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Abstract

We prove the existence of optimal transport maps for the Monge problem when the cost is a Finsler
distance on a compact manifold. Our point of view consists in considering the distance as a Mañé potential,
and to rely on recent developments in the theory of viscosity solutions of the Hamilton–Jacobi equation.
 2006 Elsevier Inc. All rights reserved.

Résumé

On montre l’existence d’une application de transport optimale pour le problème de Monge lorsque le
cout est une distance Finslerienne sur une variété compacte. Le nouveau point de vue consiste à considérer
la distance comme un potentiel de Mañé, et à exploiter des développements récents sur les solutions de
viscostité de l’équation de Hamilton–Jacobi.
 2006 Elsevier Inc. All rights reserved.
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The Monge transportation problem is to move one distribution of mass into another in an
optimal way. Before we discuss this problem, let us describe a precise setting. We fix a space M ,
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which in the present paper will be a manifold, and a cost function c ∈ C(M × M,R). Given two
probability measures µ0 and µ1, we call transport map a Borel map F :M → M that transports
µ0 onto µ1. An optimal transport map is a transport map F that minimizes the total cost

∫

M

c
(
x,F (x)

)
dµ0

among all transport maps. In many situations, optimal transport maps have remarkable geometric
properties, at least at a formal level. Some of these properties were investigated by Monge at the
end of the eighteenth century.

The question of existence of optimal transport maps was discussed much later in the literature.
Some major steps were made by Kantorovich in 1942. He introduced both a relaxed problem and
a dual problem that opened new approaches to the existence problem. When the cost is the square
of the distance on an Euclidean vector space, Brenier proved the existence of an optimal transport
map in [6] and also provided an interesting geometric description on the optimal maps, which
have to be the gradient of a convex function. The argument was simplified, taking advantage of
the Kantorovich dual problem, by Gangbo [13], and extended in many directions by Gangbo and
McCann [14] and other authors, see our paper [4] for more details.

The case where the cost function is the distance on an Euclidean vector space is very natural,
but more difficult. Sudakov announced a proof of the existence of an optimal map in 1979, but
a gap was recently found in this proof. The strategy was to decompose the space into pieces of
smaller dimension on which transport maps can be more easily built, and to glue these maps
together. An essential hypothesis of the result is that the measure µ0 is absolutely continuous.
In the construction, it is necessary to control how this hypothesis behaves under decomposition
to the subsets. Sudakov was not aware of these difficulties, and made wrong statements at that
point, as was discovered only much later. It is interesting to notice for comparison that similar
kind of difficulties had been faced and solved ten years earlier by Anosov in his ergodic theory
of hyperbolic diffeomorphisms.

Correct proofs in the spirit of the work of Sudakov were written simultaneously by Caffarelli,
Feldman and McCann in [7], Trudinger and Wang in [20] and slightly afterwards by Ambrosio
[1]. These authors manage to build a decomposition of the space into line segments that have to be
preserved by transport maps, called transport rays. They prove that the direction of these rays vary
Lipschitz continuously. This regularity implies that the absolutely continuous measure µ0 has
absolutely continuous decompositions on these rays. See [1] for a remarkably written discussion
on these works and of Sudakov’s mistake. Before the proof of Sudakov were completed in these
papers, Evans and Gangbo had provided a different proof under more stringent hypotheses in
[10]. This proof is long and complicated, but it now appears as the first proof of the existence of
a transport map in the case where the cost is a distance.

The methods inspired from Sudakov seem to allow many kinds of generalizations. The paper
[7] treats all norms whose unit ball is smooth and strictly convex. It is worth mentioning that flat
part in the unit ball represent a major difficulty. An important progress have been recently made
in [3], which studies norms whose unit ball is a polyhedron. In another direction, Feldman and
McCann [12] have treated the case where the cost is the distance on a Riemannian manifold. In
this generalized setting, transport rays are not any more line segments, but pieces of geodesics.
It is in this direction we will pursue in the present text.

Our goal is to prove the existence of transport maps for Finsler distances on manifolds (pos-
sibly non symmetric distances). In order to avoid superficial (and less superficial) additional
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technicalities, we shall work on a compact manifold M . Our first novelty is a new approach of
the geometric part of the proof, that is the decomposition into transport rays. We believe that this
new approach is interesting because, beyond being more general, it enlightens new links between
the Monge problem and the general theory of Hamilton–Jacobi equations as presented by Fathi
in [11]. In fact, all the relevant properties of the decomposition into transport rays are obtained by
straightforward applications of results of [11]. In order to finish the proof, we rely on a secondary
variational principle, in the lines of [2] and [3]. Our treatment of this secondary principle is quite
different from these papers, and it is, we believe, shorter and clearer than the methods previously
used in the literature.

1. Introduction

We state two versions of our main result, and prove the equivalence between these two state-
ments.

1.1. Optimal transport maps for Finsler distances

In the present paper, the space M is a smooth compact connected manifold without boundary.
We equip the manifold M with a C2 Finsler metric, that is the data, for each x ∈ M , of a non-
negative convex function v %→ ‖v‖x on TxM such that

• ‖λv‖x = λ‖v‖x for all λ> 0 and all v ∈ TxM (positive 1-homogeneity),
• the function (x, v) %→ ‖v‖x is C2 outside of the zero section,
• for each x ∈ M , the function v %→ ‖v‖2

x has positive definite Hessian at all vectors v '= 0.

As a consequence, ‖v‖x = 0 exactly when v = 0 (positivity). Note that ‖ · ‖x is not assumed
symmetric (that is, ‖−v‖x '= ‖v‖x is allowed). In standard terminology, the function v %→ ‖v‖x is
a Minkowsky metric on the vector space TxM . See [5] for more one Finsler metrics (in particular,
Theorem 1.2.2 and paragraph 6.2). We define the length of each smooth curve γ : [0, T ] → M

by the expression

l(γ ) =
T∫

0

∥∥γ̇ (t)
∥∥
γ (t)

dt.

The Finsler distance c is then given by the expression

c(x, y) = inf
γ

l(γ )

where the infimum is taken on the set of smooth curves γ : [0, T ] → M (where T is any positive
number) which satisfy γ (0) = x and γ (T ) = y. Note that the value of the infimum would not
be changed by imposing the additional requirement that ‖γ̇ (t)‖γ (t) ≡ 1. The Finsler distance
c(x, y) is not necessarily symmetric, and thus is not properly speaking a distance. It does satisfy
the triangle inequality, and c(x, y) = 0 if and only if x = y.

We shall consider the Monge transportation problem for the cost c. Given a Borel measure µ0
on M , and a Borel map F :M → M , we define the image measure F#µ0 by

F#µ0(A) := µ0
(
F−1(A)

)
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for each Borel set A ⊂ M . The map F is said to transport µ0 onto µ1 if F#µ0 = µ1. We will
present a short proof of

Theorem 1. Let c(x, y) be a Finsler distance on M . Let µ0 and µ1 be two probability measures
on M , such that µ0 is absolutely continuous with respect to the Lebesgue class. Then there exists
a Borel map F :M → M such that F#µ0 = µ1, and such that the inequality

∫

M

c
(
x,F (x)

)
dµ0 !

∫

M

c
(
x,G(x)

)
dµ0

holds for each Borel map G :M → M satisfying G#µ0 = µ1. In other words, there exists an
optimal map for the Monge transportation problem.

1.2. Optimal transport maps for supercritical Mañé potentials

We shall now present a generalization of Theorem 1, which is the natural setting for our proof.
A function L :T M → R is called a Tonelli Lagrangian if it is C2 and satisfies:

Convexity For each x ∈ M , the function v %→ L(x, v) is convex with positive definite Hessian at
each point.

Superlinearity For each x ∈ M , we have L(x, v)/‖v‖x → ∞ as ‖v‖x → ∞.

Given a Tonelli Lagrangian L and a time T ∈ ]0,∞), we define the cost function

cL
T (x, y) = min

γ

T∫

0

L
(
γ (t), γ̇ (t)

)
dt

where the minimum is taken on the set of curves γ ∈ C2([0, T ],M) satisfying γ (0) = x and
γ (T ) = y. That this minimum exists is standard, see [17] or [11]. The function

cL(x, y) := inf
T ∈]0,∞)

cT (x, y)

is called the Mañé potential of L. It was introduced and studied by Ricardo Mañé and then his
students in [8,16]. Without additional hypothesis, the Mañé potential may be identically −∞. So
we assume in addition:

Supercriticality For each x '= y ∈ M2, we have c(x, y) + c(y, x) > 0.

The following result of Mañé [8,16] makes this hypothesis natural.

Proposition 1. Let L ∈ C2(T M,R) be a Tonelli Lagrangian. For k ∈ R, let cL+k be the Mañé
potential associated to the Lagrangian L + k. There exists a constant k0 such that:

• For k < k0, then cL+k ≡ −∞ and the Lagrangian L + k is called subcritical.
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• For k " k0, the Mañé potential cL+k is a Lipschitz function on M × M that satisfies the
triangle inequality

cL+k(x, z) ! cL+k(x, y) + cL+k(y, z)

for all x, y and z in M . In addition, we have cL+k(x, x) = 0 for all x ∈ M .
• For k > k0, the Lagrangian L is supercritical, which means that cL+k(x, y)+cL+k(y, x) > 0

for x '= y in M .

We will explain that the following theorem is equivalent to Theorem 1.

Theorem 2. Let cL(x, y) be the Mañé potential associated to a supercritical Tonelli La-
grangian L. Let µ0 and µ1 be two probability measures on M , such that µ0 is absolutely
continuous with respect to the Lebesgue class. Then there exists an optimal transport map for the
Monge transportation problem with cost cL(x, y).

1.3. Supercritical Mañé potentials and Finsler distances

We prove the equivalence between Theorems 1 and 2. To each Tonelli Lagrangian L, we
associate the Hamiltonian H ∈ C2(T ∗M,R) defined by

H(x,p) = max
v∈TxM

p(v) − L(x, v)

and the energy function E ∈ C2(T M,R) defined by

E(x, v) = ∂vL(x, v).v − L(x, v).

The function H is also convex and superlinear. The mapping ∂vL :T M → T ∗M is a C1 diffeo-
morphism, whose inverse is the mapping ∂pH . We have E = H ◦ ∂vL.

Lemma 2. Let L be a supercritical Tonelli Lagrangian. There exists a constant K such that, for
each x '= y in M , there exists a time T ∈ ]0,K] and a minimizing extremal γ ∈ C2([0, T ],M)

such that γ (0) = x, γ (T ) = y, and
∫ T

0 L(γ (t), γ̇ (t)) dt = cL
T (x, y) = cL(x, y). Moreover, if γ is

such a curve, then

E
(
γ (t), γ̇ (t)

)
≡ 0.

Proof. We shall prove, and use, this lemma only in the case where L is positive. Note first that
the function (x, y,T ) %→ cL

T (x, y) is continuous on M ×M×]0,∞). It is not hard to see, in view
of the superlinearity of L, that the function T %→ cL

T (x, y) goes to infinity as T goes to zero if
x '= y. On the other hand, setting δ = infL > 0, we obviously have the minoration cL

T " δT .
Since cL

1 is bounded, this implies the existence of a constant K such that cL
T > cL

1 for T " K . As
a consequence, the function T %→ cT (x, y) reaches its minimum on ]0,K] for each x '= y.

Let x '= y be two points on M . There exists a T ∈ ]0,K] such that cL
T (x, y) = cL(x, y).

Now by standard results on the calculus of variations, there exists a C2 curve γ : [0, T ] →
M satisfying γ (0) = x, γ (T ) = y and

∫ T
0 L(γ (t), γ̇ (t)) dt = cL(x, y). In addition, this curve



696 P. Bernard, B. Buffoni / Advances in Mathematics 207 (2006) 691–706

satisfies the Euler–Lagrange equations, and in particular the energy E(γ (t), γ̇ (t)) is constant on
[0, T ].

Let γλ : [0,λT ] → M be defined by γλ(t) = γ (t/λ). The function

f (λ) :=
T λ∫

0

L(γλ, γ̇λ) dt = λ

T∫

0

L
(
γ ,λ−1γ̇

)
dt

clearly has to reach its minimum at λ = 1. On the other hand, a classical computation shows
that the function f is differentiable, and that f ′(1) = −

∫ T
0 E(γ (t), γ̇ (t)) dt . This proves that

E(γ (t), γ̇ (t)) ≡ 0. !

The following proposition implies that the transportation problem for Finsler distances, the
transportation problem for supercritical Mañé potentials, and the transportation problem for the
Mañé potentials of positive Tonelli Lagrangians are equivalent problems.

Proposition 3. If L is a supercritical Tonelli Lagrangian, then there exists a Finsler distance c

(associated to a C2 Finsler metric) and a smooth function f :M → R such that

c(x, y) = cL(x, y) + f (y) − f (x).

Conversely, given a Finsler distance c (associated to a C2 Finsler metric) there exists a positive
Tonelli Lagrangian L such that

c(x, y) = cL(x, y).

Proof. The first part of this proposition is the content of [15]. For the converse, we consider the
Lagrangian

L̃(x, v) = 1 + ‖v‖2
x

2
.

Note that the associated energy function is

Ẽ(x, v) = ‖v‖2
x − 1
2

.

Let us now consider a positive Tonelli Lagrangian L such that 0 < L ! L̃ and such that L = L̃

on the set {‖v‖x " 1/2} ⊂ T M . In order to see that such a Lagrangian exists, consider a smooth
convex function f : [0,∞) → [0,∞) that vanishes in a small neighborhood of 0 and such that
f (s) ! (1 + s2)/2 with equality for s " 1/2; and consider a smooth function g(x, v) :T M → R
such that g is positive and ∂2g(x, v) is positive definite where f (‖v‖x) vanishes, and such that
g is zero on {‖v‖x " 1/2} ⊂ T M . It is easy to check that the Lagrangian L(x, v) = f (‖v‖x) +
εg(x, v) satisfies the desired requirements when ε > 0 is small enough.
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Since L ! L̃, we have cL ! cL̃. Moreover, for x '= y, let γ : [0, T ] → M be the optimal
(for cL) trajectory obtained by Lemma 2. We have E(γ (t), γ̇ (t)) = Ẽ(γ (t), γ̇ (t)) ≡ 0 hence
‖γ̇ ‖ ≡ 1. As a consequence,

cL(x, y) =
T∫

0

L
(
γ (t), γ̇ (t)

)
dt =

T∫

0

L̃
(
γ (t), γ̇ (t)

)
dt = l(γ ) " c(x, y).

We have proved that c ! cL ! cL̃. These are equalities because cL̃ ! c. Indeed, for all smooth
curves γ : [0, T ] → M which satisfy γ (0) = x, γ (T ) = y and ‖γ̇ (t)‖γ (t) ≡ 1 with T = l(γ ) > 0,
we get

cL̃(x, y) !
T∫

0

L̃
(
γ (t), γ̇ (t)

)
dt = l(γ ).

Since c(x, y) is the infimum of the lengths of such curves, we have cL̃(x, y) ! c(x, y). !

1.4. General convention

In the sequel, we will prove Theorem 2 for a positive Lagrangian L and denote cL simply
by c. In view of Proposition 3, this implies the general form of Theorem 2, as well as Theorem 1.
We fix, once and for all, a positive Tonelli Lagrangian L, and a positive number δ > 0 such that

L(x, v) " δ

for each (x, v) ∈ T M .
The general scheme of our proof is somewhat similar to the one introduced by Sudakov, and

followed, in [1,3,7,12,20] and other papers. Like these papers, our proof involves a decomposi-
tion of the space M into distinguished curves, called transport rays. We introduce these rays in
Section 3 and describe their geometric properties. In this geometric part of the proof, our point
of view is quite different from the literature as we emphasize the link with the theory of viscos-
ity solutions as developed in [11], and manage to obtain all the relevant properties of transport
rays as a straightforward application of general results of [11]. For the second part of the proof,
all the papers mentioned above involve subtle decompositions of measures on these transport
rays. It is at this step that the paper of Sudakov contains a gap. We simplify this step by intro-
ducing a secondary variational principle in Section 2. Note that secondary variational principles
have already been introduced by Ambrosio, Kirchheim and Pratelli in [3] for related problems.
This secondary problem is studied in Section 5 by a quite simple method, which, surprisingly,
seems new. This methods allows a neat clarification of the end of the proof compared to the
existing literature. All the difficulties involving measurability issues and absolute continuity of
disintegrated measures are reduced to a single and simple Fubini-like theorem, exposed in Sec-
tion 4.
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2. Transport plans

We introduce our secondary variational principle and recall the necessary generalities on the
Monge problem. Beyond the references provided below, the pedagogical texts [1,19,21] may
help the reader who wants more details. We define the quantity

C(µ0,µ1) := inf
F

∫

M

c
(
x,F (x)

)
dµ0,

where the infimum is taken on the set of Borel maps F :M → M that transport µ0 onto µ1. It is
useful, following Kantorovich, to relax this infimum to a nicer minimization problem. A Borel
measure µ on M × M is called a transport plan if it satisfies the equalities πi#µ = µi , where
π0 :M × M → M is the projection on the first factor, and π1 :M × M → M is the projection on
the second factor. Clearly, any transport map F can be considered as the transport plan

(Id × F)#µ0.

Following Kantorovich, we consider the minimum

K(µ0,µ1) = min
µ

∫

M×M

cdµ

taken on the set of transport plans. It is well known and easy to prove that this minimum exists.
The equality

K(µ0,µ1) = C(µ0,µ1)

holds if µ0 has no atom, see [1, Theorem 2.1]. Note that this equality is very general, see [18]
for a discussion. As a consequence, if µ0 has no atom, it is equivalent to prove the existence of
an optimal transport map and to prove that there exists an optimal transport plan concentrated on
the graph of a Borel function.

Let us define the second cost function

σ (x, y) =
(
c(x, y)

)2
.

This cost is chosen in order that the following refined form of Theorem 1 holds.

Theorem 3. Let O be the set of optimal transport plans for K(µ0,µ1) with the cost c. The
minimum

min
µ∈O

∫
σ dµ

exists. In addition, if µ0 is absolutely continuous, then there is one and only one transport plan µ

realizing this optimum, and this transport plan is concentrated on the graph of a Borel function
that is an optimal transport map for the cost c.
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This result will be proved in Section 5. The idea of introducing secondary variational problem
as in this statement has already been used by Ambrosio, Kirchheim and Pratelli, see [3] and
also [2]. Our treatment in Section 5 is inspired from these references, although it is somewhat
different. It allows substantial simplifications compared to the literature.

3. Kantorovich potential and calibrated curves

We present the decomposition in transport ray, which is the standard initial step in the con-
struction of optimal maps. This construction is based on well-understood general results on
viscosity subsolutions of the Hamilton–Jacobi equation, as presented in [11]. Making this con-
nection is one of the novelties of the present paper.

Since the cost function we consider satisfies the triangle inequality

c(x, z) ! c(x, y) + c(y, z)

for all x, y and z in M , as well as the identity c(x, x) = 0 for all x ∈ M , we can take advantage
of the following general duality result, inspired from Kantorovich, see, for example, [9,12,21].

Proposition 4. Given two measures µ0 and µ1, there exists a function u ∈ C(M,R) that satisfies

u(y) − u(x) ! c(x, y)

for all x and y in M , and

K(µ0,µ1) =
∫

M

ud(µ1 − µ0).

In addition, for each optimal transport plan µ, the equality u(y) − u(x) = c(x, y) holds for
µ-almost every (x, y) ∈ M2. The function u is called a Kantorovich potential.

The present paper is born from the observation that the Kantorovich potentials are viscosity
subsolutions of the Hamilton–Jacobi equation as studied in [11]. In order to explain this connec-
tion, it is necessary to define the Hamiltonian function H ∈ C2(T ∗M,R) by

H(x,p) = max
v∈TxM

p(v) − L(x, v).

Note that the mapping ∂vL :T M → T ∗M is a C1 diffeomorphism, whose inverse is the map-
ping ∂pH . It is proved in [11] that the following properties are equivalent for a function
w ∈ C(M,R).

(1) The function w satisfies the inequality w(y) − w(x) ! c(x, y) for all x and y in M .
(2) The function w is a viscosity subsolution of the Hamilton–Jacobi equation H(x,dw) = 0,

i.e., each smooth function f :M → R satisfies the inequality H(x,df (x)) ! 0 at each point
of minimum x of the difference f − w.

(3) The function w is Lipschitz and satisfies the inequation H(x,dwx) ! 0 at almost every point.
This inequality then holds at all point of differentiability x of w.
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(4) The function w is Lipschitz and, for almost every x ∈ M , it satisfies the inequation ∀v ∈
TxM , L(x, v) " dwx(v). This inequality then holds at all point of differentiability x of w.

Although there may exist several Kantorovich potentials, we shall fix one of them, u, for the
sequel.

Definition 5. Following Fathi [11], we call calibrated curve a continuous and piecewise C1 curve
γ : I → M that satisfies

u
(
γ (t)

)
− u

(
γ (s)

)
=

t∫

s

L
(
γ (τ ), γ̇ (τ )

)
dτ = c

(
γ (s),γ (t)

)
(1)

whenever s ! t in I , where I is a non-empty interval of R (possibly a point). A calibrated curve
γ : I → M is called non-trivial if the interval I has non-empty interior.

Note that the first of the equalities in (1) implies the second, since the inequalities

u
(
γ (t)

)
− u

(
γ (s)

)
! c

(
γ (s),γ (t)

)
!

t∫

s

L
(
γ (τ ), γ̇ (τ )

)
dτ

hold for any curve γ . It is obvious that non-trivial calibrated curves are minimizing extremals
of L, and as a consequence they are C2 curves. In addition, the concatenation of two calibrated
curves is calibrated, so that each calibrated curve can be extended to a maximal calibrated curve,
that is, its domain I cannot be further extended without loosing calibration. Note that I is closed
when γ is a maximal calibrated curve.

Definition 6. We call transport ray the image of a non-trivial maximal calibrated curve.

It will be useful to consider, following [7] and [12], the functions α and β :M → [0,∞)

defined as follows:

• α(x) is the supremum of all times T " 0 such that there exists a calibrated curve
γ : [−T ,0] → M that satisfies γ (0) = x.

• β(x) is the supremum of all times T " 0 such that there exists a calibrated curve γ : [0, T ] →
M that satisfies γ (0) = x (the fact that α and β are finite is a consequence of Lemma 9
below).

Definition 7. Let us denote by T the subset of M obtained as the union of all transport rays, or
equivalently the set of points x ∈ M such that α(x) + β(x) > 0. For ε " 0, we denote by Tε the
set of points x ∈ M that satisfy α(x) > ε and β(x) > ε. Clearly Tε ⊂ T for all ε " 0. The set
E := T − T0 is the set of ray ends.

Proposition 8. The function u is differentiable at each point of T0. For each point x ∈ T0, there
exists a single maximal calibrated curve

γx :
[
−α(x),β(x)

]
→ M such that γx(0) = x. (2)
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This curve satisfies the relations

dux = ∂vL
(
x, γ̇x(0)

)
or equivalently γ̇x(0) = ∂pH(x, dux).

For each ε > 0, the differential x %→ dux is Lipschitz on Tε , or equivalently the map x %→ γ̇x(0)

is Lipschitz on Tε .

Proof. This proposition is Theorem 4.5.5 of Fathi’s book [11]. !

Lemma 9. Let γ : [a, b] → M be a non-trivial calibrated curve. Then, for all t ∈ ]a, b[, the
function u is differentiable at γ (t) and

duγ (t)

(
γ̇ (t)

)
" δ

(see 1.4 for the definition of δ). As a consequence, the map γ : [a, b] → M is an embedding (it is
one-to-one and has non-zero derivative on ]a, b[) and transport rays are non-trivial embedded
arcs.

Proof. Since u is a viscosity subsolution of the Hamilton–Jacobi equation, see the equivalence
below Proposition 4, we have L(x, v) " dux(v) for all v ∈ TxM at each point of differentiability
of u. As a consequence, the inequality

L
(
γ (t), γ̇ (t)

)
" duγ (t)

(
γ̇ (t)

)

holds for each t ∈ ]a, b[. Integrating the above inequality gives

b∫

a

L
(
γ (t), γ̇ (t)

)
dt " u

(
γ (b)

)
− u

(
γ (a)

)
,

which is an equality because the curve γ is calibrated. As a consequence, we have

duγ (t)

(
γ̇ (t)

)
= L

(
γ (t), γ̇ (t)

)
" δ

for all t ∈ ]a, b[. !

Lemma 10. The functions α and β are bounded and upper semi-continuous, hence Borel mea-
surable. As a consequence, the sets T and Tε , ε " 0, are Borel.

Proof. We shall consider only the function α. We have just seen that, for each non-trivial cal-
ibrated curve γ : I → M , the function f (t) = u ◦ γ (t) is differentiable and satisfies f ′(t) " δ.
Since the continuous function u is bounded on the compact manifold M , we conclude that the
functions α and β are bounded. In order to prove that the function α is semi-continuous, let us
consider a sequence xn ∈ M that is converging to a limit x and is such that α(xn) " T . We have
to prove that α(x) " T . There exists a sequence γn : [−T ,0] → M of calibrated curves such that
γn(0) = xn. There exists a subsequence of γn that is converging uniformly on [−T ,0] to a curve
γ : [−T ,0] → M . It is easy to see that the curve γ is calibrated and satisfies γ (0) = x. As a
consequence, we have α(x) " T . !
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Definition 11. For x ∈ M , let us denote by Rx the union of the transport rays containing x. We
also denote by R+

x the set of points y ∈ M such that u(y) − u(x) = c(x, y).

Note that Rx = γx([−α(x),β(x)]) when x ∈ T0, where γx is given in (2).

Lemma 12. We have R+
x = γx([0,β(x)]) when x ∈ T0, and R+

x = {x} when x ∈ M − T .

Proof. Let x be a point of T0. By the calibration property of γx , we have, for t ∈ [0,β(x)],
γx(t)− γx(0) = c(γx(0),γx(t)), which is precisely saying that γx(t) ∈ R+

x . Conversely, let us fix
a point x ∈ M and let y be a point of R+

x . There exists a time T " 0 and a curve γ : [0, T ] → M

such that
∫ T

0 L(γ (t), γ̇ (t)) dt = c(x, y), γ (0) = x and γ (T ) = y. Since c(x, y) = u(y) − u(x),
the curve γ is calibrated. If x ∈ T0, then γ = γx |[0,T ] hence y = γ (T ) = γx(T ) ∈ γx([0,β(x)]).
If x /∈ T , then there is no non-trivial calibrated curve starting at x, so we must have y = x in the
above discussion, and R+

x = {x}. !

Proposition 13. The transport plan µ is optimal for the cost c if and only if it is concentrated on
the closed set

⋃

x∈M

{x} × R+
x =

{
(x, y) ∈ M2: c(x, y) = u(y) − u(x)

}
.

Proof. Recall from Proposition 4 that any optimal transport plan is concentrated on this set.
Reciprocally, if µ is a transport plan concentrated on this set, then

K(µ0,µ1) =
∫

M

ud(µ1 − µ0) =
∫

M2

(
u(y) − u(x)

)
dµ =

∫

M2

c dµ

and µ is thus optimal. !

4. Fubini theorem

The geometric informations on transport rays that have been obtained in the preceding section
imply the following crucial Fubini-like result, whose proof is the goal of the present section:

Proposition 14. Let Λ be a Borel subset of T such that the intersection Λ ∩ R has zero
1-Hausdorff measure for each transport ray R. Then the set Λ has zero Lebesgue measure.

For comparison with the literature, see [7, Lemma 25], [20, Section 4] or [12, Lemma 24], we
mention:

Corollary 15. The set E = T − T0 of ray ends has zero Lebesgue measure.

We now turn to the proof of Proposition 14, which occupies the end of this section. The
method is standard. Let k be the dimension of M .

Definition 16. We call transport beam any given pair (B,χ), where B is a bounded Borel subset
of Rk and χ :B → M is a Lipschitz map (not necessarily one-to-one) such that:
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• There exists a bounded Borel set Ω ∈ Rk−1 and two bounded Borel functions a < b :Ω → R
such that

B =
{
(ω, s) ∈Ω × R s.t. a(ω) ! s ! b(ω)

}
⊂ Rk = Rk−1 × R.

• For each ω ∈ Ω , the curve χω : [a(ω), b(ω)] → M given by χω(s) = χ(ω, s) is a calibrated
curve.

Lemma 17. If (B,χ) is a transport beam, then the set Λ∩ χ(B) has zero Lebesgue measure.

Proof. For each ω ∈Ω , the curve χω is a bi-Lipschitz homeomorphism onto its image. Since in
addition, the set Λ∩χ({ω}× [a(ω), b(ω)]) has zero 1-Hausdorff measure, the set χ−1(Λ) inter-
sects each vertical line {ω} × R along a set of zero 1-Hausdorff measure. In view of the classical
Fubini theorem, the set χ−1(Λ) has zero Lebesgue measure in Rk . Since the k-Hausdorff mea-
sure on B (associated to the restricted Euclidean metric) is the restriction to B of the Lebesgue
measure of Rk , the set χ−1(Λ) has zero k-Hausdorff measure in B , for the Hausdorff measure
associated to the induced metric. Since Lipschitz maps send sets of zero k-Hausdorff measure
onto sets of zero k-Hausdorff measure, we conclude that the set Λ ∩ χ(B) ⊂ χ(χ−1(Λ)) has
zero Lebesgue measure in M . !

We can now conclude the proof of Proposition 14 by the following lemma.

Lemma 18. There exists a countable family (Bi,j ,χi,j ), (i, j) ∈ N2 of transport beams such that
the images χi,j (Bi,j ) cover the set T .

Proof. Let D be the closed unit ball in Rk−1. Let ψi :D → M , i ∈ N, be a countable family
of smooth embeddings such that, for each maximal calibrated curve γ : [a, b] → M , the curve
γ (]a, b[) intersects the image of ψi for some i ∈ N. In order to build such a family of em-
beddings, let us consider a finite atlas Θ of M composed of charts θ :B3 → M , where Br is
the open ball of radius r centered at zero in Rk . We assume that the finite family of open sets
θ(B1), θ ∈ Θ , covers M . For n = 1, . . . , k and q ∈ Q ∩ [−1,1], we consider the embedded disk
Dn,q ⊂ B3 formed by points x = (x1, . . . , xk) ∈ B̄2 which satisfy xn = q . The countable family

θ(Dn,q), θ ∈Θ, n = 1, . . . , k, q ∈ Q ∩ [−1,1],

of embedded disks of M forms a web which intersects all non-trivial curves of M , hence all
transport rays. We have constructed a countable family of embedded disks which intersects all
transport rays.

For each (i, j) ∈ N2 let us consider the set Ωi,j = D ∩ ψ−1
i (T1/j ). Let ai,j (ω) and bi,j (ω) :

Ωi,j → R be the functions −α ◦ ψi and β ◦ ψi . Let Bi,j be the set of points (ω, s) ⊂ Ωi,j × R
such that ai,j (ω) ! s ! bi,j (ω). To finish, we define the map χi,j : Bi,j → M by

χi,j (ω, s) = γψi (ω)(s).

We claim that, for each (i, j) ∈ N2, the map χi,j is Lipschitz, so that the pair (Bi,j ,χi,j ) is a
transport beam. In order to prove this claim, remember that there exists a vector field E on T M ,
the Euler–Lagrange vector field, such that the extremals are the projections of the integral curves
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of E. Because of energy conservation, this vector field generates a complete flow, denoted by
fs :T M → T M for s ∈ R. From the fact that the Hamiltonian H is C2 and fs is in Legendre
duality with the Hamiltonian flow, we deduce that (s, x, v) → fs(x, v) is C1. We have

χi,j (x, s) = PM ◦ fs

(
x, γ̇ψi (x)(0)

)
∀(x, s) ∈ Bi,j ,

where PM :T M → M is the canonical projection on M . This map is Lipschitz in view of Propo-
sition 8. If R is a transport ray, it is clear that R is contained in one of the images χi,j (Bi,j ). !

5. The distinguished transport plan

We shall now prove Theorem 2, and hence Theorem 1. Our approach is based on remarks
in [2] and [3], however it seems new, and is surprisingly simple. Let µ be a transport plan that
is optimal for the cost c, and, among these optimal transport plans, minimizes the functional∫
σ dµ. The existence of such a plan is straightforward.

Proposition 19. There exists a set

Γ ⊂
⋃

x∈M

{x} × R+
x , (3)

which is a countable union of compact sets, such that µ(Γ ) = 1 and which is monotone in
the following sense: If (xi, yi), i ∈ {1, . . . , k}, is a finite family of points of Γ and if j (i) is a
permutation such that yj (i) ∈ R+

xi
then

k∑

i=1

σ (xi, yj (i)) "
k∑

i=1

σ (xi, yi).

Proof. Let us consider the cost function ζ , where ζ(x, y) : M × M → [0,∞] is the lower semi-
continuous function defined by ζ(x, y) = σ (x, y) if u(y) − u(x) = c(x, y) and ζ(x, y) = ∞ if
not. Note that

∫
ζ dµ =

∫
σ dµ is finite. Theorem 3.2 of [2] implies the existence of a Borel

set Γ̃ on which µ is concentrated, and which is monotone. By interior regularity of the Borel
measure µ, there exists a set Γ ⊂ Γ̃ which is a countable union of compact sets and on which µ

is concentrated. Being a subset of the monotone set Γ̃ , the set Γ is itself monotone. !

Definition 20. Let Λ be the set of points x ∈ M such that the set

Γx :=
{
y ∈ M: (x, y) ∈ Γ

}

contains more than one point, where Γ is defined in (3).

Lemma 21. The set Λ is Borel measurable.

Proof. Let Kn,n ∈ N be an increasing sequence of compact sets such that Γ = ⋃
Kn. For each

x ∈ M , let δn(x) be the diameter of the compact set Kn
x of points y ∈ M such that (x, y) ∈ Kn. It

is not hard to see that the function δn(x) is upper semi-continuous, hence Borel measurable. Since
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Γx = ⋃
n∈N Kn

x , we have δ(x) = supn δn(x), where δ(x) is the diameter of Γx . As a consequence,
the function δ is Borel measurable, and the set Λ= {x ∈ M, δ(x) > 0} is Borel. !

Proposition 22. We have Λ ⊂ T , and the intersection Λ ∩ R is at most countable for each
transport ray R.

Proof. If x /∈ T , then R+
x = {x} hence Γx ⊂ {x}, and x /∈Λ. Let us now consider a transport ray

R that is the image of a maximal calibrated curve γ : [α,β] → M . Let us denote by h : [α,β] → R
the function u ◦ γ , which is strictly increasing (Lemma 9). Note that σ (γ (s),γ (t)) = (h(t) −
h(s))2 for s ! t in [α,β]. In view of the monotonicity of Γ , we have

(
h(t) − h(s)

)2 +
(
h(t ′) − h(s′)

)2 !
(
h(t) − h(s′)

)2 +
(
h(t ′) − h(s)

)2

or equivalently

(
h(t) − h(t ′)

)(
h(s) − h(s′)

)
" 0 (4)

whenever (γ (s),γ (t)) ∈ Γ , (γ (s′),γ (t ′)) ∈ Γ , s′ ! t , and s ! t ′. Following [14] or [2], we
observe that this implies the property:

(
γ (s),γ (t)

)
∈ Γ,

(
γ (s′),γ (t ′)

)
∈ Γ, s < s′ ⇒ t ! t ′. (5)

This property implies that the set of values of s in [α,β] such that Γγ (s) contains more than
one element is at most countable. Indeed, for all integers n " 1, let Sn be the set of values
of s ∈ [α,β] such that there exist t1, t2 ∈ [α,β] with (γ (s),γ (t1)) ∈ Γ , (γ (s),γ (t2)) ∈ Γ and
t2 − t1 " 1/n. If s < s′ are in Sn and if t1, t2 and t ′1, t

′
2 are as above with respect to s and s′, then

α ! t1 ! t2 − 1/n < t2 ! t ′1 ! t ′2 − 1/n < t ′2 ! β and thus β − α " 2/n. More generally, if Sn

contains at least j points, then β −α " j/n. As the interval [α,β] is bounded, the set Sn is finite
for all n, which leads to the conclusion. !

Theorem 2 can now be proved in a very standard way. In view of Section 4, the set Λ has
zero Lebesgue measure in M . The set Z = M − Λ is a Borel set of full Lebesgue measure,
µ0(Z) = 1. Denoting by π0 :M × M → M the projection on the first factor, we observe that the
set ΓZ = Γ ∩ π−1

0 (Z) is a Borel graph on which µ is concentrated (because µ(Γ ) = 1). By the
easy Proposition 2.1 of [1], we conclude that the plan µ is induced from a transport map F . We
then have

∫

M×M

cdµ =
∫

M

c
(
x,F (x)

)
dµ0(x) = K(µ0,µ1) = C(µ0,µ1),

so that the map F is optimal for the cost c. This ends the proof of Theorems 2 and 1.
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