Thermal boundaries for energy superdiffusion

Stefano Olla CEREMADE, Université Paris-Dauphine, PSL GSSI, L'Aquila

Supported by ANR LSD

Oxford (on zoom), February 15, 2021

Thermal boundaries

Thermal boundaries appear in macroscopic equations for the evolution of energy or temperatures profiles.

Thermal boundaries

Thermal boundaries appear in macroscopic equations for the evolution of energy or temperatures profiles.

Basic example: *heat equation* for a material in contact with heat bath at the boundaries:

$$\partial_t u(t, y) = \partial_y (D(u)\partial_y u(t, y)), \qquad y \in [0, L]$$

$$u(t, 0) = T_+, \qquad u(t, L) = T_-.$$

But superdiffusion associated to fractional Laplacian can appear, and BC are more delicate.

Consider the usual heat equation with temperature fixed at y = 0:

$$\partial_t u(t, y) = D\Delta_y u(t, y), \qquad y \in \mathbb{R} \setminus \{0\}$$

$$u(t, 0) = T.$$

This is very easy problem, and left side does not exchange energy with the right side.

Consider the usual heat equation with temperature fixed at y = 0:

$$\partial_t u(t, y) = D\Delta_y u(t, y), \qquad y \in \mathbb{R} \setminus \{0\}$$

$$u(t, 0) = T.$$

This is very easy problem, and left side does not exchange energy with the right side.

What about, for $\alpha < 1$,

$$\partial_t u(t, y) = -D|\Delta_y|^{\alpha} u(t, y), \qquad y \in \mathbb{R} \setminus \{0\}$$
$$u(t, 0) = T ?$$

There are many different definition of the BC for the fractional Laplacian. Which one emerges from the microscopic dynamics?

$$\begin{array}{l} \texttt{v} \textcircled{\begin{subarray}{lll} \label{eq:product} } \texttt{v} \textcircled{\begin{subarray}{lll} \label{eq:product} \label{eq:product} \label{eq:product} \texttt{v} \Huge{\begin{subarray}{lll} \label{eq:product} \label{eq:product} \label{eq:product} \label{eq:product} \texttt{v} \Huge{\begin{subarray}{lll} \label{eq:product} \label{eq$$

$$\mathfrak{p} = \{\mathfrak{p}_x, x \in \mathbb{Z}\}, \mathfrak{q} = \{\mathfrak{q}_x, x \in \mathbb{Z}\}$$
$$\mathcal{H}(\mathfrak{p}, \mathfrak{q}) \coloneqq \frac{1}{2} \sum_x \mathfrak{p}_x^2 + \frac{1}{2} \sum_{x,x'} \alpha_{x-x'} \mathfrak{q}_x \mathfrak{q}_{x'}$$

 $d\mathfrak{q}_{X}(t) = \mathfrak{p}_{X}(t)dt, \quad X \in \mathbb{Z}$

 $d\mathfrak{p}_{x}(t) = -(\alpha * \mathfrak{q}(t))_{x} dt + \left(-\gamma \mathfrak{p}_{0}(t) dt + \sqrt{2\gamma T} dw(t)\right) \delta_{0,x},$

where $\{w(t), t \ge 0\}$ is a standard Wiener process.

Microscopic modeling: Poisson-Maxwell thermostats

$$d\mathfrak{q}_{X}(t) = \mathfrak{p}_{X}(t)dt, \quad X \in \mathbb{Z}$$

$$d\mathfrak{p}_{x}(t) = -(\alpha * \mathfrak{q}(t))_{x} dt + \left(\rho(\mu)\tilde{\rho}_{N(\gamma\mu t^{-})} - \frac{1}{\mu}\mathfrak{p}_{0}(t^{-})\right) dN(\gamma\mu t)\delta_{0,x},$$

- $\{N(t), t \ge 0\}$ is a standard Poisson process,
- $\{\tilde{p}_j\}$ i.i.d. $\mathcal{N}(0, T)$,

•
$$\rho(\mu) = \frac{\sqrt{2\mu-1}}{\mu}$$
.

個 と く ヨ と く ヨ と …

Microscopic modeling: Poisson-Maxwell thermostats

$$d\mathfrak{q}_{X}(t) = \mathfrak{p}_{X}(t)dt, \quad x \in \mathbb{Z}$$

$$d\mathfrak{p}_{x}(t) = -(\alpha * \mathfrak{q}(t))_{x} dt + \left(\rho(\mu)\tilde{\rho}_{N(\gamma\mu t^{-})} - \frac{1}{\mu}\mathfrak{p}_{0}(t^{-})\right) dN(\gamma\mu t)\delta_{0,x},$$

- $\{N(t), t \ge 0\}$ is a standard Poisson process,
- $\{\tilde{p}_j\}$ i.i.d. $\mathcal{N}(0, T)$,
- $\rho(\mu) = \frac{\sqrt{2\mu-1}}{\mu}$.
- $\mu = 1$ is the simple Gaussian renewal of the velocity at Poisson times,

$$d\mathfrak{q}_{x}(t) = \mathfrak{p}_{x}(t)dt, \quad x \in \mathbb{Z}$$

$$d\mathfrak{p}_{x}(t) = -(\alpha * \mathfrak{q}(t))_{x} dt + \left(\rho(\mu)\tilde{\rho}_{N(\gamma\mu t^{-})} - \frac{1}{\mu}\mathfrak{p}_{0}(t^{-})\right) dN(\gamma\mu t)\delta_{0,x},$$

- $\{N(t), t \ge 0\}$ is a standard Poisson process,
- $\{\tilde{p}_j\}$ i.i.d. $\mathcal{N}(0, T)$,
- $\rho(\mu) = \frac{\sqrt{2\mu-1}}{\mu}$.
- $\mu = 1$ is the simple Gaussian renewal of the velocity at Poisson times,
- for $\mu \to \infty$ it converges to the Langevin thermostat.

$$d\mathfrak{q}_{X}(t) = \mathfrak{p}_{X}(t)dt, \quad x \in \mathbb{Z}$$

$$d\mathfrak{p}_{x}(t) = -(\alpha * \mathfrak{q}(t))_{x} dt + \left(\rho(\mu)\tilde{\rho}_{N(\gamma\mu t^{-})} - \frac{1}{\mu}\mathfrak{p}_{0}(t^{-})\right) dN(\gamma\mu t)\delta_{0,x},$$

- $\{N(t), t \ge 0\}$ is a standard Poisson process,
- $\{\tilde{p}_j\}$ i.i.d. $\mathcal{N}(0,T)$,
- $\rho(\mu) = \frac{\sqrt{2\mu-1}}{\mu}$.
- $\mu = 1$ is the simple Gaussian renewal of the velocity at Poisson times,

- for $\mu \to \infty$ it converges to the Langevin thermostat.
- for $\mu = 1/2$ flip sign of the velocity at Poisson times.

$$\hat{f}(k) = \sum_{x} f_{x} e^{-i2\pi kx} \qquad k \in \Pi \sim [0,1]$$

•
$$\hat{\alpha}(k) \in \mathbb{C}^{\infty}(\Pi)$$
.
• $\omega(k) = \sqrt{\hat{\alpha}(k)}$: dispersion relation.

- - 4 回 ト - 4 回 ト

$$\hat{f}(k) = \sum_{x} f_{x} e^{-i2\pi kx} \qquad k \in \Pi \sim [0,1]$$

• $\hat{\alpha}(k) \in \mathbb{C}^{\infty}(\Pi)$. • $\omega(k) = \sqrt{\hat{\alpha}(k)}$: dispersion relation.

In the n.n. unpinned chain (acoustic chain) :

$$\alpha_{x} = 2\delta_{x,0} - \delta_{x,\pm 1}, \qquad \omega(k) = 2|\sin(\pi k)|.$$

$$\hat{f}(k) = \sum_{x} f_{x} e^{-i2\pi kx} \qquad k \in \Pi \sim [0,1]$$

- $\hat{\alpha}(k) \in \mathbb{C}^{\infty}(\Pi)$. • $\omega(k) = \sqrt{\hat{\alpha}(k)}$: dispersion relation.
- In the n.n. unpinned chain (acoustic chain) :

$$\alpha_{x} = 2\delta_{x,0} - \delta_{x,\pm 1}, \qquad \omega(k) = 2|\sin(\pi k)|.$$

$$\hat{\psi}(t,k) \coloneqq \omega(k)\hat{\mathfrak{q}}(t,k) + i\hat{\mathfrak{p}}(t,k), \qquad \int |\hat{\psi}(t,k)|^2 = \mathcal{H}(\mathfrak{p},\mathfrak{q}).$$

$$\hat{f}(k) = \sum_{x} f_{x} e^{-i2\pi kx} \qquad k \in \Pi \sim [0,1]$$

•
$$\hat{\alpha}(k) \in \mathbb{C}^{\infty}(\Pi).$$

•
$$\omega(k) = \sqrt{\hat{\alpha}(k)}$$
: dispersion relation.

- - 4 回 ト - 4 回 ト

$$\hat{f}(k) = \sum_{x} f_{x} e^{-i2\pi kx} \qquad k \in \Pi \sim [0,1]$$

â(k) ∈ C[∞](Π).
 ω(k) = √â(k): dispersion relation.
In the n.n. unpinned chain (acoustic chain) :

$$\alpha_x = 2\delta_{x,0} - \delta_{x,\pm 1}, \qquad \omega(k) = 2|\sin(\pi k)|.$$

$$\hat{f}(k) = \sum_{x} f_{x} e^{-i2\pi kx} \qquad k \in \Pi \sim [0,1]$$

â(k) ∈ C[∞](Π).
 ω(k) = √â(k): dispersion relation.
In the n.n. unpinned chain (acoustic chain):

$$\alpha_{x} = 2\delta_{x,0} - \delta_{x,\pm 1}, \qquad \omega(k) = 2|\sin(\pi k)|.$$

$$\hat{\psi}(t,k) \coloneqq \omega(k)\hat{\mathfrak{q}}(t,k) + i\hat{\mathfrak{p}}(t,k), \qquad \int |\hat{\psi}(t,k)|^2 = \mathcal{H}(\mathfrak{p},\mathfrak{q}).$$

$$\hat{f}(k) = \sum_{x} f_{x} e^{-i2\pi kx} \qquad k \in \Pi \sim [0,1]$$

â(k) ∈ C[∞](Π).
 ω(k) = √â(k): dispersion relation.
In the n.n. unpinned chain (acoustic chain):

$$\alpha_{x} = 2\delta_{x,0} - \delta_{x,\pm 1}, \qquad \omega(k) = 2|\sin(\pi k)|.$$

$$\hat{\psi}(t,k) \coloneqq \omega(k)\hat{\mathfrak{q}}(t,k) + i\hat{\mathfrak{p}}(t,k), \qquad \int |\hat{\psi}(t,k)|^2 = \mathcal{H}(\mathfrak{p},\mathfrak{q}).$$

$$d\hat{\psi}(t,k) = -i\omega(k)\hat{\psi}(t,k) dt - i\gamma \mathfrak{p}_0(t)dt + i\sqrt{2\gamma T}dw(t)$$

$$\hat{f}(k) = \sum_{x} f_{x} e^{-i2\pi kx} \qquad k \in \Pi \sim [0,1]$$

â(k) ∈ C[∞](Π).
 ω(k) = √â(k): dispersion relation.
In the n.n. unpinned chain (acoustic chain):

$$\alpha_x = 2\delta_{x,0} - \delta_{x,\pm 1}, \qquad \omega(k) = 2|\sin(\pi k)|.$$

$$\hat{\psi}(t,k) \coloneqq \omega(k)\hat{\mathfrak{q}}(t,k) + i\hat{\mathfrak{p}}(t,k), \qquad \int |\hat{\psi}(t,k)|^2 = \mathcal{H}(\mathfrak{p},\mathfrak{q}).$$

$$d\hat{\psi}(t,k) = -i\omega(k)\hat{\psi}(t,k) dt - i\gamma \mathfrak{p}_0(t)dt + i\sqrt{2\gamma T}dw(t)$$

$$\hat{\psi}(t,k) = e^{-i\omega(k)t}\hat{\psi}(0,k) - i\gamma \int_0^t e^{-i\omega(k)(t-s)}\mathfrak{p}_0(s)ds + i\sqrt{2\gamma T} \int_0^t e^{-i\omega(k)(t-s)}dw(t)ds + i\sqrt{2\gamma T} \int_0^t e^{-i\omega(k)(t-s)}dw(t)dt + i\sqrt{2\gamma T} \int_0^t e^{-i\omega(k)(t-s)}dw(t)dt + i\sqrt{2\gamma T} \int_0^t e^{-i\omega(k)(t-s)}dw(t)dt + i\sqrt{2\gamma T} \int_0^t e^{-i\omega(k)}dw(t)dt + i\sqrt{2\gamma T} \int_0^t e$$

Wigner distribution

 $\eta \in \mathbb{R}, \; \varepsilon > 0$ -hyperbolic rescaling of space–time

$$\begin{split} \widehat{W}_{\varepsilon}(t,\eta,k) &:= \frac{\varepsilon}{2} \mathbb{E}\left[\hat{\psi}^*\left(\varepsilon^{-1}t,k-\frac{\varepsilon\eta}{2}\right)\hat{\psi}\left(\varepsilon^{-1}t,k+\frac{\varepsilon\eta}{2}\right)\right] \\ &\widehat{W}_{\varepsilon}(t,\eta,k) &:= \widehat{W}_{\varepsilon}(t,-\eta,k)^* \end{split}$$

and the inverse Fourier transform in $\boldsymbol{\eta}$

$$W_{\varepsilon}(t,y,k) = \int \widehat{W}_{\varepsilon}(t,\eta,k) e^{i2\pi\eta y} d\eta \in \mathbb{R}, \qquad y \in \mathbb{R},$$

Wigner distribution

 $\eta \in \mathbb{R}, \; \varepsilon > 0$ -hyperbolic rescaling of space–time

$$\begin{split} \widehat{W}_{\varepsilon}(t,\eta,k) &:= \frac{\varepsilon}{2} \mathbb{E}\left[\hat{\psi}^* \left(\varepsilon^{-1}t, k - \frac{\varepsilon\eta}{2} \right) \hat{\psi} \left(\varepsilon^{-1}t, k + \frac{\varepsilon\eta}{2} \right) \right] \\ \widehat{W}_{\varepsilon}(t,\eta,k) &:= \widehat{W}_{\varepsilon}(t,-\eta,k)^* \end{split}$$

and the inverse Fourier transform in $\boldsymbol{\eta}$

$$W_{\varepsilon}(t,y,k) = \int \widehat{W}_{\varepsilon}(t,\eta,k) e^{i2\pi\eta y} d\eta \in \mathbb{R}, \qquad y \in \mathbb{R},$$

$$W_{\varepsilon}(t,y,k) \stackrel{\sim}{\underset{\varepsilon \to 0}{\rightarrow}} W(t,y,k) \ge 0$$
, as distribution

When $\gamma = 0$ it is easy to prove that

$$\partial_t W(t,y,k) + \frac{\omega'(k)}{2\pi} \partial_y W(t,y,k) = 0$$

$$\hat{\psi}(t,k) = \hat{\psi}(0,k)e^{-i\omega(k)t}$$

回 と く ヨ と く ヨ と

$$\begin{split} \hat{\psi}(t,k) &= \hat{\psi}(0,k) e^{-i\omega(k)t} \\ \hat{W}_{\varepsilon}(t,\eta,k) &:= \frac{\varepsilon}{2} \mathbb{E} \left[\hat{\psi}^* \left(\varepsilon^{-1}t, k - \frac{\varepsilon\eta}{2} \right) \hat{\psi} \left(\varepsilon^{-1}t, k + \frac{\varepsilon\eta}{2} \right) \right] \end{split}$$

回 と く ヨ と く ヨ と

$$\hat{\psi}(t,k) = \hat{\psi}(0,k)e^{-i\omega(k)t}$$
$$\widehat{W}_{\varepsilon}(t,\eta,k) := e^{i\left[\omega\left(k-\frac{\varepsilon\eta}{2}\right)-\omega\left(k+\frac{\varepsilon\eta}{2}\right)\right]\varepsilon^{-1}t}\widehat{W}_{\varepsilon}(0,\eta,k)$$
$$\underset{\varepsilon \to 0}{\sim} e^{-i\omega'(k)\eta t}\widehat{W}(0,\eta,k)$$

回 と く ヨ と く ヨ と

$$\hat{\psi}(t,k) = \hat{\psi}(0,k)e^{-i\omega(k)t}$$
$$\widehat{W}_{\varepsilon}(t,\eta,k) := e^{i\left[\omega\left(k-\frac{\varepsilon\eta}{2}\right)-\omega\left(k+\frac{\varepsilon\eta}{2}\right)\right]\varepsilon^{-1}t}\widehat{W}_{\varepsilon}(0,\eta,k)$$
$$\underset{\varepsilon \to 0}{\sim} e^{-i\omega'(k)\eta t}\widehat{W}(0,\eta,k)$$
$$W(t,y,k) = W\left(0,y-\frac{\omega'(k)}{2\pi}t,k\right)$$

Phonon of wave number k moves freely with velocity $\frac{\omega'(k)}{2\pi}$.

$\gamma > 0$ Explicit solution (microscopic)

$$J(t) = \int_{\mathbb{T}} \cos(\omega(k)t) \ dk,$$

回 と く ヨ と く ヨ と

$\gamma > 0$ Explicit solution (microscopic)

$$J(t) = \int_{\mathbb{T}} \cos(\omega(k)t) \ dk,$$

The Laplace transform of J(t) is given by

$$\begin{split} \tilde{J}(\lambda) &= \int_0^\infty e^{-\lambda t} J(t) dt = \int_{\mathbb{T}} \frac{\lambda}{\lambda^2 + \omega^2(k)} dk. \\ \tilde{g}(\lambda) &= \left(1 + \gamma \tilde{J}(\lambda)\right)^{-1} = \int_0^\infty e^{-\lambda t} g(dt). \qquad |\tilde{g}(\lambda)| < 1 \\ \phi(t,k) &= \int_0^t e^{i\omega(k)\tau} g(d\tau) \underset{t \to \infty}{\longrightarrow} \tilde{g}(-i\omega(k)) \coloneqq \nu(k) \\ t,k) &= e^{-i\omega(k)t} \Big[\hat{\psi}(0,k) - i\gamma \int_a^t \phi(t-s,k) e^{i\omega(k)s} \mathfrak{p}_0^0(s) \, ds \end{split}$$

$$\hat{\psi}(t,k) = e^{-i\omega(k)t} \Big[\hat{\psi}(0,k) - i\gamma \int_0^t \phi(t-s,k) e^{i\omega(k)s} \mathfrak{p}_0^0(s) \, ds \\ +i\sqrt{2\gamma T} \int_0^t \phi(t-s,k) e^{i\omega(k)s} \, dw(s) \Big]$$

 $\mathfrak{p}_0^0(i)$: moment of particle 0 under the free evolution for $\gamma = 0$.

Results in presence of the Langevin thermostat in 0 ($\gamma > 0$)

$$\nu(k) = (1 + \gamma \tilde{J}(-i\omega(k)))^{-1}, \qquad \tilde{J}(\lambda) = \int_{\mathbb{T}} \frac{\lambda}{\lambda^2 + \omega^2(k)} dk.$$

Re $\nu(k) = (1 + \frac{\gamma \pi}{|\omega'(k)|}) |\nu(k)|^2$

→ 御 → → 注 → → 注 注

Results in presence of the Langevin thermostat in 0 ($\gamma > 0$)

$$\nu(k) = \left(1 + \gamma \tilde{J}(-i\omega(k))\right)^{-1}, \qquad \tilde{J}(\lambda) = \int_{\mathbb{T}} \frac{\lambda}{\lambda^2 + \omega^2(k)} dk.$$

$$\operatorname{Re} \nu(k) = \left(1 + \frac{\gamma \pi}{|\omega'(k)|}\right) |\nu(k)|^2$$

$$\mathfrak{g}(k) = \frac{2\pi \gamma |\nu(k)|^2}{|\omega'(k)|} \qquad \text{absorbtion probability}$$

$$p_+(k) = \left|1 - \frac{\gamma \pi \nu(k)}{|\omega'(k)|}\right|^2 \qquad \text{transmission probability}$$

$$p_-(k) = \left|\frac{\gamma \pi \nu(k)}{|\omega'(k)|}\right|^2 \qquad \text{reflection probability}$$

$$\mathfrak{g}(k) + p_+(k) + p_-(k) = 1$$

T.Komorowski, L.Ryzhik, S.O., H.Spohn, ARMA (2020)

$$\partial_t W(t, y, k) + \frac{\omega'(k)}{2\pi} \partial_y W(t, y, k) = 0, \qquad y \in \mathbb{R} \setminus \{0\}$$

with boundary conditions:

$$\begin{split} &W(t,0^+,k) = p_-(k)W(t,0^+,-k) + p_+(k)W(t,0^-,k) + \mathfrak{g}(k)T, \quad 0 < k < 1/2 \\ &W(t,0^-,k) = p_-(k)W(t,0^-,-k) + p_+(k)W(t,0^+,k) + \mathfrak{g}(k)T, \quad -1/2 < k < 0 \end{split}$$

T.Komorowski, L.Ryzhik, S.O., H.Spohn, ARMA (2020)

$$\partial_t W(t, y, k) + \frac{\omega'(k)}{2\pi} \partial_y W(t, y, k) = 0, \qquad y \in \mathbb{R} \setminus \{0\}$$

with boundary conditions:

$$\begin{split} &W(t,0^+,k) = p_-(k)W(t,0^+,-k) + p_+(k)W(t,0^-,k) + \mathfrak{g}(k)T, \quad 0 < k < 1/2 \\ &W(t,0^-,k) = p_-(k)W(t,0^-,-k) + p_+(k)W(t,0^+,k) + \mathfrak{g}(k)T, \quad -1/2 < k < 0 \end{split}$$

Since $\mathfrak{g}(k) + p_+(k) + p_-(k) = 1$, we have that

W(t, y, k) = T is a stationary solution.

No dispersion in the macroscopic scattering!

T.Komorowski, S.O., arXiv:2101.04360 (2021)

$$\partial_t W(t,y,k) + \frac{\omega'(k)}{2\pi} \partial_y W(t,y,k) = 0, \qquad y \in \mathbb{R} \setminus \{0\}$$

with boundary conditions 0 < k < 1/2:

$$W(t,0^{+},k) = p_{-}(k)W(t,0^{+},-k) + p_{+}(k)W(t,0^{-},k) + p_{abs}\mathfrak{g}(k)T$$
$$+\mathfrak{g}(k)\int_{0}^{1/2}W(t,0^{-},\ell)p_{sc}(\ell)d\ell + \mathfrak{g}(k)\int_{0}^{1/2}W(t,0^{+},-\ell)p_{sc}(\ell)d\ell$$

$$p_+(k) + p_-(k) + p_{abs}\mathfrak{g}(k) + \mathfrak{g}(k) \int_0^1 p_{sc}(\ell) d\ell = 1$$

Dispersion in the macroscopic scattering!

 $p_{\rm abs} \rightarrow 1$ and $p_{\rm sc}(\ell) \rightarrow 0$ as $\mu \rightarrow \infty$ (converges to the Langevin scattering).

When random bulk scattering is present

If we add a (slow) random scattering in the bulk of the system: random flip of sign of velocities, random exchange of velocity of n.n. particles, with rates ~ $\gamma' \varepsilon$.

T. Komorowski, S.O. (J. Funct. Analys. 2020)

$$\partial_t W(t, y, k) + \frac{\omega'(k)}{2\pi} \partial_y W(t, y, k) = \gamma' L W(t, y, k)$$

$$LW(k) = \int \mathfrak{R}(k, k') \left(W(k') - W(k) \right)$$
$$R(k, k') = R(K)R(k'), \qquad R(k) \sim |k|^2, \ k \sim 0$$

same boundary conditions:

$$\begin{split} & W(t,0^+,k) = p_-(k)W(t,0^+,-k) + p_+(k)W(t,0^-,k) + \mathfrak{g}(k)T, \quad 0 < k < 1/2 \\ & W(t,0^-,k) = p_-(k)W(t,0^-,-k) + p_+(k)W(t,0^+,k) + \mathfrak{g}(k)T, \quad -1/2 < k < 0 \end{split}$$

Without the thermostat: Basile, O., Spohn, ARMA 2009.

Diffusive and superdiffusive behavior for $\gamma' > 0$, $\gamma = 0$

For random exchange of nearest neighbor velocities

٠

$$R(k, k') = R(K)R(k'), R(k) \sim |k|^2, \qquad k \sim 0$$

Diffusive and superdiffusive behavior for $\gamma' > 0$, $\gamma = 0$

For random exchange of nearest neighbor velocities

$$R(k, k') = R(K)R(k'), R(k) \sim |k|^2, \qquad k \sim 0$$

. Without thermal boundary:

• if $\omega'(k) \sim k$ (optical chain) : $D < +\infty$, diffusive behaviour $W(\lambda^2 t, \lambda y, k) \xrightarrow{}{\lambda \to 0} e(t, y)$ $\partial_t e = D \partial_{yy} e, \qquad D = \frac{1}{4\pi^2 \gamma'} \int \frac{\omega'(k)^2}{R(k)} dk$

Diffusive and superdiffusive behavior for $\gamma' > 0$, $\gamma = 0$

For random exchange of nearest neighbor velocities

$$R(k, k') = R(K)R(k'), R(k) \sim |k|^2, \qquad k \sim 0$$

. Without thermal boundary:

- ► if $\omega'(k) \sim k$ (optical chain) : $D < +\infty$, diffusive behaviour $W(\lambda^2 t, \lambda y, k) \xrightarrow[\lambda \to 0]{} e(t, y)$ $\partial_t e = D \partial_{yy} e, \qquad D = \frac{1}{4\pi^2 \gamma'} \int \frac{\omega'(k)^2}{R(k)} dk$
- if ω'(k) ~ 1 (acustic chain) : D = +∞, superdiffusive behaviour (Jara-Komorowski-Olla AAP 2009, Basile-Bovier MPRF 2010):

$$\begin{split} W(\lambda^{3/2}t,\lambda y,k) &\xrightarrow[\lambda \to 0]{} e(t,y) \\ \partial_t e &= -\hat{c} |\Delta|^{3/4} e, \end{split}$$

Giada Basile, Tomasz Komorowki, S.O., **Kinetic and Related Models**, AIMS, (2019) In the cases of bulk diffusive behavior: $\omega'(k) \sim k$ (optical chain)

$$W(\lambda^2 t, \lambda y, k) \xrightarrow{\lambda \to 0} e(t, y)$$

$$\partial_t e = D \partial_{yy} e, \qquad y \neq 0, \qquad D = \frac{1}{4\pi^2 \gamma'} \int \frac{\omega'(k)^2}{R(k)} dk$$
$$e(t, 0^+) = T = e(t, 0^-)$$

....

Giada Basile, Tomasz Komorowki, S.O., **Kinetic and Related Models**, AIMS, (2019) In the cases of bulk diffusive behavior: $\omega'(k) \sim k$ (optical chain)

$$W(\lambda^2 t, \lambda y, k) \xrightarrow{\lambda \to 0} e(t, y)$$

$$\partial_t e = D \partial_{yy} e, \qquad y \neq 0, \qquad D = \frac{1}{4\pi^2 \gamma'} \int \frac{\omega'(k)^2}{R(k)} dk$$
$$e(t, 0^+) = T = e(t, 0^-)$$

Reflection and transmission of phonons are irrelevant in this time scale: phonons gets absorbed and created such that energy density is T at y = 0.

Superdiffusive behaviour with thermal boundary

Tomasz Komorowki, S.O., Lenya Rhyzik, Ann. of Prob. (2020) *Situation is different in the super-diffusive case.*

$$\begin{aligned} \partial_{t}W(t,y,k) &+ \frac{\omega'(k)}{2\pi} \partial_{y}W(t,y,k) = \int \Re(k,k') \left(W(k') - W(k) \right) \\ R(k,k') &= R(K)R(k'), \qquad R(k) \sim |k|^{2}, \qquad |\omega'(k)| \sim 2, \qquad k \sim 0, \\ W(t,0^{+},k) &= p_{-}(k)W(t,0^{+},-k) + p_{+}(k)W(t,0^{-},k) + \mathfrak{g}(k)T, \qquad 0 < k < 1/2 \\ W(t,0^{-},k) &= p_{-}(k)W(t,0^{-},-k) + p_{+}(k)W(t,0^{+},k) + \mathfrak{g}(k)T, \qquad -1/2 < k < 0. \end{aligned}$$

Superdiffusive behaviour with thermal boundary

Tomasz Komorowki, S.O., Lenya Rhyzik, Ann. of Prob. (2020) *Situation is different in the super-diffusive case.*

$$\begin{aligned} \partial_t W(t, y, k) &+ \frac{\omega'(k)}{2\pi} \partial_y W(t, y, k) = \int \Re(k, k') \left(W(k') - W(k) \right) \\ R(k, k') &= R(K) R(k'), \qquad R(k) \sim |k|^2, \qquad |\omega'(k)| \sim 2, \qquad k \sim 0, \\ W(t, 0^+, k) &= p_-(k) W(t, 0^+, -k) + p_+(k) W(t, 0^-, k) + \mathfrak{g}(k) T, \qquad 0 < k < 1/2 \\ W(t, 0^-, k) &= p_-(k) W(t, 0^-, -k) + p_+(k) W(t, 0^+, k) + \mathfrak{g}(k) T, \qquad -1/2 < k < 0 \\ R(k, k') \sim 0, \qquad k \sim 0, \end{aligned}$$

the phonon is crossing the thermostat when $k \sim 0$.

Tomasz Komorowki, S.O., Lenya Rhyzik, Ann. of Prob. (2020) For $k \to 0$, $\mathfrak{g}(k) \to \mathfrak{g}_0 > 0$, $p_-(k) \to p_-(0) > 0$.

$$W(\lambda^{3/2}t,\lambda y,k) \xrightarrow[\lambda \to 0]{} e(t,y)$$

$$\begin{aligned} \partial_t e(t,y) &= -\hat{c} |\Delta|^{3/4} e(t,y) \\ &+ \hat{c} \mathfrak{g}_0 \int_{yy' < 0} q(y - y') (T - e(t,y')) dy' \\ &+ \hat{c} p_-(0) \int_{yy' < 0} q(y - y') (e(t, -y') - e(t,y)) dy'. \\ &q(y) &= \frac{c}{|y|^{5/4}} \quad \text{kernel of } |\Delta|^{3/4}. \end{aligned}$$

個 と く ヨ と く ヨ と …

V • • .

回 と く ヨ と く ヨ と

$$\mathfrak{p} = \{\mathfrak{p}_x, x \in \mathbb{Z}\}, \ \mathfrak{q} = \{\mathfrak{q}_x, x \in \mathbb{Z}\}$$
$$\mathcal{H}(\mathfrak{p}, \mathfrak{q}) \coloneqq \frac{1}{2} \sum_x \mathfrak{p}_x^2 + \frac{1}{2} \sum_{x, x'} \alpha_{x-x'} \mathfrak{q}_x \mathfrak{q}_{x'}$$

$$d\mathfrak{q}_{x}(t) = \mathfrak{p}_{x}(t)dt, \quad x \in \mathbb{Z}$$

$$d\mathfrak{p}_{x}(t) = -(\alpha * \mathfrak{q}(t))_{x} + \left(-\gamma \mathfrak{p}_{0}(t)dt + \sqrt{2\gamma T}dw(t)\right)\delta_{0,x},$$

$$\mathcal{E}_{x} = \frac{\mathfrak{p}_{x}^{2}}{2} + \frac{\mathfrak{q}_{x}\left(\alpha \star \mathfrak{q}\right)_{x}}{2}$$

| 4 回 2 4 U = 2 4 U =

$$\mathfrak{p} = \{\mathfrak{p}_x, x \in \mathbb{Z}\}, \ \mathfrak{q} = \{\mathfrak{q}_x, x \in \mathbb{Z}\}$$
$$\mathcal{H}(\mathfrak{p}, \mathfrak{q}) \coloneqq \frac{1}{2} \sum_x \mathfrak{p}_x^2 + \frac{1}{2} \sum_{x, x'} \alpha_{x-x'} \mathfrak{q}_x \mathfrak{q}_{x'}$$

$$\begin{aligned} d\mathfrak{q}_{x}(t) &= \mathfrak{p}_{x}(t)dt, \quad x \in \mathbb{Z} \\ d\mathfrak{p}_{x}(t) &= -(\alpha * \mathfrak{q}(t))_{x} + \left(-\gamma \mathfrak{p}_{0}(t)dt + \sqrt{2\gamma T}dw(t)\right)\delta_{0,x}, \end{aligned}$$

$$\mathcal{E}_{x} = \frac{\mathfrak{p}_{x}^{2}}{2} + \frac{\mathfrak{q}_{x}\left(\alpha \star \mathfrak{q}\right)_{x}}{2}$$

$$\mathcal{E}_{[\lambda y]}(\lambda^{-3/2}t) \stackrel{\sim}{\underset{\lambda \to 0}{\rightarrow}} e(t,y)$$
 weakly

Direct Hydrodynamic Limit

$$\mathcal{E}_{x} = \frac{\mathfrak{p}_{x}^{2}}{2} + \frac{\mathfrak{q}_{x} (\alpha \star \mathfrak{q})_{x}}{2}, \qquad x \in \mathbb{Z}$$
$$\mathcal{E}_{[\lambda y]}(\lambda^{-3/2}t) \stackrel{\sim}{\xrightarrow[\lambda \to 0]{}} e(t, y) \qquad \text{weakly} \quad y \in \mathbb{R}.$$

$$\begin{split} \partial_t \tilde{e}(t,y) &= \mathfrak{L} \tilde{e}(t,y), \qquad \tilde{e}(t,0) = 0, \\ \mathfrak{L} &\sim - (-\Delta_y)^{3/4} \end{split}$$

- Without the thermostat: M.Jara, T.Komoroswki, S.Olla, CMP (2015).
- With the thermostat, still open.

at distance
$$N = [\lambda^{-1}]$$
.

$$d\mathfrak{q}_{x}(t) = \mathfrak{p}_{x}(t)dt, \qquad x \in \mathbb{Z}$$

$$d\mathfrak{p}_{x}(t) = -(\alpha * \mathfrak{q}(t))_{x} \qquad + \left(-\gamma \mathfrak{p}_{0}(t)dt + \sqrt{2\gamma T_{-}}dw_{1}(t)\right)\delta_{0,x}$$

$$+ \left(-\gamma \mathfrak{p}_{N}(t)dt + \sqrt{2\gamma T_{+}}dw_{2}(t)\right)\delta_{N,x}$$

If $T_+ \neq T_-$: non-equilibrium stationary state.

・ロト ・回ト ・ヨト ・ヨト

- Process Y(t) is generated by the linear Boltzmann equation (continuous trajectories),
- Process Z(t) is a pure jump Levy process obtained from Y(t), characterized by a Levy measure r(y) given by the law of

$$\frac{\bar{\omega}'(K)}{R(K)}$$

where K is a random variable on S^1 with law R(k)dk. We only need to control the convergence of Z(t)! A review article:

T. Komorowski, S. Olla, Thermal Boundaries in Kinetic and Hydrodynamic Limits, http://arxiv.org/abs/2010.04721, to appear in "Recent advances in kinetic equations and applications", F. Salvarani ed., Springer INdAM Series, 2021.

A review article:

T. Komorowski, S. Olla, Thermal Boundaries in Kinetic and Hydrodynamic Limits, http://arxiv.org/abs/2010.04721, to appear in "Recent advances in kinetic equations and applications", F. Salvarani ed., Springer INdAM Series, 2021.

Results with thermostat:

- T. Komorowski, S. Olla, L. Ryzhyk, H. Spohn High frequency limit for a chain of harmonic oscillators with a point Langevin thermostat., Arch. Rational Mech. An., 237, 497543 (2020).
- T. Komorowski, S. Olla, Asymptotic Scattering by Poissonian Thermostatst, arXiv:2101.04360 (2021),
- T. Komorowski, S. Olla, Kinetic limit for a chain of harmonic oscillators with a point Langevin thermostat, J. Funct. Anal., 279, n.12, 108764, (2020)
- T. Komorowski, S. Olla, L. Ryzhyk, Fractional Diffusion limit for a kinetic equation with an interface, Annals of Probability, Vol. 48, No. 5, 22902322, (2020),
- G. Basile, T. Komorowski, S. Olla, Diffusive limits for a kinetic equation with a thermostatted interface, Kinetic and Related Models, AIMS, (2019), 12(5): 1185-1196,

イロト イヨト イヨト イヨト