## On the minimum time control of affine control systems



PSL DE RESEARCH UNIVERSITY PARIS

Michael Orieux Under the supervision of J.-B. Caillau and J. Féjoz

PhD Defense, 27th of November, 2018

## • Introduction and motivation

# Introduction and motivation

## Structure of the optimal time extremal flow

- 1 For mechanical systems (and more)
- **2** Bounding the switchings for orbit transfers
- **3** The general case of control-affine systems

# Introduction and motivation

## Structure of the optimal time extremal flow

For mechanical systems (and more)
 Bounding the switchings for orbit transfers

**3** The general case of control-affine systems

# Optimality of minimum time extremals

# Introduction and motivation

## Structure of the optimal time extremal flow

For mechanical systems (and more)
 Bounding the switchings for orbit transfers
 The general case of control-affine systems

## • Optimality of minimum time extremals

• Integrability of the minimum time Kepler problem

# INTRODUCTION AND MOTIVATION

M a smooth manifold,  $U \in \mathbb{R}^{m}$ . Let  $f : M \times \mathbb{R}^{m} \to TM$  be a family of smooth vector fields on M. M a smooth manifold,  $U \in \mathbb{R}^{m}$ . Let  $f : M \times \mathbb{R}^{m} \to TM$  be a family of smooth vector fields on M. An optimal control problem is given by

$$\begin{cases} \dot{x} = f(x, u), & u(t) \in U \\ x(0) = x_0, \\ x(t_f) = x_f, \\ C(u) = \int_0^{t_f} \varphi(x(t), u(t)) dt \rightarrow \min. \end{cases}$$

Where  $C : L^{\infty}([0, t_f], U) \rightarrow \mathbb{R}$  is the *cost function*.

M a smooth manifold,  $U \in \mathbb{R}^{m}$ . Let  $f : M \times \mathbb{R}^{m} \to TM$  be a family of smooth vector fields on M. An optimal control problem is given by

$$\begin{cases} \dot{x} = f(x, u), & u(t) \in U \\ x(0) = x_0, \\ x(t_f) = x_f, \\ C(u) = \int_0^{t_f} \varphi(x(t), u(t)) dt \rightarrow \min. \end{cases}$$

Where  $C : L^{\infty}([0, t_f], U) \to \mathbb{R}$  is the *cost function*. f continuous in u,  $x_u$ , the solution associated with a control  $u \in L^{\infty}([0, t_f], U)$ 

uniquely well defined (Carathéodory).

- Existence of any globally optimal trajectory ?
  - → *Sufficient conditions*: Filippov's theorem.
- How can we find characterize optimal trajectories ?
  - → Necessary conditions: Pontrjagin's Maximum Principle, extremals.
- Local/global optimality of our extremal trajectories ?
  - $\rightarrow$  Second order conditions: conjugate points, symplectic methods (Agrachev).
- Regularity of optimal trajectory ?
  - $\rightarrow$  Techniques from *dynamical systems*: Normal hyperbolicity, invariant manifolds, normal forms.
- Are extremals computable define an integrable system ?
   → *Galois differential theory* (but also, symbolic dynamics, Smale's horseshoe...)

Set 
$$\varphi = 1$$
,  $f(x, u) = F_0(x) + u_1F_1(x) + u_2F_2(x)$  and  $U = B$  Euclidean ball.  

$$\begin{cases} \dot{x}(t) = F_0(x(t)) + u_1(t)F_1(x(t)) + u_2(t)F_2(x(t)), \ u_1^2 + u_2^2 \le 1\\ x(0) = x_0\\ x(t_f) = x_f\\ t_f \to \min. \end{cases}$$
(1)

 $F_i$  smooth,  $i = 0, 1, 2, x_0, x_f \in M$  a 4 dimensional manifold (can be generalized to 2n with n controls).

Set  $\varphi = 1$ ,  $f(x, u) = F_0(x) + u_1F_1(x) + u_2F_2(x)$  and U = B Euclidean ball.

$$\begin{cases} \dot{x}(t) = F_0(x(t)) + u_1(t)F_1(x(t)) + u_2(t)F_2(x(t)), \ u_1^2 + u_2^2 \le 1\\ x(0) = x_0\\ x(t_f) = x_f\\ t_f \to \min. \end{cases}$$
(1)

 $F_i$  smooth,  $i = 0, 1, 2, x_0, x_f \in M$  a 4 dimensional manifold (can be generalized to 2n with n controls). Structure of Lie algebra Lie( $F_0, F_1, F_2$ ) is crucial. Example: Mechanical systems.

$$\ddot{q} + \nabla V(q) = u,$$

V a smooth potential.

$$\ddot{q} + \nabla V_{\mu}(q) - 2i\dot{q} = u, ||u|| \le 1$$
 (2)

in the rotating frame, u being the control (thrust of the engine) and

$$V_{\mu}(q) = \frac{1}{2}|q|^2 + \frac{1-\mu}{|q+\mu|} + \frac{\mu}{|q-1+\mu|}, \mu = \text{mass ratio.}$$



Figure: Hill's region and Lagrange points for the RC3BP

Minimizing the cost generates *singularities*.

This thesis focuses on understanding of the consequences of these singularities:

- On the extremal flow, irregular behavior, non-uniqueness,
- On the optimality of the trajectories,
- On the computability of the possible optimal trajectories: destruction of first integrals.

# STRUCTURE OF THE MINIMUM TIME EXTREMAL FLOW

## Hamiltonian formalism

#### Definition (Pseudo-Hamiltonian)

 $\forall (x, p) \in T^*M, H(x, p, u) = \langle p, f(x, u) \rangle$ 

Control affine dynamics:  $H(x, p, u) = H_0(x, p) + u_1H_1(x, p) + u_2H_2(x, p)$ ,  $H_i(x, p) = \langle p, F_i(x) \rangle$ , i = 0, 1, 2.

## Definition (Pseudo-Hamiltonian)

 $\forall (x, p) \in T^*M, H(x, p, u) = \langle p, f(x, u) \rangle$ 

Control affine dynamics:  $H(x, p, u) = H_0(x, p) + u_1H_1(x, p) + u_2H_2(x, p)$ ,  $H_i(x, p) = \langle p, F_i(x) \rangle$ , i = 0, 1, 2.

## Theorem (Pontrjagin)

If (x, u) is a minimum time trajectory then there exists an absolutely continuous Lipschitz curve  $p(t) \in T_{x(t)}M^* \setminus \{0\}$  s.t.

-(x, p) is solution of :

$$\begin{cases} \dot{x} = \frac{\partial H}{\partial p}(x, p, u) \\ \dot{p} = -\frac{\partial H}{\partial x}(x, p, u). \end{cases}$$
(3)

 $- H(x(t), p(t), u(t)) = \max_{\tilde{u} \in U} H(x(t), p(t), \tilde{u}).$ 

 $-\operatorname{H}(x(t),p(t),u(t))\geq 0.$ 

## Minimum time control-affine extremals

$$\begin{split} \dot{x}(t) &= F_0(x(t)) + u_1(t)F_1(x(t)) + u_2(t)F_2(x(t)), \ u_1^2 + u_2^2 \leq 1 \\ x(0) &= x_0 \\ x(t_f) &= x_f \\ t_f \to \min. \end{split} \tag{4}$$

#### Proposition

For system (4) 
$$\forall z = (x, p) \in T^*M$$
,  $H^{max}(x, p) = H_0(x, p) + \sqrt{H_1^2(x, p) + H_2^2(x, p)^2}$ 

 $u = \frac{1}{\sqrt{H_1^2 + H_2^2}} (H_1, H_2)$ : discontinuities of the control u are called **switchings**.

## Minimum time control-affine extremals

$$\begin{aligned} \dot{x}(t) &= F_0(x(t)) + u_1(t)F_1(x(t)) + u_2(t)F_2(x(t)), \ u_1^2 + u_2^2 \leq 1 \\ x(0) &= x_0 \\ x(t_f) &= x_f \\ t_f \to \min. \end{aligned} \tag{4}$$

#### Proposition

For system (4) 
$$\forall z = (x, p) \in T^*M$$
,  $H^{max}(x, p) = H_0(x, p) + \sqrt{H_1^2(x, p) + H_2^2(x, p)^2}$ 

 $u = \frac{1}{\sqrt{H_1^2 + H_2^2}}(H_1, H_2)$ : discontinuities of the control u are called **switchings**.

### Definition (Singular locus / Switching surface.)

 $\Sigma = \{z = (x, p) \in T^*M, H_1(x, p) = H_2(x, p) = 0\} = F_1^{\perp} \cap F_2^{\perp}$  smooth submanifold if  $F_1$  and  $F_2$  are linearly independent.

Set  $\bar{z} \in \Sigma$ ,  $\bar{x} = \pi(\bar{z})$ , where  $\pi : T^*M \to M$  the canonical projection. Denote  $F_{ij} = [F_i, F_j]$ ,  $H_{ij} = \{H_i, H_j\}$ . Assume :

 $(\mathcal{A}): \det(F_{1}(\bar{x}), F_{2}(\bar{x}), F_{01}(\bar{x}), F_{02}(\bar{x})) \neq 0$ 

Checked for mechanical systems.

 $\rightarrow$  (A) + F<sub>0</sub> recurrent ( $\mu$  = 0 or certain Hill's regions of the RC3BP)  $\Rightarrow$  Controllability.

Set  $\bar{z} \in \Sigma$ ,  $\bar{x} = \pi(\bar{z})$ , where  $\pi : T^*M \to M$  the canonical projection. Denote  $F_{ij} = [F_i, F_j]$ ,  $H_{ij} = \{H_i, H_j\}$ . Assume :

 $(\mathcal{A})$ : det $(F_1(\bar{x}), F_2(\bar{x}), F_{01}(\bar{x}), F_{02}(\bar{x})) \neq 0$ 

Checked for mechanical systems.

 $\rightarrow$  (A) + F<sub>0</sub> recurrent ( $\mu$  = 0 or certain Hill's regions of the RC3BP)  $\Rightarrow$  Controllability.

Proposition

Any system of the form  $\ddot{q} + g(q, \dot{q}) = u$  verifies (A).

In mechanical systems we also have (B):  $F_{12} = 0 \Rightarrow H_{12} = 0$ .

Using  $(\mathcal{A})$ :  $(x, p) \mapsto (x, H_1, H_2, H_{01}, H_{02})$  is a change of coordinates.  $\rightarrow$  **Polar blow up**:  $(H_1, H_2) = (\rho \cos \theta, \rho \sin \theta)$ , Using  $(\mathcal{A})$ :  $(x, p) \mapsto (x, H_1, H_2, H_{01}, H_{02})$  is a change of coordinates.  $\rightarrow$  **Polar blow up**:  $(H_1, H_2) = (\rho \cos \theta, \rho \sin \theta)$ ,

$$(Y):\begin{cases} \dot{\rho} = -\sin\theta\\ \dot{\theta} = \frac{1}{\rho}(1 + \alpha - \cos\theta + f(\rho, \theta, \xi))\\ \dot{\xi} = h(\rho, \theta, \xi), \end{cases}$$
(5)

 $\begin{aligned} \xi &= (x, H_{01}, H_{02}).\\ (i) f, h smooth functions, h has values in <math>\mathbb{R}^k;\\ (ii) f(\bar{z}) &= 0, f has a nice local behavior around <math>\bar{z}. \end{aligned}$ 

Using  $(\mathcal{A})$ :  $(x, p) \mapsto (x, H_1, H_2, H_{01}, H_{02})$  is a change of coordinates.  $\rightarrow$  **Polar blow up**:  $(H_1, H_2) = (\rho \cos \theta, \rho \sin \theta)$ ,

$$(Y):\begin{cases} \dot{\rho} = -\sin\theta\\ \dot{\theta} = \frac{1}{\rho}(1 + \alpha - \cos\theta + f(\rho, \theta, \xi))\\ \dot{\xi} = h(\rho, \theta, \xi), \end{cases}$$
(5)

 $\begin{aligned} \xi &= (x, H_{01}, H_{02}).\\ (i) f, h smooth functions, h has values in <math>\mathbb{R}^k;\\ (ii) f(\bar{z}) &= 0, f has a nice local behavior around <math>\bar{z}. \end{aligned}$ 

Definition (Partition of the singular locus)

$$\begin{split} \Sigma &= \Sigma_0 \cup \Sigma_- \cup \Sigma_+ \text{ with }:\\ \Sigma_- &= \{\alpha < 0\}, \, \Sigma_+ = \{\alpha > 0\}, \, \Sigma_0 = \{\alpha = 0\}. \end{split}$$

# The case $\Sigma_{-}$ : Mechanical systems

## Theorem (Caillau, Fejoz, O.)

There exists unique solution for system (1) in a neighborhood  $O_{\bar{z}}$  of  $\bar{z}$ , and there is at most one switch on  $O_{\bar{z}}$ .

− If  $\bar{z} \in \Sigma_-$ : The local extremal flow  $z : (t, z_0) \in [0, t_f] \times O_{\bar{z}} \mapsto z(t, z_0) \in M$  is piecewise smooth, and smooth on each strata :

$$\mathcal{O}_{\bar{z}} = \mathcal{S}_0 \sqcup \mathcal{S}^s \cup \mathcal{S}^u \cup \Sigma$$

- where  $S^s$  (resp.  $S^u$ ) is the codimension one submanifold of initial conditions leading to the switching surface (resp. in negative times), -  $S_0 = O_{\bar{z}} \setminus (S^s \cup S^u \cup \Sigma)$ .

Constraint on the control  $\rightarrow$  No singular flow inside  $\Sigma_-$ . Extend previous results from Agrachev and Biolo (2016) in a close context.

Regularize (Y) by rescaling the time  $dt = \rho d\tau$ .

$$(Z):\begin{cases} \rho' = -\rho \sin \theta\\ \theta' = 1 + \alpha - \cos \theta + O(\rho; \xi)\\ \xi' = \rho h(\rho, \theta, \xi) \end{cases}$$
(6)

Regularize (Y) by rescaling the time  $dt = \rho d\tau$ .

$$[Z] : \begin{cases} \rho' = -\rho \sin \theta \\ \theta' = 1 + \alpha - \cos \theta + O(\rho; \xi) \\ \xi' = \rho h(\rho, \theta, \xi) \end{cases}$$
(6)

Then, in { $\rho = 0$ }, for each  $\xi$  two parabolic equilibria  $\theta_{\pm}$ .

The manifolds  $N_{\pm} = \{(0, \theta_{\pm}, \overline{\xi})\}$  are normally hyperbolic invariant submanifolds of *equilibria*, with stable and unstable manifolds of **dimension one**.

 $\rightarrow$  Finite initial time t<sub>f</sub>: *existence* and *uniqueness*.



Figure: Blown-up phase portrait around  $\Sigma_{-}$ 

Set

$$S^s = \cup_{z \in \mathbb{N}_-} W^s(z)$$

and

$$S^{u} = \cup_{z \in \mathbb{N}_{+}} W^{u}(z).$$

Eigenvalues on N<sub>±</sub> are null, and in the direction of  $\rho$ , the Jacobian has a strictly negative eigenvalue: the spectral gap is infinite  $\rightarrow S^s (S^u)$  is a C<sup> $\infty$ </sup>-smooth foliation (Hirsch, Pugh, Shub).

The flow is smooth restricted to  $S^s$  and  $S_0$ : the regularized vector field is smooth, consequence of the dominated convergence theorem.



Figure: The regular-singular transition

 $\Pi_0 \subset \{\rho = \rho_0\}, \, \Pi_{\rm f} \subset \{\omega = \omega_{\rm f}\}.$ 

Theorem (Caillau, Fejoz, O., Roussarie)

Let  $T : \Pi_0 \to \Pi_f$  be the Poincaré mapping between the two sections. Then, T is smooth in  $(\omega_0 \ln \omega_0, \omega_0, \xi_0)$ , that

 $\mathsf{T}(\omega_0,\xi_0) = (\mathsf{R}(\omega_0 \ln \omega_0,\omega_0,\xi_0),\mathsf{X}(\omega_0 \ln \omega_0,\omega_0,\xi_0)).$ 

R, X smooth.

Idea : Straightening via a normal form + Blow up

# BOUNDING THE NUMBER OF SWITCHINGS FOR ORBIT TRANSFERS

Previous theorems apply to the CR3BP but not to the non-autonomous Restricted Elliptic Three Body Problem:

$$\ddot{q} + \nabla V_{\mu}(t, q) = u,$$

with  $V_{\mu}(t,q) = \frac{1-\mu}{\|q-q^1(t)\|} + \frac{\mu}{\|q-q^2(t)\|} \cdot q^1$ ,  $q^2$  position vectors of the two primaries.

Previous theorems apply to the CR3BP but not to the non-autonomous Restricted Elliptic Three Body Problem:

$$\ddot{q} + \nabla V_{\mu}(t, q) = u,$$

with  $V_{\mu}(t,q) = \frac{1-\mu}{\|q-q^1(t)\|} + \frac{\mu}{\|q-q^2(t)\|} \cdot q^1$ ,  $q^2$  position vectors of the two primaries.

#### Definition

Define  $\delta = \inf_{[0,t_f]} |q(t)|$ ,  $\delta_1 = \inf_{[0,t_f]} |q(t) - q^1(t)|$ ,  $\delta_2 = \inf_{[0,t_f]} |q(t) - q^2(t)|$ . This quantities represents the distance to the collisions in the two body, and restricted three-body problems respectively. Finally note  $\delta_{12}(\mu) = \frac{\delta_1 \delta_2}{((1-\mu)\delta_1^3 + \mu\delta_1^3)^{1/3}}$ .

Upper bound on the number of switchings  $\rightarrow$  bounds the number of heteroclinic connections between S<sup>s</sup> and S<sup>u</sup>.

#### Theorem (Morse)

Let  $a, b \in \mathbb{R}$ , with b > a. Consider the two linear second order equations

$$z'' + P(t)z = 0,$$
 (7)

$$z'' + Q(t)z = 0,$$
 (8)

with P(t),  $Q(t) \in S_n(\mathbb{R})$  s. t.  $Q(t) - P(t) \ge 0$ , there exists  $\bar{t}$  with  $Q(\bar{t}) - P(\bar{t}) > 0$ . If (7) has a non trivial solution y, y(a) = y(b) = 0, then (8) has a non trivial solution which vanishes in a and c < b.

#### Theorem (Morse)

Let  $a, b \in \mathbb{R}$ , with b > a. Consider the two linear second order equations

$$z'' + P(t)z = 0,$$
 (7)

$$z'' + Q(t)z = 0,$$
 (8)

with P(t),  $Q(t) \in S_n(\mathbb{R})$  s. t.  $Q(t) - P(t) \ge 0$ , there exists  $\bar{t}$  with  $Q(\bar{t}) - P(\bar{t}) > 0$ . If (7) has a non trivial solution y, y(a) = y(b) = 0, then (8) has a non trivial solution which vanishes in a and c < b.

#### Proposition (Caillau, Fejoz, O.)

- Keplerian case, the maximum amount of switchings is  $N_0 = \left[\frac{t_f}{\pi \delta^{3/2}}\right]$  on  $[0, t_f]$ .
- Controlled Elliptic Three-Body Problem with a mass ratio  $\mu$ , On a time interval  $[0, t_f]$  the maximum amount of such singularities is  $N_{\mu} = \left[\frac{t_f}{\pi \delta_{12}(\mu)^{3/2}}\right]$ .

#### The controlled ER3BP dynamics:

$$H(q, v, p_q, p_v) = p_q \cdot v - p_v \cdot \nabla V_{\mu}(t, q) + p_v \cdot u,$$

and

$$H^{\max}(q, \nu, p_q, p_\nu) = p_q.\nu - p_\nu.\nabla V_\mu(t, q) + ||p_\nu||.$$

Linear equation in  $p_{\nu}$ :

$$\ddot{p}_{\nu} + \nabla_{q}^{2} V_{\mu}(t,q) p_{\nu} = 0.$$
(9)

Compare  $V_{\mu}(t, q)$  with a well-chosen matrix.

$$A_{t}(q) = \begin{pmatrix} 1 + \frac{1-\mu}{|q-q^{1}(t)|^{3}} + \frac{\mu}{|q-q^{2}(t)|^{3}} & 0\\ 0 & \frac{1-\mu}{|q-q^{1}(t)|^{3}} + \frac{\mu}{|q-q^{2}(t)|^{3}} \end{pmatrix} \in S_{2}(\mathbb{R}).$$

# THE GENERAL AFFINE CASE

$$(\alpha = 0) \Rightarrow \begin{cases} \dot{\rho} = -\rho \sin \theta \\ \dot{\theta} = 1 - \cos \theta + O(\rho; \xi) \\ \dot{\xi} = \rho \tilde{h}(\rho, \theta, \xi) \end{cases}$$
(10)

 $a_0$  smooth on  $\mathbb{R}^k$ . Set  $\tilde{h}_1(0, 0, 0) = c$ .

#### Theorem (O., Roussarie)

Let  $\bar{z}$  be in  $\Sigma_0$ . If c > 0, there exist extremals passing through  $\bar{z}$ , these extremals are connected to the singular flow in  $\Sigma_0$ .

Idea: Dimensional reduction + quasi-homogeneous blow up + dynamical study in the plane.

Under generic hypothesis,  $\exists$  coordinates  $\tilde{\xi} = (\zeta, \tilde{\xi}_2 \dots, \tilde{\xi}_k)$  s.t.

$$\begin{cases} \rho' = -\rho\theta + O(\rho\theta^{3}) \\ \theta' = \zeta + \theta^{2}/2 + O(\rho + |\theta|^{4}) \\ \zeta' = c\rho + \rho O(\rho + |\theta| + |\tilde{\xi}|). \end{cases}$$
(11)

Under generic hypothesis,  $\exists$  coordinates  $\tilde{\xi} = (\zeta, \tilde{\xi}_2 \dots, \tilde{\xi}_k)$  s.t.

$$\begin{cases} \rho' = -\rho\theta + O(\rho\theta^{3}) \\ \theta' = \zeta + \theta^{2}/2 + O(\rho + |\theta|^{4}) \\ \zeta' = c\rho + \rho O(\rho + |\theta| + |\tilde{\xi}|). \end{cases}$$
(11)

**Blow up**. Nilpotent equilibrium ( $\rho$ , s,  $\zeta$ ) = (0, 0, 0), we will use a specific blow-up:

$$\begin{cases} \rho = R^3 \bar{\rho} \\ \theta = R \bar{\theta} \\ \zeta = R^2 \bar{\zeta} \end{cases}$$

with  $(\bar{\rho}, \bar{s}, \bar{\zeta}) \in S^2_+$  the hemisphere  $\rho \ge 0, R \in \mathbb{R}_+$ .

**The chart** (i). Interior of  $S_+^2$ : One hyperbolic equilibrium  $m_0$ , unstable node restricted to  $S_+^2$ .

**The chart (ii).** 4 semi-hyperbolic equilibria  $\in \partial S^2_+ = \{R = 0, \bar{\rho} = 0\} \cong S^1$ .

- $-\pi/2$ : unstable node in restriction to  $S_+^2$
- $\pi/2$ : stable node in restriction to  $S_+^2$
- $ω_0 ∈ ]π/2, π[$  (unstable) and  $-ω_0$  (stable) nodes restricted to  $S^1$ .

 $\pm \omega_0$ : hyperbolic restricted to  $S^2_+$ , with lines of zeros in the plane  $\bar{\rho} = 0$ .

The stable and unstable manifolds of these equilibria can be connected using

## Theorem (Poincaré-Bendixson)

Let X be a vector field in the plane, any maximal solution of  $\dot{x} = X(x)$  contained in a compact set, is either converging to an equilibrium point or a limit cycle.

No periodic orbit: choosing a transverse domain containing  $\ensuremath{\mathfrak{m}}_0$  and using Poincaré-Hopf formula.

 $\rightarrow$  stable and unstable manifolds can be connected in a unique way: the stable manifold from  $\omega_0$  is connected to  $m_0$ .

 $\rightarrow$  Finite initial time.



Figure: Phase portrait around the nilpotent equilibrium

#### Theorem (O., Roussarie)

In a neighborhood  $O_{\bar{z}}$  of a point  $\bar{z} \in \Sigma_0$ , the flow is well defined, continuous, and piecewise smooth. More precisely, there exists a stratification:

$$O_{\bar{z}} = S_0 \cup S^s \cup S^u \cup S_0^s$$

where

- $-S_0^s$  is the submanifold of codimension 2 of initial conditions leading to  $\Sigma_0$ ,
- − S<sup>s</sup> is the submanifold of codimension 1 of initial conditions leading to Σ<sub>-</sub>,
  − S<sub>0</sub> = O<sub>z̄</sub> \ (S<sup>0</sup><sub>1</sub> ∪ S<sub>1</sub>).

The extremal flow is smooth on each stratum.



Figure: Stratification of the extremal flow around  $\Sigma_0$ 

#### The case $\Sigma_+$ .

### Proposition

No switching at  $\Sigma_+$ . In a neighborhood of a point  $\bar{z}$  in  $\Sigma_+$ , there is no switch, and the extremal flow is smooth, i.e.,  $\Sigma_+$  is never crossed. In other words,  $\rho$  does not vanish in (5).

### **The singular flow** (flow inside $\Sigma$ ):

- There exists a smooth singular flow inside  $\Sigma_+$ , which cannot be optimal (Goh condition).
- There cannot exist any admissible singular extremal in  $\Sigma_-$ .
- There exists a singular flow in  $\Sigma_0$ .

$$r := \sqrt{H_{01}^2 + H_{02}^2}$$

#### Remark

In the case  $\bar{z} \in \Sigma_{-}$ , the jump on the control at a switching time  $\bar{t}$  is:

$$u(\bar{t}_{\pm}) = (\cos\theta_{\pm}, \sin\theta_{\pm}) = \frac{1}{r^2} (-H_{02}H_{12} \pm H_{01}\sqrt{r^2 - H_{12}^2}, H_{01}H_{12} \pm H_{02}\sqrt{r^2 - H_{12}^2}).$$

(B)  $\Rightarrow \pi$ -singularities for mechanical systems.

$$r := \sqrt{H_{01}^2 + H_{02}^2}$$

#### Remark

In the case  $\bar{z} \in \Sigma_{-}$ , the jump on the control at a switching time  $\bar{t}$  is:

$$u(\bar{t}_{\pm}) = (\cos\theta_{\pm}, \sin\theta_{\pm}) = \frac{1}{r^2} (-H_{02}H_{12} \pm H_{01}\sqrt{r^2 - H_{12}^2}, H_{01}H_{12} \pm H_{02}\sqrt{r^2 - H_{12}^2}).$$

(B)  $\Rightarrow \pi$ -singularities for mechanical systems.

#### Proposition

In  $\Sigma_0$ . Consider the extremal z(t) entering the singular locus in  $z(t) = \overline{z} \in \Sigma_0$ ,

- If  $H_{12}(\bar{z}) = r(\bar{z})$ , the extremal control is continuous on  $[0, t_f]$ ,
- If  $H_{12} = -r(\bar{z})$ , the extremal control has a  $\pi$ -singularity at the switching time  $\bar{t}$ .

# OPTIMALITY OF MINIMUM TIME EXTREMALS

## Definition (exponential map)

We call exponential mapping from  $x_0$ , the map

$$\exp_{x_0}: (\mathfrak{t}, \mathfrak{p}_0) \in [0, \mathfrak{t}_{\mathfrak{f}}] \times T^*_{\bar{x}_0} \mathcal{M} \cap S^s \rightarrow \pi(z(\mathfrak{t}, x_0, \mathfrak{p}_0)) = x(\mathfrak{t}, x_0, \mathfrak{p}_0) \in \mathcal{M}$$

Assumption:  $T_{x_0}^*M \triangleq S^s$ , then  $T_{x_0}^*M \cap S^s$  is a smooth submanifold of dimension 3.

Theorem (O.)

Denote  $M(t) := d \exp_{\bar{\chi}_0}(t, \bar{p}_0)$ . If

(i) The reference extremal is normal,

(ii) det  $M(t) \neq 0$  for all  $t \in ]0, \overline{t}[\cup]\overline{t}, \overline{t}_f]$  and det  $M(\overline{t}_-) \det M(\overline{t}_+) \neq 0$ ,

then the reference trajectory is a  $\mathbb{C}^0$ -local minimizer among all trajectories with same endpoints.

 $\exists$  Lagrangian submanifold  $\mathcal{L}$  transverse to  $T_{x_0}^*M$ , s. t.  $S_0 = \mathcal{L} \cap S^s$  is a smooth submanifold of dimension  $3 \rightarrow Regularity$  on  $S_0$ .

 $\exists$  Lagrangian submanifold  $\mathcal{L}$  transverse to  $T^*_{x_0}M$ , s. t.  $S_0 = \mathcal{L} \cap S^s$  is a smooth submanifold of dimension  $3 \rightarrow Regularity$  on  $S_0$ . The canonical projection  $\pi$  is a **homeomorphism** on

$$S_1 = \{ z(t, z_0), \ (t, z_0) \in [0, \bar{t}(z_0)] \times S_0 \}$$
(12)

onto its image. The same holds for

$$S_2 = \{z(t, z_0), (t, z_0) \in [\bar{t}(z_0), t_f] \times S_0\}$$
(13)

and  $S_1 \cup S_2$  (extremals cut  $\Sigma$  transversally).

 $\exists$  Lagrangian submanifold  $\mathcal{L}$  transverse to  $T^*_{x_0}M$ , s. t.  $S_0 = \mathcal{L} \cap S^s$  is a smooth submanifold of dimension  $3 \rightarrow Regularity$  on  $S_0$ . The canonical projection  $\pi$  is a **homeomorphism** on

$$S_1 = \{ z(t, z_0), \ (t, z_0) \in [0, \bar{t}(z_0)] \times S_0 \}$$
(12)

onto its image. The same holds for

$$S_2 = \{ z(t, z_0), \ (t, z_0) \in [\bar{t}(z_0), t_f] \times S_0 \}$$
(13)

and  $S_1 \cup S_2$  (extremals cut  $\Sigma$  transversally).

 $\rightarrow$  Cost comparison using the Liouville form  $\lambda = pdx$  exact on  $S_i$ : Extremals are locally optimal.

# Integrability of minimum time Hamiltonian in the Kepler problem

## Definition (Liouville integrability)

Let H be a smooth function on a 2n-dimensional symplectic manifold. The associated Hamiltonian system is integrable iff there exists n independent first integrals (constant of motion) in involution.

Classical reduction of the two body problem  $\mu = 0$ ,

$$\ddot{q} + \frac{q}{\|q\|^3} = \varepsilon u.$$

Uncontrolled two body problem ( $\varepsilon = 0$ ) is well known to be integrable.

## Definition (Liouville integrability)

Let H be a smooth function on a 2n-dimensional symplectic manifold. The associated Hamiltonian system is integrable iff there exists n independent first integrals (constant of motion) in involution.

Classical reduction of the two body problem  $\mu = 0$ ,

$$\ddot{q} + \frac{q}{\|q\|^3} = \varepsilon u.$$

Uncontrolled two body problem ( $\varepsilon = 0$ ) is well known to be integrable. Kepler problem with a constant force : u = cst, also integrable (Charlier and Saint Germain).

## Definition (Liouville integrability)

Let H be a smooth function on a 2n-dimensional symplectic manifold. The associated Hamiltonian system is integrable iff there exists n independent first integrals (constant of motion) in involution.

Classical reduction of the two body problem  $\mu = 0$ ,

$$\ddot{q} + \frac{q}{\|q\|^3} = \varepsilon u.$$

Uncontrolled two body problem ( $\varepsilon = 0$ ) is well known to be integrable.

Kepler problem with a constant force : u = cst, also integrable (Charlier and Saint Germain).

Three body problem is **not integrable** (Poincaré).

## Minimum time Kepler problem

$$\begin{cases} \ddot{q} + \frac{q}{\|q\|^3} = u, \|u\| \le 1, \\ (q(0), v(0)) = (q_0, v_0), \\ (q(t_f), v(t_f)) = (q_f, v_f) \\ t_f \to \min. \end{cases}$$
(14)

$$\begin{cases} \ddot{q} + \frac{q}{\|q\|^{3}} = u, \|u\| \le 1, \\ (q(0), v(0)) = (q_{0}, v_{0}), \\ (q(t_{f}), v(t_{f})) = (q_{f}, v_{f}) \\ t_{f} \to \min. \end{cases}$$
(14)

Maximized Hamiltonian:

$$H(q, v, p_q, p_v) = p_q \cdot v - \frac{p_v \cdot q}{\|q\|^3} + \|p_v\|.$$
 (15)

→ Liouville integrability of H ?

#### Theorem (Morales-Ramis)

Let us consider a Hamiltonian H analytic on a complex analytic symplectic manifold and a particular solution  $\Gamma$  not reduced to a point. If H is integrable in the Liouville sense with meromorphic first integrals, then the first order variational equation near  $\Gamma$  has a virtually Abelian Galois group over the base field of meromorphic functions on  $\Gamma$ .

#### Theorem (Morales-Ramis)

Let us consider a Hamiltonian H analytic on a complex analytic symplectic manifold and a particular solution  $\Gamma$  not reduced to a point. If H is integrable in the Liouville sense with meromorphic first integrals, then the first order variational equation near  $\Gamma$  has a virtually Abelian Galois group over the base field of meromorphic functions on  $\Gamma$ .

## Theorem (Caillau, Combot, Fejoz, O.)

The minimum time Kepler problem is not meromorphically Liouville integrable on  $\mathcal{M}$ .

Invariant manifold of collisions

$$S = \{q_2 = v_2 = p_{q_2} = p_{v_2} = 0\} \cap \mathcal{M}$$

- → H is integrable on S: collision trajectory  $\Gamma(t)$ .
- $\rightarrow$  Compute the Normal Variational Equation along  $\Gamma(t)$ .

 $\rightarrow$  Its Galois group contains the group of a hypergeometric equation: Contains  $SL_2(\mathbb{C})$ , not even solvable.

 $\rightarrow$  The variational equation is Fuchsian: Non-integrability in the class of meromorphic functions (Schlesinger's density theorem).

# PERSPECTIVES

- Find a generic condition to treat the general case.
- Numerical experimentation for the extremal.
- Real non integrability for the minimum time Kepler problem.
- KAM theory: non geodesic convexity in the Kepler configuration?

Thank you for your attention !