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We will mainly introduce the notion of viscosity solutions for the Hamilton-Jacobi
equation which is a first-order PDE. There also is an extensive literature on viscosity
solutions of second-order PDE’s, we do not touch this topic at all, see for example [CIL92].

The notion of viscosity solution is due to Crandall and Lions, see [CL83]. There are two
excellent books on the subject one by by Guy Barles [Bar94] and another one by Martino
Bardi and Italo Capuzzo-Dolceta [BCD97]. A first introduction to viscosity solutions can
be found in Craig Evans’ book [Eva98]. Our treatment has been extremely influenced
by the content of these three books. Although many things are standard, we will do the
theory on general manifolds since this is the right setting for weak KAM theory. This
is probably the first time that a general introduction on viscosity solutions on manifolds
appears in print. Whatever is not in the standard references comes from joint work with
Antonio Siconolfi, see [FS04] and [FS05]. Of course, our treatment follows some of the
unpublished notes [Fat08]. We hardly touch the dynamical implications of the theory,
and refer the reader to Patrick Bernard’s companion notes [Ber11]

We would like to apologize for the small number of references. In a work of this size,
to give a fair and large set of references in the subject is nowadays an impossible task. A
look at the references in [BCD97] shows that already fifteen years ago that would have
been very difficult. We feel however that a larger set of references can easily be found on
the web.

In these notes, we denote by M a connected, paracompact C∞ manifold without
boundary. For any x ∈ M , the tangent and cotangent spaces of M at x are TxM and
T ∗
xM , respectively. The tangent and cotangent bundle are TM and T ∗M , respectively.

A point in TM (resp. T ∗M) will be denoted by (x, v) (resp. (x, p)) where x ∈ M , and
v ∈ TxM (resp. p ∈ T ∗

xM). With this notation the canonical projection π : TM → M
(resp. π∗ : T ∗M →M) is nothing but (x, v) 7→ x (resp. (x, p) 7→ x).

We will assume in the sequel thatM is endowed with a C∞ Riemannian metric g. For
v ∈ TxM , we will set ‖v‖x = (gx(v, v))

1/2. We will also denote by ‖·‖x the norm on T ∗
xM

dual to ‖·‖x on TxM .

1 The different forms of the Hamilton-Jacobi Equa-

tion

We will suppose that M is a fixed manifold, and that H : T ∗M → R is a continuous
function, which we will call the Hamiltonian.

Definition 1.1 (Stationary HJE). The Hamilton-Jacobi equation associated to H is the
equation

H(x, dxu) = c,

where c is some constant.
A first good example to keep in mind is

H(x, p) =
1

2
‖p‖2x + V (x),
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where the norm comes from the Riemannian metric on the manifoldM , and V :M → R is
a continuous (even C∞ function). An even better example is to modify H in the following
way: consider a continuous vector field X :M → TM , and define H by

H(x, p) =
1

2
‖p‖2x + V (x) + p(X(x)).

A classical solution of the Hamilton-Jacobi equation H(x, dxu) = c (HJE in short) on
the open subset U of M is a C1 map u : U → R such that H(x, dxu) = c, for each x ∈ U .

We will deal usually only with the case H(x, dxu) = 0, since we can reduce the general
case to that case if we replace the Hamiltonian H by Hc defined by Hc(x, p) = H(x, p)−c.

Definition 1.2 (Evolutionary HJE). The evolutionary Hamilton-Jacobi equation associ-
ated to the Hamiltonian H is the equation

∂u

∂t
(t, x) +H

(
x,
∂u

∂x
(t, x)

)
= 0.

A classical solution to this evolutionary Hamilton-Jacobi equation on the open subset
W of R× T ∗M is a C1 map u : W → R such that ∂u

∂t
(t, x) +H

(
x, ∂u

∂x
(t, x)

)
= 0, for each

(t, x) ∈ W .

The evolutionary form can be reduced to the stationary form by introducing the
Hamiltonian Ĥ : T ∗(R×M) defined by

Ĥ(t, x, s, p) = s+H(x, p),

where (t, x) ∈ R×M , and (s, p) ∈ T ∗
(t,x)(R×M) = R× T ∗

xM .
It is also possible to consider a time dependent Hamiltonian defined on an open subset

of R×M . Consider for example a Hamiltonian H : R×TM∗ → R, the evolutionary form
of the HJE for that Hamiltonian is

∂u

∂t
(t, x) +H

(
t, x,

∂u

∂x
(t, x)

)
= 0.

A classical solution of that equation on the open subsetW of R×M is, of course, a C1 map
u : W → R such that ∂u

∂t
(t, x) +H

(
t, x, ∂u

∂x
(t, x)

)
= 0, for each (t, x) ∈ W . This form of

the Hamilton-Jacobi equation can also be reduced to the stationary form by introducing
the Hamiltonian H̃ : T ∗(R×M) → R defined by

H̃(t, x, s, p) = s+H(t, x, p).

It is usually impossible to find global C1 solutions of the Hamilton-Jacobi equation
H(x, dxu) = c. For example, if the Hamiltonian is of the form

H(x, p) =
1

2
‖p‖2x + V (x),

and u is a classical solution of H(x, dxu) = c, we get c = 1
2
‖dxu‖

2
x + V (x) ≥ V (x), hence

c ≥ supM V . If we assume that M is compact, then u has at least two distinct critical
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points (minimum and maximum) x1, x2. At these critical points we get c = H(x, dxi
u) =

V (xi), since dxi
u = 0. Therefore, on the compact manifold M , a classical solution of

H(x, du) = c for such a Hamiltonian can only occur at c = maxV . Moreover, if this
equation has a classical solution V , then this solution V must necessarily achieve its
maximum at two distinct points. In particular, if we choose V such that its maximum on
the compact manifold M is achieved at a single point, then the Hamilton-Jacobi equation
does not have classical solutions.

2 Viscosity Solutions

We will suppose in this section thatM is a manifold and H : T ∗M →M is a Hamiltonian.
Since it is generally impossible to find C1-solutions to the Hamilton-Jacobi equation,

one has to admit more general functions. A first attempt is to consider Lipschitz functions.

Definition 2.1 (Very Weak Solution). We will say that u : M → R is a very weak
solution of H(x, dxu) = c, if it is Lipschitz, and H(x, dxu) = c almost everywhere (this
makes sense since the derivative of u exists almost everywhere by Rademacher’s theorem).

This is too general because it gives too many solutions. A notion of weak solution is
useful if it gives a unique, or at least a small number of solutions. This is not satisfied by
this notion of very weak solution as can be seen in the following example.

Example 2.2. We suppose M = R, so T ∗M = R × R, and we take H(x, p) = p2 − 1.
Then any continuous piecewise C1 function u with derivative taking only the values ±1 is
a very weak solution of H(x, dxu) = 0. This is already too huge, but there are even more
very weak solutions. In fact, if A is any measurable subset of R, then the function

fA(x) =

∫ x

0

2χA(t)− 1 dt,

where χA is the characteristic function of A, is Lipschitz with derivative ±1 almost ev-
erywhere.

Therefore we have to define a more stringent notion of solutions. Crandall and Lions
have introduced the notion of viscosity solutions, see [CL83] and [CEL84].

Definition 2.3 (Viscosity solution). A function u : V → R is a viscosity subsolution of
H(x, dxu) = c on the open subset V ⊂ M , if for every C1 function φ : V → R and every
point x0 ∈ V such that u− φ has a maximum at x0, we have H(x0, dx0

φ) ≤ c.
A function u : V → R is a viscosity supersolution of H(x, dxu) = c on the open subset

V ⊂ M , if for every C1 function ψ : V → R and every point y0 ∈ V such that u− ψ has
a minimum at y0, we have H(y0, dy0ψ) ≥ c.

A function u : V → R is a viscosity solution of H(x, dxu) = c on the open subset
V ⊂M , if it is both a subsolution and a supersolution.

This definition is reminiscent of the definition of distributions: since we cannot restrict
to differentiable functions, we use test functions (namely φ or ψ) which are smooth and
on which we can test the condition. We first see that this is indeed a generalization of
classical solutions.
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Graph(u)

(x0, u(x0))

Graph(φ)

Figure 1: Subsolution: φ ≥ u, u(x0) = φ(x0) ⇒ H(x0, dx0
φ) ≤ c

Theorem 2.4. A C1 function u : V → R is a viscosity solution of H(x, dxu) = c on V if
and only if it is a classical solution.

In fact, the C1 function u is a viscosity subsolution (resp. supersolution) ofH(x, dxu) =
c on V if and only H(x, dxu) ≤ c (resp. H(x, dxu) ≥ c), for each x ∈ V .

Proof. We will prove the statement about the subsolution case. Suppose that the C1

function u is a viscosity subsolution. Since u is C1, we can use it as a test function. But
u− u = 0, therefore every x ∈ V is a maximum, hence H(x, dxu) ≤ c for each x ∈ V .

Conversely, suppose H(x, dxu) ≤ c for each x ∈ V . If φ : V → R is C1 and u− φ has
a maximum at x0, then the differentiable function u − φ must have derivative 0 at the
maximum x0. Therefore dx0

φ = dx0
u, and H(x, dx0

φ) = H(x, dx0
u) ≤ c.

To get a feeling for these viscosity notions, it is better to restate slightly the definitions.
We first remark that the condition imposed on the test functions (φ or ψ) in the definition
above is on the derivative, therefore, to check the condition, we can change our test
function by a constant. Suppose now that φ (resp. ψ) is C1 and u− φ (resp. u−ψ) has a
maximum (resp. minimum) at x0 (resp. y0), this means that u(x0)− φ(x0) ≥ u(x)− φ(x)
(resp. u(y0) − ψ(y0) ≤ u(x) − ψ(x)). As we said, since we can add to φ (resp. ψ) the
constant u(x0) − φ(x0) (resp. u(y0) − ψ(y0)), these conditions can be replaced by φ ≥ u
(resp. ψ ≤ u) and u(x0) = φ(x0) (resp. u(y0) = ψ(y0)). Therefore we obtain an equivalent
definition for subsolution and supersolution.

Definition 2.5 (Viscosity Solution). A function u : V → R is a viscosity subsolution of
H(x, dxu) = c on the open subset V ⊂M , if for every C1 function φ : V → R, with φ ≥ u
everywhere, at every point x0 ∈ V where u(x0) = φ(x0) we have H(x0, dx0

φ) ≤ c, see
figure 1.

A function u : V → R is a viscosity supersolution of H(x, dxu) = c on the open subset
V ⊂ M , if for every C1 function ψ : V → R, with u ≥ ψ everywhere, at every point
y0 ∈ V where u(y0) = ψ(y0) we have H(y0, dy0ψ) ≥ c, see figure 2.

To see what the viscosity conditions mean we test them on the example 2.2 given
above.
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(x0, u(x0))
Graph(u)

Graph(ψ)

Figure 2: Supersolution: ψ ≤ u, u(x0)=ψ(x0)⇒H(x0, dx0
ψ)≥c

Example 2.6. We suppose M = R, so T ∗M = R × R, and we take H(x, p) = p2 − 1.
Any Lipschitz function u : R → R with Lipschitz constant ≤ 1 is in fact a viscosity
subsolution of H(x, dxu) = 0. To check this consider φ a C1 function and x0 ∈ R such
that φ(x0) = u(x0) and φ(x) ≥ u(x), for x ∈ R. We can write

φ(x)− φ(x0) ≥ u(x)− u(x0) ≥ −|x− x0|.

For x > x0, this gives
φ(x)− φ(x0)

x− x0
≥ −1,

hence passing to the limit φ′(x0) ≥ −1. On the other hand, if x < x0 we obtain

φ(x)− φ(x0)

x− x0
≤ 1,

hence φ′(x0) ≤ 1.This yields |φ′(x0)| ≤ 1, and therefore

H(x0, φ
′(x0)) = |φ′(x0)|

2 − 1 ≤ 0.

So in fact, any very weak subsolution (i.e. a Lipschitz function u such that H(x, dx, u) ≤ 0
almost everywhere) is a viscosity subsolution. This is due to the fact that, in this example,
the Hamiltonian is convex in p, see 10.6 below.

Of course, the two smooth functions x 7→ x, and x 7→ −x are the only two classical
solutions in that example. It is easy to check that the absolute value function x 7→ |x|,
which is a subsolution and even a solution on R \ {0} (where it is smooth and a classical
solution), is not a viscosity solution on the whole of R. In fact the constant function
equal to 0 is less than the absolute value everywhere with equality at 0, but we have
H(0, 0) = −1 < 0, and this violates the supersolution condition.

The function x 7→ −|x| is a viscosity solution. It is smooth and a classical solution
on R \ {0}. It is a subsolution everywhere. Moreover, any function φ with φ(0) = 0 and
φ(x) ≤ −|x| everywhere cannot be differentiable at 0. This is obvious on a picture of the
graphs, see figure 3. Formally, it results from the fact that both φ(x) − x and φ(x) + x
have a maximum at 0.
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Figure 3: Graphs of ψ(x) ≤ −|x| with ψ(0) = 0.
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Exercise 2.7. Suppose H : T ∗M → R is a continuous Hamiltonian on M . For, c ∈ R,
define the Hamiltonian Hc :M → R by

Hc(x, p) = H(x, p)− c.

Show that u :M → R is a viscosity subsolution (resp. supersolution, solution) of

H(x, dxu) = c

if and only if it is a viscosity subsolution (resp. supersolution, solution) of

Hc(x, dxu) = 0.

Exercise 2.8. If we consider an open interval I ⊂ R, then its cotangent space is canon-
ically identified to I × R. We consider the Hamiltonian H : I × R → R defined by
H(t, p) = p. In this cas, for c ∈ R, the Hamilton-Jacobi equation H(t, dtu) = c can be
written as

u′(t) = c.

1) Show that u : R → R is a viscosity subsolution (resp. supersolution) of u′(t) = c if
and only if v(t) = u(t)− ct is a viscosity subsolution (resp. supersolution) of v′(t) = 0.

2) Show that any non-increasing (resp. non-decreasing) function u : I → R is a
viscosity subsolution (resp. supersolution) of u′(t) = 0.

3) More generally, for c ∈ R, show that any function continuous ρ : R → R such that
t 7→ ρ(t)− ct is non-increasing is a subsolution of u′(t) = c.

4) Find the classical subsolutions, supersolutions, and solutions of u′(t) = c.

Exercise 2.9. Suppose H : T ∗M → R is a Hamiltonian, and φ :M → R is a C1 function.
Define the Hamiltonian Hφ :M → R by

Hφ(x, p) = H(x, p+ dxφ).

Show that v is a subsolution (resp. supersolution, or solution) of Hφ(x, dxv) = c if and
only if u = v + φ is a a subsolution (resp. supersolution, or solution) of H(x, dxu) = c.

Exercise 2.10. Suppose H : T ∗M → R is a Hamiltonian. Let u :M → R be a continuous
function, and let c ∈ R be a constant. We define U : R×M → R by

U(x, t) = u(x)− ct.

1) Show that if u is a subsolution (resp. supersolution or solution) of the Hamilton-Jacobi
equation

H(x, dxu) = c, (HJ)

then U is a viscosity subsolution (resp. supersolution or solution) of the evolutionary
Hamilton-Jacobi equation

∂U

∂t
(t, x) +H(x,

∂U

∂x
(t, x)) = 0, (EHJ)

on R×M .
2) Conversely, if a, b ∈ R, with a < b, and U is a viscosity subsolution (resp. superso-

lution, or solution) of (EHJ) on ]a, b[×M , then u is a a subsolution (resp. supersolution,
or solution) of (HJ) on M .
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3 Lower and upper differentials

We need to introduce the notion of lower and upper differentials.

Definition 3.1. If u : M → R is a map defined on the manifold M , we say that the
linear form p ∈ T ∗

x0
M is a lower (resp. upper) differential of u at x0 ∈M , if we can find a

neighborhood V of x0 and a function φ : V → R, differentiable at x0, with φ(x0) = u(x0)
and dx0

φ = p, and such that φ(x) ≤ u(x) (resp. φ(x) ≥ u(x)), for every x ∈ V .
We denote by D−u(x0) (resp. D

+u(x0)) the set of lower (resp. upper) differentials of
u at x0.

Exercise 3.2. Consider the function u : R → R, x 7→ |x|, for each x ∈ R, find D−u(x),
and D+u(x). Same question with u(x) = −|x|.

Definition 3.1 is not the one usually given for M an open set of an Euclidean space,
see [Bar94], [BCD97] or [Cla90]. It is nevertheless equivalent to the usual definition as we
now show.

Proposition 3.3. Let u : U → R be a function defined on the open subset U of Rn, then
the linear form p is in D−u(x0) if and only if

lim inf
x→x0

u(x)− u(x0)− p(x− x0)

‖x− x0‖
≥ 0.

In the same way p ∈ D+u(x0) if and only if

lim sup
x→x0

u(x)− u(x0)− p(x− x0)

‖x− x0‖
≤ 0.

Proof. Suppose p ∈ D−u(x0), we can find a neighborhood V of x0 and a function φ : V →
R, differentiable at x0, with φ(x0) = u(x0) and dx0

φ = p, and such that φ(x) ≤ u(x), for
every x ∈ V . Therefore, for x ∈ V , we can write

φ(x)− φ(x0)− p(x− x0)

‖x− x0‖
≤
u(x)− u(x0)− p(x− x0)

‖x− x0‖
.

Since p = dx0
φ the left hand side tends to 0, when x → x0, therefore

lim inf
x→x0

u(x)− u(x0)− p(x− x0)

‖x− x0‖
≥ 0.

Suppose conversely, that p ∈ R
n∗ satisfies

lim inf
x→x0

(u(x)− u(x0)− p(x− x0))

‖x− x0‖
≥ 0.

We pick r > 0 such that the ball B̊(x0, r) ⊂ U , and for h ∈ R
n such that 0 < ‖h‖ < r, we

set

ǫ(h) = min(0,
u(x0 + h)− u(x0)− p(h)

‖h‖
).
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It is easy to see that limh→0 ǫ(h) = 0. We can therefore set ǫ(0) = 0. The function
φ : B̊(x0, r) → R, defined by φ(x) = u(x0)+p(x−x0)+‖x−x0‖ǫ(x−x0), is differentiable
at x0, with derivative p, it is equal to u at x0 and satisfies φ(x) ≤ u(x), for every x ∈
B̊(x0, r).

Proposition 3.4. Let u :M → R be a function defined on the manifold M .

(i) For each x in M , we have D+u(x) = −D−(−u)(x) = {−p | p ∈ D−(−u)(x)} and
D−u(x) = −D+(−u)(x).

(ii) For each x in M , both sets D+u(x), D−u(x) are closed convex subsets of T ∗
xM .

(iii) If u is differentiable at x, then D+u(x) = D−u(x) = {dxu}.

(iv) If both sets D+u(x), D−u(x) are non-empty then u is differentiable at x.

(v) if v : M → R is a function with v ≤ u and v(x) = u(x), then D−v(x) ⊂ D−u(x)
and D+v(x) ⊃ D+u(x).

(vi) If U is an open convex subset of an Euclidean space and u : U → R is convex then
D−u(x) is the set of subdifferentials of u at x ∈ U . In particular D+u(x) 6= ∅ if and
only if u is differentiable at x.

(vii) Suppose that d is the distance obtained from the Riemannian metric g on M . If u :
M → R is Lipschitz for d with Lipschitz constant Lip(u), then for any p ∈ D±u(x)
we have ‖p‖x ≤ Lip(u).

In particular, if M is compact then the sets D±u = {(x, p) | p ∈ D±u(x), x ∈ M}
are compact.

Proof. Part (i) and the convexity claim in part (ii) are obvious from the definition 3.1.
To prove the fact that D+u(x0) is closed for a given for x0 ∈ M , we can assume that

M is an open subset of Rk. We will apply proposition 3.3. If pn ∈ D+u(x0) converges to
p ∈ R

k∗, we can write

u(x)− u(x0)− p(x− x0)

‖x− x0‖
≤
u(x)− u(x0)− pn(x− x0)

‖x− x0‖
+ ‖pn − p‖.

Fixing n, and letting x→ x0, we obtain

lim sup
x→x0

u(x)− u(x0)− p(x− x0)

‖x− x0‖
≤ ‖pn − p‖.

If we let n→ ∞, we see that p ∈ D+u(x0).
We now prove (iii) and (iv) together. If u is differentiable at x0 ∈ M then obviously

dx0
u ∈ D+u(x0) ∩D

−u(x0). Suppose now that both D+u(x0) and D
−u(x0) are both not

empty, pick p+ ∈ D+u(x0) and p− ∈ D−u(x0). For h small, we have

p−(h) + ‖h‖ǫ−(h) ≤ u(x0 + h)− u(x0) ≤ p+(h) + ‖h‖ǫ+(h), (*)
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where both ǫ−(h) and ǫ+(h) tend to 0, a h→ 0. If v ∈ R
n, for t > 0 small enough, we can

replace h by tv in the inequalities (*) above. Forgetting the middle term and dividing by
t, we obtain

p−(v) + ‖v‖ǫ−(tv) ≤ p+(v) + ‖v‖ǫ+(tv),

letting t tend to 0, we see that p−(v)+ ≤ p+(v), for every v ∈ R
n. Replacing v by −v

gives the reverse inequality p+(v) ≤ p−(v), therefore p− = p+. This implies that both
D+u(x0) and D

−u(x0) are reduced to the same singleton {p}. The inequality (*) above
now gives

p(h) + ‖h‖ǫ−(h) ≤ u(x0 + h)− u(x0) ≤ p(h) + ‖h‖ǫ+(h),

this clearly implies that p is the derivative of u at x0.
Part (v) follows routinely from the definition.
To prove (vi), we remark that by convexity u(x0 + th) ≤ (1 − t)u(x0) + tu(x0 + h),

therefore

u(x0 + h)− u(x0) ≥
u(x0 + th)− u(x0)

t
.

If p is a linear form we obtain

u(x0 + h)− u(x0)− p(h)

‖h‖
≥
u(x0 + th)− u(x0)− p(h)

‖th‖
.

If p ∈ D−u(x0), then the lim inf as t → 0 of the right hand side is ≥ 0, therefore
u(x0 + h) − u(x0) − p(h) ≥ 0, which shows that p is a subdifferential. Conversely, a
subdifferential is clearly a lower differential.

It remains to prove (vii). Suppose, for example that φ : V → R is defined on some
neighborhood V of a given x0 ∈ M , that it is differentiable at x0, and that φ ≥ u on
V , with equality at x0. If v ∈ Tx0

M is given, we pick a C1 path γ : [0, δ] → V , with
δ > 0, γ(0) = x0, and γ̇(0) = v. We have

∀t ∈ [0, δ], |u(γ(t))− u(x0)| ≤ Lip(u)d(γ(t), x0)

≤ Lip(u)

∫ t

0

‖γ̇(s)‖ ds.

Therefore u(γ(t))− u(x0) ≥ −Lip(u)
∫ t

0
‖γ̇(s)‖ ds. Since φ ≥ u on V , with equality at x0,

it follows that

φ(γ(t))− φ(x0) ≥ −Lip(u)

∫ t

0

‖γ̇(s)‖ ds.

Dividing by t > 0, and letting t→ 0, we get

dx0
φ(v) ≥ −Lip(u)‖v‖.

Since v ∈ Tx0
M is arbitrary, we can change v into −v in the inequality above to conclude

that we also have
dx0

φ(v) ≤ Lip(u)‖v‖.

It then follows that ‖dx0
φ‖ ≤ Lip(u).
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Exercise 3.5. Suppose V is an open subset of M , and u : V → R is a continuous
function.

1) Show that we can find a C∞ function φ : V → R such that φ ≥ u (resp. φ ≤ u)
everywhere. [Indication: Pick a C∞ partition of unity (ϕi)i∈I such that the support of
each ϕi is compact, and consider ci the maximum of u on the compact support of ϕi.]

2) Suppose that moreover ǫ : V →]0,+∞[ is a continuous function, show that one can
find a C∞ function φ : V → R such that u ≤ φ ≤ u+ ǫ.

Lemma 3.6. If u : M → R is continuous and p ∈ D+u(x0) (resp. p ∈ D−u(x0)), there
exists a C1 function φ : M → R, such that φ(x0) = u(x0), dx0

φ = p, and φ(x) > u(x)
(resp. φ(x) < u(x)) for x 6= x0.

Moreover, if W is any neighborhood of x0 and C > 0, we can choose φ such that
φ(x) ≥ u(x) + C, for x /∈ W (resp. φ(x) ≤ u(x)− C).

Proof. Assume first M = R
k. To simplify notations, we can assume x0 = 0. Moreover,

subtracting from u the affine function x 7→ u(0) + p(x). We can assume u(0) = 0 and
p = 0. The fact that 0 ∈ D+u(0) gives

lim sup
x→0

u(x)

‖x‖
≤ 0.

If we take the non-negative part u+(x) = max(u(x), 0) of u, this gives

lim
x→0

u+(x)

‖x‖
= 0. (♠)

If we set
cn = sup{u+(x) | 2−(n+1) ≤ ‖x‖ ≤ 2−n}

then cn is finite and ≥ 0, because u+ ≥ 0 is continuous. Moreover, using that 2nu+(x) ≤
u+(x)/‖x‖, for ‖x‖ ≤ 2−n, and the limit in (♠) above, we obtain

lim
n→∞

[sup
m≥n

2mcm] = 0. (♥)

We now consider θ : Rk → R a C∞ bump function with θ = 1 on the set {x ∈ R
k | 1/2 ≤

‖x‖ ≤ 1}, and whose support is contained in {x ∈ R
k | 1/4 ≤ ‖x‖ ≤ 2}. We define the

function ψ : Rk → R by

ψ(x) =
∑

n∈Z

(cn + 2−2n)θ(2nx).

This function is well defined at 0 because every term is then 0. For x 6= 0, we have
θ(2nx) 6= 0 only if 1/4 < ‖2nx‖ < 2. Taking the logarithm in base 2, we see that this can
happen only if −2− log2‖x‖ < n < 1− log2‖x‖. Therefore this can happen for at most 3
consecutive integers n, hence the sum is also well defined for x 6= 0. Moreover, if x 6= 0,
the set Vx = {y 6= 0 | −1 − log2‖x‖ < − log2‖y‖ < 1 − log2‖x‖} is a neighborhood of x
and

∀y ∈ Vy, ψ(y) =
∑

−3−log2‖x‖<n<2−log2‖x‖

(cn + 2−2n)θ(2ny). (*)
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This sum is finite with at most 5 terms, therefore θ is C∞ on R
k \ {0}.

We now check that ψ is continuous at 0. Using equation (*), and the limit (♥) we see
that

0 ≤ ψ(x) ≤
∑

−3−log2‖x‖<n<2−log2‖x‖

(cn + 2−2n)

≤ 5 sup
n>−3−log2‖x‖

(cn + 2−2n) → 0 as x → 0.

To show that ψ is C1 on the whole of Rk with derivative 0 at 0, it suffices to show
that dxψ tends to 0 as ‖x‖ → 0. Differentiating equation (*) we see that

dxψ =
∑

−3−log2 ‖x‖<n<2−log2‖x‖

(cn + 2−2n)2nd2nxθ.

Since θ has compact support K = supx∈Rn‖dxθ‖ is finite. The equality above and the
limit in (♥) give

‖dxψ‖ ≤ 5K sup{2ncn + 2−n | n > −3− log2‖x‖},

but the right hand side goes to 0 when ‖x‖ → 0.
We now show ψ(x) > u(x), for x 6= 0. There is an integer n0 such that ‖x‖ ∈

[2−n0+1, 2−n0], hence θ(2n0x) = 1 and ψ(x) ≥ θ(2n0x)(cn0
+ 2−2n0) ≥ cn0

+ 2−2n0, since
cn0

= sup{u+(y) | ‖y‖ ∈ [2(−n0+1), 2−n0]}, we obtain cn0
≥ u+(x) and therefore ψ(x) >

u+(x) ≥ u(x).
It remains to show that we can get rid of the assumption M = R

k, and to show
how to obtain the desired inequality on the complement of W . We pick a small open
neighborhood U ⊂ W of x0 which is diffeomorphic to an Euclidean space. By what we
have done, we can find a C1 function ψ : U → R with ψ(x0) = u(x0), dx0

ψ = p, and
ψ(x) > u(x), for x ∈ U \ {x0}. We then take a C∞ bump function ϕ : M → [0, 1] which
is equal to 1 on a neighborhood of x0 and has compact support contained in U ⊂W . By
exercise 3.5, we can find a C∞ function ψ̃ : M → R such that ψ̃ ≥ u + C. It is easy to
check that the function φ :M → R defined by φ(x) = (1−ϕ(x))ψ̃(x) +ϕ(x)ψ(x) has the
required property.

The following simple lemma is very useful.

Lemma 3.7. Suppose ψ : M → R is Cr, with r ≥ 0. If x0 ∈ M,C ≥ 0, and W is a
neighborhood of x0, there exist two Cr functions ψ+, ψ− : M → R, such that ψ+(x0) =
ψ−(x0) = ψ(x0), and ψ+(x) > ψ(x) > ψ−(x), for x 6= x0. Moreover ψ+(x)− C > ψ(x) >
ψ−(x) + C, for x /∈ W . If r ≥ 1, then necessarily dx0

ψ+ = dx0
ψ− = dx0

ψ̃

Proof. The last fact is clear since ψ+ − ψ (resp. ψ− − ψ) achieves a minimum (resp.
maximum) at x0.

Using the same arguments as in the end of the proof in the previous lemma to obtain
the general case, it suffices to assume C = 0 and M = R

n. In that case, we can take
ψ±(x) = ψ(x)± ‖x− x0‖

2.
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4 Criteria for viscosity solutions

We fix in this section a continuous function H : T ∗M → R.

Theorem 4.1. Let u :M → R be a continuous function.

(i) u is a viscosity subsolution of H(x, dxu) = 0 if and only if for each x ∈M , and each
p ∈ D+u(x), we have H(x, p) ≤ 0.

(ii) u is a viscosity supersolution of H(x, dxu) = 0 if and only if for each x ∈ M , and
each p ∈ D−u(x), we have H(x, p) ≥ 0.

Proof. Suppose that u is a viscosity subsolution. If p ∈ D+u(x), since u is continuous, it
follows from 3.6 that there exists a C1 function φ :M → R, with φ ≥ u onM , u(x) = φ(x)
and dxφ = p. By the viscosity subsolution condition H(x, p) = H(x, dxφ) ≤ 0, .

Suppose conversely that for each x ∈ M and each p ∈ D+u(x0) we have H(x, p) ≤ 0.
If φ : M → R is C1 with u ≤ φ, then at each point x where u(x) = φ(x), we have
dxφ ∈ D+u(x) and therefore H(x, dxφ) ≤ 0.

Since D±u(x) depends only on the values of u in a neighborhood of x, the following
corollary is now obvious. It shows the local nature of the viscosity conditions.

Corollary 4.2. Let u :M → R be a continuous function.
If u is a viscosity subsolution (resp. supersolution, solution) of H(x, dxu) = 0 on M ,

then any restriction u|U to an open subset U ⊂ M is itself a viscosity subsolution (resp.
supersolution, solution) of H(x, dxu) = 0 on U .

Conversely, if there exists an open cover (Ui)i∈I of M such that every restriction u|Ui

is a viscosity subsolution (resp. supersolution, solution) of H(x, dxu) = 0 on Ui, then u
itself is a viscosity subsolution (resp. supersolution, solution) of H(x, dxu) = 0 on M .

Here is another straightforward consequence of theorem 4.1.

Corollary 4.3. Let u : M → R be a locally Lipschitz function. If u is a viscosity
subsolution (resp. supersolution, solution) of H(x, dxu) = 0, then H(x, dxu) ≤ 0 (resp.
H(x, dxu) ≥ 0, H(x, dxu) = 0) for almost every x ∈M .

In particular, a locally Lipschitz viscosity solution is always a very weak solution.

Exercise 4.4. Let I ⊂ R, and consider u : I → R a viscosity subsolution of

u′(t) = 0.

We want to show that u is non-increasing.
Fix a < b with a, b ∈ I. For every ǫ > 0 consider the function θǫ : [a, b[→ R defined by

θǫ(t) =
ǫ

b− t
.

1) Show that u− θǫ cannot have a local maximum in the open interval ]a, b[.
2) Show that u(t) ≤ u(a) + θǫ(t) − θǫ(a), for every t ∈ [a, b[. Conclude that u is

non-increasing.
3) What are the supersolutions (resp. solutions) of u′(t) = 0.
4) For c ∈ R, characterize the viscosity subsolutions, supersolutions, and solutions of

u′(t) = c.
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We end this section with one more characterization of viscosity solutions.

Proposition 4.5 (Criterion for viscosity solution). Suppose that u : M → R is contin-
uous. To check that u is a viscosity subsolution (resp. supersolution) of H(x, dxu) = 0,
it suffices to show that for each C∞ function φ : M → R such that u − φ has a unique
strict global maximum (resp. minimum), attained at x0, we have H(x0, dx0

φ) ≤ 0 (resp.
H(x0, dx0

φ) ≥ 0).

Proof. We treat the subsolution case. We first show that if φ : M → R is a C∞ func-
tion such that u − φ achieves a (not necessarily strict) maximum at x0, then we have
H(x0, dx0

φ) ≤ 0. In fact applying 3.7, we can find a C∞ function φ+ : M → R such
that φ+(x0) = φ(x0), dx0

φ+ = dx0
φ, φ+(x) > φ(x), for x 6= x0. The function u − φ+

has a unique strict global maximum achieved at x0, therefore H(x0, dx0
φ+) ≤ 0. Since

dx0
φ+ = dx0

φ, this finishes our claim.
Suppose now that ψ : M → R is C1 and that u − ψ has a global maximum at x0,

we must show that H(x0, dx0
ψ) ≤ 0. We fix a relatively compact open neighborhood W

of x0. By Lemma 3.7, applied to the continuous function ψ, there exists a C1 function
ψ+ :M → R such that ψ+(x0) = ψ(x0), dx0

ψ+ = dx0
ψ, ψ+(x) > ψ(x), for x 6= x0, and even

ψ+(x) > ψ(x)+3, for x /∈ W . It is easy to see that u−ψ+ has a strict global maximum at
x0, and that u(x)− ψ+(x) < u(x0)− ψ+(x0)− 3, for x /∈ W . By smooth approximations,
we can find a sequence of C∞ functions φn : M → R such that φn converges to ψ+ in
the C1 topology uniformly on compact subsets, and supx∈M |φn(x) − ψ+(x)| < 1. This
last condition together with u(x) − ψ+(x) < u(x0) − ψ+(x0) − 3, for x /∈ W , gives
u(x) − φn(x) < u(x0) − φn(x0) − 1, for x /∈ W . This implies that the maximum of
u − φn on the compact set W̄ is a global maximum of u − φn. Choose yn ∈ W̄ where
u − φn attains its global maximum. Since φn is C∞, from the beginning of the proof
we must have H(yn, dynφn) ≤ 0. Extracting a subsequence, if necessary, we can assume
that yn converges to y∞ ∈ W̄ . Since φn converges to ψ+ uniformly on the compact set
W̄ , necessarily u − ψ+ achieves its maximum on W̄ at y∞. This implies that y∞ = x0,
because the strict global maximum of u − ψ̃ is precisely attained at x0 ∈ W . The
convergence of φn to ψ+ is in the C1 topology, therefore (yn, dynφn) → (x0, dx0

ψ+), and
hence H(yn, dynφn) → H(x0, dx0

ψ+), by continuity of H . But, using H(yn, dynφn) ≤ 0
and dx0

ψ = dx0
ψ+, we get H(x0, dx0

ψ) ≤ 0.

5 Coercive Hamiltonians

Definition 5.1 (Coercive). A continuous function H : T ∗M → R is said to be coercive
above every compact subset, if for each compact subset K ⊂ M and each c ∈ R the set
{(x, p) ∈ T ∗M | x ∈ K,H(x, p) ≤ c} is compact.

Choosing any Riemannian metric on M , it is not difficult to see that H is coercive, if
and only if for each compact subset K ⊂ M , we have lim‖p‖x→∞H(x, p) = +∞ the limit
being uniform in x ∈ K.

Theorem 5.2. Suppose that H : T ∗M → R is coercive above every compact subset, and
c ∈ R then a viscosity subsolution of H(x, dxu) = c is necessarily locally Lipschitz, and
therefore satisfies H(x, dxu) ≤ c almost everywhere.
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Proof. Since this is a local result we can assume M = R
k, and prove only that u is

Lipschitz on a neighborhood of the origin 0. We will consider the usual distance d given
by d(x, y) = ‖y − x‖, where we have chosen the usual Euclidean norm on R

k. We set

ℓ0 = sup{‖p‖ | p ∈ R
k∗, ∃x ∈ R

k, ‖x‖ ≤ 3, H(x, p) ≤ c}.

We have ℓ0 < +∞ by the coercivity condition. Suppose u : Rk → R is a subsolution of
H(x, dxu) = c. Choose ℓ ≥ ℓ0 + 1 such that

2ℓ > sup{|u(y)− u(x)| | x, y ∈ R
k, ‖x‖ ≤ 3, ‖y‖ ≤ 3}.

Fix x, with ‖x‖ ≤ 1, and define φ : Rk → R by φ(y) = ℓ‖y − x‖. Pick y0 ∈ B̄(x, 2)
where the function y 7→ u(y)−φ(y) attains its maximum for y ∈ B̄(x, 2). We first observe
that y0 is not on the boundary of B̄(x, 2). In fact, if ‖y − x‖ = 2, we have u(y)− φ(y) =
u(y)− 2ℓ < u(x) = u(x)− φ(x). In particular, the point y0 is a local maximum of u− φ.
If y0 is not equal to x, then dy0φ exists, with dy0φ(v) = ℓ〈y0 − x, v〉/‖y0 − x‖, and we
obtain ‖dy0φ‖ = ℓ. On the other hand, since u(y) ≤ u(y0) − φ(y0) + φ(y), for y in a
neighborhood of y0, we get dy0φ ∈ D+u(y0), and therefore have H(y0, dy0φ) ≤ c. By the
choice of ℓ0, this gives ‖dy0φ‖ ≤ ℓ0 < ℓ0 + 1 ≤ ℓ. This contradiction shows that y0 = x,
hence u(y) − ℓ‖y − x‖ ≤ u(x), for every x of norm ≤ 1, and every y ∈ B̄(x, 2). This
implies that u has Lipschitz constant ≤ ℓ on the unit ball of Rk.

It is important to notice that for the evolutionary Hamilton-Jacobi Equation there
are subsolutions which are not locally Lipschitz even if the coercive Hamiltonian is very
simple.

Exercise 5.3. We consider the coercive Hamiltonian H : T ∗M → R defined by

H(x, p) =
1

2
‖p‖2x.

If ρ : R → R is a non-increasing function, show that u(x, t) = ρ(t) is a viscosity subsolu-
tion of

∂u

∂t
(x, t) +H

(

x,
∂u

∂x
(x, t)

)

= 0.

Give an example of such a ρ which is not locally Lipschitz.

6 Stability

Theorem 6.1 (Stability). Suppose that the sequence of continuous functionsHn : T ∗M →
R converges uniformly on compact subsets to H : T ∗M → R. Suppose also that
un : M → R is a sequence of continuous functions converging uniformly on compact
subsets to u : M → R. If, for each n, the function un is a viscosity subsolution (resp.
supersolution, solution) of Hn(x, dxun) = 0, then u is a viscosity subsolution (resp. super-
solution, solution) of H(x, dxu) = 0.
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Proof. We show the subsolution case. We use the criterion 4.5. Suppose that φ :M → R

is a C∞ function such that u− φ has a unique strict global maximum, achieved at x0, we
have to show H(x0, dx0

φ) ≤ 0. We pick a relatively compact open neighborhood W of
x0. For each n, choose yn ∈ W̄ where un − φ attains its maximum on the compact subset
W̄ . Extracting a subsequence, if necessary, we can assume that yn converges to y∞ ∈ W̄ .
Since un converges to u uniformly on the compact set W̄ , necessarily u − φ achieves its
maximum on W̄ at y∞. But u − φ has a strict global maximum at x0 ∈ W therefore
y∞ = x0. By continuity of the derivative of φ, we obtain (yn, dynφ) → (x0, dx0

φ). Since
W is an open neighborhood of x0, dropping the first terms if necessary, we can assume
yn ∈ W , this implies that yn is a local maximum of un−φ, therefore dynφ ∈ D+un(y). Since
un is a viscosity subsolution of Hn(x, dxun) = 0, we get Hn(yn, dynφ) ≤ 0. The uniform
convergence of Hn on compact subsets now implies H(x0, dx0

φ) = limn→∞Hn(yn, dynφ) ≤
0.

Exercise 6.2. We consider the Hamiltonian H : T ∗M → R on the manifold M . Suppose
U : [0,+∞[×M is a viscosity subsolution of the evolutionary Hamilton-Jacobi equation

∂U

∂t
(t, x) +H(x,

∂U

∂x
(t, x)) = 0. (EHJ)

on ]0,+∞[×M .
1) If ρ : [0,+∞[→ R is a non-increasing C1function show that Uρ : [0,+∞[×M → R

defined by
Uρ(t, x) = U(x, t) + ρ(t)

is also a viscosity subsolution of (EHJ) on ]0,+∞[×M .
2) If ρ : [0,+∞[→ R is an arbitrary non-increasing continuous function show that

it can be uniformly approximated on compact subsets by C∞ non-increasing functions.
[Indication: Use a convolution argument.]

3) Show that 1) remains true for arbitrary non-increasing continuous function ρ :
[0,+∞[→ R.

4) Show that U can be uniformly approximated on compact subsets by viscosity subso-
lutions of (HEJ) which are not locally Lipschitz.

7 Uniqueness

Our goal here is to obtain some uniqueness results especially for the evolutionary Hamilton-
Jacobi Equation.

Theorem 7.1. Let H : T ∗M → R be a Hamiltonian on the manifold M . Suppose that
u : M → R is a viscosity subsolution of H(x, dxu) = c1, and v : M → R is a viscosity
supersolution of H(x, dxv) = c2. Assume further that either u or v is locally Lipschitz on
M . If u− v has a local maximum, then necessarily c2 ≤ c1.

Proof. Call x0 ∈ M a point where u − v achieves a local maximum. Changing u (or v)
by adding an appropriate constant, we can assume that this local maximum of u − v is
0. This means that u ≤ v in a neighborhood of x0, with equality at x0. If both u and
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v where differentiable at x0, we would have dx0
(u − v) = 0, therefore dx0

u = dx0
v, and

c2 ≤ H(x0, dx0
v) = H(x0, dx0

u) ≤ c1. Since we do not know that these derivatives exist,
we have to go around this difficulty. The following argument is known in viscosity theory
as the doubling argument. The problem is essentially local around x0. Hence, choosing a
chart we can assume x0 = 0, and M = R

n.
Call ‖·‖ the usual Euclidean norm in R

n , denote by B
n the usual unit ball in R

n.
We will also use the canonical identification T ∗

R
n = R

n × R
n. In this identification, the

differential of a function is nothing but its gradient.
Since either u or v are locally Lipschitz on M = R

n, and B
n is a compact subset we

can assume that there exits a a constant K < +∞ such that either u or v is Lipschitz on
B
n with Lipschitz constant K.
We know that u ≤ v with equality at 0. Also u : Rn → R is a viscosity subsolution of

H(x, dxu) = c1, and v : Rn → R is a viscosity supersolution of H(x, dxu) = c2. We want
to show that c2 ≤ c1. For ℓ ≥ 1, we set

mℓ = sup
x,y∈Bn

u(x)− v(y)− ‖x‖2 − ℓ‖x− y‖2. (a)

Note that mℓ ≥ 0, since u(0) = v(0). By compactness of Bn, we can find xℓ, yℓ ∈ B
n such

that
0 ≤ mℓ = u(xℓ)− v(yℓ)− ‖xℓ‖

2 − ℓ‖xℓ − yℓ‖
2. (b)

By compactness of Bn, we have A = supx,y∈Bn u(x)− v(y) < +∞. It follows that

0 ≤ mℓ ≤ A− ℓ‖xℓ − yℓ‖
2.

This implies that ‖xℓ − yℓ‖
2 ≤ A/ℓ, hence xℓ − yℓ → 0. Again by compactness of Bn,

we can find an extracted subsequence such that xℓi converges to x∞. Necessarily we also
have yℓi → x∞. By inequality (b) above u(xℓ) − v(yℓ) − ‖xℓ‖

2 ≥ 0. Passing to the limit
we get u(x∞) − v(y∞) − ‖x∞‖2 ≥ 0. Since u ≤ v, we find that x∞ = 0. Therefore both
xℓi and yℓi converge to 0. In particular, for i large enough xℓi and yℓi are in B̊

n. We can
therefore drop some of the first ℓi’s and assume xℓi , yℓi ∈ B̊

n, for all i.
It follows from (a) and (b) above, that u(x)− [v(yℓi) + ‖x‖2 + ℓi‖x− yℓi‖

2] has a local
maximum at xℓi . But the function ϕ(x) = v(yℓi)+‖x‖2+ ℓi‖x−yℓi‖

2 is C∞ with gradient
2x + 2ℓi(x − yℓi). Therefore 2xℓi + 2ℓi(xℓi − yℓi) ∈ D+u(xℓi), and using the fact that
u : Rn → R is a viscosity subsolution of H(x, dxu) = c1, we obtain

H
(
xℓi , 2xℓi + ℓi(xℓi − yℓi)

)
≤ c1. (c)

In the same way, we get that v(y)− [u(xℓi)− ‖xℓi‖
2 − ℓi‖xℓi − y‖2] has a local minimum

at yℓi. Therefore 2ℓi(xℓi − yℓi) ∈ D−v(yℓi), and using that v : Rn → R is a viscosity
supersolution of H(x, dxu) = c2, we obtain

H
(
yℓi, 2ℓi(xℓi − yℓi)

)
≥ c2. (d)

Since xℓi , yℓi are in B
n, and either u or v has Lipschitz constant ≤ K on B

n, using
2xℓi + 2ℓi(xℓi − yℓi) ∈ D+u(xℓi), 2ℓi(xℓi − yℓi) ∈ D−v(yℓi), from Proposition 3.4.(vi) we
obtain that either ‖2xℓi + 2ℓi(xℓi − yℓi)‖ ≤ K or ‖2ℓi(xℓi − yℓi)‖ ≤ K. Since xℓi ∈ B

n, we
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conclude that ‖2ℓi(xℓi − yℓi)‖ ≤ K + 2, for all i. Therefore, up to extraction, we assume
that 2ℓi(xℓi − yℓi) converges to p ∈ R

n. Since both xℓi and yℓi converge to 0, passing to
the limit in (c) and (d), we get c2 ≤ H(0, p) ≤ c1.

Corollary 7.2. LetH : T ∗M → R be a Hamiltonian coercive above every compact subset
of the manifold M . Suppose that u : M → R is viscosity subsolution of H(x, dxu) = c1,
and v : M → R be a viscosity supersolution of H(x, dxv) = c2. If u − v has a local
maximum, then necessarily c2 ≤ c1.

Proof. In that case Theorem 5.2 implies that u is locally Lipschitz. Therefore we can
apply Theorem 7.1

Corollary 7.3. Suppose H : T ∗M → R is a coercive Hamiltonian on the compact
manifold M . If there exists a viscosity subsolution of H(x, dxu) = c1 and a viscosity
supersolution of H(x, dxu) = c2, then necessarily c2 ≤ c1.

In particular, there exists at most one c for which the Hamilton-Jacobi equation
H(x, dxu) = c has a global viscosity solution u : M → R. This only possible value is
the smallest c for which H(x, dxu) = c admits a global viscosity subsolution u :M → R.

Proof. Call u : M → R a viscosity subsolution of H(x, dxu) = c1, and call v : M → R a
viscosity supersolution of H(x, dxv) = c2. By compactness ofM , we can find a point x0 ∈
M where u− v achieves its maximum. Therefore by Corollary 7.2, we have c2 ≤ c1.

Theorem 7.4. Let H : M → R be a continuous Hamiltonian on the compact manifold
M . Suppose U, V : [0,+∞[×M → R are two continuous functions with U(x, 0) = V (x, 0),
for all x ∈ M . Assume that U (resp. V ) is a viscosity subsolution (resp. supersolution)
of the evolutionary Hamilton Jacobi Equation

∂u

∂t
(t, x) +H

(
x,
∂u

∂x
(t, x)

)
= 0,

on ]0,+∞[×M . If either U or V is locally Lipschitz on ]0,+∞[×M , then U ≤ V on the
whole of [0,+∞[×M .

Proof. We introduce the Hamiltonian Ĥ on R×M defined by

Ĥ(t, x, s, p) = s+H(x, p),

where (t, x) ∈ R ×M and (s, p) ∈ T ∗
(t,x)(R ×M) = R × T ∗

xM . With this notation U

(resp. V ) becomes a viscosity subsolution (resp. supersolution) of the Hamilton-Jacobi
equation

Ĥ
(
(t, x), d(t,x)u

)
= 0.

Fix a, ǫ > 0, we will show that

∀t ∈ [0, a[, ∀x ∈M,U(t, x) +
ǫ

t− a
≤ V. (⋄)

The theorem follows because we can let ǫ → 0, and a > 0 is arbitrary. To simplify
notation define ρ : [0, a] → R by

ρ(t) =
ǫ

t− a
.



20

Since ρ′(t) = −ǫ/(t − a)2 ≤ −ǫ/a2, it is not difficult to see that the continuous function
Û : [0, a[×M → defined by

Û(t, x) = U(t, x) + ρ(t)

is a viscosity subsolution of the Hamilton-Jacobi equation

Ĥ((t, x), d(t,x)u) = −
ǫ

a2
.

Since ρ is C∞, it follows from the hypothesis that either Û or V is locally Lipschitz on
]0, a[×M . Since −ǫa2 < 0, we can apply Theorem 7.1 to conclude that Û−V has no local
maximum on ]0, a[×M . But ρ(t) → −∞, as t→ a, hence, by the compactness of M , the
continuous function Û −V = U + ρ−V must attain its maximum in [0, a[×M . Since this
maximum can only be in {0} ×M , and Û − V is equal to ρ(0) = −ǫ/a on {0} ×M , we
obtain that Û − V ≤ −ǫ/a ≤ 0 on [0, a[×M . This is precisely the inequality (⋄) that we
are seeking.

Corollary 7.5. Let H : M → R be a continuous Hamiltonian on the compact manifold
M . Suppose that the continuous function U : [0,+∞[×M → R is locally Lipschitz on
]0,+∞[×M , and is a viscosity solution of the evolutionary Hamilton Jacobi Equation

∂u

∂t
(t, x) +H

(
x,
∂u

∂x
(t, x)

)
= 0, (EHJ)

on ]0,+∞[×M .
Any other continuous function V : [0,+∞[×M → R, which is a viscosity solution of

(EHJ) on ]0,+∞[×M , and coincides with U on {0} ×M coincides with U on the whole
of [0,+∞[×M .

8 Construction of viscosity solutions

In this section, we will introduce the Perron Method for constructing viscosity solutions.

Proposition 8.1. Let H : T ∗M → R be a continuous function. Suppose (ui)i∈I is a
family of continuous functions ui : M → R such that each ui is a subsolution (resp.
supersolution) of H(x, dxu) = 0. If supi∈I ui (resp. inf i∈u ui) is finite and continuous
everywhere, then it is also a subsolution (resp. supersolution) of H(x, dxu) = 0 .

Proof. Set u = supi∈I ui. Suppose φ :M → R is C1, with φ(x0) = u(x0) and φ(x) > u(x),
for every x ∈ M \ {x0}. We have to show H(x0, dx0

φ) ≤ 0. Fix some distance d on M .
By continuity of the derivative of φ, it suffices to show that for each ǫ > 0 small enough
there exists x ∈ B̊(x0, ǫ), with H(x, dxφ) ≤ 0.

For ǫ > 0 small enough, the closed ball B̄(x0, ǫ) is compact. Fix such an ǫ > 0. There
is a δ > 0 such that φ(y)− δ ≥ u(y) = supi∈I ui(y), for each y ∈ ∂B(x0, ǫ).

Since φ(x0) = u(x0), we can find iǫ ∈ I such that φ(x0)− δ < uiǫ(x0). It follows that
the maximum of the continuous function uiǫ−φ on the compact set B̄(x0, ǫ) is not attained
on the boundary, therefore uiǫ − φ has a local maximum at some xǫ ∈ B̊(x0, ǫ). Since the
function uiǫ is a viscosity subsolution of H(x, dxu) = 0, we have H(xǫ, dxǫ

φ) ≤ 0.
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Theorem 8.2 (Perron Method). Suppose the Hamiltonian H : TM → R is coercive
above every compact subset. Assume that M is connected and there exists a viscosity
subsolution u : M → R of H(x, dxu) = 0. Then for every x0 ∈ M , the function Sx0

:
M → R defined by Sx0

(x) = supv v(x), where the supremum is taken over all viscosity
subsolutions v satisfying v(x0) = 0, has indeed finite values and is a viscosity subsolution
of H(x, dxu) = 0 on M .

Moreover, it is a viscosity solution of H(x, dxu) = 0 on M \ {x0}.

Proof. Call SSx0
the family of viscosity subsolutions v : M → R of H(x, dxv) = 0

satisfying v(x0) = 0.
Since H is coercive above every compact subset of M , by theorem 5.2, we know that

each element of this family is locally Lipschitz. Moreover, since for each compact set K,
the set {(x, p) | x ∈ K,H(x, p) ≤ 0} is compact, it follows that the family of restrictions
v|K , v ∈ SSx0

is equi-Lipschitzian. We now show, that Sx0
is finite everywhere. Since M

is connected, given x ∈M , there exists a compact connected set Kx,x0
containing both x

and x0. By the equicontinuity of the family of restrictions {v|Kx,x0
| v ∈ SSx0

}, we can
find δ > 0, such that for each y, z ∈ Kx,x0

with d(y, z) ≤ δ, we have |v(y)− v(z)| ≤ 1, for
each v ∈ SSx0

.
By its choice, the set Kx,x0

is connected , we can find a sequence x0, x1, · · · , xn = x in
Kx,x0

with d(xi, xi+1) ≤ δ. It follows that |v(x)| = |v(x)−v(x0)| ≤
∑n−1

i=0 |v(xi+1)−v(xi)| ≤
n, for each v ∈ SSx0

. Therefore supv∈SSx0
v(x) is finite everywhere. Moreover, as a finite-

valued supremum of a family of locally equicontinuous functions, it is continuous.
By the previous proposition 8.1, the function Sx0

is a viscosity subsolution onM itself.
It remains to show that it is a viscosity solution of H(x, dxu) on M \ {x0}.

Suppose ψ : M → R is C1 with ψ(x1) = Sx0
(x1), where x1 6= x0, and ψ(x) < Sx0

(x)
for every x 6= x1. We want to show that necessarily H(x1, dx1

ψ) ≥ 0. If this were false,
by continuity of the derivative of ψ, endowing M with a distance defining its topology,
we could find ǫ > 0 such that H(y, dyψ) < 0, for each y ∈ B̄(x1, ǫ). Taking ǫ > 0 small
enough, we assume that B̄(x1, ǫ) is compact and x0 /∈ B̄(x1, ǫ). Since ψ < Sx0

on the
boundary ∂B(x1, ǫ) of B̄(x1, ǫ), we can pick δ > 0, such that ψ(y) + δ ≤ Sx0

(y), for every
y ∈ ∂B(x1, ǫ). We define S̃x0

on B̄(x1, ǫ) by S̃x0
(x) = max(ψ(x) + δ/2, Sx0

(x)). The
function S̃x0

is a viscosity subsolution of H(x, d, u) on B̊(x1, ǫ) as the maximum of the
two viscosity subsolutions ψ + δ/2 and Sx0

. Moreover, this function S̃x0
coincides with

Sx0
outside K = {x ∈ B̊(x1, ǫ) | ψ(x) + δ/2 ≥ Sx0

(x))} which is a compact subset of
B̊(x1, ǫ), therefore we can extend it to M itself by S̃x0

= Sx0
on M \K. It is a viscosity

subsolution of H(x, dxu) on M itself, since its restrictions to both open subsets M \ K
and B̊(x1, ǫ) are viscosity subsolutions and M = B̊(x1, ǫ) ∪ (M \K).

But S̃x0
(x0) = Sx0

(x0) = 0 because x0 /∈ B̄(x1, ǫ). Moreover S̃x0
(x1) = max(ψ(x1) +

δ/2, Sx0
(x1)) = max(Sx0

(x1) + δ/2, Sx0
(x1)) = Sx0

(x1) + δ/2 > Sx0
(x1). This contradicts

the definition of Sx0
.

The next argument is inspired by the construction of Busemann functions in Rieman-
nian Geometry, see [BGS85].

Corollary 8.3. Suppose that H : T ∗M → R is a continuous Hamiltonian coercive above
every compact subset of the connected non-compactmanifoldM . If there exists a viscosity
subsolution of H(x, dxu) = 0 on M , then there exists a viscosity solution on M .
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Proof. Fix x̂ ∈ M , and pick a sequence xn → ∞ (this means that each compact subset
of M contains only a finite number of points in the sequence).

By arguments analogous to the ones used in the previous proof, the sequence Sxn
is

locally equicontinuous and moreover, for each x ∈ M , the sequence Sxn
(x) − Sxn

(x̂) is
bounded. Therefore, by Ascoli’s theorem, extracting a subsequence if necessary, we can
assume that Sxn

−Sxn
(x̂) converges uniformly to a continuous function u :M → R. It now

suffices to show that the restriction of u to an arbitrary open relatively compact subset
V of M is a viscosity solution of H(x, dxu) = 0 on V . Since {n | xn ∈ V̄ } is finite, for n
large enough, the restriction of Sxn

− Sxn
(x̂) to V is a viscosity solution; therefore by the

stability theorem 6.1, the restriction of the limit u to V is also a viscosity solution.

The situation is different for compact manifolds as can be seen from Corollary 7.3.

9 Strict subsolutions

Definition 9.1 (strict subsolution). Let H : T ∗M → R be a continuous function. We say
that a viscosity subsolution u :M → R of H(x, dxu) = c is strict at x0 ∈M if there exists
an open neighborhood Vx0

of x0, and cx0
< c such that u|Vx0

is a viscosity subsolution of
H(x, dxu) = cx0

on Vx0
.

Here is a way to construct viscosity subsolutions which are strict at some point.

Proposition 9.2. Let H : T ∗M → R be a continuous function. Suppose that u :M → R
is a viscosity subsolution ofH(y, dyu) = c onM , that is also a viscosity solution onM\{x}.
If u is not a viscosity solution of H(y, dyu) = c on M itself then there exists a viscosity
subsolution of H(y, dyu) = c on M which is strict at x.

Proof. If u is not a viscosity solution, since it is a subsolution onM , it is the supersolution
condition that is violated. Moreover, since u is a supersolution on M \ {x}, the only
possibility is that there exists ψ :M → R of class C1 such that ψ(x) = u(x), ψ(y) < u(y),
for y 6= x, and H(x, dxψ) < c. By continuity of the derivative of ψ, we can find a compact
ball B̄(x, r), with r > 0, and a cx < c such that H(y, dyψ) < cx, for every y ∈ B̄(0, r). In

particular, the C1 function ψ is a subsolution of H(z, dzv) = cx on B̊(x, r), and therefore
also of H(z, dzv) = c on the same set since cx < c.

We choose δ > 0 such that for every y ∈ ∂B(x, r) we have u(y) > ψ(y) + δ. This is
possible since ∂B(x, r) is a compact subset ofM \{x} where we have the strict inequality
ψ < u.

If we define ũ :M → R by ũ(y) = u(y) if y /∈ B̄(x, r) and ũ(y) = max(u(y), ψ(y)+ δ),
we obtain the desired viscosity subsolution of H(y, dyu) ≤ c which is strict at x. In fact,
by the choice of δ > 0, the subset K = {y ∈ B̄(x, r) | ψ(y) + δ ≤ u(y)} is compact
and contained in the open ball B̊(x, r). Therefore M is covered by the two open subsets
M \K and B̊(x, r). On the first open subset ũ is equal to u, it is therefore a subsolution
of H(y, dyu) = c on that subset. On the second open subset B̊(x, r), the function ũ is

the maximum of u and ψ+ δ which are both subsolutions of H(y, dyu) = c on B̊(x, r), by
proposition 8.1, it is therefore a subsolution of H(y, dyu) = c on that second open subset.
Since u(x) = ψ(x); we have ũ(x) = ψ(x) + δ > u(x), therefore by continuity ũ = ψ + δ
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on a neighborhood N ⊂ B̊(x, r) of x. On that neighborhood H(y, dyψ) < cx, hence ũ is
strict at x.

Here is another useful result on strict subsolutions.

Proposition 9.3. Let H : T ∗M → R be a continuous function. Suppose that u :M → R
(resp. v :M → R) is a viscosity subsolution (resp. supersolution) of H(y, dyu) = c on M .
Assume further that either u or v is locally Lipschitz. Then u cannot be strict at any
local maximum of u− v.

Proof. We argue by contradiction. Assume x0 is a local maximum of u−v. If u was strict
at x0, we could find an open set V containing x0, and a c′ < c such that u|V is a viscosity
subsolution of H(x, dxu) = c′ < c. But if we apply Theorem 7.1 to the restrictions u|V
and v|V , we see that we must have c ≤ c′, which contradicts the choice of c′.

10 Quasi-convexity and viscosity subsolutions

We first recall the definition of a quasi-convex function.

Definition 10.1. The function f : C → R, defined on the convex C subset of the real
vector space E, is said to be quasi-convex, if for every t ∈ R the sublevel {x ∈ C | f(x) ≤
t} is convex.

Exercise 10.2. Suppose f : C → R is defined on the convex subset C of the real vector
space E.

1) Show that f is quasi-convex if and only if fore every sequence α1 . . . , αℓ ∈ [0, 1] with
∑ℓ

i=1 αi = 1, and every sequence x1, . . . , xℓ ∈ C, we have f(
∑ℓ

i=1 αixi) ≤ maxℓi=1 f(xi).
2) Suppose moreover that E is a topological vector space, and that f is continuous and

quasi-convex, show that for any sequence (αi)i∈N with αi ∈ [0, 1] such that
∑∞

i=0 αi = 1,
and every sequence (xi)i∈N such that

∑∞
i=0 αixi exists and is in C, we have f(

∑

i∈N αixi) ≤
supi∈N f(xi).

3) (Difficult) Suppose further that E is a finite dimensional vector, and that the convex
set C is Borel measurable. If µ is a Borel probability measure on E with µ(C) = 1,
show that

∫

E
x dµ(x) ∈ C. [Indication: One can assume that this is true for a vector

space whose dimension is strictly lower than that of E, then argue by contradiction: if
x0 =

∫

E
x dµ(x) /∈ C, by Hahn-Banach theorem and the finite dimensionality of E, find a

linear map θ : E → R such that θ(x) ≤ θ(x0).]
4) If E is finite dimensional show that 2) remains true even when f is only assumed

Borel measurable on the Borel measurable convex set C.

In this section we will be mainly interested in Hamiltonians H : T ∗M → R quasi-
convex in the fibers, i.e. for each x ∈M , the function p 7→ H(x, p) is quasi-convex on the
vector space T ∗

xM .
Our first goal in this section is to prove the following theorem:

Theorem 10.3. Suppose that the continuous Hamiltonian H : T ∗M → R is quasi-convex
in the fibers. If u :M → R is locally Lipschitz and H(x, dxu) ≤ c almost everywhere, for
some fixed c ∈ R, then u is a viscosity subsolution of H(x, dxu) = c.
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Before giving the proof of the theorem we need some preliminary material.
If u : U → R is a locally Lipschitz function defined on the open subset of M , it is

convenient to introduce the Hamiltonian constant HU(u) as the essential supremum on U
of H(x, dxu), i.e. the constant HU (u) is the smallest c ∈ R such that H(x, dxu) ≤ c for
almost every x ∈ U

We will use some classical facts about convolution. Let (ρδ)δ>0 be a family of functions
ρδ : R

k → [0,∞[ of class C∞, with ρδ(x) = 0, if ‖x‖ ≥ δ, and
∫

Rk ρδ(x) dx = 1. Suppose
that V, U are open subsets of Rk, with V̄ compact and contained in U . Call 2δ0 the
Euclidean distance of the compact set V̄ to the boundary of U , we have δ0 > 0, therefore
the closed δ0-neighborhood

N̄δ0(V̄ ) = {y ∈ R
k | ∃x ∈ V̄ , ‖y − x‖ ≤ δ0}

of V̄ is compact and contained in U .
If u : U → R is a continuous function, then for δ < δ0, the convolution

uδ(x) = ρδ ∗ u(x) =

∫

Rk

ρδ(y)u(x− y) dy.

makes sense and is of class C∞ on a neighborhood of V̄ . Moreover, the family uδ converges
uniformly on V̄ to u, as t→ 0.

Lemma 10.4. Under the hypothesis above, suppose that u : U → R is a locally Lipschitz
function. Given any Hamiltonian H : T ∗U → R quasi-convex in the fibers and any ǫ > 0,
for every δ > 0 small enough, we have supx∈V |uδ(x)−u(x)| ≤ ǫ and HV (uδ) ≤ HU(u)+ ǫ.

Proof. Because u is locally Lipschitz the derivative dzu exists for almost every z ∈ U . We
first show that, for δ < δ0, we must have

∀x ∈ V, dxuδ =

∫

Rk

ρδ(y)dx−yu dy. (*)

In fact, since uδ is C
∞, it suffices to check that

lim
t→0

uδ(x+ th)− uδ(x)

t
=

∫

Rk

ρδ(y)dx−yu(h) dy, (**)

for x ∈ V, δ < δ0, and h ∈ R
k. Writing

uδ(x+ th)− uδ(x)

t
=

∫

Rk

ρδ(y)
u(x+ th− y)− u(x− y)

t
dy,

We see that we can obtain (**) from Lebesgue’s dominated convergence theorem, since
ρδ has a compact support contained in {y ∈ R

k | ‖y‖ < δ}, and for y ∈ R
k, t ∈ R such

that ‖y‖ < δ, ‖th‖ < δ0 − δ, the two points x+ th− y, x− y are contained in the compact
set N̄δ0(V̄ ) on which u is Lipschitz. Equation (*) yields

H(x, dxuδ) = H(x,

∫

Rk

ρδ(y)dx−yu dy). (***)
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Since N̄δ0(V̄ ) is compact and contained in U , and u is locally Lipschitz, we can findK <∞
such that ‖dzu‖ ≤ K, for each z ∈ N̄δ0(V̄ ) for which dzu exists. Since H is continuous,
by a compactness argument, we can find δǫ ∈]0, δ0[, such that for z, z′ ∈ N̄δ0(V̄ ), with
‖z − z′‖ ≤ δǫ, and ‖p‖ ≤ K, we have |H(z′, p)−H(z, p)| ≤ ǫ. If δ ≤ δǫ, since ρδ(y) = 0,
if ‖y‖ ≥ δ, we deduce that for all x in V and almost every y with ‖y‖ ≤ δ, we have

H(x, dx−yu) ≤ H(x− y, dx−yu) + ǫ ≤ HU (u) + ǫ.

The quasi-convexity of H in the fibers implies that the set C = {p ∈ T ∗
xM | H(x, p) ≤

HU(u) + ǫ} is convex and closed. Since ρδ dy is a probability measure whose support is
contained in B̄(0, δ) = {y ∈ R

k | ‖y‖ ≤ δ}, and dx−yu ∈ C, for every y ∈ B̄(0, δ), we
obtain that the average

∫

Rk ρδ(y)dx−yu dy is also in C. Hence we obtain

∀δ ≤ δǫ, H(x,

∫

Rk

ρδ(y)dx−yu dy) ≤ HU(u) + ǫ.

It follows from inequality (***) above that H(x, dxuδ) ≤ HU(u)+ ǫ, for δ ≤ δǫ and x ∈ V .
This gives HV (uδ) ≤ HU (u) + ǫ, for δ ≤ δǫ. The inequality supx∈V |uδ(x)− u(x)| < ǫ also
holds for every δ small enough, since uδ converges uniformly on V̄ to u, as t→ 0.

Proof of theorem 10.3. We have to prove that for each x0 ∈ M , there exists an open
neighborhood V of x0 such that u|V is a viscosity subsolution of H(x, dxu) = c on V .
In fact, if we take V any open neighborhood such that V̄ is contained in a domain of a
coordinate chart, we can apply Lemma 10.4 to obtain a sequence un : V → R, n ≥ 1, of
C∞ functions such that un converges uniformly to u|V on V and H(x, dxun) ≤ c+1/n. If
we define Hn(x, p) = H(x, p) − c − 1/n, we see that un is a smooth classical, and hence
viscosity, subsolution of Hn(x, dxw) = 0 on V . Since Hn converges uniformly to H − c,
the stability theorem 6.1 implies that u|V is a viscosity subsolution of H(x, dxu)− c = 0
on V .

Corollary 10.5. Suppose that the Hamiltonian H : T ∗M → R is continuous and quasi-
convex in the fibers. For every c ∈ R, the set of Lipschitz functions u :M → R which are
viscosity subsolutions of H(x, dxu) = c is convex.

Proof. If u1, . . . , un are such viscosity subsolutions. By 4.3, we know that at every x where
dxuj exists we must have H(x, dxuj) ≤ c. If we call A the set of points x where dxuj
exists for each j = 1, . . . , n, then A has full Lebesgue measure in M . If a1, . . . , an ≥ 0,
and a1 + · · · + an = 1, then u = a1u1 + · · · + anun is differentiable at each point of
x ∈ A with dxu = a1dxu1 + · · ·+ andxun. Therefore by the quasi-convexity of H(x, p) in
the variable p, for every x ∈ A, we obtain H(x, dxu) = H(x, a1dxu1 + · · · + andxun) ≤
maxni=1H(x, dxui) ≤ c. Since A is of full measure, by theorem 10.3, we conclude that u is
also a viscosity subsolution of H(x, dxu) = c.

The next corollary shows that the viscosity subsolutions are the same as the very weak
subsolutions, at least in the geometric cases we have in mind. This corollary is clearly a
consequence of Theorems 5.2 and 10.3.
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Corollary 10.6. Suppose that the Hamiltonian H : T ∗M → R is continuous, coercive,
and quasi-convex in the fibers. A continuous function u :M → R is a viscosity subsolution
of H(x, dxu) = c, for some c ∈ R if and only if u is locally Lipschitz and H(x, dxu) ≤ c,
for almost every x ∈M .

We now give a global version of Lemma 10.4.

Theorem 10.7. Suppose that H : T ∗M → R is a Hamiltonian, which is quasi-convex in
the fibers. Let u : M → R be a locally Lipschitz viscosity subsolution of H(x, dxu) = c
on M . For every couple of continuous functions δ, ǫ : M →]0,+∞[, we can find a C∞

function v : M → R such that |u(x) − v(x)| ≤ δ(x) and H(x, dxv) ≤ c + ǫ(x), for each
x ∈M .

Proof. We pick up a locally finite countable open cover (Vi)i∈N ofM such that each closure
V̄i is compact and contained in the domain Ui of a chart which has a compact closure Ūi

in M . The local finiteness of the cover (Vi)i∈N and the compactness of V̄i imply that, for
each i ∈ N, the set J(i) = {j ∈ N | Vi ∩ Vj 6= ∅} is finite. Therefore, denoting by #A for
the number of elements in a set A, we obtain

j(i) =#J(i) = #{j ∈ N | Vi ∩ Vj 6= ∅} < +∞,

j̃(i) = max
ℓ∈J(i)

j(ℓ) < +∞.

We define Ri = supx∈Ūi
‖dxu‖x< +∞, where the sup is in fact taken over the subset of

full measure of x ∈ Ui where the locally Lipschitz function u has a derivative. It is finite
because Ūi is compact. Since J(i) is finite, the following quantity R̃i is also finite

R̃i = max
ℓ∈J(i)

Rℓ < +∞.

We now choose (θi)i∈N a C∞ partition of unity subordinated to the open cover (Vi)i∈N.
We also define

Ki = sup
x∈M

‖dxθi‖x< +∞,

which is finite since θi is C
∞ with support in Vi which is relatively compact.

Again by compactness, continuity, and finiteness routine arguments the following num-
bers are > 0

δi = inf
x∈V̄i

δ(x) > 0, δ̃i = min
ℓ∈J(i)

δℓ > 0

ǫi = inf
x∈V̄i

ǫ(x) > 0, ǫ̃i = min
ℓ∈J(i)

ǫℓ > 0.

Since V̄i is compact, the subset {(x, p) ∈ T ∗M | x ∈ V̄i, ‖p‖x ≤ R̃i + 1} is also compact,
therefore by continuity of H , we can find ηi > 0 such that

∀x ∈ V̄i, ∀p, p
′ ∈ T ∗

xM,‖p‖x ≤ R̃i + 1, ‖p′‖x ≤ ηi, H(x, p) ≤ c+
ǫi
2

⇒ H(x, p+ p′) ≤ c + ǫi.
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We can now choose η̃i > 0 such that j̃(i)Kiη̃i < minℓ∈J(i) ηℓ. Noting that H(x, p) and
‖p‖x are both quasi-convex in p, and that V̄i is compact and contained in the domain Ui

of a chart, by Lemma 10.4, for each i ∈ N, we can find a C∞ function ui : Vi → R such
that

∀x ∈ Vi, |u(x)− ui(x)| ≤ min(δ̃i, η̃i),

H(x, dxui) ≤ sup
z∈Vi

H(z, dzu) +
ǫ̃i
2
≤ c+

ǫ̃i
2

‖dxui‖x ≤ sup
z∈Vi

‖dzu‖z + 1 = Ri + 1,

where the sup in the last two lines is taken over the set of points z ∈ Vi where dzu exists.
We now define v =

∑

i∈N θiui, it is obvious that v is C∞. We fix x ∈ M , and choose
i0 ∈ N such that x ∈ Vi0 . If θi(x) 6= 0 then necessarily Vi∩Vi0 6= ∅ and therefore i ∈ J(i0).
Hence

∑

i∈J(i0)
θi(x) = 1, and v(x) =

∑

i∈J(i0)
θi(x)ui(x).We can now write

|u(x)− v(x)| ≤
∑

i∈J(i0)

θi(x)|u(x)− ui(x)| ≤
∑

i∈J(i0)

θi(x)δ̃i

≤
∑

i∈J(i0)

θi(x)δi0 = δi0 ≤ δ(x).

We now estimate H(x, dxu). First we observe that
∑

i∈J(i0)
θi(y) = 1, and v(x) =

∑

i∈J(i0)
θi(y)ui(y), for every y ∈ Vi0 . Since Vi0 is a neighborhood of x, we can differ-

entiate to obtain
∑

i∈J(i0)
dxθi = 0, and

dxv =
∑

i∈J(i0)

θi(x)dxui

︸ ︷︷ ︸

p(x)

+
∑

i∈J(i0)

ui(x)dxθi

︸ ︷︷ ︸

p′(x)

.

Using the quasi-convexity of H in p, we get

H(x, p(x)) ≤ max
i∈J(i0)

H(x, dxui) ≤ max
i∈J(i0)

c +
ǫ̃i
2
≤ c+

ǫi0
2
, (*)

where for the last inequality we have used that i ∈ J(i0) means Vi∩Vi0 6= ∅, and therefore
i0 ∈ J(i), which implies ǫ̃i ≤ ǫi0 , by the definition of ǫ̃i.

In the same way, we have

‖p(x)‖x ≤ max
i∈J(i0)

)‖dxui‖x ≤ max
i∈J(i0)

Ri + 1 ≤ R̃i0 + 1. (**)

We now estimate ‖p′(x)‖x. Using
∑

i∈J(i0)
dxθi = 0, we get

p′(x) =
∑

i∈J(i0)

ui(x)dxθi =
∑

i∈J(i0)

(ui(x)− u(x))dxθi.
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Therefore

‖p′(x)‖x = ‖
∑

i∈J(i0)

(ui(x)− u(x))dxθi‖x ≤
∑

i∈J(i0)

|ui(x)− u(x)|‖dxθi‖x

≤
∑

i∈J(i0)

η̃iKi. (***)

From the definition of η̃i, we get Kiη̃i ≤
ηi0
j(i0)

, for all i ∈ J(i0). Hence ‖p′(x)‖x ≤
∑

i∈J(i0)

ηi0
j(i0)

= ηi0. The definition of ηi0 , together with the inequalities (*), (**) and

(***), above implies H(x, dxv) = H(x, p(x) + p′(x)) ≤ c+ ǫi0 ≤ c+ ǫ(x).

Theorem 10.8. Suppose H : T ∗M → R is a Hamiltonian quasi-convex in the fibers. Let
u : M → R be a locally Lipschitz viscosity subsolution of H(x, dxu) = c which is strict
at every point of an open subset U ⊂M . For every continuous function ǫ : U →]0,+∞[,
we can find a viscosity subsolution uǫ : M → R of H(x, dxu) = c such that u = uǫ on
M \ U, |u(x) − uǫ(x)| ≤ ǫ(x), for every x ∈ M , and the restriction uǫ|U is a C∞ with
H(x, dxu) < c for each x ∈ U .

Proof. We define ǫ̃ :M → R by ǫ̃(x) = min(ǫ(x), d(x,M \ U)2), for x ∈ U , and ǫ̃(x) = 0,
for x /∈ U . It is clear that ǫ̃ is continuous on M and ǫ̃ > 0 on U .

For each x ∈ U , we can find cx < c, and Vx ⊂ V an open neighborhood of x such
that H(y, dyu) ≤ cx, for almost every y ∈ Vx. The family (Vx)x∈U is an open cover of
U , therefore we can find a locally finite partition of unity (ϕx)x∈U on U submitted to the
open cover (Vx)x∈U . We define δ : U →]0,+∞[ by δ(g) =

∑

x∈U ϕx(y)(c− cx), for y ∈ U .
It is not difficult to check that H(y, dyu) ≤ c− δ(y) for almost every y ∈ U .

We can apply Theorem 10.7 to the Hamiltonian H̃ : T ∗U → R defined by H̃(y, p) =
H(y, p) + δ(y) and u|U which satisfies H̃(y, dyu) ≤ c for almost every y ∈ U , we can
therefore find a C∞ function uǫ : U → R, with |uǫ(y)− u(y)| ≤ ǫ̃(y), and H̃(y, dyuǫ) ≤
c+ δ(y)/2, for each y ∈ U . Therefore, we obtain |uǫ(y)− u(y)| ≤ ǫ(y), and H(y, dyuǫ) ≤
c−δ(y)/2 < c, for each y ∈ U . Moreover, since ǫ̃(y) ≤ d(y,M \U)2, it is clear that we can
extend continuously uǫ by u onM\U . This extension satisfies |uǫ(x)−u(x)| ≤ d(x,M\U)2,
for every x ∈M . We must verify that uǫ is a viscosity subsolution of H(x, dxuǫ) = c. This
is clear on U , since uǫ is C∞ on U , and H(y, dyuǫ) < c, for y ∈ U . It remains to check
that if φ :M → R is such that φ ≥ uǫ with equality at x0 /∈ U then H(x0, dx0

φ) ≤ c. For
this, we note that uǫ(x0) = u(x0), and u(x) − uǫ(x) ≤ d(x,M \ U)2 ≤ d(x, x0)

2. Hence
u(x) ≤ φ(x) + d(x, x0)

2, with equality at x0. The function x → φ(x) + d(x, x0)
2 has a

derivative at x0 equal to dx0
φ, therefore H(x0, dx0

φ) ≤ c, since u is a viscosity solution of
H(x, dxu) ≤ c.

11 The viscosity semi-distance

We will suppose that H : T ∗M → R is a continuous Hamiltonian coercive above every
compact subset of the connected manifold M .

Definition 11.1 (Mañé Critical Value). Let H : T ∗M → R be a continuous Hamiltonian.
We define c[0] as the infimum of all c ∈ R, such that H(x, dxu) = c admits a global
subsolution u :M → R.
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Note that c[0] is always well defined and finite if, for some c ∈ R, there is a viscosity
subsolution of H(x, dxu) = c. If M is compact this is always the case. If M is non-
compact and there is no c for which H(x, dxu) = c admits a viscosity subsolution, we will
set c[0] = +∞.

Exercise 11.2. 1) Suppose that H : T ∗M → R is a continuous Hamiltonian coercive
above every compact subset of the connected manifold M . Show that

c[0] ≥ sup
x∈M

inf
p∈T ∗

xM
H(x, p) > −∞.

[Indication: Use the fact that a viscosity subsolution of H(x, dxu) = c is necessarily
differentiable a.e. on M .]

2) Supose that V : M → R is continuous. If the Hamiltonian H on M is defined by
H(x, p) = 1

2
‖p‖2x+ V (x), where ‖·‖x is the norm associated to a Riemannian on M , show

that c[0] = supM V .

We denote by SSc the set of viscosity subsolutions ofH(x, dxu) = c, and by SSc
x̂ ⊂ SSc

the subset of subsolutions vanishing at a given x̂ ∈ M . Of course, since we can always
add a constant to a viscosity subsolution and still obtain a subsolution, we have SSc

x̂ 6= ∅
if and only if SSc 6= ∅, and in that case SSc = R+ SSc

x̂.

Proposition 11.3. Suppose that H : T ∗M → R is a continuous Hamiltonian coercive
above every compact subset of the connected manifold M . Assume that there is a c ∈ R,
such that H(x, dxu) = c has a viscosity subsolution on the whole of M (in particular,
the Mañé critical value c[0] is finite). Then there exists a global u : M → R viscosity
subsolution of H(x, dxu) = c[0].

Proof. Fix a point x̂ ∈ M . Subtracting u(x̂) if necessary, we will assume that all the
viscosity subsolutions of H(x, du) = c we consider vanish at x̂. Since H is coercive above
every compact subset of M , for each c the family of functions in SSc

x̂ is locally equi-
Lipschitzian. Therefore, using that M is connected and the fact that every v ∈ SSc

x̂

vanish at x̂, we obtain
∀x ∈M, sup

v∈SSc
x̂

|v(x)| < +∞.

We pick a sequence cn ց c[0], with cn ≤ c, and a sequence un ∈ SScn
x̂ . Since, by Ascoli’s

theorem, the family SSc
x̂ is relatively compact in the topology of uniform convergence on

each compact subset, extracting a sequence if necessary, we can assume that un converges
uniformly to u on each compact subset of M . By the Stability Theorem 6.1, since un
is a viscosity subsolution of H(x, dxu) = cn, the limit u is a viscosity subsolution of
H(x, dxu) = c[0].

For c ≥ c[0], we define

Sc(x, y) = sup
u∈SSc

u(y)− u(x) = sup
u∈SSc

x

u(y).

It follows from Theorem 8.2, that for each x ∈ M the function Sc(x, .) is a viscosity
subsolution of H(y, dyu) = c on M itself, and a viscosity solution on M \ {x}.
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Theorem 11.4. For each c ≥ c[0], the function Sc is a semi-distance, i.e. it satisfies

(i) for each x ∈M,Sc(x, x) = 0,

(ii) for each x, y, z ∈M , Sc(x, z) ≤ Sc(x, y) + Sc(y, z)

Moreover, for c > c[0], the symmetric semi-distance, Ŝc(x, y) = Sc(x, y)+Sc(y, x) is a
distance which is locally Lipschitz-equivalent to any distance coming from a Riemannian
metric.

Proof. The fact that Sc is a semi-distance follows easily from the definition

Sc(x, y) = sup
u∈SSc

u(y)− u(x).

Fix a Riemannian metric on the connected manifoldM whose associated norm is denoted
by ‖·‖, and associated distance is d. Given a compact subset K ⊂ M , the constant
sup{‖p‖ | x ∈ K, p ∈ TxM,H(x, p) ≤ c}, is finite since H is coercive above compact
subsets of M . It follows from this that for each compact subset K ⊂ M , there exists a
constant LK <∞ such that.

∀x, y ∈ K,Sc(x, y) ≤ LKd(x, y).

It remains to show a reverse inequality for c > c[0]. Fix such a c, and a compact set
K ⊂ M . Choose δ > 0, such that N̄δ(K) = {x ∈ M | d(x,K) ≤ δ} is also compact. By
the compactness of the set

{(x, p) | x ∈ N̄δ(K), H(x, p) ≤ c[0]},

and the continuity of H , we can find ǫ > 0 such that

∀x ∈ N̄δ(K), ∀p, p′ ∈ TxM,H(x, p) ≤ c[0] and ‖p′‖ ≤ ǫ

⇒ H(x, p+ p′) ≤ c.
(*)

We can find δ1 > 0, such that the radius of injectivity of the exponential map, associated
to the Riemannian metric, is at least δ1 at every point x in the compact subset N̄δ(K).
In particular, the distance function x 7→ d(x, x0) is C∞ on B̊(x0, δ1) \ {x0}, for every
x0 ∈ N̄δ(K). The derivative of x 7→ d(x, x0) at each point where it exists has norm 1,
since this map has (local) Lipschitz constant equal to 1. We can assume δ1 < δ. We now
pick φ : R → R a C∞ function, with support in ]1/2, 2[, and such that φ(1) = 1. If x0 ∈ K
and 0 < d(y, x0) ≤ δ1/2, the function

φy(x) = φ(
d(x, x0)

d(y, x0)
)

is C∞. In fact, if d(x, x0) ≥ δ1, then φy is zero in a neighborhood of x, since d(x, x0)/d(y, x0) ≥
δ1/(δ1/2) = 2; if 0 < d(x, x0) < δ1 < δ, then it is C∞ on a neighborhood of x; fi-
nally φy(x) = 0 for x such that d(x, x0) ≤ d(y, x0)/2. In particular, we obtained that
dxφy = 0, unless 0 < d(x, x0) < δ, but at each such x, the derivative of z 7→ d(z, x0) exists
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and has norm 1. It is then not difficult to see that supx∈M‖dxφy‖ ≤ A/d(y, x0), where
A = supt∈R|φ

′(t)|.
Therefore if we set λ = ǫd(y, x0)/A, we see that ‖λdxφy‖ ≤ ǫ, for x ∈ M . Since φ is

0 outside the ball B(x0, δ1) ⊂ Nδ1(K), it follows from the property (*) characterizing ǫ
that we have

∀(x, p) ∈ T ∗M,H(x, p) ≤ c[0] ⇒ H(x, p+ λdxφy) ≤ c.

Since Sc[0](x0, ·) is a viscosity subsolution of H(x, dxu) = c[0], and φy is C∞, we conclude
that the function u(.) = Sc[0](x0, .)+λφy(.) is a viscosity subsolution ofH(x, dxu) = c. But
the value of u at x0 is 0, and its value at y is Sc[0](x0, y)+λφy(y) = Sc[0](x0, y)+ǫd(y, x0)/A,
since φy(y) = φ(1) = 1. Therefore Sc(x0, y) ≥ Sc[0](x0, y) + ǫd(y, x0)/A. Hence we
obtained

∀x, y ∈ K, d(x, y) ≤ δ1/2 ⇒ Sc(x, y) ≥ Sc[0](x, y) + ǫA−1d(x, y).

Adding up and using Sc[0](x, y) + Sc[0](y, x) ≥ Sc[0](x, x) = 0, we get

∀x, y ∈ K, d(x, y) ≤ δ1/2 ⇒ Sc(x, y) + Sc(y, x) ≥
2ǫ

A
d(x, y).

12 The projected Aubry set

Theorem 12.1. Assume that H : T ∗M → R is a Hamiltonian coercive above every
compact subset of the connected manifold M , with c[0] < +∞. For each c ≥ c[0], and
each x ∈ M , the following two conditions are equivalent:

(i) The function Sc(x, ·) is a viscosity solution of H(z, dzu) = c on the whole of M .

(ii) There is no viscosity subsolution of H(z, dzu) = c on the whole of M which is strict
at x.

In particular, for every c > c[0], the function Sc(x, ·) is not a viscosity solution of
H(z, dzu) = c.

Proof. The implication (ii)⇒(i) follows from proposition 9.2.
To prove (i)⇒(ii), fix x ∈ M such that Sc

x(·) = Sc(x, ·) is a viscosity solution on the
whole of M , and suppose that u : M → R is a viscosity subsolution of H(y, dyu) = c
which is strict at x. Therefore we can find an open neighborhood Vx of x, and a cx < c
such that u|Vx

is a viscosity subsolution of H(y, dyu) = cx on Vx. By definition of S,
we have u(y) − u(x) ≤ Sc

x(y) with equality at y = x. This implies u − Sc
x has a global

maximum at x. Applying Theorem 7.2 to the restrictions of u and Sc
x to Vx, we see that

we must have c ≤ cx < c, a contradiction.
Since a viscosity subsolution of H(x, dxu) = c[0] is a strict viscosity subsolution of

H(x, dxu) = c for any c > c[0], we obtain the last part of the theorem.

The above theorem yields the following definition.
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Definition 12.2 (Projected Aubry set). If H : T ∗M → R is a continuous Hamiltonian,
coercive above every compact subset of the connected manifold M . We define the pro-
jected Aubry set as the set of x ∈ M such that that Sc[0](x, ·) is a viscosity solution of
H(z, dzu) = c[0].

To be able to go further in our discussion we will restrict to Hamiltonian convex in
the fibers.

Proposition 12.3. Assume that H : T ∗M → R is a continuous Hamiltonian, convex in
the fibers, and coercive above every compact subset of the connected manifold M . There
exists a viscosity subsolution v : M → R of H(x, dxv) = c[0], which is strict at every
x ∈M \ A.

Proof. We fix some base point x̂ ∈ M . For each x /∈ A, we can find ux : M → R,
an open subset Vx containing x, and cx < c[0], such that ux is a viscosity subsolution
of H(y, dyux) = c[0] on M , and ux|Vx is a viscosity subsolution of H(y, dyux) ≤ cx, on
Vx. Subtracting ux(x̂) if necessary, we will assume that ux(x̂) = 0. Since U = M \ A
is covered by the family of open sets Vx, x /∈ A, we can extract a countable subfamily
(Vxi

)i∈N covering U . Since H is coercive above every compact set the sequence (uxi
)i∈N

is locally equi-Lipschitzian. Therefore, since M is connected, and all the uxi
vanish at

x̂, the sequence (uxi
)i∈N is uniformly bounded on every compact subset of M . It follows

that the sum V =
∑

i∈N
1

2i+1uxi
is uniformly convergent on each compact subset. If we set

un = (1−2−(n+1))−1
∑

0≤i≤n
1

2i+1uxi
, then un is a viscosity subsolution of H(x, dxun) = c[0]

as a convex combination of viscosity subsolutions, see proposition 10.5. Since un converges
uniformly on compact subsets to u, the stability theorem 6.1 implies that v is also a
viscosity subsolution of H(x, dxv) = c[0].

On the set Vxn0
, we have H(x, dxuxn0

) ≤ cxn0
, for almost every x ∈ Vxn0

. Therefore, if
we fix n ≥ n0, we see that for almost every x ∈ Vxn0

we have

H(x, dxun) ≤ (1− 2−(n+1))−1
n∑

i=0

1

2i+1
H(x, dxuxi

)

≤ (1− 2−(n+1))−1

[
n∑

i=0

1

2i+1
c[0] +

(cxn0
− c[0])

2n0+1

]

.

Therefore un|Vxn0
is a viscosity subsolution of H(x, dxun) ≤ c[0] + (cxn0

− c[0])/2n0+1.
By the stability theorem 6.1, this is also true for v|Vxn0

. Since cxn0
− c[0] < 0, we

conclude that u|Vxn0
is a strict subsolution of H(x, dxv) = c[0], for each x ∈ Vxn0

, and
therefore at each x ∈ U ⊂ ∪n∈NVxn

.

Corollary 12.4. Assume that H : T ∗M → R is a Hamiltonian convex in the fibers and
coercive, where M is a compact connected manifold. Its projected Aubry set A is not
empty.

Proof. We argue by contradiction. If A = ∅ then by Proposition 12.3 above, we can find
a viscosity subsolution u of H(x, dxu) = c[0] which is strict everywhere. In particular for
every x ∈M , we can find an open neighborhood Vx of x and cx < c[0] such that u|Vx is a
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viscosity solution of H(y, dyv) = cx. By compactness ofM , we can find a finite number of
points x1, . . . , xℓ) of M such that M = Vx1

∪ · · · ∪ Vxℓ
. It follows from Corollary 4.2 that

u is a viscosity subsolution of H(x, dxu) = max(cx1
, . . . , cxℓ

) on the whole of M . This is
in contradiction of the definition of c[0] since max(cx1

, . . . , cxℓ
) < c[0].

Theorem 12.5. Assume that H : T ∗M → R is a Hamiltonian convex in the fibers
and coercive, where M is a compact connected manifold. Suppose u1, u2 : M → R are
respectively a viscosity subsolution and a viscosity supersolution of H(x, dxu) = c[0]. If
u1 ≤ u2 on the projected Aubry set A, then u1 ≤ u2 everywhere on M.

In particular, if two viscosity solutions of H(x, dxu) = c[0] coincide on A, they coincide
on M .

Proof. By Proposition 12.3 above, we can find a viscosity subsolution u0 of H(x, dxu) =
c[0] which is strict at every point ofM \A. We interpolate between u0 and u1 by defining
ut = (1 − t)u0 + tu1. Like in the proof of Proposition 12.3, we can show that ut is a
viscosity subsolution of H(x, dxu) = c[0], for any t ∈ [0, 1]. Moreover, for t < 1, the
viscosity subsolution ut is strict at each point of M \ A. By the coercivity condition all
subsolutions are locally Lipschitz. SinceM is compact ut−u2 achieves a maximum onM .
By Proposition 9.3, for t < 1, this maximum is achieved at a point of the compact subset
A. Since ut converges uniformly to u1, it follows that u1 − u2 achieves also its maximum
on M in the same compact subset A. But u1 − u2 ≤ 0 on A. Therefore u1 − u2 ≤ 0
everywhere on M .

We now give an example to show that Theorem 12.3 and Corollary 12.4 are not
necessarily valid for a Hamiltonian quasi-convex in the fibers

Example 12.6. Define the quasi-convex function h : R → R by

h(t) =







−t− 1, for t ≤ −1,

t + 1, for −1 ≤ t ≤ 0,

1, for 0 ≤ t ≤ 1,

t, for t ≥ 1.

We define a Hamiltonian H on T = R/Z. We use the usual identification of the cotangent
space T ∗

T with T × R. In this usual identification the derivative du of a function u :
T → R, as a section, is exactly t 7→ (t, u′(t)). The Hamiltonian H : T × R is defined by
H(t, s) = h(s). Obviously the constant function u0 ≡ 0 obviously satisfies H(t, u′0(t)) =
H(t, 0) = h(0) = 1, therefore c[0] = 1, by Corollary 7.3. For any t0 ∈ T, the function
vt0(t) = (2π)−1 sin(2πt+ π − 2πt0) has a derivative v′t0(t) = cos(2πt + π − 2πt0) which is
between −1 and 1 everywhere. Therefore vt0 is a subsolution of H(t, v′(t)) = 1. Moreover,
its derivative at t0 is cos(π) = −1, Hence H(t0, v

′
t0(t0)) = h(−1) = 0 < 1. By continuity

of the derivative of vt0 , it follows that vt0 is strict at t0. Since t0 is arbitrary in T, it follows
from Theorem 12.1 that the Aubry set of H is empty. This shows that Corollary 12.4
cannot be true for general quasi-convex Hamiltonian. We now show that Proposition 12.4
cannot be true for H . In fact, if it were true we would obtain a viscosity subsolution which
is strict at every point of T. Using the compactness of T like in the proof of Corollary
12.4, we see that this yields a viscosity subsolution of H(t, v′(t)) = c, for some c < 1. This
is impossible since c[0] = 1.
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13 The representation formula

We still assume that M is compact, and that H : T ∗M → R is a coercive Hamiltonian
convex in the fibers.

Theorem 13.1. Any viscosity solution u :M → R for H(x, dxu) = c[0] satisfies

∀x ∈ M,u(x) = inf
x0∈A

u(x0) + Sc[0](x0, x)

.

This theorem follows easily from the uniqueness theorem 12.5 and the following one:

Theorem 13.2. For any function v : A → R bounded below, the function

ṽ(x) = inf
x0∈A

v(x0) + Sc[0](x0, x)

is a viscosity solution of H(x, dxv) = c[0]. Moreover, we have ṽ|A = v, if and only if

∀x, y ∈ A, v(y)− v(x) ≤ Sc[0](x, y).

We start with a lemma.

Lemma 13.3. Suppose H : T ∗M → R is a continuous Hamiltonian convex in the fibers,
and coercive above each compact subset of the connected manifold M . Let ui : M →
R, i ∈ I be a family of viscosity subsolutions of H(x, dxu) = c. If inf i∈I ui(x0), is finite for
some x0 ∈ M , then inf i∈I ui is finite everywhere. In that case, the function u = inf i∈I ui
is a viscosity subsolution of H(x, dxu) = c.

In particular, if each ui, i ∈ I is a viscosity solution so is u = inf i∈I ui.

Proof. We fix an auxiliary Riemannian metric on M , and we use as a distance on M its
associated distance.

By the coercivity condition, the family (ui)i∈I is locally equi-Lipschitzian, therefore if
K is a compact connected subset of M , there exists a constant C(K) such that

∀x, y ∈ K, ∀i ∈ I, |ui(x)− ui(y)| ≤ C(K).

If x ∈ M is given, we can find a compact connected subset Kx containing x0 and x, it
follows that

inf
i∈I

ui(x0) ≤ inf
i∈I

ui(x) + C(Kx)

therefore inf i∈I ui is finite everywhere. It now suffices to show that for a given x̃ ∈M , we
can find an open neighborhood V of x̃ such that inf i∈I ui|V is a viscosity subsolution of
H(x, dxu) = c on V . We choose an open neighborhood V of x̃ such that its closure V̄ is
compact. Since C0(V̄ ,R) is metric and separable in the topology of uniform convergence,
we can find a countable subset I0 ⊂ I such that ui|V̄ , i ∈ I0 is dense in {ui|V̄ | i ∈ I},
for the topology of uniform convergence. Therefore inf i∈I ui = inf i∈I0 ui on V̄ . Since I0 is
countable, we have reduced the proof to the cases where I0 = {0, · · · , N}, or I0 = N.
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Let us start with the first case. Since u0, · · · , uN , and u = infNi=0 ui are all Lipschitzian
on V , we can find E ⊂ V of full Lebesgue measure such that dxu, dxu0, · · · , dxuN exists,
for each x ∈ E. At each such x ∈ E, we necessarily have dxu ∈ {dxu0, . . . , dxuN}. In fact,
if n is such that u(x) = un(x), since u ≤ un with equality at x and both derivative at x
exists, they must be equal. Since each ui is a viscosity subsolution of H(x, dxv) = c, we
obtain H(x, dxu) ≤ c, for every x in the subset E of full measure in V . The convexity of
H in the fibers imply that u is a viscosity subsolution of H(x, dxu) = c in V . It remains
to consider the case I0 = N. Define uN(x) = inf0≤i≤N ui(x), by the previous case, uN is a
viscosity subsolution of H(x, dxu

N) = c on V .
Now uN(x) → inf i∈I0 ui(x), for each x ∈ V̄ , the convergence is in fact, uniform on V̄

since (ui)i∈I0 is equi-Lipschitzian on the compact set V̄ . It remains to apply the stability
theorem 6.1.

To prove the last part of the lemma, it suffices to recall that from Proposition 8.1 an
infimum of a family of supersolutions is itself supersolution.

Proof of Theorem 13.2. By definition of the projected Aubry set, for every, x0 ∈ A, the
function v(x0) + SSc[0](x0, ·) is a viscosity solution. It follows from Lemma 13.3 above
that ṽ is a viscosity solution.

Since ṽ is in particular a subsolution, it satisfies everywhere ṽ(y)− ṽ(x) ≤ Sc[0](x, y).
Therefore if v = ṽ on A, we must have that

∀x, y ∈ A, v(y)− v(x) ≤ Sc[0](x, y).

Conversely, if v satifies the property above, from the definition of ṽ, it is obvious that
v = ṽ on A.

14 Tonelli Hamiltonians and Lagrangians

We now establish part of the relationship between viscosity solutions, weak KAM solu-
tions, and the Lax-Oleinik semi-group for a Tonelli Hamiltonian. A reference for this part
is of course Patrick Bernard’s companion lectures [Ber11]. Another reference is [Fat08].

In this section we will always suppose that the manifold is compact. We first recall
the definition of a Tonelli Hamiltonian.

Definition 14.1. Let M be a compact manifold. A Hamiltonian H : T ∗M → R is said
to be Tonelli if it is at least C2, and satisfies the following two conditions :

(1) (Superlinearity) for every K ≥ 0, there exists C∗(K) <∞ such that

∀(x, p) ∈ T ∗M,H(x, p) ≥ K‖p‖x − C∗(K) ;

(2) (C2 strict convexity in the fibers) for every (x, p) ∈ T ∗M , the second derivative
along the fibers ∂2H/∂p2(x, p) is (strictly) positive definite.

Note that condition (1) is independent of the choice of a Riemannian metric on M .
In fact, all Riemannian metrics on the compact manifold M are equivalent. Moreover,
condition (1) implies that H is coercive.
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To such a Hamiltonian is associated a Lagrangian L : TM → R defined by

∀(x, v) ∈ TM,L(x, v) = max
p∈T ∗

xM
〈p, v〉 −H(x, p).

Since H is of class C2 finite everywhere, superlinear and strictly convex in each fiber T ∗
xM ,

it is well known that L is finite everywhere of class C2, strictly convex and superlinear in
each fiber TxM , and satisfies

∀(x, p) ∈ T ∗M,H(x, p) = max
v∈TxM

〈p, v〉 − L(x, v).

Definition 14.2 (Evolution Dominated Function). A function U : [0,+∞[×M → R is
said to be evolution dominated by the Tonelli Lagrangian L associated to the Tonelli
Hamiltonian H if for every continuous piecewise C1 curve γ : [a, b] → M ,with 0 ≤ a ≤ b,
we have

U(b, γ(b)) − U(a, γ(a)) ≤

∫ b

a

L(γ(s), γ̇(s)) ds.

Note that an evolution dominated function is not necessarily continuous. In fact, since
L is superlinear, we have c = inf L > −∞. It ρ : [0,+∞[→ R is any non-increasing (not
necessarily continuous) function, then U(t, x) = ct+ ρ(t) is evolution dominated by L.

Exercise 14.3. 1) Show that a function U : [0,+∞[×M → R is evolution dominated by L
if and only if for every continuous piecewise C1 curve γ : [α, β] →M ,with α, β ∈ R, α ≤ β,
and every a ≥ 0, we have

U(a + β − α, γ(β))− U(a, γ(α)) ≤

∫ β

α

L(γ(s), γ̇(s)) ds.

[Indication: Reparametrize the curve γ by a shift in time.]
2) Suppose that U : [0,+∞[×M → R is evolution dominated by L. If a ≥ 0 show that

V (t, x) = U(t + a, x) is also evolution dominated by L.

Proposition 14.4. If a continuous function U : [0,+∞[×M → R is evolution dominated
by the Tonelli Lagrangian L associated to the Tonelli Hamiltonian H , then U is a viscosity
subsolution of

∂U

∂t
(t, x) +H(x,

∂U

∂x
(t, x)) = 0,

on the open set ]0,+∞[×M .

Proof. Suppose φ ≥ U , with φ of class C1 and (t0, x0) = U(t0, x0), where t0 > 0. Fix
v ∈ Tx0

M , and pick a C1 curve γ : [0, t0] → M such that (γ(t0), γ̇(t0)) = (x, v).
If 0 ≤ t ≤ t0, we have

U(t0, γ(t0))− U(t, γ(t)) ≤

∫ t0

t

L(γ(s), γ̇(s)) ds. (∗)

Since φ ≥ U , with equality at (t0, x0), noticing that γ(t0) = x0, we obtain from (∗)

∀t ∈]0, t0[, φ(t0, γ(t0))− φ(t, γ(t)) ≤

∫ t0

t

L(γ(s), γ̇(s)) ds.



37

Dividing by t0 − t > 0, and letting t→ t0, we get

∀v ∈ Tx0
M,

∂φ

∂t
(t0, x0) +

∂φ

∂x
(t0, x0)(v) ≤ L(x0, v).

Since

H(x0,
∂φ

∂x
(t0, x0)) = sup

v∈Tx0
M

∂φ

∂x
(t0, x0)(v)− L(x0, v),

we obtain
∂φ

∂t
(t0, x0) +H(x0,

∂φ

∂x
(t0, x0)) ≤ 0.

This finishes the proof.

An important object of the theory is the Lax-Oleinik semi-group. We recall its defini-
tion and some of its properties, and send the reader to the last section of Patrick Bernard’s
companion lectures [Ber11], or to [Fat08].

If u :M → R is a continuous function, and t > 0, we define T−
t u :M → R by

T−
t u(x) = inf

γ
{u(γ(0)) +

∫ t

0

L(γ(s), γ̇(s)) ds},

where the infimum is taken over all the continuous piecewise C1 curves γ : [0, t] → M
such that γ(t) = x.

In fact, for each t > 0 the function T−
t u is continuous (and even Lipschitz). Moreover,

setting T−
0 u = u, the function (t, x) 7→ T−

t u(x) is continuous on [0,+∞[×M , and is locally
Lipschitz on ]0,+∞[×M .

Moreover, the family T−
t , t ≥ 0 is a semi-group, i.e.

∀t, t′ ≥ 0, ∀u ∈ C0(M,R), T−
t+t′u = T−

t T
−
t′ u.

Exercise 14.5. 1) Suppose that U : [0,+∞[×M → R is a continuous function. For
a ≥ 0, set Ua(x) = U(a, x). Show that U is evolution dominated by L, if and only if for
every t, a ≥ 0, we have Ut+a ≤ T−

t Ua.
2) If u ∈ C0(M,R), and U(t, x) = T−

t u(x), show that U is evolution dominated by L.

Theorem 14.6. If u ∈ C0(M,R), and U(t, x) = T−
t u(x), then U is a viscosity solution

of
∂U

∂t
(t, x) +H(x,

∂U

∂x
(t, x)) = 0, (EHJ)

on the open subset ]0,+∞[×M .

Proof. By Proposition 14.4, and part 2) of Exercise 14.5, the function U is a viscosity
subsolution of (EHJ) on ]0,+∞[×M .

To prove that U is a supersolution, we consider ψ ≤ U , with ψ of class C1. Suppose
U(t0, x0) = ψ(t0, x0), with t0 > 0.

As is well-known, by Tonelli’s theorem, the infimum in the definition of T−
t u(x) is

attained by a curve which is a minimizer, hence at least C2. Therefore, we can pick a C2

curve γ : [0, t0] →M such that γ(t0) = x0 and

U(t0, x0) = T−
t0
u(x0) = u(γ(0)) +

∫ t0

0

L(γ(s), γ̇(s)) ds.
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Since U(0, γ(0)) = u(γ(0)), this can be rewritten as

U(t0, x0)− U(0, γ(0)) =

∫ t0

0

L(γ(s), γ̇(s)) ds. (∗∗)

Applying twice the fact that U is evolution dominated by L, for every t ∈ [0, t0], we obtain

U(t0, x0)− U(t, γ(t)) ≤

∫ t0

t

L(γ(s), γ̇(s)) ds

U(t, γ(t))− U(0, γ(0)) ≤

∫ t

0

L(γ(s), γ̇(s)) ds.

Adding these two inequalities, by (**), we get in fact an equality. Hence we must have

∀t ∈ [0, t0], U(t0, γ(t0))− U(t, γ(t)) =

∫ t0

t

L(γ(s), γ̇(s)) ds.

Since ψ ≤ U , with equality at (t0, x0), for every t ∈ [0, t0], we obtain

ψ(t0, γ(t0))− ψ(t, γ(t)) ≥

∫ t0

t

L(γ(s), γ̇(s)) ds.

Dividing by t0 − t > 0, and letting t→ t0, we get

∂ψ

∂t
(t0, x0) +

∂ψ

∂x
(t0, x0)(γ̇(t0)) ≥ L(x0, γ̇(t0)).

By definition of L, we have

L(x0, γ̇(t0)) ≥
∂ψ

∂x
(t0, x0)(γ̇(t0))−H(x0,

∂ψ

∂x
(t0, x0)).

It follows that

∂ψ

∂t
(t0, x0) +

∂ψ

∂x
(t0, x0)(γ̇(t0)) ≥

∂ψ

∂x
(t0, x0)(γ̇(t0))−H(x0,

∂ψ

∂x
(t0, x0)).

Therefore
∂ψ

∂t
(t0, x0) +H(x0,

∂ψ

∂x
(t0, x0)) ≥ 0.

Since the continuous function (t, x) 7→ T−
t u(x), (t, x) ∈ [0,+∞[×M , is locally Lipschitz

on ]0,+∞[×M , and is a viscosity solution of

∂U

∂t
(t, x) +H(x,

∂U

∂x
(t, x)) = 0,

on ]0,+∞[×M , we can apply the uniqueness statement of Corollary 7.5 to obtain the
following theorem.
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Theorem 14.7. Let H : T ∗M → R is a Tonelli Hamiltonian on the compact manifold
M . Suppose that the continuous function U : [0,+∞[×M → R is a viscosity solution of

∂U

∂t
(t, x) +H(x,

∂U

∂x
(t, x)) = 0,

on the open set ]0,+∞[×M . Then U(t, x) = T−
t u(x), for every (t, x) ∈ [0,+∞[×M ,

where u :M → R is defined by u(x) = U(x, 0).

We now conclude with the characterization of the solutions of the Hamilton-Jacobi
equation by the Lax-Oleinik semi-group.

Theorem 14.8. Let H : T ∗M → R be a Tonelli Hamiltonian on the compact manifold
M . A continuous function u :M → R is a viscosity solution of H(x, dxu) = c if and only
if u = T−

t u+ ct, for all t ≥ 0.

Proof. We set U(t, x) = u(x)− ct. By Exercise 2.10, the function u is a viscosity solution
of

H(x, dxu) = c

on M if and only if U is a viscosity solution of

∂U

∂t
(t, x) +H(x,

∂U

∂x
(t, x)) = 0

on ]0,+∞[×M . It now follows from Theorem 14.7 that u is a viscosity solution of
H(x, dxu) = c if and only if U(t, x) = T−

t u(x), for all x ∈M , and t ≥ 0.

Exercise 14.9. Suppose that H : T ∗M → R is a Tonelli Hamiltonian on the compact
manifoldM . Assume that the continuous function U, V : [0,+∞[×M → R are respectively
a viscosity subsolution and supersolution of the evolutionary Hamilton-Jacobi equation

∂U

∂t
(t, x) +H(x,

∂U

∂x
(t, x)) = 0, (EHJ)

on the open set ]0,+∞[×M . For a ≥ 0 define Ua, Va : M → R by Ua(x) = U(a, x) and
Va(x) = V (a, x).

1) Show that for all t ≥ 0, we have

Ut+a ≤ T−
t Ua and T−

t Va ≤ Vt+a.

2) Show that U is evolution dominated by L.
3) Conclude that a continuous function on [0,+∞[×M is a viscosity subsolution of

(EHJ) on ]0,+∞[×M if and only if it is evolution dominated by L.
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