Exercice 1

- 1a) $y_i^j = kx_i^j$ donc $\overline{y}_i = k\overline{x}_i$, et par conséquent : $\widetilde{y}_i^j = y_i^j \overline{y}_i = kx_i^j k\overline{x}_i = k\widetilde{x}_i^j$.
- 1b) Les résultats u^{α} et λ_{α} de l'ACP de X sont solutions de $V_X u^{\alpha} = \lambda_{\alpha} u^{\alpha}$. Par ailleurs, v^{α} et μ_{α} vérifient : $V_Y v^{\alpha} = \widetilde{Y} D_p \widetilde{Y}' v^{\alpha} = k^2 \widetilde{X} D_p \widetilde{X}' v^{\alpha} = k^2 V_X v^{\alpha} = \mu_{\alpha} v^{\alpha}$. Donc $\lambda_{\alpha} u^{\alpha} = (\mu_{\alpha}/k^2) v^{\alpha}$, ce qui prouve que $\mu_{\alpha} = k^2 \lambda_{\alpha}$ et $u^{\alpha} = \epsilon_{\alpha} v^{\alpha}$ car u^{α} et v^{α} sont de normes 1. De plus $\xi_{\alpha} = \widetilde{Y}' v^{\alpha} = k \widetilde{X}' \epsilon_{\alpha} u^{\alpha} = \epsilon_{\alpha} k \psi_{\alpha}$.
- 2a) Avec les hypothèses de cette question, il résulte que (1) équivaut à $y_i = a_i \mathbb{1}_n + x_i$, pour tout $i \in I$. Cette condition s'écrit encore sous la forme $y_i^j = a_i + x_i^j$, pour tout $i \in I$ et tout $j \in J$.
- 2b) Pour tout $i \in I$ et $j \in J$, on a $\widetilde{y}_i^j = y_i^j \overline{y}_i = a_i + x_i^j \overline{y}_i$. Or, $\overline{y}_i = \sum_{i \in J} p_j (a_i + x_i^j) = a_i + \overline{x}_i$. D'où $\widetilde{y}_i^j = x_i^j - \overline{x}_i = \widetilde{x}_i^j$, d'où $\widetilde{Y} = \widetilde{X}$.
- 2c) Comme les tableaux centrés \widetilde{Y} et \widetilde{X} sont les mêmes, et que $M_1 = M$, nous avons $v^{\alpha} = \epsilon_{\alpha} u^{\alpha}$ et $\mu_{\alpha} = \lambda_{\alpha}$, pour tout α .
- 3a) On a $y_i^j = b_i x_i^j$ pour tout $i \in I$ et tout $j \in J$, donc $y^j = D_b x^j$, pour tout $j \in J$.
- 3b) Pour tout $j, j' \in J$, on a :

$$\|y^{j} - y^{j'}\|_{M_{1}}^{2} = \|D_{b}x^{j} - D_{b}x^{j'}\|_{L_{p}}^{2} = (x^{j} - x^{j'})'D_{b}D_{b}(x^{j} - x^{j'}) = \|x^{j} - x^{j'}\|_{D_{p,2}}^{2}.$$

Les composantes principales de l'ACP de X (resp. Y), notées ψ_{α} (resp. ξ_{α}) pour α variant de 1 à r, ne dépendent que des distances $\|x^j-x^{j'}\|_{D_{1/s^2}}^2$ (resp. $\|y^j-y^{j'}\|_{M_1}^2=\|x^j-x^{j'}\|_{D_{b^2}}^2$) entre tous les individus $j,j'\in J$. Il en résulte que si $|b_i|=\frac{1}{s_i}$, pour tout $i\in I$, alors $\xi_{\alpha}=\pm\psi_{\alpha}$ pour toutes les valeurs de α (l'orientation d'un axe étant toujours arbitraire).

3c) Du fait que $Y = D_b X$, on sait que $V_Y = D_b V_X D_b$ car D_b est symétrique. On en déduit que $D_b V_X D_b v^{\alpha} = \mu_{\alpha} v^{\alpha}$. En mulpliant à gauche par $D_{1/b}$, on obtient :

$$V_X D_b v^\alpha = V_X D_{b^2} D_{1/b} v^\alpha = \mu_\alpha D_{1/b} v^\alpha.$$

Comme (C) est vérifiée, $D_{b^2} = D_{1/s^2}$, d'où $V_X D_{1/s^2}(D_{1/b}v^\alpha) = \mu_\alpha(D_{1/b}v^\alpha)$. On en conclut que $(D_{1/b}v^\alpha)$ dirige le $\alpha^{\text{ème}}$ axe factoriel de l'ACP de X, et $\mu_\alpha = \lambda_\alpha$. Montrons plus précisément que $u_\alpha = \pm D_{1/b}v^\alpha$: il suffit pour cela de montrer que $(D_{1/b}v^\alpha)$ est de norme 1 pour $M = D_{1/s^2}$. En effet, on a :

$$\|D_{1/b}v^{\alpha}\|_{M}^{2}=(v^{\alpha})'D_{1/b}D_{1/s^{2}}D_{1/b}v^{\alpha}=(v^{\alpha})'D_{1/b^{2}}D_{1/s^{2}}v^{\alpha}=(v^{\alpha})'v^{\alpha}=1.$$

4) Pour tout $i \in I$ et $j \in I$, on a $y_i^j = a_i + b_i x_i^j$. Donc $\overline{y}_i = a_i + b_i \overline{x}_i$ et par conséquent $y_i^j - \overline{y}_i = b_i (x_i^j - \overline{x}_i)$. On en déduit que $var(y_i) = b_i^2 var(x_i)$. Il en résulte :

$$\frac{y_i^j - \overline{y}_i}{\sqrt{\operatorname{var}(y_i)}} = \frac{a_i + b_i x_i^j - a_i - b_i \overline{x}_i}{|b_i| \sqrt{\operatorname{var}(x_i)}} = \frac{x_i^j - \overline{x}_i}{\sqrt{\operatorname{var}(x_i)}},$$

car $b_i > 0$. On en déduit que les tableaux centrés réduits associés à X et Y sont identiques, donc les composantes principales ξ_{α} et ψ_{α} des ACPs normées des tableaux X et Y, respectivement, sont identiques au signe près.

Exercice 2

1)
$$g = \frac{1}{5} (15 \ 40 \ 65 \ 90 \ 115)' = (3 \ 8 \ 13 \ 18 \ 23)' = x^{j_3}$$

2)
$$Y = (\dots x^{j} - g \dots) = \begin{pmatrix} -2 & -1 & 0 & 1 & 2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -2 & -1 & 0 & 1 & 2 \end{pmatrix}$$
.

- 3) Toutes les lignes de Y étant égales, le rang de Y est égal à 1, et par conséquent celui de V_Y est aussi 1. Il en résulte qu'il existe un et un seul axe factoriel non trivial. Donc toutes les données sont situées sur cet unique axe factoriel.
- 4) Il est facile de constater que chaque individu centré (colonnes de Y) est colinéaire au vecteur $\mathbb{1}_5 \in \mathbb{R}^5$ qui dirige donc l'unique axe factoriel non trivial. Donc $u = \frac{1}{\sqrt{5}} \mathbb{1}_5$ le premier (et unique) vecteur axial factoriel.

5) Soit
$$I_T$$
 l'inertie totale. On a $V_X = V_Y = \frac{1}{5}YY' = \frac{10}{5}\mathbb{1}_5\mathbb{1}_5' = 2\mathbb{1}_5\mathbb{1}_5'$. D'où $I_T = \text{tr}(V_Y) = 10$. On a aussi : $I_T = \sum_{j \in J} p_j d^2(x^j, g) = \frac{1}{5}\sum_{j \in J} p_j ||x^j - g||^2 = \frac{2}{5}(5 \times (-2)^2 + 5 \times (-1)^2 + 5 \times 0^2) = 10$.

6)
$$\Psi_1^{j_5} = (y^{j_5})'u = \frac{1}{\sqrt{5}}(2+2+2+2+2) = \frac{10}{\sqrt{5}} \approx 4.472$$

7)
$$CTR_1(j_5) = \frac{1}{5} \frac{(\Psi_1^{j_5})^2}{\lambda} = \frac{1}{5} \frac{100}{5} \frac{1}{10} = \frac{2}{5} = 0.4$$

- 8) Il n'existe qu'un seul "axe factoriel" pour représenter les variables. Les coordonnées des variables sur cet axe sont celles du vecteur $\eta = \sqrt{\lambda} u$. Donc, sur cet unique axe, chaque variable a la même coordonnée qui vaut $\frac{\sqrt{10}}{\sqrt{5}} = \sqrt{2} = 1.414$
- 9) Chaque variable ayant une variance égale à 2, on a $D_{1/s^2} = \frac{1}{2}\mathbb{I}_5$. Donc les vecteurs axiaux factoriels v^{α} et les valeurs propres μ_{α} sont solutions de $\frac{1}{2}V_Yv^{\alpha} = \mu_{\alpha}v^{\alpha}$ au lieu de l'équation précedente $V_Yu^{\alpha} = \lambda_{\alpha}u^{\alpha}$ (en ACP sur matrice variance) pour u_{α} et λ_{α} .

QUESTION 3. La matrice à diagonaliser ayant été divisée par 2, il existe toujours un seul axe factoriel non trivial car la matrice à diagonaliser est toujours de rang 1.

Question 4. L'unique vecteur axial factoriel v est colinéaire à u mais normé pour $M = \frac{1}{2}\mathbb{I}_5$, donc

$$v = \frac{1}{\|1\|_{M}}$$
. Par ailleurs, on a $\|1\|_{M}^{2} = \frac{1}{2}1'1 = \frac{5}{2}$. D'où $v = \sqrt{\frac{2}{5}}1 \approx 0.6321$.

Question 5. Ici, l'inertie totale est égale à la valeur propre μ , d'où $I_T = \mu = \lambda/2 = 10/2 = 5$.

Question 6. Si on note ξ_1 l'unique composante principale, on a :

$$\xi_1^5 = (y^5)' \frac{1}{2} \mathbb{I}_5 v = \frac{1}{2} \times 2 \times \mathbb{1}' \left(\sqrt{\frac{2}{5}} \, \mathbb{1} \right) = 5 \times \sqrt{\frac{2}{5}} \approx 3.162$$