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INTRODUCTION AND MOTIVATION



Optimal control problems

M a smooth manifold, U c R™.
Let f: M xR™ - TM be a family of smooth vector fields on M.
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Optimal control problems

M a smooth manifold, U c R™.
Let f: M xR™ - TM be a family of smooth vector fields on M.
An optimal control problem is given by

x=f(x,u), ut)el

X(
x(tf) = x,
C(u) = (;[f @(x(t), u(t))dt - min.

0) = Xo,

Where C : L*([0,t¢],U) = R is the cost function.
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Optimal control problems

M a smooth manifold, U c R™.
Let f: M xR™ - TM be a family of smooth vector fields on M.
An optimal control problem is given by

x=f(x,u), ut)el
X'(O) = X0,
X(tf) = Xf,
Clu) = (;[f @(x(t), u(t))dt - min.
Where C : L*([0,t¢],U) = R is the cost function.

f continuous in 1, X, the solution associated with a control u € L*([0,t,], U)
uniquely well defined (Carathéodory).
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Main questions

- Existence of any globally optimal trajectory ?
— Sufficient conditions: Filippov’s theorem.

- How can we find - characterize optimal trajectories ?
- Necessary conditions: Pontrjagin’s Maximum Principle, extremals.

- Local/global optimality of our extremal trajectories ?
- Second order conditions: conjugate points, symplectic methods (Agrachev).
- Regularity of optimal trajectory ?
- Techniques from dynamical systems: Normal hyperbolicity, invariant
manifolds, normal forms.
— Are extremals computable - define an integrable system ?
— Galois differential theory (but also, symbolic dynamics, Smale’s horseshoe...)
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Minimum time affine control systems

Set @ =1, f(x,u) = Fy(x) + uyF;(x) + u,F,(x) and U = B Euclidean ball.

Fo(x(t)) + i ()F1 (x(t) + walt)Fa(x(t)), wi +uy < 1
0) =Xp

(_'-
=
1l

* (1)

x(tf) = x¢
t¢ & min.

Fi smooth, i =0, 1,2, xo, xf € M a 4 dimensional manifold (can be generalized to 2n
with n controls).
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Minimum time affine control systems

Set @ =1, f(x,u) = Fo(x) + u F1(x) + u,F,(x) and U = B Euclidean ball.

(_'-
=
1l

Fo(x(t)) + W (t)F (x(1) + up(t)Fa(x(t)), 7 +uj < 1

0) =Xp

x(tf) = x¢ 0
tf = min.

X

Fi smooth, i =0, 1,2, xo, xf € M a 4 dimensional manifold (can be generalized to 2n
with n controls).

Structure of Lie algebra Lie(Fy, Fy, F,) is crucial.
Example: Mechanical systems.

4+VV(q)=u,

V a smooth potential.
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Motivating example: the controlled CR3BP

G+VVu(q)-2ig =, lufl <1 ©)
in the rotating frame, u being the control (thrust of the engine) and

Viu(a) = 3lql* +

1-p + K
l[q+ul ~ [q=1+u|’

[ = mass ratio.

@

Figure: Hill’s region and Lagrange points for the RC3BP 6/36



Singularities of minimum time affine control systems

Minimizing the cost generates singularities.

This thesis focuses on understanding of the consequences of these singularities:
— On the extremal flow, irregular behavior, non-uniqueness,
— On the optimality of the trajectories,

- On the computability of the possible optimal trajectories: destruction of first
integrals.
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STRUCTURE OF THE MINIMUM TIME EXTREMAL
FLOW



Hamiltonian formalism

Definition (Pseudo-Hamiltonian)

Y(x,p) € T"M, H(x, p,u) = (p, f(x,u))

Control affine dynamics: H(x, p,u) = Hy(x, p) + uiH;(x, p) + uyHa(x, p),
Hi(x,p) = (p,Fi(x)),1=0,1,2.
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Hamiltonian formalism

Definition (Pseudo-Hamiltonian)

Y(x,p) € T"M, H(x, p,u) = (p, f(x,u))

Control affine dynamics: H(x, p,u) = Hy(x, p) + uiH;(x, p) + uyHa(x, p),
Hi(x,p) = (p,Fi(x)),1=0,1,2.

Theorem (Pontrjagin)

If (x,u) is a minimum time trajectory then there exists an absolutely continuous
Lipschitz curve p(t) € T yM™ \ {0} s.t
- (x,p) is solution of :

{X = %(x,p,u) 3)

b= -2, pw).

- Hx(t), p(t), w(t)) = maxgeu H{x(t), p(t), @)
- H{x(t), p(t) u(t)) 0.
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Minimum time control-affine extremals

X(t) = Fo(x(t)) + wa(t)F (x(t)) + wal)Fa(x(1)), wi +up < 1
)
(4)

For system (4)Vz = (x,p) € T'M,  H™(x,p) = Ho(x,p) + \/H2 (x, p) + Hi(x, p)?

u= (Hi, Hy) : discontinuities of the control u are called switchings.

Yoo

9/36



Minimum time control-affine extremals

X(t) = Fo(x(t)) + wa(t)F (x(t)) + wal)Fa(x(1)), wi +up < 1
x(0) = xo

X(ty) = (4)
tf = min.

Proposition

For system (4)Vz = (x,p) € T'M,  H™(x,p) = Ho(x,p) + \/H2 (x, p) + Hi(x, p)?

u = ——=—(Hy, Hy) : discontinuities of the control u are called switchings.

Yoo

Definition (Singular locus / Switching surface.)

L ={z=(x,p) € T*M, Hy(x,p) = Hy(x,p) = 0} = FT nFy smooth submanifold if F,
and F, are linearly independent.
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Set z € L, x = m(z), where 7 : T"M - M the canonical projection.
Denote FU = [Fi,Fj], HU = {Hi: H]}
Assume :

(A) : det(F1(x), Fa(X), For(X), Foa(%)) # 0

Checked for mechanical systems.
— (A) + Fq recurrent (L = 0 or certain Hill’s regions of the RC3BP) = Controllability.
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Assumption

Set z € L, x = m(z), where 7 : T"M - M the canonical projection.
Denote FU = [Fi,Fj], HU = {Hi: H]}
Assume :

(A) : det(F1(x), Fa(X), For(X), Foa(%)) # 0

Checked for mechanical systems.
— (A) + Fq recurrent (L = 0 or certain Hill’s regions of the RC3BP) = Controllability.

Proposition

Any system of the form § + g(q, q) = u verifies (A).

In mechanical systems we also have (B) : F;, =0 = H;, = 0.
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Bifurcation system

Using (A): (x,p) » (x, Hy, Ha, Ho, Hpy) is a change of coordinates.
- Polar blow up: (H;,H,) = (pcos 6, psin 0),
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Bifurcation system

Using (A): (x,p) » (x, Hy, Ha, Ho, Hpy) is a change of coordinates.
- Polar blow up: (H;,H,) = (pcos 6, psin 0),

p=-sin®
(Y): 9=%(1+cx—cosﬁ+f(p,6,£)) (5)
E'1=h(ps e, Ev):

E» = (X> H01, HOZ)' ”
(i) f, h smooth functions, h has values in R";
(ii) f(z) = 0, f has a nice local behavior around Zz.
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Bifurcation system

Using (A): (x,p) » (x, Hy, Ha, Ho, Hpy) is a change of coordinates.
- Polar blow up: (H;,H,) = (pcos 6, psin 0),

p=-sin®
(Y): 9=%(1+cx—cosﬁ+f(p,6,£)) (5)
E'1=h(ps e, Ev):

E» = (X> H01, HOZ)' ”
(i) f, h smooth functions, h has values in R";
(ii) f(z) = 0, f has a nice local behavior around Zz.

Definition (Partition of the singular locus)

L=XyUX_UZX, with:
Y ={a<0}, X, ={x>0},2)={x=0}

11/36



THE CASE 2~_: MECHANICAL SYSTEMS



Thecase L_ & <0

Theorem (Caillau, Fejoz, O.)

There exists unique solution for system (1) in a neighborhood O3 of z, and there is at
most one switch on O.

- Ifz € £_: The local extremal flow z : (t,z,) € [0,t:] X O3z » z(t,zo) € M is
piecewise smooth, and smooth on each strata :

0;=SouS*usS“ux

- where S® (resp. S™) is the codimension one submanifold of initial conditions
leading to the switching surface (resp. in negative times),
-So=0;\(S*ustuzr).

Constraint on the control - No singular flow inside Z_. Extend previous results
from Agrachev and Biolo (2016) in a close context.
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Idea of the proof

Regularize (Y) by rescaling the time dt = pdr.

=—psin®
1+ o —cos 0+ O(p; &) (6)
ph(p, 6, &)

p'
(Z):40'
g
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Idea of the proof

Regularize (Y) by rescaling the time dt = pdr.

p'=—-psinB
(Z2):40" =1+ ot —cos 0 + O(p; &) (6)
E,’ = ph(p’e’ ‘i)

Then, in {p = 0}, for each & two parabolic equilibria ..

The manifolds Ny = {(0, 0., &)} are normally hyperbolic invariant submanifolds of
equilibria, with stable and unstable manifolds of dimension one.

- Finite initial time t: existence and uniqueness.
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Figure: Blown-up phase portrait around X_
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Idea of the proof

Set

SS = UZEN_WS(Z)

and
Su = UZ€N+Wu(Z).

Eigenvalues on N, are null, and in the direction of p, the Jacobian has a strictly
negative eigenvalue: the spectral gap is infinite - S* (") is a C**-smooth foliation
(Hirsch, Pugh, Shub).

The flow is smooth restricted to S° and S: the regularized vector field is smooth,
consequence of the dominated convergence theorem.
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Figure: The regular-singular transition
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Transition map

Mo € {p = po}, Ty C {w = wy}.

Theorem (Caillau, Fejoz, O., Roussarie)

Let T : TTy = T1¢ be the Poincaré mapping between the two sections.
Then, T is smooth in (wq In wy, wy, &), that

T(wo, &) = (R{wg In wy, wo, &), X(wg In wy, wy, &)).
R, X smooth.

Idea : Straightening via a normal form + Blow up
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BOUNDING THE NUMBER OF SWITCHINGS FOR
ORBIT TRANSFERS



CR3BP and ER3BP

Previous theorems apply to the CR3BP but not to the non-autonomous Restricted
Elliptic Three Body Problem:

q+VVu(tq)=u,

. —_— 1_}1 u
with V|,(t, q) = Ta—a'(01 * Ta—a(0)

i q',q° position vectors of the two primaries.
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CR3BP and ER3BP

Previous theorems apply to the CR3BP but not to the non-autonomous Restricted
Elliptic Three Body Problem:

q+VVu(tq)=u,

with V,(t,q) = Ll

o 1 2 " . .
= + . f th .
Ta=a' o1~ Ta=a2(0l g, q° position vectors of the two primaries

Definition

Define 5 = infio. 1 a(t)l. 51 = infioc,1a(t) — " (1)1, 5 = info.,1 a(t) - (1) This

quantities represents the distance to the collisions in the two body, and restricted
5152

((1=p)83+p87)'"

three-body problems respectively. Finally note &1,(u) =

Upper bound on the number of switchings = bounds the number of heteroclinic
connections between S° and S*.
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Sturm theorem

Theorem (Morse)

Let a,b € R, withb > a. Consider the two linear second order equations

2" +P(t)z =0, (7)

z"+Q(t)z=0, (8)

with P(t), Q(t) € S,.(R) s. t. Q(t) — P(t) = 0, there exists t with Q(t) — P(t) > 0. If (7)
has a non trivial solution y, y(a) = y(b) = 0, then (8) has a non trivial solution which
vanishes in a and c < b.
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Sturm theorem

Theorem (Morse)

Let a,b € R, withb > a. Consider the two linear second order equations
2" +P(t)z =0, (7)

z"+Q(t)z=0, (8)
with P(t), Q(t) € S,.(R) s. t. Q(t) — P(t) = 0, there exists t with Q(t) — P(t) > 0. If (7)

has a non trivial solution y, y(a) = y(b) = 0, then (8) has a non trivial solution which
vanishes in a andc < b.

Proposition (Caillau, Fejoz, O.)

-
-

- Keplerian case, the maximum amount of switchings is N = [ — —3 —51on[0,t¢].

- Controlled Elliptic Three-Body Problem with a mass ratio \, On a time interval

[0, t¢] the maximum amount of such singularities is N, = [7'[5 t(L
12

)3/2 ]'
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The controlled ER3BP dynamics:

H(q, v, g Pv) = Pqv = Pv-YVy(t q) + Py,

and
H™(q,v,Pg,Pv) = Pqv = Pu-VVi(t, q) + [Ipyl-
Linear equation in p,,:
Py + Vg Vult, q)py = 0. 9)
Compare V/,(t, q) with a well-chosen matrix.
Adg) = P * TaaTop 0 esym),
0 a—a'(0F * Ta=a?(e"
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THE GENERAL AFFINE CASE



Nilpotent equilibrium, ¢ = 0 case

p=-psin0
(x=0)=1{6=1-cos0+O(p; &) (10)
£= pﬁ-(p’e’ E,)

a, smooth on R, Set h4(0,0,0) = c.

Theorem (O., Roussarie)

LetZ be in Ly. If ¢ > 0, there exist extremals passing through z, these extremals are
connected to the singular flow in Z.

Idea: Dimensional reduction + quasi-homogeneous blow up + dynamical study in
the plane.

21/36



Sketch of the proof

Under generic hypothesis, 3 coordinates E=(08& ..., &) st

p' = —p8 + O(p6°)
0'=C+0%2+0(p+]0[") (11)
¢'=cp+pO(p+10]+[E]).
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Sketch of the proof

Under generic hypothesis, 3 coordinates E=(08& ..., &) st

p' = —p8 + O(p6°)
0'=C+0%2+0(p+]0[") (11)
¢'=cp+pO(p+10]+[E]).

Blow up. Nilpotent equilibrium (p, s, ¢) = (0,0, 0), we will use a specific blow-up:

0=R’p
0 = RO
(=RC

with (p, 5, ) € S2 the hemisphere p = 0, R € R,.
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Sketch of the proof

The chart (i). Interior of Si: One hyperbolic equilibrium mg, unstable node re-
stricted to Si.

The chart (ii). 4 semi-hyperbolic equilibria € 3S5 = {R=0,p =0} = S'.

1R

— —m/2: unstable node in restriction to s?
— 7t/2: stable node in restriction to 2
— wq €]n/2, 7 (unstable) and —wy (stable) nodes restricted to S'.

+wy: hyperbolic restricted to S2, with lines of zeros in the plane p = 0.
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Local-global portrait on S7

The stable and unstable manifolds of these equilibria can be connected using

Theorem (Poincaré-Bendixson)

Let X be a vector field in the plane, any maximal solution of x = X(x) contained in a
compact set, is either converging to an equilibrium point or a limit cycle.

No periodic orbit: choosing a transverse domain containing my and using Poincaré-
Hopf formula.

- stable and unstable manifolds can be connected in a unique way: the stable man-
ifold from wy is connected to my.

- Finite initial time.
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Figure: Phase portrait around the nilpotent equilibrium
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Stratification of the flow

Theorem (O., Roussarie)

In a neighborhood O of a point zZ € X, the flow is well defined, continuous, and
piecewise smooth. More precisely, there exists a stratification:

0;=S,uS*usS“us;

where

— Sg is the submanifold of codimension 2 of initial conditions leading to £,
— S* is the submanifold of codimension 1 of initial conditions leading to X_,
- So=0:z\(S7us,).

The extremal flow is smooth on each stratum.
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Figure: Stratification of the extremal flow around Z,
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2, and the singular flow

The case Z,.

Proposition

No switching at Z,. In a neighborhood of a point z in X, there is no switch, and the
extremal flow is smooth, i.e., X, is never crossed. In other words, p does not vanish in

(5)-

The singular flow (flow inside X):
— There exists a smooth singular flow inside ., which cannot be optimal (Goh
condition).
— There cannot exist any admissible singular extremal in X_.

— There exists a singular flow in Z,.
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Jump on the control

ri=[H3 +HZ,

In the case zZ € ¥ _,the jump on the control at a switching time t is:

_ 1
u(ty) = (cos 0y, sin04) = —(=HoaHip £ Hoqy/T2 = H2, Ho1H1a £ Hopy /12 = H2.).
(ts) = ( + +) rz( 02H12 = Hopyf 12> HotHi2 £ Hopyf 1)

(B) = m-singularities for mechanical systems.
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Jump on the control

. 2 2
Ti= \/Hm + H02

Remark

In the case zZ € ¥ _,the jump on the control at a switching time t is:

_ 1
u(ty) = (cos 0y, sin04) = —(=HoaHip £ Hoqy/T2 = H2, Ho1H1a £ Hopy /12 = H2.).
(ts) = ( + +) T2( 02H12 = Hopyf 12> HorHiz £ Hooy/ 1)

(B) = m-singularities for mechanical systems.

Proposition

In Xy. Consider the extremal z(t) entering the singular locus in z(t) = Z € X,
- IfHqy(2) = r(2), the extremal control is continuous on [0, t¢],

- IfHyp = —7(2), the extremal control has a mt-singularity at the switching time t.
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OPTIMALITY OF MINIMUM TIME EXTREMALS



Exponential mapping
Definition (exponential map)

We call exponential mapping from x,, the map

exp,, * (t,po) € [0, t¢] X T;oM N S® = 7(z(t, X0, Po)) = X(t, X0, Po) €M

Assumption: T:OM 4 S°, then T:OM N S* is a smooth submanifold of dimension 3.

Theorem (O.)

Denote M(t) := dexpy, (t, Po). If

(1) The reference extremal is normal,
(i) det M(t) # 0 for all t €]0, t[U]t, t;] and det M(t_) det M(t,) # 0,

then the reference trajectory is a €°-local minimizer among all trajectories with same
endpoints.
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Propagate a Lagrangian perturbation

3 Lagrangian submanifold £ transverse to Tx,M, s. t. 8§ = £ n S* is a smooth
submanifold of dimension 3 = Regularity on 8.
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Propagate a Lagrangian perturbation

3 Lagrangian submanifold £ transverse to Tx,M, s. t. 8§ = £ n S* is a smooth
submanifold of dimension 3 = Regularity on 8.
The canonical projection 7t is a homeomorphism on

81 ={z(t,z0), (t,20) € [0,%(z0)] X So} (12)
onto its image. The same holds for
82 = {z(t, z0), (t,20) € [t(z0), te] X So} (13)

and 8; U 8, (extremals cut X transversally).
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Propagate a Lagrangian perturbation

3 Lagrangian submanifold £ transverse to Tx,M, s. t. 8§ = £ n S* is a smooth
submanifold of dimension 3 = Regularity on 8.
The canonical projection 7t is a homeomorphism on

81 ={z(t,z0), (t,20) € [0,%(z0)] X So} (12)
onto its image. The same holds for
8y = {z(t, z), (t.20) € [E(20), tr] X So} (13)

and 8; U 8, (extremals cut X transversally).
— Cost comparison using the Liouville form A = pdx exact on 8;: Extremals are
locally optimal.
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INTEGRABILITY OF MINIMUM TIME
HAMILTONIAN IN THE KEPLER PROBLEM



Kepler problem

Definition (Liouville integrability)

Let H be a smooth function on a 2n-dimensional symplectic manifold. The associated
Hamiltonian system is integrable iff there exists 1 independent first integrals
(constant of motion) in involution.

Classical reduction of the two body problem . = 0,

q+ g = eu

llall®

Uncontrolled two body problem (e = 0) is well known to be integrable.
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Kepler problem

Definition (Liouville integrability)

Let H be a smooth function on a 2n-dimensional symplectic manifold. The associated
Hamiltonian system is integrable iff there exists 1 independent first integrals
(constant of motion) in involution.

Classical reduction of the two body problem . = 0,

q+ g = eu

llall®
Uncontrolled two body problem (e = 0) is well known to be integrable.
Kepler problem with a constant force : u =cst, also integrable (Charlier and Saint
Germain).
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Kepler problem

Definition (Liouville integrability)

Let H be a smooth function on a 2n-dimensional symplectic manifold. The associated
Hamiltonian system is integrable iff there exists 1 independent first integrals
(constant of motion) in involution.

Classical reduction of the two body problem . = 0,

q+ g = eu

llall®

Uncontrolled two body problem (e = 0) is well known to be integrable.

Kepler problem with a constant force : u =cst, also integrable (Charlier and Saint
Germain).

Three body problem is not integrable (Poincaré).
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Minimum time Kepler problem

a__ <
G+ =l <1,

+
(a(0),v(0)) = (g0, vo),
(alte), v(te)) = (qr,ve)

tf > min.

(14)
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Minimum time Kepler problem

G+ 1 =l < 1,

(a(0),v(0)) = (g0, vo),

(14)
(q(ts), v(tr)) = (g, ve)
tf > min.
Maximized Hamiltonian:
H(q,v,Pq,pv)=Pq-v- + [[pyll- (15)

llq ||3

- Liouville integrability of H ?
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Morales-Ramis theorem

Theorem (Morales-Ramis)

Let us consider a Hamiltonian H analytic on a complex analytic symplectic manifold
and a particular solution T not reduced to a point. If H is integrable in the Liouville
sense with meromorphic first integrals, then the first order variational equation near

I has a virtually Abelian Galois group over the base field of meromorphic functions
onT.
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Morales-Ramis theorem

Theorem (Morales-Ramis)

Let us consider a Hamiltonian H analytic on a complex analytic symplectic manifold
and a particular solution T not reduced to a point. If H is integrable in the Liouville
sense with meromorphic first integrals, then the first order variational equation near
I has a virtually Abelian Galois group over the base field of meromorphic functions
onT.

Theorem (Caillau, Combot, Fejoz, O.)

The minimum time Kepler problem is not meromorphically Liouville integrable on M.
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Invariant manifold of collisions
S={q2=v2=Ppq, =Py, =0} "M

- H is integrable on S: collision trajectory T'(t).

— Compute the Normal Variational Equation along T'(t).

- Its Galois group contains the group of a hypergeometric equation: Contains
SL,(C), not even solvable.

— The variational equation is Fuchsian: Non-integrability in the class of meromor-
phic functions (Schlesinger’s density theorem).
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PERSPECTIVES



— Find a generic condition to treat the general case.
— Numerical experimentation for the extremal.

— Real non integrability for the minimum time Kepler
problem.

— KAM theory: non geodesic convexity in the Kepler
configuration?
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Thank you for
your attention !
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