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Introduction

Variational methods provide interesting existence results on homoclinic orbits to hyperbolic
fixed points of Hamiltonian systems under global conditions. The early result of Bolotin
[3] about Lagrangian flows has been extended to Hamiltonian systems in C

n in [6], the hy-
pothesis has been weakened in [10] and [15], and finally in [13] for autonomous systems. A
natural generalization is the existence of homoclinic orbits to hyperbolic periodic motions of
autonomous Hamiltonian systems. Very interesting results have been obtained by Bolotin in
[4] and other papers, for Lagrangian systems on compact Riemannian manifolds, but there
are no global results available for systems in C

n where the lack of topology makes Bolotin’s
methods inefficient. This paper is a first attempt in that direction.

A periodic motion of an autonomous Hamiltonian system always has at least two Floquet
multipliers equal to 1. As a consequence it cannot be hyperbolic in the whole phase space,
but only with respect to its energy shell, and it is not isolated, but included in a 1-parameter
family of periodic motions, one motion on each energy shell. The union of the orbits of
the family is an invariant two dimensional manifold, we call it the center manifold. It is
normally hyperbolic in phase space and for that reason it is an easier problem to look for
orbits homoclinic to that manifold than to look for orbits homoclinic to a prescribed periodic
motion. An orbit homoclinic to the center manifold is homoclinic to one of the periodic
motions, by energy conservation.

We study a model class of systems in C
n where the center manifold is a plane with

harmonic oscillations on it. This situation is however quite general, as is explained in [2].
We prove that the periodic orbits having a homoclinic orbit are dense in the center manifold
outside of a compat set. We obtain the homoclinics as accumulation points of sequences of
periodic orbits. These periodic orbits are subharmonics of perturbed systems. Convergence
of subharmonics has already been used to find homoclinics to hyperbolic fixed points, see [15].

One of the main features of homoclinic orbits is that they induce chaotic behavior. In-
deed, it is well-known that a Bernoulli shift with positive entropy exists in periodically time-
dependant systems containing a transverse homoclinic to a hyperbolic fixed point. This
structure also exists in autonomous systems containing a hyperbolic orbit with a transversal
homoclinic. It should be noted however that the orbit structure associated with a transversal
homoclinic orbit to a hyperbolic fixed point of an autonomous system is not as well under-
stood. It is chaotic in certain instances, see [7] or [5], but it can also be integrable. This
is one of the reasons why we believe it is important to find some global existence results on
homoclinic orbits to periodic orbits. We obtain classes of autonomous systems in C

n with
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this structure at many energy levels. We can study for example couplings between stable and
unstable systems, and obtain large chaotic regions at high energy.

1 Results and examples

In the following, C will always be a positive constant, possibly different from one line to the
other. The Lp norm of f will be noted ‖f‖p. We will often use technical results from [15]
without proof. Let us define

J2 =

[

0 1
−1 0

]

, J2n =











J2 0 · · · 0
0 J2 0
...

. . .
...

0 0 · · · J2











,

and the associated symplectic form Ω2n on R
2n:

Ω2n(X,Y ) = 〈J2nX,Y 〉.

We will omit the subscript 2n. There is a splitting

(R2n,Ω) = (R2,Ω) ⊕ (R2n−2,Ω),

the subspaces R
2 and R

2n−2 are Ω-orthogonal and symplectic.

1.1 Main result

We consider the Hamiltonian system

Ẋ = J∇H(X)

associated to the autonomous Hamiltonian

H(X) = H(x, z) =
1

2
ω|x|2 +

1

2
〈Az, z〉 + W (x, z), (1)

X = (x, z) ∈ R
2 × R

2n−2,

where the pulsation ω is a positive number,

HA A is a (2n − 2) × (2n − 2) real symmetric matrix such that

σ(JA) ∩ iR = ∅,

and W is a C2 function satisfying:

HW1 there is a α > 2 and a continous function C : R
2 −→ R

+ such that W (x, z) 6 C(x)|z|α

and ∇zW (x, z) 6 C(x)|z|α−1 in a neighborhood of R
2 × {0} ⊂ R

2 × R
2n−2,

HW2 there is a µ ∈ (2, α] such that

µW (X) 6 〈∇W (X), X〉,
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HW3 there is B > 0 such that
B|z|α 6 W (x, z).

We will introduce in the proof auxiliary systems satisfying

HW4 there exists a compact set outside of which

W (x, z) = a|z|α.

We obtain the useful inequalities

W (x, z) 6 C|z|α , |∇zW (x, z)| 6 C|z|α−1 (2)

from [HW1] and [HW4]. The hypotheses [HA] and [HW1-3] are satisfied for example by the
Hamiltonian

H(x1, x2, z1, z2) = x2
1 + x2

2 + z2
1 − z2

2 +
(

1 + x2
1

) (

z2
1 + z2

2

)2
.

More examples are given below.
A system satisfying [HA] and [HW1] has a two dimensional invariant space R

2×{0} which
is foliated by periodic orbits Or with equation

Or(t) = (eJωt(r, 0), 0)

all having the same period T0 = 2π/ω. The orbit Or has energy H = ωr2/2 and is hyperbolic
with respect to its energy shell. It has n−1 dimensional stable and unstable manifolds which
in the 2n − 1 dimensional energy shell may intersect along a homoclinic orbit. In this paper
we study this phenomenon, and prove:

Theorem 1 Let us consider the Hamiltonian system (1) satisfying [HA], [HW1-3]. Let

R = {r > 0 such that Or has a homoclinic orbit} .

There is a positive number M depending only on A,B and α such that
[

√

M

π
,∞

)

⊂ R,

where R is the closure of R.

Remarks :

1. There is an estimate for M , see (21) in the proof, which is enough to obtain that for
fixed A and α

lim
B−→∞

M = 0.

2. It would be useful to obtain a more explicit estimate for M . We focus on a similar ques-
tion in [1]. The setting is different and allows a better understanding of the constants.
On the other hand, we obtain here infinitely many orbits while only one is obtained in
[1].

3. We do not know whether R = R. Since the origin does not have any homoclinic in
general, it is not surprising that we can not find easily homoclinics close to the origin,
but they may well exist.

4. The result cannot be improved to [C,∞) ⊂ R without additional assumption, see
example below.
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1.2 Coupling stable and unstable systems

Let us consider the unstable system in R
2 associated to the Hamiltonian

G(z) =
1

2
〈Az, z〉 + R(z),

where the matrix A satisfies [HA] and the nonlinearity R is superquadratic:

R(z) = o(|z|2) near 0,

R(z) > C|z|α with α > 2,

〈∇R(z), z〉 > µR(z), with µ > 2.

The origin is a hyperbolic fixed point and has a homoclinic orbit. It is well-known from
Melnikov theory that a generic time-dependent perturbation creates transversal homoclinic
orbits, which implies a chaotic behavior with positive topological entropy. A new way to
introduce a chaotic behavior is to couple the system with a harmonic oscillator. Consider the
system in R

4 associated to the Hamiltonian

H(x, z) = |x|2 +
1

2
〈Az, z〉 + (1 + F (x))G(z),

with a positive function F such that 〈∇F (x), x〉 > 0. We can apply theorem 1 to that system,
this provides homoclinics to many of the periodic motions z = 0 at high energy. By a small
perturbation, these homoclinics can be made transversal, and then induce chaotic behavior
in fast regions of phase space, that is in regions that contain no rest point.

1.3 Hypersurfaces of R2n

We now interpret our result in terms of hypersurfaces of R
2n. Let Σ be a compact starshaped

(with respect to the origin) hypersurface of R
2n, let UΣ be the bounded connected component

of R
2n − Σ, the notation Σ′ 4 Σ means that Σ′ ⊂ UΣ. It is well-known that a hypersurface

carries a canonical direction field D(x) satisfying

J∇H(x) ∈ D(x) ∀x ∈ Σ

for any function H having Σ as a regular level hypersurface. Let us fix a matrix A satisfying
[HA], for any B > 0 and α > 2, we define the compact hypersurface

Σ(B,α) =

{

(x, z) such that |x|2 +
1

2
〈Az, z〉 + B|z|α = 1

}

.

Let Σ be a starshaped hypersurface of R
2n such that there exist 0 < B 6 D and α with

Σ(D,α) 4 Σ 4 Σ(B,α),

it is not hard to see that S = Σ ∩ {z = 0} is an invariant circle of the canonical direction
field. We can define the function

R(x, z) = 1 − |x|2 −
1

2
〈Az, z〉 > B|z|α
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on Σ. Since Σ is starshaped there is an α-homogeneous function W : R
2n −→ R extending

R. The surface Σ is then the regular level H = 1 of the Hamiltonian

H(x, z) = |x|2 +
1

2
〈Az, z〉 + W (x, z),

and [HW2] holds. For any (x, z) ∈ R
2n − 0, there is a t > 0 such that (x/t, z/t) ∈ Σ. We

check [HW3] writing

W (x, z) = tαW (x/t, z/t) = tαR(x/t, z/t) > tαB |z/t|α > B|z|α,

[HW1] is also easily seen to hold. We can apply theorem 1 (with remark 1) to obtain:
theorem 1’ If B > B0 there is a sequence ln −→ 1 such that the hypersurface

Σn =
{

H = ln
}

carries an orbit homoclinic to the periodic hyperbolic trajectory Σn ∩ {z = 0}, where B0 is a
constant depending only on A and α.

Some comments may be useful. The main limitation of this result is that we do not obtain
the existence of an orbit homoclinic to the prescribed closed invariant curve on the prescribed
energy shell. It would be very interesting to find hypotheses implying such a conclusion. Our
hypotheses are not sufficient, see example below. We can see our result in the following way:
We give a constructive method to perturb smoothly the prescribed energy shell in order to
create a homoclinic orbit (the hypersurfaces Σn are clearly converging in the C∞ topology to
the hypersurface Σ). For comparison, let us mention that, using local perturbation techniques
of Hayashi, Xia has proved in a much more general setting that a homoclinic orbit can be
created by a C1 small perturbation of the hypersurface, ([9],[16]). As usual with these kinds
of results, improving from the existence of a C 1-small perturbation to the existence of a C∞-
small perturbation is very hard and requires strong additional hypotheses, such as the ones
we assume.

1.4 Example

Let F : R
2 −→ R be a smooth function satisfying

z2
2 − z2

1 + C|z|4 6 F (z1, z2) 6 z2
2 − z2

1 + D|z|4 ∀z,

F (z) = |z|4 outside of a compact set,

the zero level of F having the shape shown in the figure below.

Consider the function

Fλ(z) =
1

λ2
F (λz),
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the Hamiltonian Hλ : R
4 −→ R

Hλ(x, z) = |x|2 + Fλ(z)

and the surface
Σλ =

{

Hλ(x, z) = 1
}

.

The vector field associated to Hλ has a product structure, its trajectories satisfy ż = J∇Fλ(z).
The origin is a hyperbolic rest point for this equation, but its stable and unstable manifolds
are heteroclinic orbits connecting this fixed point to the two other ones and not homoclinic
orbits. It follows that Σλ ∩ {z = 0} has no homoclinic orbit for the vector field, and thus no
homoclinic either for the canonical direction field. Yet we now prove that for λ large enough
it satisfies all hypotheses of theorem 1’ with α = 4. We first note that

Fλ =
1

2
〈Az, z〉 + O(|z|4),

where

A =

[

−2 0
0 2

]

satisfies [HA]. To prove that Σλ is starshaped for λ large enough we observe that

〈∇Hλ(x, z), (x, z)〉 = 2|x|2 + 〈∇Fλ(z), z〉 = 〈∇Fλ(z), z〉 − 2Fλ(z) + 2

on Σλ since |x|2 + Fλ(z) = 1. This gives

〈∇Hλ(x, z), (x, z)〉 =
1

λ2
〈∇F (λz), λz〉 −

2

λ2
F (λz) + 2 =

1

λ2

(

〈∇F (y), y〉 − 2F (y) + 2λ2
)

.

This is positive when λ is large enough, because 〈∇F (y), y〉 − 2F (y) has a lower bound, the
surface is thus starshaped in this case.

There remains to estimate

Wλ(x, z) = Fλ(z) − z2
2 + z2

1

on Σλ. From
C|z|4 6 W (x, z) 6 D|z|4

we get
λ2C|z|4 6 Wλ(x, z) 6 λ2D|z|4

and thus the condition

D|z|4 > Wλ(x, z) > B0|z|
4 ⇒ Σ(D, 4) 4 Σλ 4 Σ(B0, 4)

is satisfied for λ large. �
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2 Convergence of periodic orbits

We prove theorem 1 in the sequel of this paper. We obtain the homoclinic orbits as limits of
sequences of periodic orbits of H. It is useful to define the action of a T -periodic C 1 loop:

IT (X) =

∫ T

0

1

2
〈JX(t), Ẋ(t)〉 − H(X(t)) dt.

We have the following existence result, that will be proved in section 3.

Theorem 2 There is a constant M depending only on A,B and α such that for any

R0 >
√

M/π ,H0 =
1

2
ωR2

0

and any ε > 0 there is a N(ε) > 0 and a sequence Xk of Tk-periodic orbits satisfying

Tk −→ ∞, (3)

0 6 ITk
(Xk) 6 N(ε), (4)

|H(Xk) − H0| 6 ε, (5)

zk 6≡ 0. (6)

That N has to depend of ε in this lemma is what makes it impossible to obtain a homoclinic
orbit on a given energy surface: we can not control in the same time the closeness and the
action. We now prove that theorem 2 implies theorem 1, that is we study the convergence of
the sequence Xk = (xk, zk) obtained by theorem 2.

Lemma 1 The sequences ‖zk‖α and ‖Xk‖C1 are bounded.

Proof: Since the function H is proper, it follows from (5) that ‖Xk‖∞ is bounded, as well as
‖Xk‖C1 since Xk satisfies the equation

Ẋk = J∇H(Xk).

To prove the first part of the lemma, let us write (4) and use [HW2,3]:

N > I(Xk) =

∫ Tk

0

1

2
〈∇H(Xk), Xk〉 − H(Xk) dt

=

∫ Tk

0

1

2
〈∇W (Xk), Xk〉 − W (Xk) dt

>

∫ Tk

0

(µ

2
− 1
)

W (Xk) dt

> B
(µ

2
− 1
)

‖zk‖
α
α.

�

We are now in a position to use Ascoli’s theorem to obtain a limit. Yet we first have to insure
non triviality of the limit. It will result from

Lemma 2 There is a δ > 0 such that any periodic orbit of H staying in

Vδ = {|z| 6 δ} ∩ {H 6 H0 + 1}

must satisfy z ≡ 0.
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Proof: This lemma is a consequence of the fact that z = 0 is a normally hyperbolic manifold for
H. To be more precise, let Fs and Fu be the stable and unstable spaces of JA, R

2n−2 = Fs⊕Fu

by [HA]. We denote the projections by

Ps : R
2n−2 −→ Fs and Pu : R

2n−2 −→ Fu.

There are Euclidean structures |.|s on Fs and |.|u on Fu and a λ > 0 such that 〈JAz, z〉s 6

−λ|z|2s when z ∈ Fs and 〈JAz, z〉u > λ|z|2u when z ∈ Fu. From [HW1], we obtain a δ > 0
such that

〈PsJ∇Hl(x, z), Ps(z)〉s 6 −
λ

2
|Ps(z)|2

and

〈PuJ∇Hl(x, z), Pu(z)〉u >
λ

2
|Pu(z)|2

when |z| 6 δ and H 6 H0 +1. It follows that if X(t) = (x(t), zs(t)+zu(t)) is a solution of the
Hamiltonian equation lying in Vδ, |zu|u is increasing or 0, and |zs|s is decreasing or 0, thus
the solution can not be periodic unless z ≡ 0. �

Since the equation is autonomous, we can change the time origin of Xk to obtain

zk(0) > δ/2.

For any fixed τ , the sequence Xk|[−τ,τ ] has a uniform limit (up to taking a subsequence) and
by diagonal extraction we can find a subsequence of Xk converging pointwise and uniformly
on any compact set to a limit X∞ satisfying

Ẋ∞ = J∇H(X∞).

We also see using Fatou’s lemma that ‖z∞‖α is finite and since ż∞ is bounded,

z∞(t) −→ 0 as t −→ ±∞,

z∞(0) > δ/2.

The energy H∞ = H(X∞) satisfies

H∞ ∈ [H0 − ε,H0 + ε]

because of (5), and the equation

1

2
ω|x∞|2 − H∞ = −

1

2
〈Az∞, z∞〉 − W (x∞, z∞)

implies that x∞(t) must go to

r =

√

2H∞

ω

when z∞(t) goes to 0. Thus the trajectory X∞ is homoclinic to {z = 0} ∩ {H = H∞}. This
proves theorem 1, since ε > 0 can be chosen as small as needed. �

8



3 Existence of periodic orbits

We prove theorem 2 in this section using variational methods. Let us fix a radius R0 and the
associated energy H0 = ωR2

0/2. The functional I does not satisfy PS condition because the
oscillations on the center manifold form a non-compact family of critical points of zero action.
Moreover, we have to find a way to specify around which energy surface we are working. For
these reasons, it will be useful to introduce a perturbation that will turn PS condition on,
and that will confine critical points around the fixed energy surface.

Before we perturb the system, let us notice that since we are looking for phenomena taking
place around a fixed energy surface, it is harmless to change the Hamiltonian at infinity. We
use this remark following a well-known trick, see [12] for example. Let K > 0 be a large
number, let χ ∈ C∞(R, R) be a smooth increasing function such that χ(x) = 0 for x 6 K,
χ(x) = 1 if x > K + 1 and χ′ 6 2. We introduce the function

W̃ (X) = (1 − χ(|X|))W (X) + χ(|X|)a|z|α

where

a = max
K6|X|6K+1

W (X)

|z|α
.

It is not hard to check that this function satisfies [HW1-3], with the same constants. If K is
large enough the hamiltonian have not been changed for H(X) 6 H0 + 1 and it is the same
to prove theorem 2 for W̃ or for W . In the following we will work with W̃ instead of W , but
for simplicity we will still call it W , that is we will suppose that [HW4] holds. We are now in
a position to introduce the perturbed hamiltonian we are going to study.

Let us take a function

S : R
2n −→ R

(x, z) 7−→ (H(x, z) − H0)
4 when H(x, z) 6 H0 + 1,

(x, z) 7−→ C(|x|3 + |z|α) outside of a compact set.

We moreover assume that
H > H0 + 1 ⇒ S > 1

and that there is a smooth and convex function f such that

S(x, 0) = f(|x|2).

It is not hard to see that the above class of functions is not empty. Note that there exists a
constant C such that for all (x, z) ∈ R

2 × R
2n−2,

S(x, z) 6 C(H(x, z) − H0))
4. (7)

We consider the Hamiltonian

Hl(x, z) = H(x, z) + lS(x, z).

where l will always be chosen small enough so that the equation Hl = E + l(E − H0)
4 has

only one solution E(Hl) > minH. The shell Hl = hl of Hl is the shell H = E(hl) of H when
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hl 6 H0 + 1 thus the local structure of the flow has not been changed by the perturbation in
this region, where there holds

∇Hl = (1 + 4l(H − H0)
3)∇H. (8)

Although H and Hl have the same periodic solutions in the region under interest, we will
look for T -periodic trajectories of Hl, that are easier to be found as critical points of

Il(x, z) =

∫ T

0
〈−

1

2
JẊ,X〉 − Hl(X) dt

on a suitable function space. We will prove the following proposition, that leads to theorem
2.

Proposition 1 There exists a constant M depending only on A,B and α, such that if

πR2
0 > M

there holds: For any ∆ > 0 and any

T ∈
2π

ω
N ∩ [1,∞)

there exists l(T ) in the interval (0,∆/T ) and a T -periodic trajectory (xT , zT ) of Hl(T ) such
that

0 < Il(T )(xT , zT ) 6 M, (9)
∫ T

0
S(xT , zT ) dt 6

TM

∆
+ 1, (10)

zT 6≡ 0. (11)

Before we prove this proposition, let us see that it implies theorem 2. Set

hT = Hl(T )(XT ).

If ∆ has been chosen large enough, (10) implies that S must take a value below one when T
is large enough, thus XT is contained in H 6 H0 + 1 and has a fixed energy ET = H(XT ).
We apply (10) once again and get

|ET − H0| 6

(

2
M

∆

)
1

4

and

0 6 hT − ET = l(ET − H0)
4 6 2

M

T

when T is large enough. Let us now define the curve

X̃T (t) = XT

(

(

1 + 4l(ET − H0)
3
)−1

t
)

,

it comes directly from (8) that X̃T is a trajectory of H, the period of which

T̃ =
(

1 + 4l(ET − H0)
3
)

T
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satisfies
T̃ > T + 4l(ET − H0)

3T > T − 8M
3

4 ∆
1

4 .

We can estimate its action

I(X̃T ) = Il(T )(XT ) + ThT − T̃ET = Il(T )(XT ) + T (hT − ET ) + (T − T̃ )ET

and obtain
I(X̃T ) 6 3M + 8M

3

4 ∆
1

4 (H0 + 1). (12)

In addition, we have I(X̃T ) > 0 since X̃T is a trajectory of H. The sequence X̃T satisfies
all the conclusions of theorem 2 which is finally proved. We remark that ∆ appears in this
estimate, so that we must fix it before passing to the limit, and that’s why we can’t reach the
surface H = H0 itself. �

We now have to prove proposition 1. Let us fix a period T = τ2π/ω, τ ∈ N, and define the
following functionals on smooth T -periodic arcs:

e(x(t)) =

∫ T

0
−

1

2
〈Jẋ(t) + ωx(t), x(t)〉dt, (13)

h(z(t)) =

∫ T

0
−

1

2
〈Jż(t) + Az(t), z(t)〉dt, (14)

b(x(t), z(t)) =

∫ T

0
W (x(t), z(t))dt, (15)

p(x(t)) =

∫ T

0
S(x(t), z(t))dt. (16)

We are going to obtain T -periodic orbits of Hl as critical points of

Il(x(t), z(t)) = e(x(t)) + h(z(t)) − b(x(t), z(t)) − lp(x(t), z(t)).

The proof of proposition 1 goes along the following line. We first take a good function space
on which the above functional can be studied. We see that this functional has a ”universal”
linking structure, this allows us to define a critical level cT (l) which is a nonincreasing function
of l. It will appear from the construction that 0 < cT (l) 6 M for a constant M independent
of l and T , this is (9). Since l is allowed to take values in the interval (0,∆/T ), there must be
a l such that c′T (l) exists and |c′T (l)| 6 MT/∆. Using Struwe’s monotony method (see [14],
II.9), it can be deduced that there is a critical point X at level cT (l) with

p(x(t)) =

∣

∣

∣

∣

∂

∂l
Hl(X)

∣

∣

∣

∣

6 1 + MT/∆,

this is (10). To obtain (11) we just have to check that no T -periodic solution of Hl on R
2×{0}

has its action in (0,M ] if πR2
0 > M . Let us start with this program.

3.1 The analytical setting

We use Fourier series
x(t) =

∑

k∈Z

eJkωt/τ xk, xk ∈ R
2
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to compute e:

e

(

∑

k∈Z

eJkωt/τ xk

)

=
∑

k∈Z

π (k − τ) |xk|
2.

We define the inner product

〈x, y〉e = 2π〈xτ , yτ 〉 +
∑

k∈Z

2π |k − τ | 〈xk, yk〉,

its associated norm ‖x‖2
e = 〈x, x〉e and the space

Ee =
{

x ∈ L2(0, T ; R2) such that ‖x‖e < ∞
}

.

It is classical that e can be extended to Ee as a continuous quadratic form, and there is an
orthogonal splitting

Ee = E+
e ⊕ E0

e ⊕ E−
e ,

with

E+
e = {x such that xk = 0 for k 6 τ},

E0
e = {x such that xk = 0 for k 6= τ},

E−
e = {x such that xk = 0 for k > τ},

P±
e , P 0

e are the associated projections. We then obtain the nice expression

e(x) =
1

2
‖P+

e (x)‖2 −
1

2
‖P−

e (x)‖2,

and we can sum up some important properties:

Lemma 3 The space Ee is the standard H
1/2
T space, the norm ‖x‖e is equivalent to the

standard ‖x‖H1/2 though non uniformly with respect to τ , thus for any p > 1 the embedding

jp
e : Ee −→ Lp

T (R2)

is compact. Moreover for any x ∈ Ee there holds

‖x‖2
e >

ω

τ
‖x‖2

2. (17)

The proof is well-known, see [11] for a clear exposition. The last inequality follows directly
from expressions in Fourier series. �

The quadratic form h can also be extended as

h(z) =
1

2
‖P+

h (z)‖2
h −

1

2
‖P−

h (z)‖2
h

on a Hilbert space Eh, where P±
h are the projections on E±

h associated with the orthogonal
splitting Eh = E+

h ⊕ E−
h .

12



Lemma 4 The space Eh is the standard H
1/2
T (R2n−2) and the norm ‖z‖h is uniformly equiv-

alent to the standard ‖z‖H1/2 , that is there are constants C and C ′ independent of T such
that

C‖z‖H1/2 6 ‖z‖h 6 C ′‖z‖H1/2 .

As a consequence, the embeddings

jp
h : Eh −→ Lp

T (R2n−2)

are compact for any p > 1, moreover for p > 2 there are constants Cp and Pp independent of
T such that

‖z‖p 6 Cp‖z‖h (18)

and
‖P±

h z‖p 6 Pp‖z‖p. (19)

Proof: This is proposition 1.1 of [15]. �

We can now define the total function space

ET = Ee × Eh , ‖(x, z)‖2 = ‖x‖2
e + ‖z‖2

h,

which is nothing but H
1/2
T (R2n) with an equivalent inner product (not uniformly in T ). We

have seen that e and h are continuous, and thus C∞, quadratic forms. Let us now study the
non quadratic parts. It is well-known that

p̃ : L3(R2) × Lα(R2n−2) −→ R

(x(t), z(t)) 7−→

∫ T

0
S(x(t), z(t))dt

is C1, and
p = p̃ ◦ jT

also is, where
jT (x, z) =

(

j3
e (x), jα

h (z)
)

∈ L3 × Lα.

In the same line,

b̃ : L3(R2) × Lα(R2n−2) −→ R

(x(t), z(t)) 7−→

∫ T

0
W (x(t), z(t))dt

is C1 thanks to (2), and
b = b̃ ◦ jT

also is.

Lemma 5 The functional Il is well defined and C1 on ET , it can be written

Il(x, z) =
1

2
‖P+

e (x)‖2 −
1

2
‖P−

e (x)‖2 +
1

2
‖P+

h (z)‖2 −
1

2
‖P−

h (z)‖2 − (b̃ + lp̃) ◦ jT (x, z),

13



and its gradient is

∇Il(x, z) = P +
e (x) − P−

e (x) + P +
h (z) − P−

h (z) + j∗T

(

∇(b̃ + lp̃) ◦ jT (x, z)
)

,

= L(x, z) + K(x, z),

where K is continuous and maps bounded sets into relatively compact ones . The solutions of

∇Il(X) = 0

are precisely the C1 T-periodic trajectories of the system Hl.

The proof is classical, see [11]. �

There remains to study the behavior of Palais Smale sequences. The unperturbed functional
I0 does not satisfy PS condition, but

Lemma 6 the functional Il satisfies the PS condition for any l > 0.

Proof: The proof follows the line of [12], chapter 6. We go in it since many details are
different. Let Xm be a bounded PS sequence,

∇Il(Xm) = L(Xm) + K(Xm) −→ 0

implies that L(Xm) = (P+
e (xm)−P−

e (xm), P+
h (zm)−P−

h (zm)) has a convergent subsequence,
but then P 0

e (Xm) = Xm − P+
e (Xm) − P−

e (Xm) − P+
h (Xm) − P−

h (Xm) is bounded and thus
has a convergent subsequence since E0

e is finite dimensional. Thus any bounded PS sequence
has a convergent subsequence. There remains to prove that all PS sequences are bounded. It
will be useful to estimate

Il(X) −
1

2
〈∇Il(X), X〉 =

∫ T

0

1

2
〈∇Wl(X), X〉 − Wl(X) dt

where Wl = W + lS = A|z|α + D|x|3 at infinity, thus

Il(X) −
1

2
〈∇Il(X), X〉 >

∫ T

0
A
(α

2
− 1
)

|z|α +
D

2
|x|3 − C dt

> C(‖z‖α
α + ‖x‖3

3 − 1)

Applying the above to a PS sequence Xm gives

‖zm‖α
α + ‖xm‖3

3 6 C(1 + εm‖Xm‖), (20)

with εm −→ 0. Next

|〈∇Il(Xm), z+
m〉| =

∣

∣

∣

∣

2‖z+
m‖2

e −

∫ T

0
〈∇Wl(Xm), z+

m〉 dt

∣

∣

∣

∣

6 εm‖z+
m‖e

gives

2‖z+
m‖2

e 6

∣

∣

∣

∣

∫ T

0
〈∇zWl(Xm), z+

m〉 dt

∣

∣

∣

∣

+ εm‖z+
m‖e

6 C

∫ T

0
(1 + |zm|α−1)|z+

m| dt + εm‖z+
m‖e

6 C
∥

∥1 + |zm|α−1
∥

∥

α
α−1

‖z+
m‖α + εm‖z+

m‖e

6 C(1 + ‖zm‖α−1
α )‖z+

m‖α + εm‖z+
m‖e

6 C(1 + ‖zm‖α
α) ‖z+

m‖e ,

14



combining this with (20) yields

‖z+
m‖e 6 C(1 + εm‖Xm‖).

The same can be written for z−m and x±
m, there just remains to deal with x0

m, which is done
noticing that (20) gives

‖x0
m‖e =

ω

τ
‖x0

m‖2 6
ω

τ
‖xm‖2 6 C‖xm‖3 6 C(1 + εm‖Xm‖).

All this together

‖Xm‖2 = ‖x0
m‖2 + ‖x+

m‖2 + ‖x−
m‖2 + ‖z+

m‖2 + ‖z−m‖2 6 C(1 + εm‖Xm‖)2

implies that ‖Xm‖ is bounded. �

We are now ready to apply classical variational methods to Il.

3.2 The topology.

The topological argument is inspired from the one in [15]. Yet the center of our linking is not
the origin as usual, but the distinguished orbit OR0

(t). It is not hard to check that OR0
(t)

is a critical point of our variational problem. As usual (see [8]) , we introduce a group Γ of
homeomorphisms of ET :

Definition 1 A homeomorphism γ : ET → ET belongs to Γ iff it can be written in the form

γ(x, z) = ea+
e (x)P+

e (x) + ea−

e (x)P−
e (x) + P 0

e (x) + ea+

h (z)P+
h (x) + ea−

h (z)P−
h (z) + k(x, z)

where a±e,h : ET → R are continuous and map bounded sets into bounded sets, and k : ET → ET

is continuous and maps bounded sets into relatively compact ones. In addition there exists a
ρ > 0 such that the support of a±

e,h and k is contained in

{(x, z) ∈ ET such that e(x) + h(x) > 0 and ‖(x, z)‖ 6 ρ} .

The functionals e and h are defined in (13) and (14) above.

It is not hard to see that Γ is a group, see [11], 5.3 for related material. Let us now introduce
the sphere

S+ = {(x, z) ∈ E+
e + E+

h such that ‖(x, z)‖ = 1}.

We shall link S̃+ = OR0
+ S+ with an affine subspace of ET of the form OR0

+ E−
e + E0

e +
E−

h + RzT , with zT ∈ E+
h . We follow Tanaka [15] for the choice of zT , and take zT = P+

h (φ),
where φ ∈ C∞

0 ((0, 1), R2n−2) is extended by 0 to [0, T ] and satisfies

∫ 1

0
〈Jφ̇ + Aφ, φ〉dt < 0.

Lemma 7 There are positive constants Cp and C ′
p independent of T > 1 such that for all

p > 1

C0 6 ‖zT ‖ 6 C ′
0

Cp 6 ‖zT ‖p 6 C ′
p.
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This is lemma 1.4 of [15]. �

Let
V = E−

e + E0
e + E−

h + RzT ,

The spaces V and S+ link with respect to Γ:

Lemma 8 (Intersection property) For γ ∈ Γ, we have

γ(S+) ∩ V 6= ∅.

Proof: This is classical, see for example [8], proposition 1. �

It is therefore natural to define:

Definition 2

cT (l) = sup
γ∈Γ

(

inf
S+

Il ◦ γ

)

.

Before we prove that cT (l) is a critical value, it is of interest for us to estimate it.

Proposition 2 There is a constant M that depends only on A,B and α such that for all
l > 0

0 < cT (l) 6 M.

Proof: For all η > 0 there exists γ ∈ Γ such that γ(S+) = OR0
+ ηS+. On the other hand,

the intersection property above implies that cT (l) 6 supV Il. For these reasons, proposition
2 follows from lemma 9 and 10 below. �

Lemma 9 Let us fix all parameters. There are η > 0 and δ > 0 such that

Il(OR0
+ x+, z+) > δ

whenever (x+, z+) ∈ E+
e × E+

h satisfy ‖(x+, z+)‖ = η.

Proof: Since H is clearly lipschitz continous on compact sets, there exists a constant C such
that, for all t, and all sufficiently small (x, z) ∈ R

2 × R
2n−2,

|H(OR0
(t) + x, z) − H0| 6 C(|x| + |z|).

On the other hand, recalling that [HW4] is now assumed,

|H(OR0
(t) + x, z) − H0| 6 C(|x|2 + |z|α)

holds at infinity, so that, for all x and z,

|H(OR0
(t) + x, z) − H0| 6 C(|x| + |z| + |x|2 + |z|α).

Combining this with estimate (7) gives

S(OR0
(t) + x, z) 6 C

(

H(OR0
(t) + x, z) − H0

)4

6 C
(

|x| + |x|2 + |z| + |z|α
)4

6 C(|x|4 + |x|8 + |z|4 + |z|4α).
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Noticing that OR0
∈ E0

e this yields, for small η,

Il(OR0
+ x+, z+) =

1

2
‖x+‖2 +

1

2
‖z+‖2 − b(OR0

+ x+, z+) − lp(X)

>
1

2
‖x+‖2 +

1

2
‖z+‖2

− C‖z+‖α
α − C‖z+‖4

4 − C‖z+‖4α
4α − C‖x+‖4

4 − C‖x+‖8
8

>
1

2
‖x+‖2 +

1

2
‖z+‖2

− C‖z+‖α
α − C‖z+‖4

4 − C‖z+‖4α
4α − C‖x+‖4

2 − C‖x+‖8
2

>
1

2
η2 − C(ηα + η4α + η4 + η8).

We have used (17) and (18) for the last inequality. �

Lemma 10 There is a constant M that depends only on A,B and α such that for all l > 0

Il|V 6 M.

Proof: Let X = (x− + x0, z− + rzT ) ∈ V , from [HW3] we get

Il(X) = −
1

2
‖x−‖2 −

1

2
‖z−‖2 +

1

2
‖rzT ‖

2 − b(X) − lp(X)

6
1

2
‖zT ‖

2r2 − B‖z− + rzT ‖
α
α.

Using (19) gives:
‖rzT ‖

α
α = ‖P+

h (z− + rzT )‖α
α 6 P α

α ‖z
− + rzT ‖

α
α,

combining these equations yields

Il(X) 6
1

2
‖zT ‖

2r2 − BP−α
α ‖zT ‖

α
αrα,

and we obtain the lemma setting

M = sup
T∈[1,∞)

sup
r∈R+

(

1

2
‖zT ‖

2r2 − BP−α
α ‖zT ‖

α
αrα

)

(21)

which is finite according to lemma 7. In addition, we see that

lim
B→∞

M = 0.

�

3.3 The critical point

We will now prove that there exists l(T ) ∈]0,∆/T [ and a critical point XT of Il(T ) at level
cT (l(T )) such that p(xT ) 6 1 + TM/∆. Let us first chose l(T ).

Lemma 11 There exists l(T ) ∈ (0,∆/T ) such that l 7−→ cT (l) is differentiable in l(T ) and

|c′T (l(T ))| 6 TM/∆.
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Proof: From its definition, cT (l) is a nonincreasing function of l, it is thus differentiable almost
everywhere in ]0,∆/T [ and there holds

∫ ∆/T

0
c′T (l)dl > −M.

�

We are now going to
suppose that there is no critical point at level cT (l(T )) satisfying p(xT ) 6 1 − c′T (l(T )),
and prove that this leads to a contradiction. Let ln −→ l(T ) be a decreasing sequence,
In = Iln , cn = cT (ln), c′ = |c′T (l(T ))| and c = cT (l(T )). Using the supposition above and
the fact that PS is satisfied for Il(T ) we can prove the following lemma by a deformation
argument:

Lemma 12 There is an ε in the interval (0, c/2) such that for any K there is an homeomor-
phism γK ∈ Γ satisfying

Il(T )(γK(X)) > Il(T )(X)

for all X ∈ ET , and such that
Il(T )(γK(X)) > c + ε

for all X satisfying the following three inequalities

p(X) 6 c′ + 1/2,

Il(T )(X) > c − ε,

‖X‖ 6 K.

�

From the definition of cn, we can choose γn ∈ Γ such that

inf
S+

In ◦ γn > cn − (ln − l)/10.

For n large enough there holds

Il(T ) ◦ γn

∣

∣

S+
> In ◦ γn|S+ > cn − (ln − l)/10

> c − (c′ + 1/10)(ln − l) − (ln − l)/10

> c − (c′ + 1/5)(ln − l).

Let us set Kn = supS+ ‖γn‖, and let ϕn = γ
Kn

be the homeomorphism given by the lemma.
Take X ∈ S+:
Either Il(T )(γn(X)) 6 c + (ln − l)/5,
and since

(ln − l)p(γn(X)) = Il(T )(γn(X)) − In(γn(X)) 6 c + (ln − l)/5 −
(

c + (c′ + 1/5)(ln − l)
)

6 (c′ + 1/2)(ln − l),

we can apply the lemma for n large enough and get

Il(T )(ϕn ◦ γn(X)) > c + ε;
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or
Il(T )(ϕn ◦ γn(X)) > Il(T )(γn(X)) > c + (ln − l)/5.

In both cases we have, for n large enough,

Il(T )(ϕn ◦ γn(X)) > c + (ln − l)/5,

which means that there exists γ = ϕn ◦ γn ∈ Γ such that

inf
S+

Il(T ) ◦ γ > c,

this is in contradiction with the definition of c. We have proved the existence of a critical
point satisfying (9) and (10). There remains to prove (11).

3.4 Non triviality

In this subsection, we prove conclusion (11). We point out that this is the only part in the
proof of proposition 1 where the condition πR2

0 > M is used. In fact, the critical point
constructed always exists, but it may be contained in the plane z = 0. That it is not the
case under our hypotheses is a key ingredient for the non triviality of the homoclinic obtained
after convergence. We first observe that

∇zHl(x, 0) = 0 ⇒ ∇zIl(x, 0) = 0,

which means that the plane z = 0 is left invariant by the flow, and that the subspace Ee×{0}
is transversally critical. As a consequence, the critical points of Il that are on the form
(x(t), 0) are precisely the critical points of Il|Ee×{0}, and they are the T -periodic orbits of the
flow contained in z = 0.

Lemma 13 Let (x, 0) be a critical point, then the set {x(t), t ∈ R} is a circle S(r), where r
satisfies

lf ′(r2) ∈
π

T
Z,

and we have
Il(T )(x, 0) = T

(

r2lf ′(r2) − lf(r2)
)

6∈ (0, πR2
0].

Proof: The plane z = 0 is invariant, and the equation on it is

ẋ = J(ω + 2lf ′(|x|2))x,

the solutions of which
Xr(t) = reJ(ω+2lf ′(r2))t

have period

T (r) =

∣

∣

∣

∣

2π

ω + 2lf ′(r2)

∣

∣

∣

∣

·

These solutions are critical points only if T ∈ NT (r). This implies

lf ′(r2) +
ω

2
∈

π

T
Z,
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hence the lemma since ω = 2π/T . The computation of the action is straightforward, that
it can not take values in the forbidden interval when r is critical is a consequence of the
convexity of f : the function

x 7−→ g(x) = xf ′(x) − f(x)

is increasing and thus g(x) 6 0 when x 6 R2
0 since f(R2

0) = f ′(R2
0) = 0. On the other hand,

the function
x 7−→ (x − R2

0)f
′(x) − f(x)

is increasing for x > R2
0, which implies that

g(x) > R2
0f

′(x)

when x > R2
0. Either r > R0 and we must have

I = T lg(r2) > TlR2
0f

′(r2) > πR2
0

or r 6 R0 and I 6 0. �

The proposition 1 follows from the fact that cT (l(T )) is in the hole if πR2
0 > M , and thus can

not be one of the ”bad” critical points. �
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