \geqslant 0$.
Moukous qu' aloves $A \geqslant 0$:
Les recteures de lo base caronique $e_{j}\left(1 \leqslant j_{j} \leqslant n\right)$ sout $e_{j} \geqslant 0$ Alors $A e_{j} \geqslant 0$. Mais comme $A e_{j}$ est Égalà la,j-rime coloune de A, alors $a_{i j} \geqslant 0 \quad \forall 1 \leqslant i \leqslant n$.
Cece étaut valable \forall_{j}, on en déduit que $A \geqslant 0$.
2) Soit $A \in \mathscr{b _ { x }}(\mathbb{R})$. Mtq A monoroune $\Leftrightarrow \forall x \in \mathbb{R}^{n}$, si $A x \geqslant 0 \Rightarrow x \geqslant 0$:
\Rightarrow On sait que A est mmotone, ie A inversible et $A^{-1} \geqslant 0$.
Soit $x \in \mathbb{R}^{u}$ tq $A x \geqslant 0$.
On èrrit $v=A x \geqslant 0$. Comure $v \geqslant 0$, et que $A^{-1} \geqslant 0$, pre 1) Ou en déduit que $A^{-1} v \geqslant 0$. OR $A^{-1} v=x$ donc $x \geqslant 0$.

Il fout intq que A^{-1} existe bien et que $A^{-1} \geqslant 0$.

- $A^{-1} \geqslant 0$: Soit $x \geqslant 0$. on rent prourver que $A^{-1} x \geqslant 0$.

On pose $v=A^{-1} x$. Alors $x=$ Av $\geqslant 0$. Alors, par hypothèse sur A, on aura $v \geqslant 0$ cad que $A^{-1} x \geqslant 0$. Par 1), $A^{-1} \geqslant 0$.
3) Soient $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{R}_{+}^{*}$. Moulrous que la ratrice M est monotone:

$$
M=\left(\begin{array}{cccc}
2+c_{1} & -1 & & 0 \\
-1 & 2+c_{2} & -1 & \\
0 & & -1 \\
2+c_{n}
\end{array}\right)
$$

Pour le provere, on va uriliser la caractérisation 2).
Soit $x \in \mathbb{R}^{n}$ tq $M x \geqslant 0$. Alors
(i) $\int\left(2+c_{1}\right) x_{1}-x_{2} \geqslant 0$
(2) $\left\{\begin{array}{l}-x_{j-1}+\left(2+c_{j}\right) x_{j}-x_{j+1} \geqslant 0 \quad \text { pows } 2 \leqslant j \leqslant m-1\end{array}\right.$
(3) $-x_{n-1}+\left(2+c_{n}\right) x_{n} \geqslant 0$

A Prouvons tour d'abord por récurrence que $x_{j} \geqslant \frac{x_{j+1}}{\gamma_{j}}$ avec $\gamma_{j}>1$
et pour $1 \leqslant j \leqslant n-1$. et pour $1 \leqslant j \leqslant n-1$.

- Par (1), on a $x_{1} \geqslant \frac{x_{2}}{2+c_{1}}$ donc en posant $\gamma_{1}=2+c_{1}$ on a bien $x_{1} \geqslant x_{2} / \gamma_{1}$ avec $\gamma_{1}>1$.
- Supposous que l'on ait pour $1 \leqslant p \leqslant j-1, x_{p} \geqslant \frac{x_{p}+1}{\gamma_{p}}, \gamma_{p}>1$. Par (2), on a donc

$$
0 \leqslant-x_{j-1}+\left(2+c_{j}\right) x_{j}-x_{j+1} \leqslant\left(2+c_{j}-\frac{1}{\gamma_{j-1}}\right) x_{j}-x_{j+1}
$$

Hyporuèse de Récurrence poorr $p=j-1$
Donc $x_{j} \geqslant \frac{x_{j+1}}{2+c_{j}-\frac{1}{\gamma_{j-1}}}=\frac{x_{j+1}}{\gamma_{j}}$ et $\gamma_{j}=2+c_{j}-\frac{1}{\gamma_{j-1}}>1$.

Or, par (3), on a aussi $x_{n-1} \leqslant\left(2+c_{n}\right) x_{n} n_{n}$. En soustrajart ces doux inégalités, on obtiant $x_{n}\left(2+c_{n}-\frac{1}{\gamma_{n-1}}\right) \geqslant 0$ d'où $x_{n} \geqslant 0$ vo que $2+c_{n}-\frac{1}{\gamma_{m-1}}>1 \geqslant 0$.
入 Compe $x_{n} \geqslant 0$ et on a prouve que $x_{j} \geqslant k_{j+1} / \gamma_{j}-p$ our $(\leqslant j \leqslant u-1$, Une Réaurrence inverse de $j=n-1 \rightarrow 1$ doune $x_{j} \geqslant 0$ Rove $1 \leqslant_{j} \leqslant n-1$

A On a dous pauve que $\forall x \in \mathbb{R}^{n}$ tal que $M x \geqslant 0$, alors $M x \geqslant 0$. Par la question 2), ceci est équirulant an fair que M est monotrone.
\#

Ex. 2 :

1) A et B commutant $\Leftrightarrow A B=B A$

Dour si B est inversible, en multipliant $B^{-1}(A B=B A) B^{-1}$ on trouve $B^{-1} A=A D^{-1} \Leftrightarrow A$ et B^{-1} cormentant.
2) $(A B)^{\top}=B^{\top} A^{\top} \overline{\overline{1}} B A=A B$ done $A B$ est symétreique. A, B sym A, B commutent
3) Soient $\left(\lambda_{i}, v_{i}\right) \in \mathbb{C} \times \mathbb{C}^{n}$ las valours prapres at vectems propres de $A . O_{n}$ a $A v_{i}=\lambda_{i} v_{i}$

$$
\begin{aligned}
& \Leftrightarrow P^{-1} B P v_{i}=\lambda_{i} v_{i} \\
& \Leftrightarrow B\left(P v_{i}\right)=\lambda_{i}\left(P v_{i}\right)
\end{aligned}
$$

Donc λ_{i} est up de B associèe du $\overrightarrow{v_{p}} P_{v_{i}} \in \mathbb{C}^{n}$.
Pare conséquent $\sigma(A)=\sigma(B)$ et $\rho(A)=\rho(B)$.
4) Soir A inversible. On appelle dromposition Régulière de A un couple de rectrices $(M, N) \in\left(d b_{n}(\mathbb{R})\right)^{2}$ avec M inversible tel que $A=M-N$. Une méthade itérative basié sur la décompo régulière (M, N) est définie par

$$
\text { (*) }\left\{\begin{array}{c}
M x_{k+1}=N x_{k}+b, \quad \forall k \geqslant 0 . \\
x_{0} \in \mathbb{R}^{h} \text { donnée }
\end{array}\right.
$$

CNS conv: (*) converge ssi $\rho\left(M^{-1} N\right)<1$.

Ex. 3 :
Données:

$$
\begin{aligned}
A= & D+H+V \\
& -D=c I d, \quad c>0 \\
\cdot & H=H^{\top} \text { et } V=V^{\top}
\end{aligned}
$$

- $D+H$ et $P+V$ iuv.

$$
\left\{\begin{array}{l}
(D+H) x_{k+\frac{1}{2}}=-V x_{k}+b \\
(D+V) x_{k+1}=-H x_{k+\frac{1}{2}}+b
\end{array}, \quad \forall k \geqslant 0\right.
$$

x_{0} douné

1) On rauve tout comptes foits

$$
\begin{aligned}
& \text { 1) On truve toot orepes } \\
& x_{k+1}=(D+V)^{-1} H(D+H)^{-1} V x_{k}-(D+V)^{-1}\left[H(D+H)^{-1} b,-b\right] \\
& \text { et } x_{k} \rightarrow x \quad \text { ssi } \rho\left((D+V)^{-1} H(D+H)^{-1} V\right)<1 \text {. }
\end{aligned}
$$

2) a) $B:=D^{-1} H$ et $C:=D^{-1} V$

$$
\begin{aligned}
&(D+V)^{-1} H(D+H)^{-1} V \\
&=\left[D\left(I d+D^{-1} V\right)\right]^{-1} H\left[D\left(I d+D^{-1} H\right)\right]^{-1} V \\
&=(I d+\underbrace{D^{-1} V}_{=C})^{-1} \underbrace{D^{-1} H}_{=B}(I d+\underbrace{\left.D^{-1} H\right)}_{=B} \underbrace{D^{-1} V}_{=C} \\
&=(I d+C)^{-1} B(I d+B)^{-1} C \\
&=(I d+C)^{-1}\left[B(I d+B)^{-1} C(I d+C)^{-1}\right](I d+C)
\end{aligned}
$$

Par conséquent, les matrices $(D+V)^{-1} H(D+H)^{-1} V$ sont
Semblables. Par la questiou 3 de et $B(F d+B)^{-1} C(I d+C)^{-1}$ Q^{\prime} exercice 2, on a donc

$$
\rho\left((D+V)^{-1} H(D+H)^{-1} V\right)=\rho\left(B(I d+B)^{-1} C(I d+C)^{-1}\right)
$$

b) On va prowver que B et $(I d+B)^{-1}$ commentlant et Sout syrétriques. Por la question 2 de l'axercice 2, cela nous permettra de conclure que $B(I d+B)^{-1}$ est syrítrique. Le même Raisounement permet aussi de prouver que
$C(J d+C)^{-1}$ est syrétrique.
On a:

- $B=D^{-1} H=\frac{1}{c} H$ et H est syreetrique $\Rightarrow B$ est symuthaque
B est syne éhquee: $B={ }^{\circ} B^{\top}$
Le produit de ces deux matrices commute vu que

$$
\begin{aligned}
B(I d+B)^{-1} & =(B+I d-I d)(I d+B)^{-1} \\
& =I d-(I d+B)^{-1} \\
& =(I d+B)^{-1}[(I d+B)-I d] \\
& =(I d+B)^{-1} B
\end{aligned}
$$

$$
=I d-(I d+B)^{-1} \quad \text { On factorise par }
$$

3) Prouvons $\rho\left(B(I d+B)^{-1}\right)<1 \Leftrightarrow \frac{1}{2} I d+B$ def Θ :
$\Sigma=\frac{1}{2} \pm d+\beta$ etant $\operatorname{def} \Phi, \quad \forall \lambda \in \sigma\left(\frac{1}{2} I d+\beta\right), \lambda>0$.
Soit $\lambda \in \sigma\left(\frac{1}{2} I d+B\right)$ et $v_{x_{0}} \in \mathbb{R}^{n}$ sout vecton propse associé. Alars,

$$
\begin{aligned}
\left(\frac{1}{2} \pm d+\beta\right) v=\lambda v & \Leftrightarrow(I d+\beta) v=\left(\lambda+\frac{1}{2}\right) v \\
& \Leftrightarrow(I d+\beta)^{-1} v=\frac{1}{\lambda+\frac{1}{2}} v
\end{aligned}
$$

D^{\prime} os en mulipllaant par B, il viout

$$
\begin{aligned}
& \overline{B(I d+B)^{-1} v}=\frac{1}{\lambda+\frac{1}{2}} B v=\frac{\lambda-\frac{1}{2}}{\lambda+\frac{1}{2}} v \\
& \left(\frac{1}{2}+d+B\right) v=\lambda v \Leftrightarrow B v=\left(\lambda-\frac{1}{2}\right) v .
\end{aligned}
$$

Alors $\sigma\left(B(I d+\beta)^{-1}\right)=\left\{\frac{\lambda-\frac{1}{2}}{\lambda+\frac{1}{2}}: \lambda \in \sigma\left(\frac{1}{2} \pm d+\beta\right)\right\}$
Comme $\lambda>0$, il vient $\rho\left(B(I d+B)^{-1}\right)<1 \mathrm{car}$

$$
\left|\frac{\lambda-\frac{1}{2}}{\lambda+\frac{1}{2}}\right|<1, \quad \forall \lambda>0
$$

$\Rightarrow B(I d+B)^{-1}$ est symétriquel par lat question $\left.2 b\right)$. Elle est dour diagouatisable et ses valaurs et rectars peopoes surt daus $\mathbb{R} \times \mathbb{R}^{4}$. De plus, $\rho\left(B(I d+B)^{-1}\right)<1$ done $\forall(\lambda, v)$ vp et $\overrightarrow{v p}$ on a $|\lambda| \leqslant 1 a)^{\forall \lambda} \in\left(B(I d+B)^{-1}\right)$.

$$
\begin{aligned}
& B(I d+B)^{-1} v=\lambda v \\
\Leftrightarrow & (B+I d-I d)(I d+B)^{-1} v=\lambda v \\
\Leftrightarrow & {\left[I d-(I d+B)^{-1}\right] v=\lambda v } \\
\Leftrightarrow & (I d+B)^{-1} v=(1-\lambda) v \\
\Leftrightarrow & (I d+B) v=\frac{1}{1-\lambda} v \\
\Leftrightarrow & \left(\frac{1}{2}+d+B\right) v=\left(\frac{1}{1-\lambda}-\frac{1}{2}\right) v=\frac{\lambda+1}{2(1-\lambda)} v
\end{aligned}
$$

D^{\prime} oú $\sigma\left(\frac{1}{2} J d+B\right)=\left\{\frac{\lambda+1}{2(1-\lambda)}: \lambda \in \sigma\left(B(F d+B)^{-1}\right)\right\}$
Corurme $\rho\left(B(I d+B)^{-1}\right)<1$, aloes $|\lambda|<1$ ce qui implique que $\frac{\lambda+1}{2(1-\lambda)}>0 \quad \forall \lambda \in \sigma\left(B(L d+B)^{-1}\right)$. Par coitiquent, $\frac{1}{2} I d+B$ est défivie paritive.

Couvergence de la réthode itéeative:

- Si $\frac{1}{2} D+H$ est définie pasitive, comme $\frac{1}{2} D+H=c\left(\frac{1}{2} I d+B\right)$ et que $c>0$, ou anra que $\frac{1}{2} I d+B$ est drfinie positive. Por e'équivalune que Q 'ou vient de pesuver, cala entrầne que $\rho\left(B(\pm d+B)^{-1}\right)<1$.
- Comme l'équivalance est vraie eussi en rerplagant B pan C, on avra de la pême fagor que $\frac{1}{2} D+V \Rightarrow$
 Parer to zrevelov zez do han 2ilswapib unal tis sell I Par $2 b)(1$ ov area gloes que

Ce qui, pa 1), implique que la métćde ert convergente.

$$
\int \frac{1+x}{x-1) s}=u\left(\frac{1}{5}-\frac{1}{x-1}\right)=\operatorname{mo}(1+1+1)
$$

inp a $1>1 K \mid$ zinals, $I>(1+(2+b t) S) a \sin a)$

: svitasidj elevtber al eb exuepreval
semmar gwitirag sinitie tos $H+4 \frac{1}{5}$ il.

$$
\cdot 1>(1-(c+b t)\langle) \cdot
$$

$$
\begin{aligned}
& \because A=\int^{1-(A+b I)-b I] c \Rightarrow)} \\
& v(k-1)=-\operatorname{La}(\Delta+b t) c=a \\
& \text { - } \frac{1}{A-1}=-(\lambda+b I) \Leftrightarrow
\end{aligned}
$$

