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Abstract. . The goal of this paper is to give a simple proof of the convergence to time-
periodic states of the solutions of time-periodic Hamilton-Jacobi equations on the circle with
convex Hamiltonian. Note that the period of limiting solutions may be greater than the period
of the Hamiltonian.
Resumé. . On donne une preuve simple de la convergence vers des états périodiques
en temps pour les solutions d’équations de Hamilton-Jacobi sur le cercle avec un Hamiltonien
convexe et périodique en temps. Il est à noter que la périodes des solutions limites peut être
plus grande que la période du Hamiltonien.

1. Introduction

We consider the Hamilton-Jacobi equation

ut +H(t, x, ux) = 0, x ∈ T(1.1)

where T is the unit circle. The Hamiltonian H(t, x, p) : IR×T× IR 7→ IR is C2,
1-periodic in t, and satisfies the following classical hypotheses:

• Strict convexity: Hpp(t, x, p) > 0 for all (t, x, p) ∈ IR×T× IR.

• Super-linearity: H(t, x, p)/p −→∞ as |p| −→ ∞ for each (t, x) ∈ IR×T.

• Completeness: The Hamiltonian vector-field

X(t, x, p) = (Hp(t, x, p),−Hx(t, x, p))

is complete, i.e. for all (t0, x0, p0), there exists a C2 curve γ(t) = (x(t), p(t)) :
IR −→ T × IR such that (x(t0), p(t0)) = (x0, p0) and γ̇(t) = X(t, γ(t)) for
all t ∈ IR.
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The first two assumptions are classical in the viscosity solutions theory; see [14].
The last one is introduced in Mather [12]; note that it is satisfied if there exists
a constant C such that |Ht| ≤ C(1 +H).

Under the above three assumptions, the Cauchy Problem for (1.1) is well posed
in the viscosity sense: given a time s ∈ IR and a continuous function u0 : T→ IR,
equation (1.1) has a unique viscosity solution u(t, x) : [s,+∞[×T −→ IR, such
that u(s, .) = u0. It will be denoted by T (s, t)u0. See [14], for instance.

It is known - and this is not specific to the one-dimensional setting - that
there exists a real number λ such that u(t, x) + λt is bounded for all viscosity
solution u : [s,+∞[×T −→ IR of (1.1). The real number λ has at least three
different names: It is the critical value of Mañe, see [13], [10] or the value α(0),
where α : IR −→ IR is the Mather function, see [12], or the averaged Hamiltonian
[15]. We are interested in proving the following result.

Theorem 1.1 Let u(t, x) : [s,+∞[×T −→ IR be a viscosity solution of (1.1).
There exist an integer T and a viscosity solution l(t, x) = λt+φ(t, x) : IR×T −→
IR such that φ is T -periodic in t and

lim
t−→∞

‖u(t, .)− l(t, .)‖∞ = 0.

In the following, we will always assume that λ = 0, which can be obtained by
replacing the Hamiltonian H by H − λ.

It is known that there always exist a viscosity solution of (1.1) which is 1-
periodic in time. However, it is not hard to build examples of viscosity solutions
of equations of the form (1.1) which do not converge to 1-periodic solutions, see
[3] and [9]. More precisely, one can build solutions which are periodic in time,
but of minimal period greater than one. Hence one cannot expect to have always
T = 1 in the theorem.

For time-independent Hamiltonians, convergence to steady states is known:
a particular nontrivial multidimensional case is studied in [16], and the general
result in one dimension is given in [19]. The general multidimensional result is
due to Fathi [7], and two different proofs are available in [18] and [3].

The situation is not so clear when the Hamiltonian is time-periodic. In order
to be more precise, it is useful to recall that one can associate to the equation
(1.1) a rotation number ρ ∈ IR, see section 4., which is the rotation number of
extremals. We then have the following

Addendum The period T in the theorem is 1 if the rotation number ρ is
irrational and is not greater than q if ρ is a rational p/q.

The theorem and its addendum have been proved in [4] from the dynamical
system point of view, that is from the study of extremals.

The result in the case of a rational rotation number had been previously
obtained by a method relying on the dynamic programming principle in [18]. It
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turns out that the ideas of this paper can be exploited further to provide a simpler
proof of the general case. It is our aim to present this proof here.

We shall first recall the general properties of viscosity solutions, in Section
2.. In Section 3., we introduce some dynamics, define some Aubry-Mather sets,
and recall specific observations concerning ω-limit solutions, mostly taken from
[18]. All the results in these sections are general, and remain true if one con-
siders equation (1.1) on any compact manifold. We complement these general
observations by specific one-dimensional arguments in Section 4. to conclude the
proof.

2. General properties and a large time behaviour

candidate

Let us start with some well understood properties of viscosity solutions without
proof, see [14], [6] or [9]. We denote T (s, t) : C(T, IR) −→ C(T, IR) the map-
ping which associates to each function u0 ∈ C(T, IR) the function u(t, .), where
u(t, x) ∈ C([s,+∞[×T, IR) is the viscosity solution of (1.1) such that u(s, .) = u0.
We have the Markov property

T (t, t′) ◦ T (s, t) = T (s, t′)

for s ≤ t ≤ t′, hence the mappings T (0, n) = T (0, 1)n, n ∈ IN form a discrete
semi-group. We will note T for T (0, 1) for simplicity.

The mappings T (s, t) are contractions,

‖T (s, t)u− T (s, t)v‖∞ ≤ ‖u− v‖∞.

The mappings T (s, t) are compact. More precisely, given a bounded set B ⊂
C(T, IR), there exists a positive nondecreasing function K(ε) :]0,∞[−→]0,∞[
such that T (s, t)u is K(ε)-Lipschitz for all u ∈ B and all t ≥ s+ ε.

The mappings T (s, t) are order-preserving and satisfy T (s, t)(u + c) = c +
T (s, t)(u) for all real c. Let us end this list by recalling the Hopf-Lax-Oleinik
formula:

T (s, t)u0 = inf
γ

(
u0(γ(s)) +

∫ t

s
L(σ, γ, γ̇) dσ

)
(2.1)

where the infimum is taken on the set of piecewise C1 curves with values in T,
such that γ(t) = x. In the above, the Lagrangian L(t, x, v) is defined as the
Legendre transform of H:

L(t, x, v) = max
p∈IR

(
pv −H(t, x, p)

)
.
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It is a classical result from the calculus of variations that, under our assumptions,
the infimum in (2.1) is reached by C2 curves.

The main point of this paragraph is the following simple proposition below.
Note that it also implies the existence of a fixed point of the semi-group generated
by T , i.e. the existence of a 1-periodic viscosity solution of (1.1).

Proposition 2.1 Let u(t, x) ∈ C([s,∞[×T, IR) be a viscosity solution of (1.1);
recall that it is bounded on [s,∞[×T. Then the 1-periodic function

φ(t, x) = lim inf
n→+∞

u(t+ n, x)

is a viscosity solution of (1.1).

Proof. We have to prove that T (s, t)φ(s, .) = φ(t, .) for all s ≤ t.
It follows from the Barles-Perthame Lemma [1] that φ is a viscosity super-

solution of (1.1), i.e. that T (s, t)φ(s, .) ≤ φ(t, .). This fact, which is a general
feature of viscosity solutions of first or second order equations, can be easily seen
on (2.1). In order to do so, we fix (t, x) and consider an increasing sequence nk
of integers such that u(t + nk, x) −→ φ(t, x). There exists a sequence of curves
γk : [s, t] −→ T such that

u(t+ nk, x) = u(s+ nk, γk(0)) +
∫ t

s
L(σ, γk(σ + t), γ̇k(σ + t)) dσ.

The sequence γk is compact for the C1 topology, and we will assume by possibly
taking a subsequence in nk that it is convergent, and note γ the limit. Taking
the lim inf in the equality above gives

φ(t, x) ≥ φ(s, γ(0)) +
∫ t

s
L(σ, γ(σ + t), γ̇(σ + t)) dσ ≥ T (s, t)φ(s, .)(x).

We have used that the functions u(s + nk, .) have a common Lipschitz constant
to conclude that lim inf u(s+ nk, γk(0)) = lim inf u(s+ nk, γ(0)) ≥ φ(s, γ(0)).

The reverse inequality is specific to Hamilton-Jacobi equations, and explicitely
relies on (2.1). Note that for all curve γ : [s, t] −→ T, we have

u(t+ n, x) ≤ u(s+ n, γ(0)) +
∫ t

s
L(σ, γ(σ + t), γ̇(σ + t)) dσ.

Taking the lim inf, we obtain

φ(t, x) ≤ φ(s, γ(0)) +
∫ t

s
L(σ, γ(σ + t), γ̇(σ + t)) dσ

for each curve γ, hence φ(t, .) ≤ T (s, t)φ(s, .), which is the desired inequality.
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The basic objects to understand in order to study the asymptotic behaviour
of solutions of (1.1) are the ω-limit solutions. Recall that a solution u(t, x) : IR×
T −→ IR is called an ω-limit solution if there exists a solution v : [s,∞[×T −→ IR
and an increasing sequence nk of integers such that

u(t, x) = lim
k−→∞

v(t+ nk, x).

In other words, ω-limit solutions are solutions whose initial value u(0, .) is an
ω-limit of the semi-group T .

3. Calibrated curves and Uniqueness set

In this section, we give - without many proofs, for they are already stated in
[6] or [18] - some salient features of ω-limit solutions that do not depend of the
dimension of the ambient space.

Let u : [s,∞[×T −→ IR be a viscosity solution of (1.1). A curve γ : [s,∞[⊃
[t, t′] −→ T is said calibrated by u if

u(t′, γ(t′)) = u(t, γ(t)) +
∫ t′

t
L(σ, γ, γ̇) dσ.

From Fathi [6], if γ : [t, t′] −→ T is calibrated by u, then ux exists at each point
(s, γ(s)), s ∈ [t, t′[ and satisfies

ux(s, γ(s)) = Lv(s, γ(s), γ̇(s))⇐⇒ γ̇(s) = Hp(s, γ(s), ux(s, γ(s)).

Such a property was already understood in [17] for the equation |∇u| = f(x)
on the sphere, f nonnegative with nonempty zero set. It was not, however, made
that systematic.

We now choose once and for all a 1-periodic solution φ(t, x) of (1.1). First,
let us note that a classical compactness argument gives the existence of curves
γ : IR −→ T which are calibrated by φ on all compact interval.

It is a consequence of [6], or Mather’s shortening lemma, see [12] that two such
curves cannnot intersect. More precisely if γ1 and γ2 : IR −→ T are calibrated
by φ, and if there exists a t such that γ1(t) = γ2(t), then γ1 = γ2.

Let
D ⊂ IR×T

be the union of the graphs of these orbits, and D0 ⊂ T be the set of points γ(0),
where γ : IR −→ T is calibrated. This is a nonempty compact set. For each t,
we define the mapping St : D0 −→ T which associates to each x ∈ D0, the value
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γ(t), where γ : IR −→ T is the unique calibrated curve satisfying γ(0) = x. It is
a bi-Lipschitz homeomorphism onto its image.

Clearly, S1 is a homeomorphism of D0. Let us note M0 its ω-limit. This
is the closure in T the set of points x ∈ D0 which are the limit of a sequence
Snk(y) with y ∈ D0 and nk an increasing sequence of integers. The set M0 is
non-empty and compact. We callM the union, in IR×T, of the graphs of curves
St(x), x ∈M0.

The following remark, noticed in [18], is the key point to the convergence
proof:

Lemma 3.1 Let u(t, x) : [s,∞[×T −→ IR be a viscosity solution of (1.1), let
x ∈ D0. Then the function t 7→ u(t, St(x))− φ(t, St(x)) is non-increasing.

The important consequence below is also proved in [18]:

Corollary 3.1 Let u(t, x) be an ω-limit viscosity solution of (1.1), and let x ∈
M0, then the function t 7→ u(t, St(x))− φ(t, St(x)) is constant.

It follows that the curve St(x) is calibrated by u; hence u and φ are differen-
tiable on M by the above-stated regularity results of Fathi.

Corollary 3.2 Let u(t, x) be an ω-limit viscosity solution of (1.1). Then the
functions u(t, x) and φ(t, x) and differentiable on M, and we have

∂t(u− φ)(t, x) = ∂x(u− φ)(t, x) = 0

for all (t, x) ∈M.

The next step is to define a uniqueness set, i.e. a set such that two global
solutions of (1.1) coinciding on this set coincide everywhere. We formulate the
results in the general, non-autonomous, setting.

Proposition 3.2 Let u(t, x) : IR × T −→ IR be a global and bounded viscosity
solution of (1.1) such that u = φ on M, then u = φ.

This proposition easily follows from the following lemma:

Lemma 3.2 Let u(t, x) : IR×T −→ IR be a global and bounded viscosity solution
of (1.1) and γ(t) :] −∞, s] −→ T be a curve calibrated by u. Then there exists
an increasing sequence nk of integers such that γ(−nk) −→ x ∈M0.

Proof. In view of Lemma 3.1, the function t 7−→ u(t, γ(t)) − φ(t, γ(t)) is non-
increasing, and bounded. Hence this function has a limit as t −→ −∞. Let us
choose an increasing sequence nk of integers such that the curves γ(t − nk) are
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converging uniformly on compact sets to a limit γ∞ : IR −→ T. The following
calculations show that this curve is calibrated by φ:

φ(t′, γ∞(t′))− φ(t, γ∞(t)) = lim
(
φ(t′, γ(t′ − nk))− φ(t, γ(t− nk))

)
= lim

(
φ(t′ − nk, γ(t′ − nk))− φ(t− nk, γ(t− nk))

)
= lim

(
u(t′ − nk, γ(t′ − nk))− u(t− nk, γ(t− nk))

)
= lim

∫ t′

t
L(σ, γ(σ − nk), γ̇(σ − nk))dσ =

∫ t′

t
L(σ, γ∞(σ), γ̇∞(σ))dσ.

As a consequence, the curve t −→ (t, γ∞(t)) is asymptotic to M, so that there
exists an increasing sequences mk of integers such that that γ∞(mk) −→ x ∈M0.
Possibly taking a subsequence of nk, we obtain that γ(mk − nk) −→ x ∈M.

In the autonomous case, where the Hamiltonian H does not depend on the
variable t, the above remarks imply that any ω-limit viscosity solution u is in-
dependent of t on M = IR ×M0. One can then conclude that the solution u is
independent of t.

The time-periodic case however is more complicated, and we are not able to
give a description of ω-limit orbits without using some specific features of the low
dimension. This will be done in the next section.

Before we continue, let us give an important remark. All the objects con-
structed in this section, the sets D and M and the mappings St, depend on the
periodic solution φ that was chosen in the beginning. Let us note Dφ and Mφ

and Stφ in order to emphasize this dependence. If ψ is another 1-periodic viscosity
solution, then we see from Corollary 3.1 that the orbits of Mψ are calibrated by
φ. It follows that the set

A =
⋂
φ

Dφ,

is not empty, where the intersection is taken on the set of 1-periodic viscosity
solutions. This set is usually called the Aubry set. The mappings Stφ|A0

do not
depend on φ, and for all φ, we have Mφ ⊂ A.

4. Rotation number and convergence

In this section, we shall take advantage of the low dimension. More precisely,
we shall make use of Poincaré theory of homeomorphisms of the circle, see [11]
for example. We have constructed in the previous section a closed subset A of
IR × T, which is the disjoint union of graphs of calibrated curves. These curves
have a well defined rotation number ρ ∈ IR. Recall that this rotation number
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can be defined by lifting the calibrated curves to the universal cover IR of T. If
γ̃ : IR −→ IR is one of these lifted curves, we define ρ = lim γ̃(t)/t. This number
does not depend on the curve chosen, hence it depends only on the Hamiltonian
H.

Proof of the theorem. Let u(t, x) be an ω-limit viscosity solution. Let
φ(t, x) = lim inf u(t + n, x) be as in Proposition 2.1. We will prove that u = φ
in the two cases ρ = 0 and ρ irrational. The general case of a rational rotation
number ρ = a/b, a 6= 0 can be reduced to the case ρ = 0 by considering the
Hamiltonian

H̃(t, x, p) = aH(at, bx− at, p
b

)

and noticing that the function u(t, x) is a solution of the equation (1.1) with
Hamiltonian H if and only if the function ũ(t, x) = u(at, bx− at) is a solution of
the equation (1.1) with Hamiltonian H̃, and that the rotation number associated
to this second equation is ρ = 0.

In view of Lemma 3.2, it is enough to prove equality on Mφ. Let us note
d = u− φ. This function is differentiable on Mφ and satisfies

∂td = ∂xd = 0.

Recall that there exists a constant K such that the function d(t, .) is K-Lipschitz
for each t.
Case 1. ρ = 0. In this case, M0 is a union of fixed points of S1, or equivalently
the orbits in M are 1-periodic. The function d is constant on each of these
periodic orbits, so that d(n, x) = d(0, x) for each x ∈M0. It follows that d(0, x) =
0 since lim inf d(n, x) = 0. as a consequence, d = 0 on M.

Case 2. ρ is irrational. The proof that d|M = 0 is similar to the proof of
Proposition 6.5. in [4]. Let us lift the set M to the universal cover IR × IR,
as well as the function d. The set M is a disjoint union of graphs of curves
γ̃(t) : IR −→ IR, which are the liftings of calibrated curves in T. The function d
is constant on each of these graphs. Let us set d0 = d(0, .) : IR −→ IR. We want
to prove that d0|M0 is constant. In order to do so, let us consider a connected
component ]x, y[ of the complement of M0 in IR, and let γ̃x and γ̃y : IR −→ IR
be the liftings of the calibrated curves such that γ̃x(0) = x and γ̃y(0) = y. Since
inf |γ̃x(t)− γ̃y(t)| = 0, and since

|d0(y)− d0(x)| = |d(t, γ̃y(t))− d(t, γ̃x(t))| ≤ K|γ̃x(t)− γ̃y(t)|

for each t, we have d0(y) = d0(x). Hence there exists a continuous function
f : IR −→ IR which is equal to d0 onM0, and which is constant on all connected
components of the complement of M0. This function is differentiable and sat-
isfies f ′ = 0 on each point of the complement of M0, but also on each point of
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M0 since d′0 = 0 there. As a consequence, it is constant, hence d0|M0 is constant,
hence d|T is constant, this constant has to be zero since lim inf d(t+ n, x) = 0.
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