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Introduction and motivation



Optimal control problems

M a smooth manifold, U ⊂ R
m

.

Let f ∶M ×R
m
→ TM be a family of smooth vector fields on M.

An optimal control problem is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = f(x,u), u(t) ∈ U
x(0) = x

0
,

x(tf) = xf,
C(u) = ∫tf

0
ϕ(x(t),u(t))dt → min .

Where C ∶ L∞([0, tf],U) → R is the cost function.

f continuous in u, xu, the solution associated with a control u ∈ L
∞([0, tf],U)

uniquely well defined (Carathéodory).
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Main questions

– Existence of any globally optimal trajectory ?

→ Su�icient conditions: Filippov’s theorem.

– How can we find - characterize optimal trajectories ?

→ Necessary conditions: Pontrjagin’s Maximum Principle, extremals.

– Local/global optimality of our extremal trajectories ?

→ Second order conditions: conjugate points, symplectic methods (Agrachev).

– Regularity of optimal trajectory ?

→ Techniques from dynamical systems: Normal hyperbolicity, invariant

manifolds, normal forms.

– Are extremals computable - define an integrable system ?

→ Galois di�erential theory (but also, symbolic dynamics, Smale’s horseshoe...)
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Minimum time a�ine control systems

Set ϕ = 1, f(x,u) = F
0
(x) + u

1
F

1
(x) + u

2
F

2
(x) and U = B Euclidean ball.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = F
0
(x(t)) + u

1
(t)F

1
(x(t)) + u

2
(t)F

2
(x(t)), u2

1
+ u2

2
≤ 1

x(0) = x
0

x(tf) = xf
tf → min .

(1)

Fi smooth, i = 0, 1, 2, x
0
, xf ∈M a 4 dimensional manifold (can be generalized to 2n

with n controls).

Structure of Lie algebra Lie(F
0
, F

1
, F

2
) is crucial.

Example: Mechanical systems.

q̈ + ∇V(q) = u,

V a smooth potential.
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ẋ(t) = F
0
(x(t)) + u

1
(t)F

1
(x(t)) + u

2
(t)F

2
(x(t)), u2

1
+ u2

2
≤ 1

x(0) = x
0

x(tf) = xf
tf → min .

(1)

Fi smooth, i = 0, 1, 2, x
0
, xf ∈M a 4 dimensional manifold (can be generalized to 2n

with n controls).

Structure of Lie algebra Lie(F
0
, F

1
, F

2
) is crucial.

Example: Mechanical systems.

q̈ + ∇V(q) = u,

V a smooth potential.

5 / 36



Motivating example: the controlled CR3BP

q̈ + ∇Vµ(q) − 2iq̇ = u, ∥u∥ ≤ 1 (2)

in the rotating frame, u being the control (thrust of the engine) and

Vµ(q) = 1

2
∣q∣2 + 1−µ

∣q+µ∣ +
µ

∣q−1+µ∣ , µ = mass ratio.

Figure: Hill’s region and Lagrange points for the RC3BP
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Singularities of minimum time a�ine control systems

Minimizing the cost generates singularities.
This thesis focuses on understanding of the consequences of these singularities:

– On the extremal flow, irregular behavior, non-uniqueness,

– On the optimality of the trajectories,

– On the computability of the possible optimal trajectories: destruction of first

integrals.
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Structure of the minimum time extremal

flow



Hamiltonian formalism

Definition (Pseudo-Hamiltonian)

∀(x,p) ∈ T∗M, H(x,p,u) = ⟨p, f(x,u)⟩

Control a�ine dynamics: H(x,p,u) = H
0
(x,p) + u

1
H

1
(x,p) + u

2
H

2
(x,p),

Hi(x,p) = ⟨p, Fi(x)⟩, i = 0, 1, 2.

Theorem (Pontrjagin)

If (x,u) is a minimum time trajectory then there exists an absolutely continuous
Lipschitz curve p(t) ∈ Tx(t)M∗ \ {0} s.t.
- (x,p) is solution of :

{
ẋ = ∂H

∂p
(x,p,u)

ṗ = −∂H
∂x

(x,p,u).
(3)

- H(x(t),p(t),u(t)) = maxũ∈UH(x(t),p(t), ũ).
- H(x(t),p(t),u(t)) ≥ 0.
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Minimum time control-a�ine extremals

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = F
0
(x(t)) + u

1
(t)F

1
(x(t)) + u

2
(t)F

2
(x(t)), u2

1
+ u2

2
≤ 1

x(0) = x
0

x(tf) = xf
tf → min .

(4)

Proposition

For system (4) ∀z = (x,p) ∈ T∗M, H
max(x,p) = H

0
(x,p) +

√
H2

1
(x,p) +H2

2
(x,p)2

u =
1√

H2

1
+H2

2

(H
1
,H

2
) : discontinuities of the control u are called switchings.

Definition (Singular locus / Switching surface.)

Σ = {z = (x,p) ∈ T∗M, H
1
(x,p) = H

2
(x,p) = 0} = F⊥

1
∩ F⊥

2
smooth submanifold if F

1

and F
2

are linearly independent.
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Minimum time control-a�ine extremals
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Assumption

Set z̄ ∈ Σ, x̄ = π(z̄), where π ∶ T∗M →M the canonical projection.

Denote Fij = [Fi, Fj], Hij = {Hi,Hj}.
Assume :

(A) ∶ det(F
1
(x̄), F

2
(x̄), F

01
(x̄), F

02
(x̄)) ≠ 0

Checked for mechanical systems.

→ (A) + F
0

recurrent (µ = 0 or certain Hill’s regions of the RC3BP)⇒ Controllability.

Proposition

Any system of the form q̈ + g(q, q̇) = u verifies (A).

In mechanical systems we also have (B) ∶ F
12
= 0 ⇒ H

12
= 0.
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Bifurcation system

Using (A): (x,p) ↦ (x,H
1
,H

2
,H

01
,H

02
) is a change of coordinates.

→ Polar blow up: (H
1
,H

2
) = (ρ cos θ, ρ sin θ),

(Y) ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ̇ = − sin θ

θ̇ = 1

ρ
(1 + α − cos θ + f(ρ, θ, ξ))

ξ̇ = h(ρ, θ, ξ),
(5)

ξ = (x,H
01

,H
02
).

(i) f, h smooth functions, h has values in R
k

;

(ii) f(z̄) = 0, f has a nice local behavior around z̄.

Definition (Partition of the singular locus)

Σ = Σ
0
∪ Σ− ∪ Σ+ with :

Σ− = {α < 0}, Σ+ = {α > 0}, Σ
0
= {α = 0}.
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The case Σ−: Mechanical systems



The case Σ−⇔ α < 0

Theorem (Caillau, Fejoz, O.)

There exists unique solution for system (1) in a neighborhood Oz̄ of z̄, and there is at
most one switch on Oz̄.

– If z̄ ∈ Σ−: The local extremal flow z ∶ (t, z
0
) ∈ [0, tf] ×Oz̄ ↦ z(t, z0

) ∈M is
piecewise smooth, and smooth on each strata :

Oz̄ = S0
⊔ S

s
∪ S

u
∪ Σ

- where Ss (resp. Su) is the codimension one submanifold of initial conditions
leading to the switching surface (resp. in negative times),
- S

0
= Oz̄ \ (Ss ∪ Su ∪ Σ).

Constraint on the control → No singular flow inside Σ−. Extend previous results

from Agrachev and Biolo (2016) in a close context.
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Idea of the proof

Regularize (Y) by rescaling the time dt = ρdτ.

(Z) ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ
′
= −ρ sin θ

θ
′
= 1 + α − cos θ +O(ρ; ξ)

ξ
′
= ρh(ρ, θ, ξ)

(6)

Then, in {ρ = 0}, for each ξ two parabolic equilibria θ±.

The manifolds N± = {(0, θ±, ξ̄)} are normally hyperbolic invariant submanifolds of

equilibria, with stable and unstable manifolds of dimension one.

→ Finite initial time tf: existence and uniqueness.
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Σ−

Ss

Su

z0

N−

N+

Figure: Blown-up phase portrait around Σ−
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Idea of the proof

Set

S
s
= ∪z∈N−

W
s(z)

and

S
u
= ∪z∈N+

W
u(z).

Eigenvalues on N± are null, and in the direction of ρ, the Jacobian has a strictly

negative eigenvalue: the spectral gap is infinite → S
s

(S
u

) is a C
∞

-smooth foliation

(Hirsch, Pugh, Shub).

The flow is smooth restricted to S
s

and S
0
: the regularized vector field is smooth,

consequence of the dominated convergence theorem.
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(ω0, ξ0)

T (ω0, ξ0)

T
S−

ρ

ξ

ω

Π0

Πf

Figure: The regular-singular transition
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Transition map

Π
0
⊂ {ρ = ρ

0
}, Πf ⊂ {ω = ωf}.

Theorem (Caillau, Fejoz, O., Roussarie)

Let T ∶ Π
0
→ Πf be the Poincaré mapping between the two sections.

Then, T is smooth in (ω
0

lnω
0
,ω

0
, ξ

0
), that

T (ω
0
, ξ

0
) = (R(ω

0
lnω

0
,ω

0
, ξ

0
),X(ω

0
lnω

0
,ω

0
, ξ

0
)).

R, X smooth.

Idea : Straightening via a normal form + Blow up

17 / 36



Bounding the number of switchings for

orbit transfers



CR3BP and ER3BP

Previous theorems apply to the CR3BP but not to the non-autonomous Restricted

Elliptic Three Body Problem:

q̈ + ∇Vµ(t,q) = u,

with Vµ(t,q) = 1−µ
∥q−q1(t)∥ +

µ

∥q−q2(t)∥ . q
1

, q
2

position vectors of the two primaries.

Definition

Define δ = inf[0,tf] ∣q(t)∣, δ1
= inf[0,tf] ∣q(t) − q

1(t)∣, δ
2
= inf[0,tf] ∣q(t) − q

2(t)∣. This
quantities represents the distance to the collisions in the two body, and restricted
three-body problems respectively. Finally note δ

12
(µ) = δ1δ2

((1−µ)δ3

2
+µδ3

1
)1/3

.

Upper bound on the number of switchings → bounds the number of heteroclinic

connections between S
s

and S
u

.
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Sturm theorem

Theorem (Morse)

Let a, b ∈ R, with b > a. Consider the two linear second order equations

z
′′
+ P(t)z = 0, (7)

z
′′
+Q(t)z = 0, (8)

with P(t), Q(t) ∈ Sn(R) s. t. Q(t) − P(t) ≥ 0, there exists t̄ with Q(t̄) − P(t̄) > 0. If (7)
has a non trivial solution y, y(a) = y(b) = 0, then (8) has a non trivial solution which
vanishes in a and c < b.

Proposition (Caillau, Fejoz, O.)

- Keplerian case, the maximum amount of switchings is N
0
= [ tf

πδ3/2
] on [0, tf].

- Controlled Elliptic Three-Body Problem with a mass ratio µ, On a time interval
[0, tf] the maximum amount of such singularities is Nµ = [ tf

πδ12(µ)3/2
].
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Idea

The controlled ER3BP dynamics:

H(q, v,pq,pv) = pq.v − pv.∇Vµ(t,q) + pv.u,

and

H
max(q, v,pq,pv) = pq.v − pv.∇Vµ(t,q) + ∥pv∥.

Linear equation in pv:

p̈v + ∇
2

qVµ(t,q)pv = 0. (9)

Compare Vµ(t,q) with a well-chosen matrix.

At(q) = (
1 + 1−µ

∣q−q1(t)∣3 +
µ

∣q−q2(t)∣3 0

0
1−µ

∣q−q1(t)∣3 +
µ

∣q−q2(t)∣3
) ∈ S

2
(R).
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The general affine case



Nilpotent equilibrium, α = 0 case

(α = 0)⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ̇ = −ρ sin θ

θ̇ = 1 − cos θ +O(ρ; ξ)
ξ̇ = ρh̃(ρ, θ, ξ)

(10)

a
0

smooth on R
k

. Set h̃
1
(0, 0, 0) = c.

Theorem (O., Roussarie)

Let z̄ be in Σ
0
. If c > 0, there exist extremals passing through z̄, these extremals are

connected to the singular flow in Σ
0
.

Idea: Dimensional reduction + quasi-homogeneous blow up + dynamical study in

the plane.
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Sketch of the proof

Under generic hypothesis, ∃ coordinates ξ̃ = (ζ, ξ̃
2

. . . , ξ̃k) s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ
′
= −ρθ +O(ρθ3)

θ
′
= ζ + θ2/2 +O(ρ + ∣θ∣4)

ζ
′
= cρ + ρO(ρ + ∣θ∣ + ∣ξ̃∣).

(11)

Blow up. Nilpotent equilibrium (ρ, s, ζ) = (0, 0, 0), we will use a specific blow-up:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ = R
3

ρ̄

θ = Rθ̄

ζ = R
2

ζ̄

with (ρ̄, s̄, ζ̄) ∈ S2

+ the hemisphere ρ ≥ 0, R ∈ R+.
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Sketch of the proof
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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Sketch of the proof

The chart (i). Interior of S
2

+: One hyperbolic equilibrium m
0
, unstable node re-

stricted to S
2

+.

The chart (ii). 4 semi-hyperbolic equilibria ∈ ∂S2

+ = {R = 0, ρ̄ = 0} ≅ S
1

.

– −π/2: unstable node in restriction to S
2

+

– π/2: stable node in restriction to S
2

+

– ω
0
∈]π/2,π[ (unstable) and −ω

0
(stable) nodes restricted to S

1

.

±ω
0
: hyperbolic restricted to S

2

+, with lines of zeros in the plane ρ̄ = 0.
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Local-global portrait on S
2

+

The stable and unstable manifolds of these equilibria can be connected using

Theorem (Poincaré-Bendixson)

Let X be a vector field in the plane, any maximal solution of ẋ = X(x) contained in a
compact set, is either converging to an equilibrium point or a limit cycle.

No periodic orbit: choosing a transverse domain containingm
0

and using Poincaré-

Hopf formula.

→ stable and unstable manifolds can be connected in a unique way: the stable man-

ifold from ω
0

is connected to m
0
.

→ Finite initial time.
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ρ̄ = 0

S2
+

m0

π/2

−π/2

−ω0

ω0

Figure: Phase portrait around the nilpotent equilibrium
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Stratification of the flow

Theorem (O., Roussarie)

In a neighborhood Oz̄ of a point z̄ ∈ Σ
0
, the flow is well defined, continuous, and

piecewise smooth. More precisely, there exists a stratification:

Oz̄ = S0
∪ S

s
∪ S

u
∪ S

s
0

where

– S
s
0

is the submanifold of codimension 2 of initial conditions leading to Σ
0
,

– S
s is the submanifold of codimension 1 of initial conditions leading to Σ−,

– S
0
= Oz̄ \ (S0

1
∪ S

1
).

The extremal flow is smooth on each stratum.
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Σ−

Σ+

Σ0

z0

Σ = {ρ = 0}

Ss

Su

Ss
0

Figure: Stratification of the extremal flow around Σ
0
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Σ+ and the singular flow

The case Σ+.

Proposition

No switching at Σ+. In a neighborhood of a point z̄ in Σ+, there is no switch, and the
extremal flow is smooth, i.e., Σ+ is never crossed. In other words, ρ does not vanish in
(5).

The singular flow (flow inside Σ):

– There exists a smooth singular flow inside Σ+, which cannot be optimal (Goh

condition).

– There cannot exist any admissible singular extremal in Σ−.

– There exists a singular flow in Σ
0
.
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Jump on the control

r ∶=
√
H2

01
+H2

02

Remark

In the case z̄ ∈ Σ−,the jump on the control at a switching time t̄ is:

u(t̄±) = (cos θ±, sin θ±) =
1

r2
(−H

02
H

12
±H

01

√
r2 −H2

12
,H

01
H

12
±H

02

√
r2 −H2

12
).

(B)⇒ π-singularities for mechanical systems.

Proposition

In Σ
0
. Consider the extremal z(t) entering the singular locus in z(t̄) = z̄ ∈ Σ

0
,

- If H
12
(z̄) = r(z̄), the extremal control is continuous on [0, tf],

- If H
12
= −r(z̄), the extremal control has a π-singularity at the switching time t̄.
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Optimality of minimum time extremals



Exponential mapping

Definition (exponential map)

We call exponential mapping from x
0
, the map

expx0

∶ (t,p
0
) ∈ [0, tf] × T∗x̄0

M ∩ S
s
→ π(z(t, x

0
,p

0
)) = x(t, x

0
,p

0
) ∈M

Assumption: T
∗
x0

M ⋔ S
s
, then T

∗
x0

M ∩ Ss is a smooth submanifold of dimension 3.

Theorem (O.)

Denote M(t) ∶= d expx̄0

(t, p̄
0
). If

(i) The reference extremal is normal,

(ii) detM(t) ≠ 0 for all t ∈]0, t̄[∪]t̄, t̄f] and detM(t̄−) detM(t̄+) ≠ 0,

then the reference trajectory is a C
0-local minimizer among all trajectories with same

endpoints.
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Propagate a Lagrangian perturbation

∃ Lagrangian submanifold L transverse to T
∗
x0

M, s. t. S
0
= L ∩ Ss is a smooth

submanifold of dimension 3 → Regularity on S
0
.

The canonical projection π is a homeomorphism on

S
1
= {z(t, z

0
), (t, z

0
) ∈ [0, t̄(z

0
)] × S

0
} (12)

onto its image. The same holds for

S
2
= {z(t, z

0
), (t, z

0
) ∈ [t̄(z

0
), tf] × S

0
} (13)

and S
1
∪ S

2
(extremals cut Σ transversally).

→ Cost comparison using the Liouville form λ = pdx exact on Si: Extremals are

locally optimal.
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Integrability of minimum time

Hamiltonian in the Kepler problem



Kepler problem

Definition (Liouville integrability)

Let H be a smooth function on a 2n-dimensional symplectic manifold. The associated
Hamiltonian system is integrable i� there exists n independent first integrals
(constant of motion) in involution.

Classical reduction of the two body problem µ = 0,

q̈ +
q

∥q∥3
= εu.

Uncontrolled two body problem (ε = 0) is well known to be integrable.

Kepler problem with a constant force : u =cst, also integrable (Charlier and Saint

Germain).

Three body problem is not integrable (Poincaré).
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Minimum time Kepler problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q̈ + q

∥q∥3
= u, ∥u∥ ≤ 1,

(q(0), v(0)) = (q
0
, v

0
),

(q(tf), v(tf)) = (qf, vf)
tf → min .

(14)

Maximized Hamiltonian:

H(q, v,pq,pv) = pq.v −
pv.q

∥q∥3
+ ∥pv∥. (15)

→ Liouville integrability of H ?
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Morales-Ramis theorem

Theorem (Morales-Ramis)

Let us consider a Hamiltonian H analytic on a complex analytic symplectic manifold
and a particular solution Γ not reduced to a point. If H is integrable in the Liouville
sense with meromorphic first integrals, then the first order variational equation near
Γ has a virtually Abelian Galois group over the base field of meromorphic functions
on Γ .

Theorem (Caillau, Combot, Fejoz, O.)

The minimum time Kepler problem is not meromorphically Liouville integrable on M.
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Strategy

Invariant manifold of collisions

S = {q
2
= v

2
= pq2

= pv2
= 0} ∩M

→ H is integrable on S: collision trajectory Γ (t).
→ Compute the Normal Variational Equation along Γ (t).
→ Its Galois group contains the group of a hypergeometric equation: Contains

SL
2
(C), not even solvable.

→ The variational equation is Fuchsian: Non-integrability in the class of meromor-

phic functions (Schlesinger’s density theorem).
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Perspectives



Perspectives

– Find a generic condition to treat the general case.

– Numerical experimentation for the extremal.

– Real non integrability for the minimum time Kepler

problem.

– KAM theory: non geodesic convexity in the Kepler

configuration?
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Thank you for

your a�ention !
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