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the problem with thermodynamics

With Clausius’ formulation of the second law of
thermodynamics, the conflict between thermodynamics
and dynamics became obvious. There is hardly a single
question in physics that has come more often and more
actively discussed than the relation between
thermodynamics and dynamics. Even now, a 150 years
after Clausius, the question arouses strong feelings.

I. Prigogine, |. Stengers, Order out of chaos (1984).



the problem with thermodynamics

Perhaps, after all, the wise man’s attitude towards
thermodynamics should be to have nothing to do with
it. To deal with thermodynamics is to look for trouble.
This is not the citation of a famous scientist, but the
result of a deep cogitation following mere observations.
Why do we need to get involved in a field of knowledge
which, within the last hundred years, has exhibited the
largest number of schizophrenics and megalomaniacs,
imbalanced scientists, paranoiacs, egocentrists, and
probably insomniacs and sleepwalkers?

Gérard A Maugin, The Thermomechanics Of Nonlinear Irreversible
Behaviors.



the problem with thermodynamics

Every mathematician knows that it is impossible to
understand any elementary course in thermodynamics.

V.l. Arnold, Contact Geometry: the Geometrical Method of
Gibbs's Thermodynamics. (1989)



the problem with statistical mechanics

The objective of statistical mechanics is to explain the
macroscopic properties of matter on the basis of the
behavior of the atom and molecules of which it is

composed.

Oscar R. Lanford Ill, 1973



the problem with statistical mechanics

The objective of statistical mechanics is to explain the
macroscopic properties of matter on the basis of the
behavior of the atom and molecules of which it is
composed.

Oscar R. Lanford IlI, 1973

If we want to make the above definition specific for the
non-equilibrium statistical mechanics, we can refrase it as

The objective of non-equilibrium statistical mechanics is to explain
the macroscopic evolution (in space and time) of matter on the
basis of the behaviour of the atom and molecules of which it is
composed.




the connection

Microscopic Dynamics

U

statistical mechanics
(equilibrium, non-equilibrium, local equilibrium)

J

thermodynamics
(Carnot Cycles, entropy, 1st and 2nd principles...)

The mathematical connection is through space-time scaling limits
(Hydrodynamic Limits, Quasi-Static Limits).



What is (equilibrium) thermodynamics?
| take seriously thermodynamics as defined in these classical books:

TREATISE
ON
THERMODYNAMICS

Max Planck

(Nobel Laureate, 1918)

Connections between measurable quantities as:
pressure, tension, volume, 'temperature’, energy
and heat, work, entropy.



Thermodynamics concern Macroscopic Objets

Vapor machine of Joseph Cugnot (1770)
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Fathers of Thermodynamics:

ﬂ,‘-

Clausius, Thompson (Lord Kelvin)



Fathers of Statistical Mechanics

Maxwell Boltzmann

atoms in a machine ~ 10?® ~ oo, and they move fast!



relation between thermodynamics and microscopic
dynamics: different space-time scale

thermodynamics describe objects that are big (macroscopic),
constituted by an enourmous number of atoms, but something in
these objects is changing very slowly, compared with the typical
frequency of the jiggling of these atoms.
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constituted by an enourmous number of atoms, but something in
these objects is changing very slowly, compared with the typical
frequency of the jiggling of these atoms.

Macroscopic means big and slow, but how big and how much
slower?

a black hole?



relation between thermodynamics and microscopic
dynamics: different space-time scale

thermodynamics describe objects that are big (macroscopic),
constituted by an enourmous number of atoms, but something in
these objects is changing very slowly, compared with the typical
frequency of the jiggling of these atoms.

Macroscopic means big and slow, but how big and how much
slower?

the entire universe?



God Given postulate or laws (principles)

As any physical and mathematical theory, thermodynamics
studies the consequences of his postulates, here called
laws of thermodynamics:

» Oth law: existence of equilibrium states, (Fowler 1931)

» 1st law: energy conservation (and much more!), (Mayer 1842,
Helmholtz and Thompson 1848),

» 2nd law: possible and impossible transformations from an
equilibrium to another (1824, Carnot).



God Given postulate or laws (principles)

As any physical and mathematical theory, thermodynamics
studies the consequences of his postulates, here called
laws of thermodynamics:

» Oth law: existence of equilibrium states, (Fowler 1931)

» 1st law: energy conservation (and much more!), (Mayer 1842,
Helmholtz and Thompson 1848),

» 2nd law: possible and impossible transformations from an
equilibrium to another (1824, Carnot).

In particular we cannot apply (directly) these ideas to system that
have no equilibrium states or we do not know them.
Galaxy? Universe?

From here come most of the abuses of 2nd principle and Entropy:
2nd principle cannot be applied to systems that do not satisfy the
Oth principle.



the first one to start this abuse was Clausius himself:

THE

NECHANICAL THEORY OF HEAT,

WITH IT8

APPLICATIONS T0 THE STEAM-ENGINE

AND TO THE

PHYSICAL PROPERTIES OF BODIES.

5 BY
Newdois oy

[T UNIVERSITY OF ZURICH,

\\}m R CLAUSIUb

EDITED BY

PIIT

CONVENIENT FORMS OF THE FUNDAMENTAL EQUATION

The treatment of the last might soon be completed,
S0 far as relates to the motions of ponderable masse
allied considerations lead us to the following conclusion.
a mass which is so great that an atom in comparisor
may be considered as infinitely small, moves as a wh
transformation-value of its motion must also be regs
infinitesimal when compared with its vis viva ; whenee i
that if such a motion by any passive resistance becon
verted into heat, the equivalence-value of the uncomy
transformation thereby occurring will be represented si
the transformation-value of the heat generated. Radis
on the contrary, cannot be so briefly treated, since it
certain special considerations in order to be able o s
its lue is to be i Althoug
already, in the Eighth Memoir above referred to, sJ
radiant heat in connexion with the mechanical theory ¢
have not alluded to the present question, my sole i
being to prove that no contradiction exists between th
radiant heat andsan axiom sssumed by me in the me
theory of heat. I reserve for future consideration the mor
application of the mechanical theory of heat, and par
of the theorem of the equivalence of transformations t
heat.

For the present I will confine myself to the stateme
result. If for the entire universe we conceive the sam
tude to be determined, consistently and with due regs
circumstances, which for a single body I have called
and if at the same time we introduce the other and sim
ception of energy, we may express in the following ms
fundamental laws of the universe which correspond tc
fundamental theorems of the mechanical theory of heat

1. The energy of the universe is constant.

2. The entropy of the universe tends to a mazimum.
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we have to go through some non-equilibrium states.
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we have to go through some non-equilibrium states.

Equilibrium thermodynamics only talks about which are the
possible transformation, without specifying any time scale or any
inhomogeneity.

Equilibrium Statistical Mechanics defines corresponding equilibrium
probability distribution, or Gibbs ensembles, on microscopic
configurations of the atoms.




Non-equilibrium

EQUILIBRIUM A = EQUILIBRIUM B

we have to go through some non-equilibrium states.

Equilibrium thermodynamics only talks about which are the
possible transformation, without specifying any time scale or any
inhomogeneity.

Equilibrium Statistical Mechanics defines corresponding equilibrium
probability distribution, or Gibbs ensembles, on microscopic
configurations of the atoms.

A non equilibrium statistical mechanics should explain, from
microscopic dynamics of atoms, why only some transformations
can happens, and how: space-time scale etc.




A crash course in thermodynamics
A one dimensional system (rubber under tension):

7

L(z.8) W
>

OO NN NN

Mechanical Equilibrium:

L=L(T), T = tension
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Mechanical Equilibrium:
L=L(T), T = tension
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0 is the temperature



A crash course in thermodynamics
A one dimensional system (rubber under tension):
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Mechanical Equilibrium:
L=L(T), T = tension
Thermodynamic Equilibrium
L=L(T,0)

0 is the temperature
Empirical definition of temperature.



Oth Law

There exists a family of thermodynamic equilibrium states,
parametrized by certain extensive or intensive variables.
For our one-dimensional bar:

— lenght (volume) L and energy U (extensive)

— tension 7 applied and temperature 6 > 0 (intensive).



Oth Law

There exists a family of thermodynamic equilibrium states,
parametrized by certain extensive or intensive variables.
For our one-dimensional bar:

— lenght (volume) L and energy U (extensive)

— tension 7 applied and temperature 6 > 0 (intensive).

» If we do not know if a particular system (let's say the Universe
for example) has equilibrium states or we do not know how
they are parametrized, we cannot apply thermodynamic
theory.

» Stronger statement: when it is under a tension 7 and in
contact with a heat bath at temperature 0, the system is able
to reach the corresponding equilibrium state.

» no time-scale at which equilibrium is reached.



Remarks on the 0-law

» In principle it only defines class of equivalence of equilibrium
states. In order to put a complete order and characterize them
by a real parameter # we need to compare with a real material
and that gives 0, (L, 7).



Remarks on the 0-law

» In principle it only defines class of equivalence of equilibrium
states. In order to put a complete order and characterize them
by a real parameter # we need to compare with a real material
and that gives 0, (L, 7).

» Heat bath or thermostats: a very large system that is in
equilibrium at a given temperature 6, and when in contact
with our (smaller) syatem, it is reacheed equilibrium at the
same temperature 6. ldeally it is an infinite system.



1st Law: Work and Energy

1. System is isolated. Start in equilibrium (Lo, 70). This is a
temperature 6y = 6(Lo,70).
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equilibrium (L1,71). You have done the mechanical work
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3. Change back to an applied tension 75. You will reach the
equilibrium state (Lp,7p) that has temperature 6 = (Lo, 79).
The work is now

W12 =10(L2 - Ly).

In general Ly # L1 and we observe empirically that
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1st Law: Work and Energy

1. System is isolated. Start in equilibrium (Lo, 70). This is a
temperature 6y = 6(Lo,70).

2. Change to tension 71, and wait till you reach a new
equilibrium (L1,71). You have done the mechanical work

Wo-1 =71(L1 - Lo).

3. Change back to an applied tension 75. You will reach the
equilibrium state (Lp,7p) that has temperature 6 = (Lo, 79).
The work is now

W12 =10(L2 - Ly).

In general Ly # L1 and we observe empirically that
Wi # Woos.

4. This means that there has been a change in the (internal)
energy of the system AU = Wy 1 + Wi_o. It allows to define
another (extensive) equilibrium variable U = U(L,9).



1st law: isothermal transformations

Now the system is in contact with a thermostat at temperature 6.
At beginning it is in state (79,0).

1. We change tension to 7 doing work Wo_,1 =71 (L1 — Lo),
where L1 = L(Tl,e).
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1. We change tension to 7 doing work Wo_,1 =71 (L1 — Lo),
where L1 = L(Tl,e).

2. Change back to tension 1y so we get back to the initial state
(70,60). We have done the work Wi_,o=79(Lo—L1). The
total transformation is called a cycle. Initial and final U are
then the same.



1st law: isothermal transformations

Now the system is in contact with a thermostat at temperature 6.
At beginning it is in state (79,0).

1. We change tension to 7 doing work Wo_,1 =71 (L1 — Lo),
where L1 = L(Tl,e).

2. Change back to tension 1y so we get back to the initial state
(70,60). We have done the work Wi_,o=79(Lo—L1). The
total transformation is called a cycle. Initial and final U are
then the same.

3. Total work is
W=(m-7)(L1-L)=-Q

in the heat, i.e. the energy ended up in the thermostat.

Notice that if L(7,#) is increasing with L, we have W > 0.



1st Law

In a thermodynamics transformation,
AU=W+Q

W : mechanical work done by the force 7,
Q : energy exchanged with the heat bath (Heat).



1st Law

In a thermodynamics transformation,
AU=W+Q

W : mechanical work done by the force 7,
Q : energy exchanged with the heat bath (Heat).
More than just energy conservation:

» separation of scales between the ordered (deterministic)
macroscopic slow work done by the tension 7 and the
disordered (random) microscopic fast collisions with the heat
bath.

» @ is the total exchange of energy with the heat bath during
the complete thermodynamic trasformation, resulting out of a
fast fluctuating istantaneous flux.



Quasi-Static Transformations
Existence of thermodynamic processes where the system is always
at some equilibrium. These processes are described by continuous
curves on the space of parameters. This way we can define
isothermal lines and adiabatic lines etc.
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at some equilibrium. These processes are described by continuous
curves on the space of parameters. This way we can define
isothermal lines and adiabatic lines etc.

We can consider this as a

hidden principle of thermodynamics,

or Law 1.5.

What is the physical meaning of these differential changes of
equilibrium states?

In principle, as we actually change the tension of the cable, the
system will go into a sequence of non-equilibrium states before to
relax to the new equilibrium.



Quasi-Static Transformations
Existence of thermodynamic processes where the system is always
at some equilibrium. These processes are described by continuous
curves on the space of parameters. This way we can define
isothermal lines and adiabatic lines etc.

We can consider this as a

hidden principle of thermodynamics,

or Law 1.5.

What is the physical meaning of these differential changes of
equilibrium states?

In principle, as we actually change the tension of the cable, the
system will go into a sequence of non-equilibrium states before to
relax to the new equilibrium. But, quoting Zemanski,

Every infinitesimal in thermodynamics must satisfy the
requirement that it represents a change in a quantity
which is small with respect to the quantity itself and
large in comparison with the effect produced by the
behavior of few molecules.



Thermodynamic transformations and Cycles

» reversible or quasi-static tranformations:
Often is used the 7 — L diagrams.

In the third transformation the work is given by the integral
along the cycle

W:deL:—Q (1)



Irreversible thermodynamic transformations
In principle any transformation that is not quasi-static, but brings
the system from an initial equilibrium state A = (Lo, 7p) to a final
state B = (L1,71).
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state B = (L1, 71). Thermodynamics does not attempt to describe
in detail these transformations, nor investigate their time scale.
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Irreversible thermodynamic transformations
In principle any transformation that is not quasi-static, but brings
the system from an initial equilibrium state A = (Lo, 7p) to a final
state B = (L1, 71). Thermodynamics does not attempt to describe
in detail these transformations, nor investigate their time scale.
Still funny pictures appears in the thermodynamic books:

A R

Fig: 1. from the Fermi's Thermodynamics
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An irreversible process followed by a reversible process to complete an irreversible cycle. f rom t h e Z eman Sk| H ea t an d



Special quasi-static transformations

» Isothermal:

System in contact with a thermostat while the external force
7 is doing work:

dWZTd,CZT(%)GdTZ—CYQ-FdU




Special quasi—static Transformations

» Adiabatic: §Q =0.

AW = 7dL = dU



Special quasi—static Transformations

» Adiabatic: §Q =0.

AW = 7dL = dU




Carnot Cycles

i

A — B, C - D isothermal transformations
B — C, D — A adiabatic transformations



Carnot Cycles

i

A — B, C - D isothermal transformations
B — C, D — A adiabatic transformations

W= § rde-Qp-Q.-- § 4@



Carnot Cycles

W >0 is a heat machine:




Carnot Cycles

W >0 is a heat machine:




Second Principle of Thermodynamics

Lord Kelvin statement:
if W <0 then

» @>0and Q1 >0
> or Qg<Oand Ql<0



Second Principle of Thermodynamics

Lord Kelvin statement:
if W <0 then

» >0and @1 >0
> or Qg<Oand Q1<0

If @ >0 and @ >0, then we say that 0, > 0y (definition!).



Clausius statement
Clausius Statement: if W =0, then Q, = Q; > 0.



Clausius statement

Clausius Statement: if W =0, then Q= Q; >0

Equivalence of Kelvin and Clausius statement:




Kelvin's theorem

Assume Kelvin Statement is satisfied, then for any Carnot cycle
operating between temperatures 6, and 6, the ratio % depends
only from (62,61), i.e. there exist a universal function f(61,6>)
such that

@

— =f(601,02).
Ql (17 2)
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Kelvin's theorem

Assume Kelvin Statement is satisfied, then for any Carnot cycle
operating between temperatures 6, and 6, the ratio % depends
only from (62,61), i.e. there exist a universal function f(61,6>)
such that

@

— =f(601,02).
Ql (17 2)

Clearly
f(01,02) = f(62,01)7 .

Corollary: There exist a function g(6) (independent of the cycle)

such that
Q@ _g(b)
Q1 g(b1)

T=g(0) absolute temperature



Proof of corollary

Take three thermostats 6g, 01, 0>.

[

=f(0q,0
% (60,61)
@

=1(04,0
N (61,62)

and we deduce that

Q

=2 = £(6o,61)f (61,6,) = F(61,02)
Q

£(61,60)



Proof of corollary

Take three thermostats 6g, 01, 0>.

Q1
— =1(6p,0
% (6o, 01)
% = f(61,6>)
and we deduce that
Q2 f(01,62)
—= =1(6g,01)f(01,02) =
Qo (P00 (01.02) = 55 S

@ f(61,02) _g(62)

=f(6o,62) =

Qo f(61.00) g(bo)
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Thermodynamic Entropy

From Kelvin's theorem:

@ Qe _ 4@
0‘T,, Tc‘ﬂgT

Extension to any cycle C: §_ dTQ =0




Thermodynamic Entropy
There exists a function S of the thermodynamic state such that
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exact differential form, S(U, L) is then a functions of the
equilibrium parameters (thermodynamic entropy).
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There exists a function S of the thermodynamic state such that
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exact differential form, S(U, L) is then a functions of the
equilibrium parameters (thermodynamic entropy).
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Thermodynamic Entropy
There exists a function S of the thermodynamic state such that

4Q _dUu-aw

ds =
T T

exact differential form, S(U, L) is then a functions of the
equilibrium parameters (thermodynamic entropy).
Since dW = 7dL,

0uS(U, L) = % >0, aS(UL)=-T.

» In quasi-static isothermal transformations: dS = Q/T.
» Adiabatic quasi-static transformations are isoentropic.

» Temperature as a thermal force:

dU = §Q + W = TdS + 7dL.



Irreversible (non-quasistatic) transformations

Now that we have defined S(U, L) using quasi-static isothermal
and adiabatic transformation, we can state his behaviour in
irreversible non-quasistatic tranformations:

» in an adiabatic transformation, (79, L) — (71, L1), the work
done is W =71 (L1 — Lg). The change in energy is
Uy = Up + W and the entropy change is S(Uy, L1) — S(Uo, Lo).
The irreversible statement of the second law is that

S(Ub Ll) 2 S(UOa LO)a

with equality only for quasi-static (reversible) transformations.



Irreversible (non-quasistatic) transformations

Now that we have defined S(U, L) using quasi-static isothermal
and adiabatic transformation, we can state his behaviour in
irreversible non-quasistatic tranformations:

» in an adiabatic transformation, (79, L) — (71, L1), the work
done is W =71 (L1 — Lg). The change in energy is
Uy = Up + W and the entropy change is S(Uy, L1) — S(Uo, Lo).
The irreversible statement of the second law is that

S(U17 Ll) 2 S(UOa LO)a

with equality only for quasi-static (reversible) transformations.

Example: Free collapse, 79 > 0,Lg >0 and 7y =0, then W =0 and
Ui = Up. Let L(T=0,ﬂ) =0=L; VB >0, then

5(U17L1) = S(U07O) > S(UOaLO)

since 9;S(u,L) =-pBr<0if 7>0.



Irreversible (non-quasistatic) isothermal transformations

» in an isothermal transformation, (79, 3) — (71, /), the work
done is W = 7(L; — Lg). The change in energy is
Ui = Up + W. It is useful to define the Free Energy

F(L7 T):U—TS, 8LF(L>/8):T(L7B)7
and the statement is TAS >0, i.e.

F(Li, T)-F(Lo, T)=W-TAS < W.
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There exists a C1—function
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such that
» S is concave,
oS
> U > O,

» S is positively homogeneous of degree 1:
S(AM, AU, AL) = AS(M, U, L), A>0

this scaling property means it refers to macroscopic objects.



Axiomatic approach

Extensive quantities: M, U, L = (mass, energy, length)
There exist an open cone set ' c Ry xR, xR, and (M, U, L) eT.
There exists a C1—function

S(M,U,L):T >R

such that
» S is concave,
aS
> U > 0,

» S is positively homogeneous of degree 1:
S(AM, AU, AL) = AS(M, U, L), A>0

this scaling property means it refers to macroscopic objects.

This function S contains all the informations about the
thermodynamics of the system. One can proceed in inverse way as
before and construct Carnot cycles and deduce Kelvin or the
equivalent Clausius statement of the second law.
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Axiomatic Approach

_1_95
T U
T = —5_1g tension

s

inverse temperature

T, T are homogeneous of degree 0 (intensive).
Since M is constant in most transformations we can set M =1 or
just omit it if not necessary.
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Thermodynamic Potentials

B=T1
Gibbs potential:

G(7,B) =sup{-pU+pB7L+S(U,L)}
U,L

Exercice:

S(U,L) = in; {BU-BTL+G(T,8)}
free energy:

F(Lvﬂ) = lljli){U—ﬁ_]'S(U, L)} = SEP{TL_B_IQ(TMB)}

O F=r1.



Heat and work differential form:

4Q = TdS = 571dS, AW = rdL
Since dS = —B7dL + SdU, it implies that

§Q = —7dL +dU



Heat and work differential form:

4Q = TdS = 571dS, AW = rdL
Since dS = —B7dL + SdU, it implies that

§Q = —7dL +dU

Thermodynamic transformations that are quasi-static and
reversible, are integrals of these differential forms on the
corresponding lines defining the transformations.

exercice: Prove that, in a Carnot cycle, the Kelvin statement of
2nd law follows.



Microscopic dynamics: statistical mechanics

FPU type chain of N-oscillators:
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Microscopic dynamics: statistical mechanics

FPU type chain of N- oscillators

Py Pia

_5'42

Il
e

p? N
Un ( L+ V() ) = ZE,- internal energy
i=1

Ly ri=qu length.

e

Il
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Isobaric Hamiltonian:

N

2
H =) (P2x + V(rx)) -Tqn =Y. (% + V(ry) —Trx)

x=1 x=1



Isobaric Dynamics

f(t) = pi(t) - pia(t),  j=1,...,N,

pi(t) = V' (rjsa(8)) = V' (1;(1)),
pn(t) = 7= V' (ru(1)),

j=1,...



Isobaric Dynamics

f(t) = pi(t) - pia(t),  j=1,...,N,
pi(t) = V'(ra(8)) - V'(55(1)),  j=1,....N-1,
pn(t) =7 = V'(rn(1)),

For any 8 > 0, define the canonical Gibbs measure

N 2
p.
dﬂ,r\{ﬁ =T e‘ﬁ(gj—Trj)—g(Tﬁ)drjdpj’ & = ?J +V(r).
j-1

where G is the Gibbs potential:
G(7,B) = log [Wf e—ﬂ(v(r)_”)dr].

For all 5> 0, ,u’TVB is a stationary probability for this dynamics.



Canonical Gibbs Measure

N
dﬂﬁ{,@’ _ H 6—5(51—70‘)—9(775)drjdpj’
=1

[vimduts =7, [ ppdus =57



Canonical Gibbs Measure

N
d/J/Q{B = H e_ﬁ(gf_Trj)_g(Tvﬁ) drjdpjg
Jj=1

/ V'(1)dprs =, fpfdu’)fﬁ:ﬁ‘l.
Equilibrium lenght L(7,3) and internal energy u(T,3) are given by:
aTg(T,ﬁ) = BL(T,B) = [ rjduﬁfﬁ
8ﬂg(7_75) = _U(Tuﬁ) + TL(T,/B) = f (_51 + T’]) duﬁfﬁy



MIlcrocanomical ensemble and entropy
Microcanonical Dynamics: pg = py =0 and

f(t) = pi(t) —pi-1(t),  j=1,...,N,
pi(t) = V' (ria(t)) = V'(1(2), =

>jri=NLand ¥;& = Nu conserved.

1,...



MIlcrocanomical ensemble and entropy
Microcanonical Dynamics: pg = py =0 and

’;j(t):pj(t)—Pj—l(t), j:17"'7N7

pi(t) = V'(ra(t)) - V'(r(t), Jj=1,...,N-1,
>jri=NLand ¥;& = Nu conserved.
Microcanonical surface:

L
Un_y vy

ZN(UaL):{(rl)pla"')rNupN): N N }

The projection of the Lebesque measure of R?N over ¥y (U, L),
properly normalized, is called microcanonical probability measure.

Wpn (U, L): volume of Xn(U, L) (i.e. the normalization constant).



MIlcrocanomical ensemble and entropy

Microcanonical Dynamics: pg = py =0 and
’;j(t):pj(t)—Pj—l(t), j:17"'7N7
pi(t) = V' (risa(t)) - V'(r(2)),  j=1,....N-1,

>jri=NLand ¥;& = Nu conserved.
Microcanonical surface:

L
Un_y vy

ZN(UaL):{(rl)pla"')rNupN): N N }

The projection of the Lebesque measure of R?N over ¥y (U, L),
properly normalized, is called microcanonical probability measure.

Wpn (U, L): volume of Xn(U, L) (i.e. the normalization constant).
The Boltzmann formula for the entropy is

1
S(U.L) = lim — log Wi(U. L).



Boltzmann entropy

S(U,L) = ,JT\oo % log Wn (U, L).

This looks different from what engraved in Boltzmann tombstone:




Boltzmann entropy

S(U,L) = ,JT\oo % log Wn (U, L).

This looks different from what engraved in Boltzmann tombstone:

_ R _ -23
k—N—A—1.38-10 JIK



Gibbs thermodynamic analogy

From 1
L)= lim —log W, L).
S(U7 ) N!;nooN og N(U7 )

we obtain:

Z=B=0uS(UD)>0,  T=- aS(U,L)

S50, L) = ing{BU—BTHQ(T,ﬁ)}



Gibbs thermodynamic analogy
From )
S(U.L) = Jim . log W(U, L).
we obtain:

Z=B=0uS(UD)>0,  T=- aS(U,L)

S50, L) = ing{BU—BTHG(T,B)}

In order to indentify S with the thermodynamic entropy obtained
with the Carnot cycles, we have to derive the (quasistatic)
isothermal and adiabatic transformations from the microscopic
dynamics, through a proper space time scaling limit.



Example: harmonic chain

V(r) = r?, so that, for £2 <2U,
Y n(U, L) is the 2N — 2-dimensional sphere (even dimension) of

radius \/N(U — £2/2), and microcanonical measure is the uniform

measure

B (27T)N_1[N(U— L2/2)]N—3/2 B WN_I[N(U—EZ/2)]N_3/2
Wn(U.L) = 2.4, (2N -4) =2 r(N-1)




Example: harmonic chain

V(r) = r?, so that, for £2 <2U,
Y n(U, L) is the 2N — 2-dimensional sphere (even dimension) of

radius \/N(U — £2/2), and microcanonical measure is the uniform

(27T)N_1[N(U _ L2/2)]N—3/2 _ ZWN_I[N(U—EZ/2)]N_3/2
2-4...(2N-4) r(N-1)

WN(U7 L) =

S(U,L) = (1+logm+log[U-£?/2]) = S(U, L)



Example: harmonic chain

V(r) = r?, so that, for £2 <2U,
Y n(U, L) is the 2N — 2-dimensional sphere (even dimension) of

radius \/N(U — £2/2), and microcanonical measure is the uniform

m)N YN - 12)2)]N 3R ZWN‘I[N(U - L2/2))V 312
4...(2N-14) - r(N-1)

WN(U7 L) =

S(U,L) = (1+logm+log[U-£?/2]) = S(U, L)

B=T7'= gfj [U- L2/2] _—5*185



Example: harmonic chain

V(r) = r?, so that, for £2 <2U,
Y n(U, L) is the 2N — 2-dimensional sphere (even dimension) of

radius \/N(U — £2/2), and microcanonical measure is the uniform

B (27T)N_1[N(U— L2/2)]N—3/2 B WN_I[N(U—EZ/2)]N_3/2
W (U, L) = 2.4, (2N -4) =2 r(N-1)

S(U,L) = (1+logm+log[U-£?/2]) = S(U, L)

B=T7'= gfj [U- L2/2] _—5*185

S=1+log(xT), F(L,T)=U-87'S, 9 F=9U=L



Isothermal Transformations
M@ﬂ Lo Lo L -

SIowa changlng tension:

Hat) = 2( +v<r,))+f<t/N"‘>qN

plus random collisions with particles of the heat bath: at
independent random times

p,'(t) — ﬁj NN(O, T)



Isothermal Transformations

Pr Pio

o L fo b a2

70=0

Slowly changmg tension:

Hat) = 2( +v<r,))+f<t/N"‘>qN

plus random collisions with particles of the heat bath: at
independent random times

pi(t) — B ~N(0,T)
More effective is to use Langevin thermostats:

dp;j(t) = —OgHn(t)dt — ypj(t)dt + /2y T dw;(t)



Isothermal: time rescaled dynamics

dre(t) = N*(px(t) — px-1(t))dt, x=1,...N
dpe(t) = N*(V'(res1(2)) = V(1)) dt = N*ype(t)dt + N2\ /2 dw (1),
dpn () = N*(7(£) = V/(m(2))) dt = N*yp(t) dt + NP2 /55 dw (1),

levﬁ is the unique stationary measure if 7 constant in time.



Isothermal: time rescaled dynamics

dre(t) = N*(px(t) — px-1(t))dt, x=1,...N

dps(t) = N (V' (res1 () = V' (1r(1))) dt = N*ypu(£)dt + N2\ /2 dwi(2),
dpn(t) = N (7(t) = V'(rn(t))) dt = N®yppn(t) dt + N2, /%de/v(t).
levﬁ is the unique stationary measure if 7 constant in time.

« > 2 gives a quasi-static time scale:
At time t we expect the distribution of py, ry to be close to u’;’(t) 5



Isothermal: time rescaled dynamics

dre(t) = N*(px(t) — px-1(t))dt, x=1,...N
dpe(t) = N*(V'(res1(2)) = V(1)) dt = N*ype(t)dt + N2\ /2 dw (1),
dpn(t) = N*(7(1) = V'(rn(£))) dt — N*ypuy(t) dt + N*/2\ /2 dwpy(2).

u’;vﬁ is the unique stationary measure if 7 constant in time.
« > 2 gives a quasi-static time scale:
At time t we expect the distribution of py, ry to be close to “I%V(t),ﬁ'
Quasi-Static Isothermal Hydrodynamic Limit:
For any o > 2:

N
7 2 G/Me) = 70) [ G(y) dy

=|

L(t) = B1(0:G)(B,7(1))



Proof of isothermal QS limit

N - -
800 5 (ri,pL o s pN) = q e PET(O)-G(7(1).8)
J=

fN(ri,p1,...,rv, py) the density of the distribution at time t with
respect to ug’(t)ﬂ = gF’\ét)ﬂdrdp:

Ot (ftNgFI\ét),B) = (£7I_;I(t)*ftN) g‘TI-\ét),,B

L9 = nea D e NeBy, L0 = N Al - N By
A = z<px Px-1)Dpy + z<V<rx+1 V' (1)), + (F(£) = V' (r)) Dy

= Z (ﬂ_laix - anpx)

x=1



proof of isothermal QS limit

0c (efte.5) = (£ ") 87605

The (Shannon) relative entropy with respect to ML-V(t) 5 is

Hu(e) = [ M 10g £ dillsy 5 Hi(0) =0



proof of isothermal QS limit

0 (R'ele0) = (£ 7") &l o

The (Shannon) relative entropy with respect to ML-V(t) 5 is

Hu(e) = [ M 10g £ dillsy 5 Hi(0) =0

Ny2
—HN(t)‘ -N%*~3~ fz(ﬁp,f ) T(t)”g
570 [ z L) £

< 5T(t)f2 — L) £ duly -



proof of isothermal QS limit

By entropy inequality, for any A > 0 small enough

< () < 7 <f)f,§; SIO)NARTLEP

<A log [ T OTLIEO) gl o X H (1)
<ACN + A THp(t),



proof of isothermal QS limit

By entropy inequality, for any A > 0 small enough

< () < 7 <t)flz; SIO)NARTLEP

<A log [ T OTLIEO) gl o X H (1)
<ACN + A THp(t),

and since Hy(0) = 0, it follows that Hy(t) < e!/*XCt N. This is
not yet what we want to prove but it implies that

(a,f"’) c.
f [Z e diiz(e It <
i=1




proof of isothermal QS limit

LS5 et e

This gives only information on the distribution of the velocities.
Uning entropic hypocoercive bounds we have the same for

(‘9q,’dv)2 C
f flz; T(t)ﬁdtgl\/al

where 0q, = 0, - 0

Fit1-

and, since « > 2, this is enough to prove that
d
(EHN(f) S) 5[ Z L(t)) £ dpg(e s — O,
i=1

Hn(t) .
N



Isothermal limit: Work, Heat and Free Energy
Internal Energy:

Un(t) = Un(0) = Wi (t) + Qu(t)



Isothermal limit: Work, Heat and Free Energy
Internal Energy:

Un(t) - Un(0) = Wh(t) + Qn(t)
Work:
WN(t)=Na_lft?(s)p,v(s)ds:[Oti—(s)quT(s)

:f T(s)d( er(t)) ft%(s)d[(s) = W(t)



Isothermal limit: Work, Heat and Free Energy
Internal Energy:

Un(t) = Un(0) = Wi (t) + Qu(t)

Work:
WN(t)=NO‘_1fOt7_'(s)pN(s)ds:foti—(s)quT(s)
t_ 1 t _
:fo T(S)d(ﬁgrx(t))ﬁfo T(s)dL(s) :==W(t)
Heat:

N t
Qn() =N 3 JACIORERE

N
+ N@=2)/2 Y V2Bt fotpx(s)dwx(s).
x=1

it may look horribly divergent but...



Isothermal limit: Work, Heat and Free Energy

lim (Un(t) = Un(0)) = u(7(t), 8) - u(7(0), 5) = a(t) - a(0)
where u(T, 8) = -03G(7, ) is the average energy for i ;.
Qn(t) — Q(t) = a(t) - 5(0) - W (2).

which is the first law of thermodynamics for quasistatic isothermal
transformations.



Isothermal limit: Work, Heat and Free Energy

lim (Un(t) = Un(0)) = u(7(t), 8) - u(7(0), 5) = a(t) - a(0)
where u(T, 8) = -03G(7, ) is the average energy for i ;.
Q) — Q1) = (1) - 3(0) - W(o).

which is the first law of thermodynamics for quasistatic isothermal
transformations.
Notice that Q(t) is a finite deterministic quantity!



Isothermal limit: Work, Heat and Free Energy

lim (Un(t) = Un(0)) = u(7(t), 8) - u(7(0), 5) = a(t) - a(0)
where u(T, 8) = -03G(7, ) is the average energy for i ;.
Qn(t) — Q(t) = a(t) - 5(0) - W (2).

which is the first law of thermodynamics for quasistatic isothermal
transformations.

Notice that Q(t) is a finite deterministic quantity!
For the Free Energy:

F(L(),0) - F(L(0),8) = [ 0F(I(s),8)dL(s)
= ["#(s)di(s) = w(n)

i.e. Clausius equality.
Equivalently, by F = u— 718,

B7H(S(L(t), u(t)) - S(L(0), u(0))) = Q(t)



Thermodynamic (Boltzmann) entropy
and Gibbs-Shannon entropy

Let #y(t)drdp = fN(t)g;l\ét) sdrdp. The Gibbs-Shannon entropy is

Se(fu(t)) = - f fa(t) log fn (t)drdp
and the relation with the relative entropy studied above is:
H(t) = =Se(fu(t)) = [ loggn - s(efu(t)dnlle) 5

_ _Sc(Ry(t)) + ] ZX:([%’X— BR(t)r - G(7(t), B)) fn(t)dply) 5



Thermodynamic (Boltzmann) entropy
and Gibbs-Shannon entropy

Let #y(t)drdp = fN(t)g%'\ét) sdrdp. The Gibbs-Shannon entropy is

Se(fu(t)) = - f fa(t) log fn (t)drdp
and the relation with the relative entropy studied above is:

H(t) = =Se(fu(t)) = [ loggn - s(efu(t)dnlle) 5

—=Se(fu(e) + [ X (88~ BH(8)r = G(7(1), B)) u ()i 5
Since Hy(t)/N — 0 we have

Jim %SG(FN(t)) = Biu(t) - B7(t)L(t) - G(7(t), )
= S(a(t),L(t)).



Adiabatic Quasi-Static Limit

P P pi Pt
<000~ LmFoooon - ;
70=0 .

dre(t) = N“(px(t) — px-1(t)) dt

dpx(t) = N*(V/(rea () - V/(re())) dt, x=1,...,

dpn(t) = N*(7(t) - V'(ru(1))) dt



Adiabatic thermodynamic transformation

We start at t = 0 with the equilibrium MQ’(O) 5(0)" Correspondingly
there is an average energy (0) and length L(0) given by

i(0) = u(B(0),7(0)) = -93G(B(0),7(0))
L(0) = L(B(0),7(0)) = B~(9:G)(5(0),7(0)).

The adiabatic quasistatic transformation is isoentropic, i.e.
S(a(t), L(t))-5(a(0), L(0)) = f B(s)d'(s) - B(s)7(s)L'(s)) ds = 0.
so that &i(t) and L(t) are determined by

i'(s) =7(s)L'(s)

and

B(t) = duS(a(t), L(t)).



We expect that for a>2 and all t >0

GO (0) — 1(0) [ 60 dy

=~ =~
M= M=

GUIME() — ate) [ 6 dy

No results yet for deterministic dynamics.
Some preliminary results with some stochastic perturbations that
conserve energy and volume.



Where is the difficulty?

d N
EHN t)=- [f atgﬂ(t) (t)Herde

-/ ; F(8) (& - 5(1)) + (BOF0) (5~ L(0)] £y 7o

Then all one has to prove is

T L& . v, _
im [ dt[fﬁxasxft du?(t)ﬁ(t)—u(t)]:o

N—oco

M @
. N 4 N N _
A Jo dt[ﬁf""’ff d“f(r)ﬁ(r)‘L(t)]‘o



Where is the difficulty?

d
—Hp(t) =- ffN(?th(t) (t)Herde

-/ ; F(8) (& - 5(1)) + (BOF0) (5~ L(0)] £y 7o

Then all one has to prove is

im [ dt fiis NauN - a()] =0
R QRO

N—soco JO

- T 1 N N T _
lim ) dt[ﬁfq,vft du?(t)ﬁ(t)—L(t)]—O

N—oo

(2)

that would imply

lim = (Hu(t) - Hy(0)) =0



But (2) would also imply directly that

sim P i 2685 1))
SG( )

N—>oo

+5(a(0), L(0)) =0



Adiabatic Transformation: Stochastic model

dre(t) = NY(px(t) — px-1(t)) dt
dpx(t) = N*(V'(re1(t)) = V'(re(t))) dt, x=1,...,N-1,
dpn(t) = N*(7(t) = V'(ru(t))) dt

plus a random exchance between nearest neighbor configurations,
generated by

N-1
S/\/f(l’, p) = N¢ Z (f(rX’X+1, px,x+1) _ f(l’, p))
x=1
where (P**1 p***1) is the configuration (r,p) with sites x and

x + 1 exchanged.



Adiabatic Transformation: Stochastic model

d _ N N N
EHN(t)——fft 088170 [ el

N
= [ R LF @ @ a0) + (G070 (5~ L0)] £ dnso, o
+NaffN(t) (Snlog fu(t)) 1) 7o)

N
< 2 [(6) (€= a(0)) + (B (e~ L)) i 0

N-1 )
- / 2 (\/fN(t’ Pl procl) i (¢, p)) diiz(t) 3(t)
x=1



Adiabatic Transformation: Stochastic model

As done before we get the bound

C
Noz—l

N-1 2
[ ); (\/fN(ta rX’XJrl? pX’XJrl) - \/fN(t7 r, p)) diufT-(t),B(t) <

and if we are able to prove a one-block bound at the boundary, this
estimate allows to the a two blocks bound at macroscopic distance
by a telescoping sum + Schwarz inequality, if o > 2.



	Quotes

