On the minimum time control of affine control systems

PSL \star
RESEARCH UNIVERSITY PARIS

Michael Orieux
Under the supervision of
J.-B. Caillau and J. Féjoz

PhD Defense, 27th of November, 2018

- Introduction and motivation
- Introduction and motivation
(2) Structure of the optimal time extremal flow
(1) For mechanical systems (and more)
(2) Bounding the switchings for orbit transfers
(3) The general case of control-affine systems
- Introduction and motivation
(2) Structure of the optimal time extremal flow
(1) For mechanical systems (and more)
(2) Bounding the switchings for orbit transfers
(3) The general case of control-affine systems
- Optimality of minimum time extremals
- Introduction and motivation
(2) Structure of the optimal time extremal flow
(1) For mechanical systems (and more)
(2) Bounding the switchings for orbit transfers
(3) The general case of control-affine systems
- Optimality of minimum time extremals
- Integrability of the minimum time Kepler problem

INTRODUCTION AND MOTIVATION

Optimal control problems

M a smooth manifold, $U \subset \mathbb{R}^{m}$.
Let $f: M \times \mathbb{R}^{m} \rightarrow T M$ be a family of smooth vector fields on M.

Optimal control problems

M a smooth manifold, $U \subset \mathbb{R}^{m}$.
Let $f: M \times \mathbb{R}^{m} \rightarrow T M$ be a family of smooth vector fields on M. An optimal control problem is given by

$$
\left\{\begin{array}{l}
\dot{x}=f(x, u), \quad u(t) \in U \\
x(0)=x_{0}, \\
x\left(t_{f}\right)=x_{f}, \\
C(u)=\int_{0}^{t_{f}} \varphi(x(t), u(t)) d t \rightarrow \min .
\end{array}\right.
$$

Where $\mathrm{C}: \mathrm{L}^{\infty}\left(\left[0, \mathrm{t}_{\mathrm{f}}\right], \mathrm{U}\right) \rightarrow \mathbb{R}$ is the cost function.

Optimal control problems

M a smooth manifold, $U \subset \mathbb{R}^{m}$.
Let $f: M \times \mathbb{R}^{m} \rightarrow T M$ be a family of smooth vector fields on M.
An optimal control problem is given by

$$
\left\{\begin{array}{l}
\dot{x}=f(x, u), \quad u(t) \in U \\
x(0)=x_{0}, \\
x\left(t_{f}\right)=x_{f}, \\
C(u)=\int_{0}^{t_{f}} \varphi(x(t), u(t)) d t \rightarrow \min .
\end{array}\right.
$$

Where $C: L^{\infty}\left(\left[0, t_{f}\right], U\right) \rightarrow \mathbb{R}$ is the cost function.
f continuous in u, x_{u}, the solution associated with a control $u \in L^{\infty}\left(\left[0, t_{f}\right], u\right)$ uniquely well defined (Carathéodory).

Main questions

- Existence of any globally optimal trajectory?
\rightarrow Sufficient conditions: Filippov's theorem.
- How can we find - characterize optimal trajectories?
\rightarrow Necessary conditions: Pontrjagin's Maximum Principle, extremals.
- Local/global optimality of our extremal trajectories?
\rightarrow Second order conditions: conjugate points, symplectic methods (Agrachev).
- Regularity of optimal trajectory?
\rightarrow Techniques from dynamical systems: Normal hyperbolicity, invariant manifolds, normal forms.
- Are extremals computable - define an integrable system ?
\rightarrow Galois differential theory (but also, symbolic dynamics, Smale's horseshoe...)

Set $\varphi=1, f(x, u)=F_{0}(x)+u_{1} F_{1}(x)+u_{2} F_{2}(x)$ and $U=B$ Euclidean ball.

$$
\left\{\begin{array}{l}
\dot{x}(t)=F_{0}(x(t))+u_{1}(t) F_{1}(x(t))+u_{2}(t) F_{2}(x(t)), u_{1}^{2}+u_{2}^{2} \leq 1 \tag{1}\\
x(0)=x_{0} \\
x\left(t_{f}\right)=x_{f} \\
t_{f} \rightarrow \min .
\end{array}\right.
$$

F_{i} smooth, $i=0,1,2, x_{0}, x_{f} \in M$ a 4 dimensional manifold (can be generalized to $2 n$ with n controls).

Set $\varphi=1, f(x, u)=F_{0}(x)+u_{1} F_{1}(x)+u_{2} F_{2}(x)$ and $U=B$ Euclidean ball.

$$
\left\{\begin{array}{l}
\dot{x}(t)=F_{0}(x(t))+u_{1}(t) F_{1}(x(t))+u_{2}(t) F_{2}(x(t)), u_{1}^{2}+u_{2}^{2} \leq 1 \tag{1}\\
x(0)=x_{0} \\
x\left(t_{f}\right)=x_{f} \\
t_{f} \rightarrow \min .
\end{array}\right.
$$

F_{i} smooth, $i=0,1,2, x_{0}, x_{f} \in M$ a 4 dimensional manifold (can be generalized to $2 n$ with n controls).
Structure of Lie algebra $\operatorname{Lie}\left(F_{0}, F_{1}, F_{2}\right)$ is crucial.
Example: Mechanical systems.

$$
\ddot{q}+\nabla V(q)=u
$$

V a smooth potential.

Motivating example: the controlled CR3BP

$$
\begin{equation*}
\ddot{q}+\nabla V_{\mu}(q)-2 i \dot{q}=u,\|u\| \leq 1 \tag{2}
\end{equation*}
$$

in the rotating frame, u being the control (thrust of the engine) and

$$
V_{\mu}(q)=\frac{1}{2}|q|^{2}+\frac{1-\mu}{|q+\mu|}+\frac{\mu}{|q-1+\mu|}, \mu=\text { mass ratio. }
$$

Figure: Hill's region and Lagrange points for the RC3BP

Minimizing the cost generates singularities.
This thesis focuses on understanding of the consequences of these singularities:

- On the extremal flow, irregular behavior, non-uniqueness,
- On the optimality of the trajectories,
- On the computability of the possible optimal trajectories: destruction of first integrals.

Structure of the minimum time extremal FLOW

Definition (Pseudo-Hamiltonian)

$\forall(x, p) \in T^{*} M, H(x, p, u)=\langle p, f(x, u)\rangle$
Control affine dynamics: $H(x, p, u)=H_{0}(x, p)+u_{1} H_{1}(x, p)+u_{2} H_{2}(x, p)$, $H_{i}(x, p)=\left\langle p, F_{i}(x)\right\rangle, i=0,1,2$.

Definition (Pseudo-Hamiltonian)

$$
\forall(x, p) \in T^{*} M, H(x, p, u)=\langle p, f(x, u)\rangle
$$

Control affine dynamics: $H(x, p, u)=H_{0}(x, p)+u_{1} H_{1}(x, p)+u_{2} H_{2}(x, p)$,
$H_{i}(x, p)=\left\langle p, F_{i}(x)\right\rangle, i=0,1,2$.

Theorem (Pontrjagin)

If (x, u) is a minimum time trajectory then there exists an absolutely continuous Lipschitz curve $p(t) \in T_{x(t)} M^{*} \backslash\{0\}$ s.t.
$-(x, p)$ is solution of:

$$
\left\{\begin{array}{l}
\dot{x}=\frac{\partial H}{\partial p}(x, p, u) \tag{3}\\
\dot{p}=-\frac{\partial H}{\partial x}(x, p, u) .
\end{array}\right.
$$

$-H(x(t), p(t), u(t))=\max _{\tilde{u} \in U} H(x(t), p(t), \tilde{u})$.
$-H(x(t), p(t), u(t)) \geq 0$.

$$
\left\{\begin{array}{l}
\dot{x}(t)=F_{0}(x(t))+u_{1}(t) F_{1}(x(t))+u_{2}(t) F_{2}(x(t)), u_{1}^{2}+u_{2}^{2} \leq 1 \tag{4}\\
x(0)=x_{0} \\
x\left(t_{f}\right)=x_{f} \\
t_{f} \rightarrow \min
\end{array}\right.
$$

Proposition

For system (4) $\forall z=(x, p) \in T^{*} M, \quad H^{\max }(x, p)=H_{0}(x, p)+\sqrt{H_{1}^{2}(x, p)+H_{2}^{2}(x, p)^{2}}$
$u=\frac{1}{\sqrt{\mathrm{H}_{1}^{2}+\mathrm{H}_{2}^{2}}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)$: discontinuities of the control u are called switchings.

$$
\left\{\begin{array}{l}
\dot{x}(t)=F_{0}(x(t))+u_{1}(t) F_{1}(x(t))+u_{2}(t) F_{2}(x(t)), u_{1}^{2}+u_{2}^{2} \leq 1 \tag{4}\\
x(0)=x_{0} \\
x\left(t_{f}\right)=x_{f} \\
t_{f} \rightarrow \min
\end{array}\right.
$$

Proposition

For system (4) $\forall z=(x, p) \in T^{*} M, \quad H^{\max }(x, p)=H_{0}(x, p)+\sqrt{H_{1}^{2}(x, p)+H_{2}^{2}(x, p)^{2}}$
$u=\frac{1}{\sqrt{\mathrm{H}_{1}^{2}+\mathrm{H}_{2}^{2}}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)$: discontinuities of the control u are called switchings.

Definition (Singular locus / Switching surface.)

$\Sigma=\left\{z=(x, p) \in T^{*} M, H_{1}(x, p)=H_{2}(x, p)=0\right\}=F_{1}^{\perp} \cap F_{2}^{\perp}$ smooth submanifold if F_{1} and F_{2} are linearly independent.

Assumption

Set $\bar{z} \in \Sigma, \bar{x}=\pi(\bar{z})$, where $\pi: T^{*} M \rightarrow M$ the canonical projection.
Denote $\mathrm{F}_{\mathrm{ij}}=\left[\mathrm{F}_{\mathrm{i}}, \mathrm{F}_{\mathrm{j}}\right], \mathrm{H}_{\mathrm{ij}}=\left\{\mathrm{H}_{\mathrm{i}}, \mathrm{H}_{\mathrm{j}}\right\}$.
Assume :

$$
(\mathcal{A}): \operatorname{det}\left(\mathrm{F}_{1}(\overline{\mathrm{x}}), \mathrm{F}_{2}(\overline{\mathrm{x}}), \mathrm{F}_{01}(\overline{\mathrm{x}}), \mathrm{F}_{02}(\overline{\mathrm{x}})\right) \neq 0
$$

Checked for mechanical systems.
$\rightarrow(\mathcal{A})+\mathrm{F}_{0}$ recurrent $(\mu=0$ or certain Hill's regions of the RC3BP) \Rightarrow Controllability.

Assumption

Set $\bar{z} \in \Sigma, \bar{x}=\pi(\bar{z})$, where $\pi: T^{*} M \rightarrow M$ the canonical projection.
Denote $\mathrm{F}_{\mathrm{ij}}=\left[\mathrm{F}_{\mathrm{i}}, \mathrm{F}_{\mathrm{j}}\right], \mathrm{H}_{\mathrm{ij}}=\left\{\mathrm{H}_{\mathrm{i}}, \mathrm{H}_{\mathrm{j}}\right\}$.
Assume :

$$
(\mathcal{A}): \operatorname{det}\left(\mathrm{F}_{1}(\overline{\mathrm{x}}), \mathrm{F}_{2}(\overline{\mathrm{x}}), \mathrm{F}_{01}(\overline{\mathrm{x}}), \mathrm{F}_{02}(\overline{\mathrm{x}})\right) \neq 0
$$

Checked for mechanical systems.
$\rightarrow(\mathcal{A})+\mathrm{F}_{0}$ recurrent $(\mu=0$ or certain Hill's regions of the RC3BP) \Rightarrow Controllability.

Proposition

Any system of the form $\ddot{q}+\mathrm{g}(\mathrm{q}, \dot{\mathrm{q}})=\mathrm{u}$ verifies (\mathcal{A}).
In mechanical systems we also have $(\mathcal{B}): \mathrm{F}_{12}=0 \Rightarrow \mathrm{H}_{12}=0$.

Bifurcation system

Using $(\mathcal{A}):(x, p) \mapsto\left(x, \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{01}, \mathrm{H}_{02}\right)$ is a change of coordinates.
\rightarrow Polar blow up: $\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=(\rho \cos \theta, \rho \sin \theta)$,

Using $(\mathcal{A}):(x, p) \mapsto\left(x, H_{1}, \mathrm{H}_{2}, \mathrm{H}_{01}, \mathrm{H}_{02}\right)$ is a change of coordinates.
\rightarrow Polar blow up: $\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=(\rho \cos \theta, \rho \sin \theta)$,

$$
(Y):\left\{\begin{array}{l}
\dot{\rho}=-\sin \theta \tag{5}\\
\dot{\theta}=\frac{1}{\rho}(1+\alpha-\cos \theta+f(\rho, \theta, \xi)) \\
\dot{\xi}=h(\rho, \theta, \xi),
\end{array}\right.
$$

$\xi=\left(x, H_{01}, H_{02}\right)$.
(i) f, h smooth functions, h has values in \mathbb{R}^{k};
(ii) $f(\bar{z})=0, f$ has a nice local behavior around \bar{z}.

Bifurcation system

Using $(\mathcal{A}):(x, p) \mapsto\left(x, H_{1}, H_{2}, H_{01}, H_{02}\right)$ is a change of coordinates.
\rightarrow Polar blow up: $\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=(\rho \cos \theta, \rho \sin \theta)$,

$$
(Y):\left\{\begin{array}{l}
\dot{\rho}=-\sin \theta \tag{5}\\
\dot{\theta}=\frac{1}{\rho}(1+\alpha-\cos \theta+f(\rho, \theta, \xi)) \\
\dot{\xi}=h(\rho, \theta, \xi),
\end{array}\right.
$$

$\xi=\left(x, H_{01}, H_{02}\right)$.
(i) f, h smooth functions, h has values in \mathbb{R}^{k};
(ii) $f(\bar{z})=0, f$ has a nice local behavior around \bar{z}.

Definition (Partition of the singular locus)

$\Sigma=\Sigma_{0} \cup \Sigma_{-} \cup \Sigma_{+}$with :
$\Sigma_{-}=\{\alpha<0\}, \Sigma_{+}=\{\alpha>0\}, \Sigma_{0}=\{\alpha=0\}$.

The case Σ_{-}: Mechanical systems

Theorem (Caillau, Fejoz, O.)

There exists unique solution for system (1) in a neighborhood $\mathrm{O}_{\bar{z}}$ of \bar{z}, and there is at most one switch on $\mathrm{O}_{\bar{z}}$.

- If $\bar{z} \in \Sigma_{-}$: The local extremal flow $z:\left(\mathrm{t}, z_{0}\right) \in\left[0, \mathrm{t}_{f}\right] \times \mathrm{O}_{\bar{z}} \mapsto z\left(\mathrm{t}, z_{0}\right) \in M$ is piecewise smooth, and smooth on each strata :

$$
\mathrm{O}_{\bar{z}}=\mathrm{S}_{0} \sqcup \mathrm{~S}^{s} \cup \mathrm{~S}^{u} \cup \Sigma
$$

- where S^{s} (resp. $\mathrm{S}^{\mathfrak{u}}$) is the codimension one submanifold of initial conditions leading to the switching surface (resp. in negative times),

$$
-\mathrm{S}_{0}=\mathrm{O}_{\bar{z}} \backslash\left(\mathrm{~S}^{\mathrm{s}} \cup \mathrm{~S}^{\mathrm{u}} \cup \Sigma\right)
$$

Constraint on the control \rightarrow No singular flow inside Σ_{-}. Extend previous results from Agrachev and Biolo (2016) in a close context.

Regularize (Y) by rescaling the time $d t=\rho d \tau$.

$$
(Z):\left\{\begin{array}{l}
\rho^{\prime}=-\rho \sin \theta \tag{6}\\
\theta^{\prime}=1+\alpha-\cos \theta+O(\rho ; \xi) \\
\xi^{\prime}=\rho h(\rho, \theta, \xi)
\end{array}\right.
$$

Idea of the proof

Regularize (Y) by rescaling the time $d t=\rho d \tau$.

$$
(Z):\left\{\begin{array}{l}
\rho^{\prime}=-\rho \sin \theta \tag{6}\\
\theta^{\prime}=1+\alpha-\cos \theta+O(\rho ; \xi) \\
\xi^{\prime}=\rho h(\rho, \theta, \xi)
\end{array}\right.
$$

Then, in $\{\rho=0\}$, for each ξ, two parabolic equilibria $\theta_{ \pm}$.
The manifolds $\mathrm{N}_{ \pm}=\left\{\left(0, \theta_{ \pm}, \bar{\xi}\right)\right\}$ are normally hyperbolic invariant submanifolds of equilibria, with stable and unstable manifolds of dimension one.
\rightarrow Finite initial time t_{f} : existence and uniqueness.

Figure: Blown-up phase portrait around Σ_{-}

Idea of the proof

Set

$$
S^{s}=U_{z \in N_{-}} W^{s}(z)
$$

and

$$
S^{u}=U_{z \in N_{+}} W^{u}(z) .
$$

Eigenvalues on $N_{ \pm}$are null, and in the direction of ρ, the Jacobian has a strictly negative eigenvalue: the spectral gap is infinite $\rightarrow S^{s}\left(S^{u}\right)$ is a C^{∞}-smooth foliation (Hirsch, Pugh, Shub).
The flow is smooth restricted to S^{S} and S_{0} : the regularized vector field is smooth, consequence of the dominated convergence theorem.

Figure: The regular-singular transition
$\Pi_{0} \subset\left\{\rho=\rho_{0}\right\}, \Pi_{f} \subset\left\{\omega=\omega_{f}\right\}$.

Theorem (Caillau, Fejoz, O., Roussarie)

Let $\mathrm{T}: \Pi_{0} \rightarrow \Pi_{\mathrm{f}}$ be the Poincaré mapping between the two sections.
Then, T is smooth in $\left(\omega_{0} \ln \omega_{0}, \omega_{0}, \xi_{0}\right)$, that

$$
T\left(\omega_{0}, \xi_{0}\right)=\left(R\left(\omega_{0} \ln \omega_{0}, \omega_{0}, \xi_{0}\right), X\left(\omega_{0} \ln \omega_{0}, \omega_{0}, \xi_{0}\right)\right)
$$

R, X smooth.
Idea : Straightening via a normal form + Blow up

Bounding the number of switchings for ORBIT TRANSFERS

CR3BP and ER3BP

Previous theorems apply to the CR3BP but not to the non-autonomous Restricted Elliptic Three Body Problem:

$$
\ddot{q}+\nabla V_{\mu}(t, q)=u,
$$

with $V_{\mu}(t, q)=\frac{1-\mu}{\left\|q-q^{1}(t)\right\|}+\frac{\mu}{\left\|q-q^{2}(t)\right\|} \cdot q^{1}, q^{2}$ position vectors of the two primaries.

CR3BP and ER3BP

Previous theorems apply to the CR3BP but not to the non-autonomous Restricted Elliptic Three Body Problem:

$$
\ddot{q}+\nabla V_{\mu}(t, q)=u
$$

with $V_{\mu}(t, q)=\frac{1-\mu}{\left\|q-q^{1}(t)\right\|}+\frac{\mu}{\left\|q-q^{2}(t)\right\|} \cdot q^{1}, q^{2}$ position vectors of the two primaries.

Definition

Define $\delta=\inf _{\left[0, t_{f}\right]}|q(t)|, \delta_{1}=\inf _{\left[0, t_{f}\right]}\left|q(t)-q^{1}(t)\right|, \delta_{2}=\inf _{\left[0, t_{f}\right]}\left|q(t)-q^{2}(t)\right|$. This quantities represents the distance to the collisions in the two body, and restricted three-body problems respectively. Finally note $\delta_{12}(\mu)=\frac{\delta_{1} \delta_{2}}{\left((1-\mu) \delta_{2}^{3}+\mu \delta_{1}^{3}\right)^{1 / 3}}$.

Upper bound on the number of switchings \rightarrow bounds the number of heteroclinic connections between S^{s} and $S^{\mathfrak{u}}$.

Theorem (Morse)

Let $\mathrm{a}, \mathrm{b} \in \mathbb{R}$, with $\mathrm{b}>\mathrm{a}$. Consider the two linear second order equations

$$
\begin{align*}
& z^{\prime \prime}+\mathrm{P}(\mathrm{t}) z=0 \tag{7}\\
& z^{\prime \prime}+\mathrm{Q}(\mathrm{t}) z=0 \tag{8}
\end{align*}
$$

with $\mathrm{P}(\mathrm{t}), \mathrm{Q}(\mathrm{t}) \in \mathrm{S}_{\mathrm{n}}(\mathbb{R})$ s. . $\mathrm{Q}(\mathrm{t})-\mathrm{P}(\mathrm{t}) \geq 0$, there exists $\overline{\mathrm{t}}$ with $\mathrm{Q}(\overline{\mathrm{t}})-\mathrm{P}(\overline{\mathrm{t}})>0$. If (7) has a non trivial solution $\mathrm{y}, \mathrm{y}(\mathrm{a})=\mathrm{y}(\mathrm{b})=0$, then (8) has a non trivial solution which vanishes in a and $\mathrm{c}<\mathrm{b}$.

Theorem (Morse)

Let $\mathrm{a}, \mathrm{b} \in \mathbb{R}$, with $\mathrm{b}>\mathrm{a}$. Consider the two linear second order equations

$$
\begin{align*}
& z^{\prime \prime}+\mathrm{P}(\mathrm{t}) z=0 \tag{7}\\
& z^{\prime \prime}+\mathrm{Q}(\mathrm{t}) z=0 \tag{8}
\end{align*}
$$

with $\mathrm{P}(\mathrm{t}), \mathrm{Q}(\mathrm{t}) \in \mathrm{S}_{\mathrm{n}}(\mathbb{R})$ s. . $\mathrm{Q}(\mathrm{t})-\mathrm{P}(\mathrm{t}) \geq 0$, there exists $\overline{\mathrm{t}}$ with $\mathrm{Q}(\overline{\mathrm{t}})-\mathrm{P}(\overline{\mathrm{t}})>0$. If (7) has a non trivial solution $\mathrm{y}, \mathrm{y}(\mathrm{a})=\mathrm{y}(\mathrm{b})=0$, then (8) has a non trivial solution which vanishes in a and $\mathrm{c}<\mathrm{b}$.

Proposition (Caillau, Fejoz, O.)

- Keplerian case, the maximum amount of switchings is $\mathrm{N}_{0}=\left[\frac{\mathrm{t}_{\mathrm{f}}}{\pi \delta^{3 / 2}}\right]$ on $\left[0, \mathrm{t}_{\mathrm{f}}\right]$.
- Controlled Elliptic Three-Body Problem with a mass ratio μ, On a time interval $\left[0, \mathrm{t}_{\mathrm{f}}\right]$ the maximum amount of such singularities is $\mathrm{N}_{\mu}=\left[\frac{\mathrm{t}_{\mathrm{f}}}{\pi \delta_{12}(\mu)^{3 / 2}}\right]$.

The controlled ER3BP dynamics:

$$
\mathrm{H}\left(\mathrm{q}, v, \mathrm{p}_{\mathrm{q}}, \mathrm{p}_{v}\right)=\mathrm{p}_{\mathrm{q}} \cdot v-\mathrm{p}_{v} \cdot \nabla \mathrm{~V}_{\mu}(\mathrm{t}, \mathrm{q})+\mathrm{p}_{v} \cdot \mathrm{u}
$$

and

$$
\mathrm{H}^{\max }\left(\mathrm{q}, v, \mathrm{p}_{\mathrm{q}}, \mathrm{p}_{v}\right)=\mathrm{p}_{\mathrm{q}} \cdot v-\mathrm{p}_{v} \cdot \nabla \mathrm{~V}_{\mu}(\mathrm{t}, \mathrm{q})+\left\|\mathrm{p}_{v}\right\|
$$

Linear equation in p_{ν} :

$$
\begin{equation*}
\ddot{p}_{v}+\nabla_{\mathrm{q}}^{2} \mathrm{~V}_{\mu}(\mathrm{t}, \mathrm{q}) \mathrm{p}_{v}=0 \tag{9}
\end{equation*}
$$

Compare $V_{\mu}(t, q)$ with a well-chosen matrix.

$$
A_{t}(q)=\left(\begin{array}{cc}
1+\frac{1-\mu}{\left|q-q^{1}(t)\right|^{3}}+\frac{\mu}{\left|q-q^{2}(t)\right|^{3}} & 0 \\
0 & \frac{1-\mu}{\left|q-q^{1}(t)\right|^{3}}+\frac{\mu}{\left|q-q^{2}(t)\right|^{3}}
\end{array}\right) \in \mathcal{S}_{2}(\mathbb{R}) .
$$

The general affine case

$$
(\alpha=0) \Rightarrow\left\{\begin{array}{l}
\dot{\rho}=-\rho \sin \theta \tag{10}\\
\dot{\theta}=1-\cos \theta+O(\rho ; \xi) \\
\dot{\xi}=\rho \tilde{h}(\rho, \theta, \xi)
\end{array}\right.
$$

a_{0} smooth on \mathbb{R}^{k}. Set $\tilde{h}_{1}(0,0,0)=c$.

Theorem (O., Roussarie)

Let \bar{z} be in Σ_{0}. If $\mathrm{c}>0$, there exist extremals passing through \bar{z}, these extremals are connected to the singular flow in Σ_{0}.

Idea: Dimensional reduction + quasi-homogeneous blow up + dynamical study in the plane.

Sketch of the proof

Under generic hypothesis, \exists coordinates $\tilde{\xi}=\left(\zeta, \tilde{\xi}_{2} \ldots, \tilde{\xi}_{k}\right)$ s.t.

$$
\left\{\begin{array}{l}
\rho^{\prime}=-\rho \theta+\mathrm{O}\left(\rho \theta^{3}\right) \tag{11}\\
\theta^{\prime}=\zeta+\theta^{2} / 2+\mathrm{O}\left(\rho+|\theta|^{4}\right) \\
\zeta^{\prime}=c \rho+\rho \mathrm{O}(\rho+|\theta|+|\tilde{\xi}|) .
\end{array}\right.
$$

Sketch of the proof

Under generic hypothesis, \exists coordinates $\tilde{\xi}=\left(\zeta, \tilde{\xi}_{2} \ldots, \tilde{\xi}_{k}\right)$ s.t.

$$
\left\{\begin{array}{l}
\rho^{\prime}=-\rho \theta+\mathrm{O}\left(\rho \theta^{3}\right) \tag{11}\\
\theta^{\prime}=\zeta+\theta^{2} / 2+\mathrm{O}\left(\rho+|\theta|^{4}\right) \\
\zeta^{\prime}=c \rho+\rho \mathrm{O}(\rho+|\theta|+|\tilde{\xi}|) .
\end{array}\right.
$$

Blow up. Nilpotent equilibrium $(\rho, s, \zeta)=(0,0,0)$, we will use a specific blow-up:

$$
\left\{\begin{array}{l}
\rho=\mathrm{R}^{3} \bar{\rho} \\
\theta=\mathrm{R} \bar{\theta} \\
\zeta=\mathrm{R}^{2} \bar{\zeta}
\end{array}\right.
$$

with $(\bar{\rho}, \bar{s}, \bar{\zeta}) \in S_{+}^{2}$ the hemisphere $\rho \geq 0, R \in \mathbb{R}_{+}$.

Sketch of the proof

The chart (i). Interior of S_{+}^{2} : One hyperbolic equilibrium m_{0}, unstable node restricted to S_{+}^{2}.
The chart (ii). 4 semi-hyperbolic equilibria $\in \partial S_{+}^{2}=\{R=0, \bar{\rho}=0\} \cong \mathbb{S}^{1}$.
$--\pi / 2$: unstable node in restriction to S_{+}^{2}
$-\pi / 2$: stable node in restriction to S_{+}^{2}

- $\left.\omega_{0} \in\right] \pi / 2, \pi\left[\right.$ (unstable) and $-\omega_{0}$ (stable) nodes restricted to \mathbb{S}^{1}.
$\pm \omega_{0}$: hyperbolic restricted to S_{+}^{2}, with lines of zeros in the plane $\bar{\rho}=0$.

Local-global portrait on S_{+}^{2}

The stable and unstable manifolds of these equilibria can be connected using

Theorem (Poincaré-Bendixson)

Let X be a vector field in the plane, any maximal solution of $\dot{x}=X(x)$ contained in a compact set, is either converging to an equilibrium point or a limit cycle.

No periodic orbit: choosing a transverse domain containing m_{0} and using PoincaréHopf formula.
\rightarrow stable and unstable manifolds can be connected in a unique way: the stable manifold from ω_{0} is connected to m_{0}.
\rightarrow Finite initial time.

Figure: Phase portrait around the nilpotent equilibrium

Theorem (O., Roussarie)

In a neighborhood $\mathrm{O}_{\bar{z}}$ of a point $\bar{z} \in \Sigma_{0}$, the flow is well defined, continuous, and piecewise smooth. More precisely, there exists a stratification:

$$
\mathrm{O}_{\bar{z}}=\mathrm{S}_{0} \cup \mathrm{~S}^{s} \cup \mathrm{~S}^{u} \cup S_{0}^{s}
$$

where

- S_{0}^{s} is the submanifold of codimension 2 of initial conditions leading to Σ_{0},
- S^{s} is the submanifold of codimension 1 of initial conditions leading to Σ_{-},
$-\mathrm{S}_{0}=\mathrm{O}_{\bar{z}} \backslash\left(\mathrm{~S}_{1}^{0} \cup \mathrm{~S}_{1}\right)$.
The extremal flow is smooth on each stratum.

Figure: Stratification of the extremal flow around Σ_{0}

Σ_{+}and the singular flow

The case Σ_{+}.

Proposition

No switching at Σ_{+}. In a neighborhood of a point \bar{z} in Σ_{+}, there is no switch, and the extremal flow is smooth, i.e., Σ_{+}is never crossed. In other words, ρ does not vanish in (5).

The singular flow (flow inside Σ):

- There exists a smooth singular flow inside Σ_{+}, which cannot be optimal (Goh condition).
- There cannot exist any admissible singular extremal in Σ_{-}.
- There exists a singular flow in Σ_{0}.

Jump on the control

$\mathrm{r}:=\sqrt{\mathrm{H}_{01}^{2}+\mathrm{H}_{02}^{2}}$

Remark

In the case $\bar{z} \in \Sigma_{-}$, the jump on the control at a switching time $\overline{\mathrm{t}}$ is:

$$
u\left(\bar{t}_{ \pm}\right)=\left(\cos \theta_{ \pm}, \sin \theta_{ \pm}\right)=\frac{1}{r^{2}}\left(-H_{02} H_{12} \pm H_{01} \sqrt{r^{2}-H_{12}^{2}}, H_{01} H_{12} \pm H_{02} \sqrt{r^{2}-H_{12}^{2}}\right)
$$

$(\mathcal{B}) \Rightarrow \pi$-singularities for mechanical systems.

Jump on the control

$\mathrm{r}:=\sqrt{\mathrm{H}_{01}^{2}+\mathrm{H}_{02}^{2}}$

Remark

In the case $\bar{z} \in \Sigma_{-}$, the jump on the control at a switching time $\overline{\mathrm{t}}$ is:

$$
u\left(\bar{t}_{ \pm}\right)=\left(\cos \theta_{ \pm}, \sin \theta_{ \pm}\right)=\frac{1}{r^{2}}\left(-H_{02} H_{12} \pm H_{01} \sqrt{r^{2}-H_{12}^{2}}, H_{01} H_{12} \pm H_{02} \sqrt{r^{2}-H_{12}^{2}}\right)
$$

$(\mathcal{B}) \Rightarrow \pi$-singularities for mechanical systems.

Proposition

In Σ_{0}. Consider the extremal $z(\mathrm{t})$ entering the singular locus in $z(\overline{\mathrm{t}})=\bar{z} \in \Sigma_{0}$,

- If $\mathrm{H}_{12}(\bar{z})=\mathrm{r}(\bar{z})$, the extremal control is continuous on $\left[0, \mathrm{t}_{f}\right]$,
- If $\mathrm{H}_{12}=-\mathrm{r}(\bar{z})$, the extremal control has a π-singularity at the switching time $\overline{\mathrm{t}}$.

Optimality of minimum time extremals

Exponential mapping

Definition (exponential map)

We call exponential mapping from x_{0}, the map

$$
\exp _{x_{0}}:\left(t, p_{0}\right) \in\left[0, t_{f}\right] \times T_{\bar{x}_{0}}^{*} M \cap S^{s} \rightarrow \pi\left(z\left(t, x_{0}, p_{0}\right)\right)=x\left(t, x_{0}, p_{0}\right) \in M
$$

Assumption: $T_{\chi_{0}}^{*} M \pitchfork S^{s}$, then $T_{\chi_{0}}^{*} M \cap S^{s}$ is a smooth submanifold of dimension 3 .
Theorem (O.)
Denote $M(t):=d \exp _{\bar{x}_{0}}\left(t, \bar{p}_{0}\right)$. If
(i) The reference extremal is normal,
(ii) $\operatorname{det} M(t) \neq 0$ for all $\left.t \in] 0, \overline{\mathrm{t}}[U] \overline{\bar{t}}, \overline{\mathrm{t}}_{f}\right]$ and $\operatorname{det} M\left(\overline{\mathrm{t}}_{-}\right) \operatorname{det} M\left(\overline{\mathrm{t}}_{+}\right) \neq 0$, then the reference trajectory is a \mathfrak{C}^{0}-local minimizer among all trajectories with same endpoints.

Propagate a Lagrangian perturbation

\exists Lagrangian submanifold \mathcal{L} transverse to $T_{\chi_{0}}^{*} M$, s. t. $\mathcal{S}_{0}=\mathcal{L} \cap S^{s}$ is a smooth submanifold of dimension $3 \rightarrow$ Regularity on \mathcal{S}_{0}.

Propagate a Lagrangian perturbation

\exists Lagrangian submanifold \mathcal{L} transverse to $T_{x_{0}}^{*} \mathcal{M}$, s. t. $\mathcal{S}_{0}=\mathcal{L} \cap S^{s}$ is a smooth submanifold of dimension $3 \rightarrow$ Regularity on \mathcal{S}_{0}.
The canonical projection π is a homeomorphism on

$$
\begin{equation*}
\mathcal{S}_{1}=\left\{z\left(\mathrm{t}, z_{0}\right),\left(\mathrm{t}, z_{0}\right) \in\left[0, \overline{\mathrm{t}}\left(z_{0}\right)\right] \times \mathcal{S}_{0}\right\} \tag{12}
\end{equation*}
$$

onto its image. The same holds for

$$
\begin{equation*}
\mathcal{S}_{2}=\left\{z\left(\mathrm{t}, z_{0}\right),\left(\mathrm{t}, z_{0}\right) \in\left[\overline{\mathrm{t}}\left(z_{0}\right), \mathrm{t}_{\mathrm{f}}\right] \times \mathcal{S}_{0}\right\} \tag{13}
\end{equation*}
$$

and $\mathcal{S}_{1} \cup \mathcal{S}_{2}$ (extremals cut Σ transversally).

Propagate a Lagrangian perturbation

\exists Lagrangian submanifold \mathcal{L} transverse to $T_{\chi_{0}}^{*} M$, s. t. $\mathcal{S}_{0}=\mathcal{L} \cap S^{s}$ is a smooth submanifold of dimension $3 \rightarrow$ Regularity on \mathcal{S}_{0}.
The canonical projection π is a homeomorphism on

$$
\begin{equation*}
\mathcal{S}_{1}=\left\{z\left(\mathrm{t}, z_{0}\right),\left(\mathrm{t}, z_{0}\right) \in\left[0, \overline{\mathrm{t}}\left(z_{0}\right)\right] \times \mathcal{S}_{0}\right\} \tag{12}
\end{equation*}
$$

onto its image. The same holds for

$$
\begin{equation*}
\mathcal{S}_{2}=\left\{z\left(\mathrm{t}, z_{0}\right),\left(\mathrm{t}, z_{0}\right) \in\left[\overline{\mathrm{t}}\left(z_{0}\right), \mathrm{t}_{\mathrm{f}}\right] \times \mathcal{S}_{0}\right\} \tag{13}
\end{equation*}
$$

and $S_{1} \cup S_{2}$ (extremals cut Σ transversally).
\rightarrow Cost comparison using the Liouville form $\lambda=p d x$ exact on \mathcal{S}_{i} : Extremals are locally optimal.

Integrability of minimum time Hamiltonian in the Kepler problem

Kepler problem

Definition (Liouville integrability)

Let H be a smooth function on a 2 n -dimensional symplectic manifold. The associated Hamiltonian system is integrable iff there exists n independent first integrals (constant of motion) in involution.

Classical reduction of the two body problem $\mu=0$,

$$
\ddot{q}+\frac{q}{\|q\|^{3}}=\varepsilon u .
$$

Uncontrolled two body problem $(\varepsilon=0)$ is well known to be integrable.

Kepler problem

Definition (Liouville integrability)

Let H be a smooth function on a 2 n -dimensional symplectic manifold. The associated Hamiltonian system is integrable iff there exists n independent first integrals (constant of motion) in involution.

Classical reduction of the two body problem $\mu=0$,

$$
\ddot{q}+\frac{q}{\|q\|^{3}}=\varepsilon u .
$$

Uncontrolled two body problem $(\varepsilon=0)$ is well known to be integrable. Kepler problem with a constant force : $u=c s t$, also integrable (Charlier and Saint Germain).

Kepler problem

Definition (Liouville integrability)

Let H be a smooth function on a 2 n -dimensional symplectic manifold. The associated Hamiltonian system is integrable iff there exists n independent first integrals (constant of motion) in involution.

Classical reduction of the two body problem $\mu=0$,

$$
\ddot{q}+\frac{q}{\|q\|^{3}}=\varepsilon u .
$$

Uncontrolled two body problem $(\varepsilon=0)$ is well known to be integrable. Kepler problem with a constant force : $u=c s t$, also integrable (Charlier and Saint Germain).
Three body problem is not integrable (Poincaré).

Minimum time Kepler problem

$$
\left\{\begin{array}{l}
\ddot{q}+\frac{q}{\|q\|^{3}}=u,\|u\| \leq 1, \tag{14}\\
(q(0), v(0))=\left(q_{0}, v_{0}\right), \\
\left(q\left(t_{f}\right), v\left(t_{f}\right)\right)=\left(q_{f}, v_{f}\right) \\
t_{f} \rightarrow \min .
\end{array}\right.
$$

Minimum time Kepler problem

$$
\left\{\begin{array}{l}
\ddot{q}+\frac{q}{\|q\|^{3}}=u,\|u\| \leq 1, \tag{14}\\
(q(0), v(0))=\left(q_{0}, v_{0}\right), \\
\left(q\left(t_{f}\right), v\left(t_{f}\right)\right)=\left(q_{f}, v_{f}\right) \\
t_{f} \rightarrow \min .
\end{array}\right.
$$

Maximized Hamiltonian:

$$
\begin{equation*}
\mathrm{H}\left(\mathrm{q}, v, \mathrm{p}_{\mathrm{q}}, \mathrm{p}_{v}\right)=\mathrm{p}_{\mathrm{q}} \cdot v-\frac{\mathrm{p}_{v} \cdot \mathrm{q}}{\|\mathrm{q}\|^{3}}+\left\|p_{v}\right\| . \tag{15}
\end{equation*}
$$

\rightarrow Liouville integrability of H ?

Theorem (Morales-Ramis)

Let us consider a Hamiltonian H analytic on a complex analytic symplectic manifold and a particular solution Γ not reduced to a point. If H is integrable in the Liouville sense with meromorphic first integrals, then the first order variational equation near Γ has a virtually Abelian Galois group over the base field of meromorphic functions on Γ.

Theorem (Morales-Ramis)

Let us consider a Hamiltonian H analytic on a complex analytic symplectic manifold and a particular solution Γ not reduced to a point. If H is integrable in the Liouville sense with meromorphic first integrals, then the first order variational equation near Γ has a virtually Abelian Galois group over the base field of meromorphic functions on Γ.

Theorem (Caillau, Combot, Fejoz, O.)

The minimum time Kepler problem is not meromorphically Liouville integrable on \mathcal{M}.

Invariant manifold of collisions

$$
S=\left\{q_{2}=v_{2}=p_{q_{2}}=p_{v_{2}}=0\right\} \cap \mathcal{M}
$$

$\rightarrow \mathrm{H}$ is integrable on S : collision trajectory $\Gamma(\mathrm{t})$.
\rightarrow Compute the Normal Variational Equation along $\Gamma(\mathrm{t})$.
\rightarrow Its Galois group contains the group of a hypergeometric equation: Contains $\mathrm{SL}_{2}(\mathbb{C})$, not even solvable.
\rightarrow The variational equation is Fuchsian: Non-integrability in the class of meromorphic functions (Schlesinger's density theorem).

Perspectives

- Find a generic condition to treat the general case.
- Numerical experimentation for the extremal.
- Real non integrability for the minimum time Kepler problem.
- KAM theory: non geodesic convexity in the Kepler configuration?

Thank you for your attention!

