
J. Eur. Math. Soc. *, 1–37 c© European Mathematical Society 200*

Patrick Bernard· Boris Buffoni

Optimal mass transportation and Mather theory

Received July 20, 2005

Abstract. We study the Monge transportation problem when the cost is the action associated to
a Lagrangian function on a compact manifold. We show that the transportation can be interpo-
lated by a Lipschitz lamination. We describe several direct variational problems the minimizers of
which are these Lipschitz laminations. We prove the existence of an optimal transport map when
the transported measure is absolutely continuous. We explain the relations with Mather’s minimal
measures.

Several observations have recently renewed the interest for the classical topic of optimal
mass transportation, whose origin is attributed to Monge a few years before the French
revolution. The framework is as follows. A spaceM is given, which in the present paper
will be a compact manifold, as well as a continuous cost functionc(x, y) : M ×M → R.
Given two probability measuresµ0 andµ1 onM, the mappings9 : M → M which
transportµ0 into µ1 and minimize the total cost

∫
M
c(x,9(x)) dµ0 are studied. It turns

out, and it was the core of the investigations of Monge, that these mappings have very
remarkable geometric properties, at least at a formal level.

Only much more recently was the question of the existence of optimal objects rig-
orously solved by Kantorovich in a famous paper of 1942. Here we speak of optimal
objects, and not of optimal mappings, because the question of existence of an optimal
mapping is ill-posed, so that the notion of optimal objects has to be relaxed, in a way that
nowadays seems very natural, and that was discovered by Kantorovich.

Our purpose here is to continue the work initiated by Monge, recently awakened by
Brenier and enriched by other authors, on the study of geometric properties of optimal
objects. The cost functions we consider are natural generalizations of the costc(x, y) =

d(x, y)2 considered by Brenier and many other authors. The book [39] gives some ideas
on the applications expected from this kind of questions. More precisely, we consider a
Lagrangian functionL(x, v, t) : TM×R → R which is convex inv and satisfies standard
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hypotheses recalled later, and define our cost by

c(x, y) = min
γ

∫ 1

0
L(γ (t), γ̇ (t), t) dt

where the minimum is taken over the set of curvesγ : [0,1] → M satisfyingγ (0) = x

andγ (1) = y. Note that this class of costs does not contain the very natural costc(x, y) =

d(x, y). Such costs are studied in another paper [9].
Our main result is that the optimal transports can be interpolated by measured Lip-

schitz laminations, or geometric currents in the sense of Ruelle and Sullivan. Interpola-
tions of transport have already been considered by Benamou, Brenier and McCann for
less general cost functions, and with different purposes. Our methods are inspired by the
theory of Mather, Mãné and Fathi on Lagrangian dynamics, and we will detail rigor-
ously the relations between these theories. Roughly, they are exactly similar except that
mass transportation is a Dirichlet boundary value problem, while Mather theory is a pe-
riodic boundary value problem. We will also prove, extending work of Brenier, Gangbo,
McCann, Carlier, and others, that the optimal transportation can be performed by a Borel
map with the additional assumption that the transported measure is absolutely continuous.

Various connections between Mather–Fathi theory, optimal mass transportation and
Hamilton–Jacobi equations have recently been discussed, mainly at a formal level; see
for example [39], or [19], where they are all presented as infinite-dimensional linear
programming problems. This has motivated a lot of activity around the interface be-
tween Aubry–Mather theory and optimal transportation, some of which overlaps partly
the present work. For example, at the moment of submitting the paper, we were informed
about recent preprints of De Pascale, Gelli and Granieri [15] and of Granieri [26]. We
had also been aware of a manuscript by Wolansky [40], which, independently, and by
somewhat different methods, obtains results similar to ours. Note however that Lipschitz
regularity, which we consider one of our most important results, was not obtained in this
preliminary version of [40]. The papers [36] of Pratelli and [31] of Loeper are also worth
mentioning.

1. Introduction

We present the context and the main results of the paper.

1.1. Lagrangian, Hamiltonian and cost

In all the present paper, the spaceM will be a compact and connected Riemannian man-
ifold without boundary. Some standing notations are gathered in the appendix. Let us fix
a positive real numberT , and a Lagrangian function

L ∈ C2(TM × [0, T ],R).
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A curveγ ∈ C2([0, T ],M) is called anextremalif it is a critical point of the action∫ T

0
L(γ (t), γ̇ (t), t) dt

with fixed endpoints. It is called aminimizing extremalif it minimizes the action. We
assume:

• Convexity: for each(x, t) ∈ M × [0, T ], the functionv 7→ L(x, v, t) is convex with
positive definite Hessian at each point.

• Superlinearity: for each(x, t) ∈ M × [0, T ], L(x, v, t)/‖v‖ → ∞ as‖v‖ → ∞.
Arguing as in [20, Lemma 3.2.2], this implies that for allα > 0 there existsC > 0
such thatL(x, v, t) ≥ α‖v‖ − C for all (x, v, t) ∈ TM × [0, T ].

• Completeness: for each(x, v, t) ∈ TM × [0, T ], there exists a unique extremalγ ∈

C2([0, T ],M) such that(γ (t), γ̇ (t)) = (x, v).

We associate to the LagrangianL a Hamiltonian functionH ∈ C2(T ∗M × [0, T ],R)
given by

H(x, p, t) = max
v
(p(v)− L(x, v, t)).

We endow the cotangent bundleT ∗M with its canonical symplectic structure, and asso-
ciate to the HamiltonianH the time-dependent vector fieldY onT ∗M, given by

Y = (∂pH,−∂xH)

in any canonical local trivialization ofT ∗M. The hypotheses onL can be expressed in
terms of the functionH :

• Convexity: for each(x, t) ∈ M × [0, T ], the functionp 7→ H(x, p, t) is convex with
positive definite Hessian at each point.

• Superlinearity: for each(x, t) ∈ M × [0, T ], we haveH(x, p, t)/‖p‖ → ∞ as
‖p‖ → ∞.

• Completeness:each solution of the equation(ẋ(t), ṗ(t)) = Y (x(t), p(t), t) can be
extended to the interval [0, T ]. We can then define, for alls, t ∈ [0, T ], the flowϕts of
Y from times to timet .

In addition, the mapping∂vL : TM × [0, T ] → T ∗M × [0, T ] is a C1 diffeomor-
phism, whose inverse is the mapping∂pH . These diffeomorphisms conjugateY to a
time-dependent vector fieldE on TM. We denote the flow ofE by ψ ts : TM → TM

(s, t ∈ [0, T ]); it satisfiesψ ss = Id and∂tψ ts = Et ◦ ψ ts , where as usualEt denotes the
vector fieldE(·, t) on TM. The diffeomorphisms∂vL and∂pH conjugate the flowsψ ts
andϕts . Moreover the extremals are the projections of the integral curves ofE and

(π ◦ ψ ts , ∂t (π ◦ ψ ts )) = ψ ts , (1)

whereπ : TM → M is the canonical projection. In (1),∂t (π ◦ ψ ts ) is seen as a vector
in the tangent space ofM atπ ◦ ψ ts . If ∂t (π ◦ ψ ts ) is seen as a point inTM, (1) becomes
simply ∂t (π ◦ ψ ts ) = ψ ts .
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For each 0≤ s < t ≤ T , we define the cost function

cts(x, y) = min
γ

∫ t

s

L(γ (σ ), γ̇ (σ ), σ ) dσ

where the minimum is taken over the set of curvesγ ∈ C2([s, t ],M) satisfyingγ (s) = x

andγ (t) = y. That this minimum exists is a standard result under our hypotheses (see
[33] or [20]).

Proposition 1. Fix a subinterval[s, t ] ⊂ [0, T ]. The setE ⊂ C2([s, t ],M) of minimizing
extremals is compact for theC2 topology.

Let us mention that, for each(x0, s) ∈ M × [0, T ], the function(x, t) 7→ cts(x0, x) is a
viscosity solution of the Hamilton–Jacobi equation

∂tu+H(x, ∂xu, t) = 0

onM × ]s, T [. This remark may help the reader understand the key role which will be
played by this equation in what follows.

1.2. Monge–Kantorovich theory

We recall the basics of Monge–Kantorovich duality. The proofs are available in many
texts on the subject, for example [1, 37, 39]. We assume thatM is a compact manifold
and thatc is a continuous cost function onM ×M, which will later be one of the costscts
defined above. Given two Borel probability measuresµ0 andµ1 onM, a transport plan
betweenµ0 andµ1 is a measureη onM ×M which satisfies

(π0)](η) = µ0 and (π1)](η) = µ1,

whereπ0 : M ×M → M is the projection on the first factor, andπ1 is the projection on
the second factor. We denote byK(µ0, µ1), after Kantorovich, the set of transport plans.
Kantorovich proved the existence of the minimum

C(µ0, µ1) = min
η∈K(µ0,µ1)

∫
M×M

c dη

for each pair(µ0, µ1) of probability measures onM. Here we will denote by

Cts(µ0, µ1) := min
η∈K(µ0,µ1)

∫
M×M

cts(x, y) dη(x, y) (2)

the optimal value associated to our family of costscts The plans which realize this mini-
mum are calledoptimal transfer plans. A pair (φ0, φ1) of continuous functions is called
anadmissible Kantorovich pairif it satisfies the relations

φ1(x) = min
y∈M

(φ0(y)+ c(y, x)) and φ0(x) = max
y∈M

(φ1(y)− c(x, y))
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for all x ∈ M. Note that the admissible pairs are composed of Lipschitz functions if the
costc is Lipschitz, which is the case of the costscts whens < t . Another discovery of
Kantorovich is that

C(µ0, µ1) = max
φ0,φ1

(∫
M

φ1 dµ1 −

∫
M

φ0 dµ0

)
(3)

where the maximum is taken over the set of admissible Kantorovich pairs(φ0, φ1). This
maximization problem is called thedual Kantorovich problem, and the admissible pairs
which reach this maximum are calledoptimal Kantorovich pairs. The direct problem (2)
and dual problem (3) are related as follows.

Proposition 2. If η is an optimal transfer plan, and if(φ0, φ1) is an optimal Kantorovich
pair, then the support ofη is contained in the set

{(x, y) ∈ M2 : φ1(y)− φ0(x) = c(x, y)}.

Let us remark that the knowledge of the set of admissible Kantorovich pairs is equivalent
to the knowledge of the cost functionc.

Lemma 3. We have
c(x, y) = max

(φ0,φ1)
(φ1(y)− φ0(x))

where the maximum is taken over the set of admissible Kantorovich pairs.

Proof. This maximum clearly does not exceedc(x, y). For the other inequality, fixx0
andy0 inM, and consider the functionsφ1(y) = c(x0, y) andφ0(x) = maxy∈M(φ1(y)−

c(x, y)). We haveφ1(y0) − φ0(x0) = c(x0, y0) − 0 = c(x0, y0). So it is enough to
prove that(φ0, φ1) is an admissible Kantorovich pair, and more precisely thatφ1(y) =

minx∈M(φ0(x)+ c(x, y)). We have

φ0(x)+ c(x, y) ≥ c(x0, y)− c(x, y)+ c(x, y) ≥ c(x0, y) = φ1(y),

which gives the inequalityφ1(y) ≤ minx∈M(φ0(x)+c(x, y)). On the other hand, we have

min
x∈M

(φ0(x)+ c(x, y)) ≤ φ0(x0)+ c(x0, y) = c(x0, y) = φ1(y). ut

1.3. Interpolations

In this section, the LagrangianL and timeT > 0 are fixed. It is not hard to see that if
µ1, µ2 andµ3 are three probability measures onM, and if t1 ≤ t2 ≤ t3 ∈ [0, T ], then

C
t3
t1
(µ1, µ3) ≤ C

t2
t1
(µ1, µ2)+ C

t3
t2
(µ2, µ3).

The familyµt , t ∈ [0, T ], of probability measures onM is called aninterpolationbe-
tweenµ0 andµT if

C
t3
t1
(µt1, µt3) = C

t2
t1
(µt1, µt2)+ C

t3
t2
(µt2, µt3)

for all 0 ≤ t1 ≤ t2 ≤ t3 ≤ T . Our main result is the following:
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Theorem A. For each pairµ0, µT of probability measures, there exist interpolations
betweenµ0 andµT . Moreover, each interpolationµt , t ∈ [0, T ], is given by a Lipschitz
measured lamination in the following sense:
Eulerian description: There exists a bounded locally Lipschitz vector fieldX(x, t) :
M × ]0, T [ → TM such that, if9 ts , (s, t) ∈ ]0, T [2, is the flow ofX from times to
timet , then(9 ts)]µs = µt for each(s, t) ∈ ]0, T [2.
Lagrangian description: There exists a familyF ⊂ C2([0, T ],M) of minimizing ex-
tremalsγ ofL such thatγ̇ (t) = X(γ (t), t) for all t ∈ ]0, T [ andγ ∈ F . The set

T̃ = {(γ (t), γ̇ (t), t) : t ∈ ]0, T [, γ ∈ F} ⊂ TM × ]0, T [

is invariant under the Euler–Lagrange flowψ . The measureµt is supported onTt =

{γ (t) : γ ∈ F}. In addition, there exists a continuous familymt , t ∈ [0, T ], of probability
measures onTM such thatmt is concentrated oñTt = {(γ (t), γ̇ (t)) : γ ∈ F} for each
t ∈ ]0, T [, π]mt = µt for eacht ∈ [0, T ], and

mt = (ψ ts )]ms for all (s, t) ∈ [0, T ]2.

Hamilton–Jacobi equation: There exists a LipschitzC1 functionv : M × ]0, T [ → R
which satisfies

∂tv +H(x, ∂xv, t) ≤ 0,

with equality if and only if(x, t) ∈ T = {(γ (t), t) : γ ∈ F, t ∈ ]0, T [}, and such that
X(x, t) = ∂pH(x, ∂xv(x, t), t) for each(x, t) ∈ T .
Uniqueness: There may exist several different interpolations. However, one can choose
the vector fieldX, the familyF and the subsolutionv in such a way that the statements
above hold for all interpolationsµt with these fixedX,F andv. For eachs < t ∈ ]0, T [,
the measure(Id ×9 ts)]µs is the only optimal transport plan inK(µs, µt ) for the costcts .
This implies that ∫

M

cts(x,9
t
s(x)) dµs(x) = Cts(µs, µt ).

Let us comment on the preceding statement. The setT̃ ⊂ TM× ]0, T [ is the image under
the Lipschitz map(x, t) 7→ (X(x, t), t) of the setT ⊂ TM × ]0, T [. We shall not take
X(x, t) = ∂pH(x, ∂xv(x, t), t) outside ofT because we do not prove that this vector
field is Lipschitz outside ofT . The data of the vector fieldX outside ofT is immaterial:
any Lipschitz extension ofX|T will do. Note also that the relation

9 ts = π ◦ ψ ts ◦Xs (4)

holds onTs , whereXs(·) = X(·, s).
The vector fieldX in the statement depends on the transported measuresµ0 andµT .

The Lipschitz constant ofX, however, can be fixed independently of these measures, as
we now state (see Proposition 13, Proposition 19, Theorem 3 and (11)):
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Addendum. There exists a decreasing functionK(ε) : ]0, T /2[ → ]0,∞[, which de-
pends only on the timeT and on the LagrangianL, such that, for each pairµ0, µT of
probability measures, one can choose the vector fieldX in Theorem A in such a way that
X isK(ε)-Lipschitz onM × [ε, T − ε] for eachε ∈ ]0, T /2[.

Proving Theorem A is the main goal of the present paper. In Section 2 we will present
some direct variational problems which are well-posed and for which the transport in-
terpolations are solutions in some sense. We believe that these variational problems are
interesting in their own right. In order to describe the solutions of the variational problem,
we will rely on a dual approach based on the Hamilton–Jacobi equation, inspired from
Fathi’s approach to Mather theory, as detailed in Section 3. The solutions of the problems
of Section 2, as well as the transport interpolations, are then described in Section 4, which
ends the proof of Theorem A.

1.4. Case of an absolutely continuous measureµ0

Additional conclusions concerning optimal transport can usually be obtained when the
initial measureµ0 is absolutely continuous. For example a standard question is whether
the optimal transport can be realized by an optimal mapping.

A transport mapis a Borel map9 : M → M which satisfies9]µ0 = µ1. To any
transport map9 is naturally associated the transport plan(Id×9)]µ0, called theinduced
transport plan. An optimal mapis a transport map9 : M → M such that∫

M

cT (x,9(x)) dµ0 ≤

∫
M

cT (x, F (x)) dµ0

for any transport mapF . It turns out that, under the assumption thatµ0 has no atoms, a
transport map is optimal if and only if the induced transport plan is an optimal transport
plan (see [1, Theorem 2.1]). In other words, we have

inf
9

∫
M

c(x,9(x)) dµ0(x) = C(µ0, µ1),

where the infimum is taken over the set of transport maps fromµ0 toµ1. This is a general
result which holds for any continuous costc. It is a standard question, which turns out to
be very hard for certain cost functions, whether the infimum above is reached, or in other
words whether there exists an optimal transport plan which is induced from a transport
map. Part of the result below is that this holds true in the case of the costcT0 . The method
we use to prove this is an elaboration on ideas due to Brenier [12] and developed for
instance in [24] (see also [23]) and [16], which is certainly the closest to our needs.

Theorem B. Assume thatµ0 is absolutely continuous with respect to the Lebesgue class
onM. Then for each final measureµT , there exists a unique interpolationµt , t ∈ [0, T ],
and each interpolating measureµt , t < T , is absolutely continuous. In addition, there
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exists a family9 t0 : M → M, t ∈ ]0, T ], of Borel maps such that(Id × 9 t0)]µ0 is the
only optimal transfer plan inK(µ0, µt ) for the cost functionct0. Consequently, we have∫

M

ct0(x,9
t
0(x)) dµ0(x) = Ct0(µ0, µt ), 0< t ≤ T .

If µT , instead ofµ0, is assumed to be absolutely continuous, then there exists a unique
interpolation, and each interpolating measureµt , t ∈ ]0, T ], is absolutely continuous.

This theorem will be proved and commented in Section 5.

1.5. Mather theory

Let us now assume that the Lagrangian function is defined for all times,L ∈ C2(TM ×

R,R), and, in addition to the standing hypotheses, satisfies the periodicity condition

L(x, v, t + 1) = L(x, v, t)

for all (x, v, t) ∈ TM × R. A Mather measure(see [33]) is a compactly supported prob-
ability measurem0 onTM which is invariant in the sense that(ψ1

0)]m0 = m0 and which
minimizes the action

A1
0(m0) =

∫
TM×[0,1]

L(ψ t0(x, v), t) dm0 dt.

The major discovery of [33] is that Mather measures are supported on the graph of a
Lipschitz vector field. Let us denote byα the action of Mather measures—this number is
the value at zero of theα function defined by Mather in [33]. Let us now explain how this
theory of Mather is related to, and can be recovered from, the content of our paper.

Theorem C. We have
α = min

µ
C1

0(µ,µ),

where the minimum is taken over the set of probability measures onM. The mapping
m0 7→ π]m0 is a bijection between the set of Mather measuresm0 and the set of proba-
bility measuresµ onM satisfyingC1

0(µ,µ) = α. There exists a Lipschitz vector fieldX0
onM such that all the Mather measures are supported on the graph ofX0.

This theorem will be proved in Section 6, where the bijection between Mather measures
and measures minimizingC1

0(µ,µ) will be specified.

2. Direct variational problems

We state two different variational problems whose solutions are the interpolated trans-
ports. We believe that these problems are interesting in their own right. They will also be
used to prove Theorem A.



Optimal mass transportation and Mather theory 9

2.1. Measures

This formulation parallels Mather’s theory. It can also be related to the generalized curves
of L. C. Young. Letµ0 andµT be two probability Borel measures onM. Let m0 ∈

B1(TM) be a Borel probability measure on the tangent bundleTM. We say thatm0 is an
initial transport measureif the measureη onM ×M given by

η = (π × (π ◦ ψT0 ))]m0

is a transport plan, whereπ : TM → M is the canonical projection. We denote by
I(µ0, µT ) the set of initial transport measures. To an initial transport measurem0, we
associate the continuous family of measures

mt = (ψ t0)]m0, t ∈ [0, T ],

onTM, and the measurem onTM × [0, T ] given by

m = mt ⊗ dt = ((ψ t0)]m0)⊗ dt.

Note that the linear mappingm0 7→ m = ((ψ t0)]m0)⊗ dt is continuous fromB(TM) to
B(TM × [0, T ]) endowed with the weak topology (see Appendix).

Lemma 4. The measurem satisfies the relation∫
TM×[0,T ]

(∂tf (x, t)+ ∂xf (x, t) · v) dm(x, v, t) =

∫
M

fT dµT −

∫
M

f0 dµ0 (5)

for eachf ∈ C1(M × [0, T ],R), whereft denotes the functionx 7→ f (x, t).

Proof. Settingf̃ (x, v, t) = f (x, t), g1(x, v, t)= ∂tf (x, t)= ∂t f̃ (x, v, t) andg2(x, v, t)

= ∂xf (x, t) · v, we have∫
TM×[0,T ]

(∂tf (x, t)+ ∂xf (x, t) · v) dm(x, v, t) =

∫ T

0

∫
TM

(g1 + g2) ◦ ψ t0 dm0 dt.

Noticing that, in view of equation (1), we have

∂t (f̃ ◦ ψ t0) = g1 ◦ ψ t0 + g2 ◦ ψ t0,

we obtain∫
TM×[0,T ]

(∂tf (x, t)+ ∂xf (x, t) · v) dm(x, v, t) =

∫
TM

(f̃ ◦ ψT0 − f̃ ) dm0

=

∫
M

fT dµT −

∫
M

f0 dµ0

as desired. ut
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Definition 5. A finite Borel measurem on TM × [0, T ] which satisfies(5) is called a
transport measure. We denote byM(µ0, µT ) the set of transport measures. A transport
measure which is induced from an initial measurem0 is called aninitial transport mea-
sure. Theactionof the transport measurem is defined by

A(m) =

∫
TM×[0,T ]

L(x, v, t) dm ∈ R ∪ {∞}.

The actionA(m0) of an initial transport measure is defined as the action of the associated
transport measurem. We will also denote this action byAT0 (m0)when we want to indicate
the time interval. We have

AT0 (m0) =

∫
TM×[0,T ]

L(ψ t0(x, v), t) dm0 dt.

Notice that initial transport measures exist:

Proposition 6. The mapping(π × (π ◦ ψT0 ))] : I(µ0, µT ) → K(µ0, µT ) is surjective.
In addition, for each transport planη, there exists a compactly supported initial transport
measurem0 such that(π × (π ◦ ψT0 ))]m0 = η and

A(m0) =

∫
M×M

cT0 (x, y) dη.

Proof. By Proposition 1, there exists a compact setK ⊂ TM such that ifγ : [0, T ] → M

is a minimizing extremal, then the lifting(γ (t), γ̇ (t)) is contained inK for eacht ∈

[0, T ]. We shall prove that, for each probability measureη ∈ B(M ×M), there exists a
probability measurem0 ∈ B(K) such that(π × (π ◦ ψT0 ))]m0 = η and

A(m0) =

∫
M×M

cT0 (x, y) dη.

Observing that

• the mappingsm0 7→ (π × (π ◦ ψT0 ))]m0 andm0 7→ A(m0) are linear and continuous
on the spaceB1(K) of probability measures supported onK,

• B1(K) is compact for the weak topology, and the actionA is continuous on this set,
• the set of probability measures onM ×M is the compact convex closure of the set of

Dirac probability measures (probability measures supported in one point; see e.g. [10,
p. 73]),

it is enough to prove the result whenη is a Dirac probability measure (or equivalently
whenµ0 andµT are Dirac probability measures). Letη be the Dirac probability measure
supported at(x0, x1) ∈ M × M. Let γ : [0, T ] → M be a minimizing extremal with
boundary conditionsγ (0) = x0 andγ (T ) = x1. In view of the choice ofK, we have
(γ (0), γ̇ (0)) ∈ K. Letm0 be the Dirac probability measure supported at(γ (0), γ̇ (0)). It
is straightforward thatmt is then the Dirac measure supported at(γ (t), γ̇ (t)), so that

A(m0) =

∫ T

0
Ldmt dt =

∫ T

0
L(γ (t), γ̇ (t), t) dt = cT0 (x0, x1) =

∫
M×M

cT0 dη

and(π × (π ◦ ψT0 ))]m0 = η. ut
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Although we are going to build minimizers by other means, we believe the following
result is worth mentioning.

Lemma 7. For each real numbera, the setMa(µ0, µT ) of transport measuresm which
satisfyA(m) ≤ a, as well as the setIa(µ0, µT ) of initial transport measuresm0 which
satisfyAT0 (m0) ≤ a, are compact. As a consequence, there exist optimal initial transport
measures, and optimal transport measures.

Proof. This is an easy application of the Prokhorov theorem (see Appendix). ut

Now that we have seen that the problem of finding optimal transport measures is well-
posed, let us describe its solutions.

Theorem 1. We have

CT0 (µ0, µT ) = min
m∈M(µ0,µT )

A(m) = min
m0∈I(µ0,µT )

A(m0).

The mapping
m0 7→ m = ((ψ t0)]m0)⊗ dt

between the setOI of optimal initial measures and the setOM of optimal transport
measures is a bijection. There exists a bounded and locally Lipschitz vector fieldX :
M × ]0, T [ → TM such that, for each optimal initial measurem0 ∈ OI, the measure
mt = (ψ t0)]m0 is supported on the graph ofXt for eacht ∈ ]0, T [.

The proof will be given in Section 4.3. Let us just notice now that the inequalities

CT0 (µ0, µT ) ≥ min
m0∈I(µ0,µT )

A(m0) ≥ min
m∈M(µ0,µT )

A(m)

hold in view of Proposition 6.

2.2. Currents

This formulation finds its roots on one hand in the works of Benamou and Brenier [6] and
then Brenier [13], and on the other hand in the work of Bangert [5]. Let�0(M × [0, T ])
be the set of continuous one-forms onM × [0, T ], endowed with the uniform norm. We
will often decompose formsω ∈ �0(M × [0, T ]) as

ω = ωx + ωtdt,

whereωx is a time-dependent form onM andωt is a continuous function onM × [0, T ].
To each continuous linear formχ on�0(M×[0, T ]), we associate its time componentµχ ,
which is the measure onM × [0, T ] defined by∫

M×[0,T ]
f dµχ = χ(f dt)

for each continuous functionf onM × [0, T ]. A transport currentbetweenµ0 andµT
is a continuous linear formχ on�0(M × [0, T ]) which satisfies the two conditions:
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1. The measureµχ is non-negative (and bounded).
2. dχ = µT ⊗ δT − µ0 ⊗ δ0, which means that

χ(df ) =

∫
M

fT dµT −

∫
M

f0 dµ0

for each smooth (or equivalentlyC1) functionf : M × [0, T ] → R.

We letC(µ0, µT ) denote the set of transport currents fromµ0 toµT . It is a closed convex
subset of [�0(M× [0, T ])]∗. We will endowC(µ0, µT ) with the weak topology obtained
as the restriction of the weak∗ topology of [�0(M × [0, T ])]∗. Transport currents should
be thought of as vector fields whose components are measures, the last component be-
ingµχ .

If Z is a bounded measurable vector field onM × [0, T ], and if ν is a finite non-
negative measure onM × [0, T ], we define the currentZ ∧ ν by

Z ∧ ν(ω) :=
∫
M×[0,T ]

ω(Z) dν.

Every transport current can be written in this way (see [22] or [25]). As a consequence,
currents extend to linear forms on the set�∞(M × [0, T ]) of bounded measurable one-
forms. If I is a Borel subset of [0, T ], it is therefore possible to define the restrictionχI
of the currentχ to I by the formulaχI (ω) = χ(1Iω), where 1I is the indicatrix ofI .

Lemma 8. If χ is a transport current, then

τ]µχ = dt,

whereτ is the projection onto[0, T ] (see Appendix). As a consequence, there exists a
measurable familyµt , t ∈ ]0, T [, of probability measures onM such thatµχ = µt ⊗ dt

(see Appendix). There exists a setI ⊂ ]0, T [ of full measure such that∫
M

ft dµt =

∫
M

f0 dµ0 + χ[0,t [(df ) (6)

for eachC1 functionf : M × [0, T ] → M and eacht ∈ I .

Proof. Let g : [0, T ] → R be a continuous function. SettingG(t) =
∫ t

0 g(s) ds, we
observe that∫
M×[0,T ]

g dµχ = χ(dG) =

∫
M

GT dµT −

∫
M

G0 dµ0 = G(T )−G(0) =

∫ T

0
g(s) ds.

This implies thatτ]µχ = dt. As a consequence, the measureµχ can be desintegrated as
µχ = µt ⊗dt . We claim that, for eachC1 functionf : M× [0, T ] → M, the relation (6)
holds for almost everyt . Since the spaceC1(M×[0, T ],R) is separable, the claim implies
the existence of a setI ⊂ ]0, T [ of full Lebesgue measure such that (6) holds for allt ∈ I



Optimal mass transportation and Mather theory 13

and allf ∈ C1(M × [0, T ],R). In order to prove the claim, fixf in C1(M × [0, T ],R).
For eachg ∈ C1([0, T ],R), we have

χ(d(gf )) = χ(g′f dt)+ χ(gdf ),

hence

g(T )

∫
M

fT dµT − g(0)
∫
M

f0 dµ0 =

∫ T

0
g′(t)

∫
M

ft dµt dt + χ(gdf ).

By applying this relation to a sequence ofC1 functionsg approximating 1[0,t [ , we get, in
the limit,

−

∫
M

f0 dµ0 = −

∫
M

ft dµt + χ[0,t [(df )

at every Lebesgue point of the functiont 7→
∫
M
ft dµt . ut

If µ0 = µT , an easy example of a transport current is given byχ(ω) =
∫
M

∫ T
0 ωtdt dµ0.

Here are some more interesting examples.

Regular transport currents. The transport currentχ is calledregular if there exists a
bounded measurable sectionX of the projectionTM × [0, T ] → M × [0, T ], and a non-
negative measureµ onM × [0, T ] such thatχ = (X,1)∧µ. The time component of the
current(X,1) ∧ µ is µ. In addition, if(X,1) ∧ µ = (X′,1) ∧ µ for two vector fieldsX
andX′, thenX andX′ agreeµ-almost everywhere.

The currentχ = (X,1) ∧ µ, withX bounded, is a regular transport current if and
only if there exists a (unique) continuous familyµt ∈ B1(M), t ∈ [0, T ] (whereµ0 and
µT are the transported measures), such thatµχ = µt ⊗ dt and such that the transport
equation

∂tµt + ∂x .(Xµt ) = 0

holds in the sense of distributions onM × ]0, T [. The relation∫
M

ft dµt −

∫
M

fs dµs = χ[s,t [(df )

then holds for eachC1 functionf and anys ≤ t in [0, T ].

In order to prove that the familyµt can be chosen continuous, pick a functionf ∈

C1(M,R) and notice that the equation∫
M

f dµt −

∫
M

f dµs = χ[s,t [(df ) =

∫ t

s

∫
M

df ·Xσ dµσ dσ

holds for alls ≤ t in a subsetI ⊂ [0, T ] of full measure. Note that this relation also holds
if s = 0 andt ∈ I and if s ∈ I andt = T . Since the functionσ 7→

∫
M
df · Xσ dµσ is

bounded, we conclude that the functiont 7→
∫
M
f dµt is Lipschitz onI ∪{0, T } for each

f ∈ C1(M,R), with a Lipschitz constant which depends only on‖df ‖∞ · ‖X‖∞. The
family µt is then Lipschitz onI ∪ {0, T } for the 1-Wasserstein distance on probability
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measures (see [39, 17, 3] for example), the Lipschitz constant depending only on‖X‖∞.
It suffices to remember that, on the compact manifoldM, the 1-Wasserstein distance
on probabilities is topologically equivalent to the weak topology (see for example [41,
(48.5)], or [39]).

Smooth transport currents. A regular transport current is said to besmoothif it can be
written in the form(X,1) ∧ λ with a bounded vector fieldX smooth onM × ]0, T [ and
a measureλ that has a positive smooth density with respect to the Lebesgue class in any
chart inM× ]0, T [. Every transport current inC(µ0, µT ) can be approximated by smooth
transport currents, but we shall not use such approximations.

Lipschitz regular transport currents. A regular transport current is calledLipschitz
regular if it can be written in the form(X,1)∧µ with a vector fieldX which is bounded
and locally Lipschitz onM × ]0, T [. Smooth currents are Lipschitz regular. Lipschitz
regular transport currents have a remarkable structure:

If χ = (X,1)∧µ is a Lipschitz regular transport current withX bounded and locally
Lipschitz onM × ]0, T [, then

(9 ts)]µs = µt

where9 ts , (s, t) ∈ ]0, T [2, denotes the flow of the Lipschitz vector fieldX from times to
timet , andµt is the continuous family of probability measures such thatµχ = µt ⊗ dt .

This statement follows from standard representation results for solutions of the trans-
port equation (see for example [2] or [3]).

Transport current induced from a transport measure. To a transport measurem, we
associate the transport currentχm defined by

χm(ω) =

∫
TM×[0,T ]

(ωx(x, t) · v + ωt (x, t)) dm(x, v, t)

where the formω is decomposed asω = ωx +ωtdt . Note that the time component of the
currentχm is π]m. We will see in Lemma 11 that

A(χm) ≤ A(m)

with the following definition of the actionA(χ) of a current, with equality ifm is con-
centrated on the graph of any bounded vector fieldM × [0, T ] → TM.

Lemma 9. For each transport currentχ , the numbers

A1(χ) = sup
ω∈�0

(
χ(ωx,0)−

∫
M×[0,T ]

H(x, ωx(x, t), t) dµχ

)
,

A2(χ) = sup
ω∈�0

(
χ(ω)−

∫
M×[0,T ]

(H(x, ωx(x, t), t)+ ωt ) dµχ

)
,

A3(χ) = sup
ω∈�0

(
χ(ω)− T sup

(x,t)∈M×[0,T ]
(H(x, ωx(x, t), t)+ ωt )

)
,
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A4(χ) = sup
ω∈�0, ωt+H(x,ωx ,t)≤0

χ(ω),

A5(χ) = sup
ω∈�0, ωt+H(x,ωx ,t)≡0

χ(ω).

are equal. In addition the numbersA∞

i (χ) obtained by replacing in the above suprema
the set�0 of continuous forms by the set�∞ of bounded measurable forms also have the
same value.

The last remark in the statement has been added in the last version of the paper and is
inspired by [15].

Proof. It is straightforward thatA1 = A2: this just amounts to simplifying the term∫
ωt dµχ . Sinceµχ is a non-negative measure which satisfies

∫
M×[0,T ] 1dµχ = T , we

have∫
M×[0,T ]

(H(x, ωx(x, t), t)+ ωt ) dµχ ≤ T sup
(x,t)∈M×[0,T ]

(H(x, ωx(x, t), t)+ ωt )

so thatA3(χ) ≤ A2(χ). In addition, we obviously haveA5(χ) ≤ A4(χ) ≤ A3(χ). Now
notice that, inA2, the quantity

χ(ω)−

∫
M×[0,T ]

(H(x, ωx(x, t), t)+ ωt ) dµχ

does not depend onωt . Consider the form̃ω = (ωx,−H(x, ωx, t)), which satisfies the
equalityH(x, ω̃x, t)+ ω̃t ≡ 0. We get, for each formω,

χ(ωx,0)−

∫
M×[0,T ]

H(x, ωx(x, t), t) dµχ = χ(ω̃) ≤ A5(χ).

HenceA1(χ) ≤ A5(χ). Exactly the same proof shows that the numbersA∞

i (χ) are equal.
In order to end the proof, it is enough to check thatA2(χ) = A∞

2 (χ). Writing the current
χ in the formZ ∧ ν with a bounded vector fieldZ and a measureν ∈ B+(M × [0, T ]),
we have

A2(χ) = sup
ω∈�0

( ∫
M×[0,T ]

ω(Z) dν −

∫
M×[0,T ]

(H(x, ωx(x, t), t)+ ωt ) dµχ

)
and

A∞

2 (χ) = sup
ω∈�∞

( ∫
M×[0,T ]

ω(Z) dν −

∫
M×[0,T ]

(H(x, ωx(x, t), t)+ ωt ) dµχ

)
.

The desired result follows by density of continuous functions inL1(ν + µχ ). ut

Definition 10. We denote byA(χ) the common value of the numbersAi(χ) and call it
theactionof the transport currentχ .
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The existence of currents of finite action follows from

Lemma 11. We have

A(χ) =

∫
M×[0,T ]

L(x,X(x, t), t) dµ

for each regular currentχ = (X,1) ∧ µ. If m is a transport measure, and ifχm is the
associated transport current, thenA(χm) ≤ A(m), with equality ifm is supported on the
graph of a bounded Borel vector field. As a consequence,

CT0 (µ0, µT ) ≥ min
m0∈I(µ0,µT )

A(m0) ≥ min
m∈M(µ0,µT )

A(m) ≥ min
χ∈C(µ0,µT )

A(χ).

Proof. For each bounded measurable formω, we have∫
M×[0,T ]

(ωx(X)−H(x, ωx(x, t), t)) dµ ≤

∫
M×[0,T ]

L(x,X(x, t), t) dµ,

so that

A((X,1) ∧ µ) ≤

∫
M×[0,T ]

L(x,X(x, t), t) dµ.

On the other hand, taking the formωx0(x, t) = ∂vL(x,X(x, t), t) we obtain the pointwise
equality

L(x,X(x, t), t) = ωx0(X)−H(x, ωx0(x, t), t)

and by integration∫
M×[0,T ]

L(x,X(x, t), t) dµ =

∫
M×[0,T ]

(ωx0(X)−H(x, ωx0(x, t), t)) dµ

≤ A((X,1) ∧ µ).

This ends the proof of the equality of the two forms of the action of regular currents. Now
if χm is the current associated to a transport measurem, then, for each bounded form
ω ∈ �0(M × [0, T ]), we have

χm(ω)−

∫
M×[0,T ]

(ωt (x, t)+H(x, ωx(x, t), t)) dµχ

=

∫
TM×[0,T ]

(ωx(v)−H(x, ωx(x, t), t)) dm

by definition ofχm, so that

A(χm) ≤

∫
TM×[0,T ]

L(x, v, t) dm = A(m)

by the Legendre inequality. In addition, if there exists a bounded measurable vector field
X : M × [0, T ] → TM such that the graph ofX × τ supportsm, then we can consider
the formωx0 associated toX as above, and we get the equality for this form. ut

Although we are going to provide explicitly a minimum ofA, we believe the following
lemma is worth mentioning.
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Lemma 12. The functionalA : C(µ0, µT ) → R ∪ {+∞} is convex and lower semicon-
tinuous, both for the strong and weak∗ topologies on[�0(M × [0, T ])]∗. Moreover it is
coercive with respect to the strong topology and hence it has a minimum.

Proof. First note thatA(χ) < ∞ if χ is the transport current corresponding to an initial
transport measure inM(µ0, µT ) arising from a transport plan. Define the continuous
convex functionHT : �0(M × [0, T ]) → R by

HT (ω) = T sup
(x,t)∈M×[0,T ]

(H(x, ωx(x, t), t)+ ωt ).

Then the action is the restriction toC(µ0, µT ) of the Fenchel conjugateA = H∗ :
[�0(M × [0, T ])]∗ → R ∪ {+∞}. In other words,A is the supremum overω of the
family of affine functionals

χ 7→ χ(ω)− HT (ω)

that are continuous both for the strong and weak∗ topologies. HenceA is convex and
lower semicontinuous for both topologies. Since

A(χ) ≥ sup
‖ω‖≤1

χ(ω)− sup
‖ω‖≤1

HT (ω),

A is coercive. The existence of a minimizer is standard: any minimizing sequence(χn)

is bounded (thanks to coercivity) and has a weak∗ convergent subsequence (because
�0(M× [0, T ]) is a separable Banach space). By lower semicontinuity, its weak∗ limit is
a minimizer. Note thatC(µ0, µT ) is weak∗ closed. ut

Theorem 2. We have
CT0 (µ0, µT ) = min

χ∈C(µ0,µT )
A(χ)

where the minimum is taken over all transport currents fromµ0 to µT . Every optimal
transport current is Lipschitz regular. Letχ = (X,1)∧µ be an optimal transport current,
withX locally Lipschitz onM× ]0, T [. The measurem = (X×τ)]µ ∈ B+(TM× ]0, T [)
is an optimal transport measure, andχ is the transport current induced fromm. Here
τ : TM× [0, T ] → [0, T ] is the projection on the second factor (see Appendix). We have

CT0 (µ0, µT ) = A(m) = A(χ) =

∫
M×[0,T ]

L(x,X(x, t), t) dµχ .

This result will be proved in 4.1 after establishing some essential results on the dual
approach.

3. Hamilton–Jacobi equation

Most of the results stated so far can be proved by direct approaches using Mather’s short-
ening lemma, which in a sense is an improvement on the initial observation of Monge (see
[33] and [5]). We shall however base our proofs on the use of the Hamilton–Jacobi equa-
tion, in the spirit of Fathi’s [20] approach to Mather theory, which should be associated
to Kantorovich’s dual approach to the transportation problem.
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3.1. Viscosity solutions and semiconcave functions

It is certainly useful to recall the main properties of viscosity solutions in connection with
semiconcave functions. We will not give proofs, and instead refer to [20], [21], [14], as
well as the appendix in [8]. We will consider the Hamilton–Jacobi equation

∂tu+H(x, ∂xu, t) = 0. (HJ )

The functionu : M × [0, T ] → M is calledK-semiconcaveif, for each chartθ ∈ 2 (see
Appendix), the function

(x, t) 7→ u(θ(x), t)−K(‖x‖2
+ t2)

is concave onB3 × [0, T ]. The functionu is calledsemiconcaveif it is K-semiconcave
for someK. A function u : M × ]0, T [ → M is called locally semiconcaveif it is
semiconcave on eachM × [s, t ], for 0 < s < t < T . The following regularity result
follows from Fathi’s work [20] (see also [8]).

Proposition 13. Let u1 and u2 be twoK-semiconcave functions. LetA be the set of
minima of the functionu1 + u2. Then the functionsu1 and u2 are differentiable onA,
and du1(x, t) + du2(x, t) = 0 at each point of(x, t) ∈ A. In addition, the mapping
du1 : M × [0, T ] → T ∗M is CK-Lipschitz continuous onA, whereC is a universal
constant.

Definition 14. We say thatu : M×]s, t [ → R is aviscosity solutionof (HJ ) if

u(x, σ ) = min
y∈M

(u(y, ζ )+ cσζ (y, x)) for all x ∈ M ands < ζ < σ < t .

We say that̆u : M×]s, t [ → R is abackward viscosity solutionof (HJ ) if

ŭ(x, σ ) = max
y∈M

(ŭ(y, ζ )− cζσ (x, y)) for all x ∈ M ands < σ < ζ < t .

We say thatv : M×]s, t [ → R is aviscosity subsolutionof (HJ ) if

v(x, σ ) ≤ v(y, ζ )+ cσζ (y, x) for all x, y ∈ M ands < ζ < σ < t .

Finally, we say thatv : M × [s, t ] → R is a continuous viscosity solution(subsolution,
backward solution) of (HJ ) if it is continuous onM× [s, t ] and ifv|M×]s,t [ is a viscosity
solution of(HJ ) (subsolution, backward solution).

Notice that both viscosity solutions and backward viscosity solutions are viscosity sub-
solutions. That these definitions are equivalent in our setting to the usual ones is stud-
ied in the references listed above, but is not useful for our discussion. The only fact
which will be used is that, for aC1 function u : M×]s, t [ → R, being a viscosity
solution (or a backward viscosity solution) is equivalent to being a pointwise solution of
(HJ ), and being a viscosity subsolution is equivalent to satisfying the pointwise inequal-
ity ∂tu+H(x, ∂xu, t) ≤ 0.
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Differentiability of viscosity solutions. Let u ∈ C(M × [0, T [,R) be a viscosity solu-
tion of (HJ ) (on the interval ]0, T [). We have the expression

u(x, t) = min
γ

(
u(γ (0),0)+

∫ t

0
L(γ (σ ), γ̇ (σ ), σ ) dσ

)
where the minimum is taken over the set of curvesγ ∈ C2([s, t ],M) which satisfy
the final conditionγ (t) = x. Denote by0(x, t) the set of minimizing curves in this
expression, which are obviously minimizing extremals ofL. We say thatp ∈ T ∗

xM is a
proximal superdifferentialof a functionu : M → R at a pointx if there exists a smooth
functionf : M → R such thatf − u has a minimum atx anddxf = p.

Proposition 15. Fix (x, t) ∈ M× ]0, T [. The functionut is differentiable atx if and only
if the set0(x, t) contains a single elementγ , and then∂xu(x, t) = ∂vL(x, γ̇ (t), t).

For all (x, t) ∈ M × ]0, T [ andγ ∈ 0(x, t), setp(s) = ∂vL(γ (s), γ̇ (s), s). Then
p(0) is a proximal subdifferential ofu0 at γ (0), andp(t) is a proximal superdifferential
of ut at x.

We finish with an important statement on regularity of viscosity solutions:

Proposition 16. For each continuous functionu0 : M → R, the viscosity solution

u(x, t) := min
y∈M

(u0(y)+ ct0(y, x))

is locally semiconcave on]0, T ]. If in addition the initial conditionu0 is Lipschitz, then
u is Lipschitz on[0, T ].

For each continuous functionuT : M → R, the viscosity solution

ŭ(x, t) := max
y∈M

(uT (y)− cTt (x, y))

is locally semiconvex on[0, T [. If in addition the final conditionuT is Lipschitz, thenu is
Lipschitz on[0, T ].

Proof. The part concerning semiconcavity ofu is proved in [14], for example. It implies
thatu is locally Lipschitz on ]0, T ], hence differentiable almost everywhere. In addition,
at each point of differentiability ofu, we have∂tu + H(x, ∂xu, t) = 0 and∂xu(x, t) =

p(t) = ∂vL(x, γ̇ (t), t), whereγ : [0, t ] → M is the only curve in0(x, t). In order
to prove thatu is Lipschitz, it is enough to prove that there exists a uniform bound on
|p(t)|. It is known (see Proposition 15) thatp(0) := ∂vL(γ (0), γ̇ (0),0) is a proximal
subdifferential ofu0 at γ (0). If u0 is Lipschitz, its subdifferentials are bounded: there
exists a constantK such that|p(0)| ≤ K. By completeness, there exists a constantK ′,
which depends only on the Lipschitz constant ofu0, such that|p(s)| ≤ K ′ for all s ∈

[0, t ]. This proves thatu is Lipschitz. The statements concerningŭ are proved in a similar
way. ut
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3.2. Viscosity solutions and optimal Kantorovich pairs

Given an optimal Kantorovich pair(φ0, φ1), we define the viscosity solution

u(x, t) := min
y∈M

(φ0(x)+ ct0(y, x))

and the backward viscosity solution

ŭ(x, t) := max
y∈M

(φ1(y)− cTt (x, y))

which satisfyu0 = ŭ0 = φ0, anduT = ŭT = φ1. Note that bothφ1 and −φ0 are
semiconcave, hence Lipschitz,u is Lipschitz and locally semiconcave on ]0, T ], andŭ is
Lipschitz and locally semiconvex on [0, T [.

Proposition 17. We have

CT0 (µ0, µT ) = max
u

( ∫
M

uT dµT −

∫
M

u0 dµ0

)
, (7)

where the minimum is taken over the set of continuous viscosity solutionsu : M ×

[0, T ] → R of the Hamilton–Jacobi equation(HJ ). The same conclusion holds if the
maximum is taken over the set of continuous backward viscosity solutions, or over the set
of continuous viscosity subsolutions of(HJ ).

Proof. If u(x, t) is a continuous viscosity subsolution of(HJ ), then it satisfies

uT (x)− u0(y) ≤ cT0 (y, x)

for eachx andy ∈ M, and so, by Kantorovich duality,∫
M

uT dµT −

∫
M

u0 dµ0 ≤ CT0 (µ0, µT ).

The converse inequality is obtained by using the functionsu andŭ. ut

Definition 18. If (φ0, φ1) is an optimal Kantorovich pair, then we denote byF(φ0, φ1) ⊂

C2([0, T ],M) the set of curvesγ (t) such that

φ1(γ (T )) = φ0(γ (0))+

∫ T

0
L(γ (t), γ̇ (t), t) dt.

We denote byT (φ0, φ1) ⊂ M × ]0, T [ the set

T (φ0, φ1) = {(γ (t), t) : t ∈ ]0, T [, γ ∈ F(φ0, φ1)}

and byT̃ (φ0, φ1) ⊂ TM × ]0, T [ the set

T̃ (φ0, φ1) = {(γ (t), γ̇ (t), t) : t ∈ ]0, T [, γ ∈ F(φ0, φ1)},

which is obviously invariant under the Euler–Lagrange flow.
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Proposition 19. Let (φ0, φ1) be an optimal Kantorovich pair, and letu and ŭ be the
associated viscosity and backward viscosity solutions.

1. We havĕu ≤ u, and

T (φ0, φ1) = {(x, t) ∈ M × ]0, T [ : u(x, t) = ŭ(x, t)}.

2. At each point(x, t) ∈ T (φ0, φ1), the functionsu and ŭ are differentiable, and satisfy
du(x, t) = dŭ(x, t). In addition, the mapping(x, t) 7→ du(x, t) is locally Lipschitz
onT (φ0, φ1).

3. If γ (t) ∈ F(φ0, φ1), then∂xu(γ (t), t) = ∂vL(γ (t), γ̇ (t), t). As a consequence, the
set

T ∗(φ0, φ1) := {(x, p, t) ∈ T ∗M × ]0, T [ : (x, t) ∈ T andp = ∂xu(x, t) = ∂x ŭ(x, t)}

is invariant under the Hamiltonian flow, and the restriction toT̃ (φ0, φ1) of the projec-
tion π is a bi-locally-Lipschitz homeomorphism onto its imageT (φ0, φ1).

Proof. Fix (x, t) ∈ M× ]0, T [. There existy, z ∈ M such thatu(x, t) = φ0(y)+c
t
0(y, x)

andŭ(x, t) = φ1(z)− cTt (x, z), so that

u(x, t)− ŭ(x, t) = φ0(y)− φ1(z)+ ct0(y, x)+ cTt (x, z)

≥ cT0 (y, z)− (φ1(z)− φ0(y)) ≥ 0.

In case of equality, we must havecT0 (y, z) = ct0(y, x)+ cTt (x, z). Let γ1 ∈ C2([0, t ],M)
satisfy γ1(0) = y, γ1(t) = x and

∫ t
0 L(γ1(s), γ̇1(s), s) ds = ct0(y, x), and letγ2 ∈

C2([t, T ],M) satisfyγ2(t) = x, γ2(T ) = z and
∫ t

0 L(γ2(s), γ̇2(s), s) ds = cTt (x, z).
The curveγ : [0, T ] → M obtained by pastingγ1 andγ2 clearly satisfies the equality∫ T

0 L(γ (s), γ̇ (s), s) ds = cT0 (y, z), it is thus aC2 minimizer, and belongs toF(φ0, φ1).
As a consequence, we have(x, t) ∈ T (φ0, φ1).

Conversely, we have:

Lemma 20. If v is a viscosity subsolution of(HJ ) satisfyingv0 = φ0 and vT = φ1,
thenŭ ≤ v ≤ u. If (x, t) ∈ T (φ0, φ1), thenv(x, t) = u(x, t).

Proof. The inequalityŭ ≤ v ≤ u is easy. For example, for a given point(x, t) there exists
y in M such thatu(x, t) = φ0(y) + ct0(y, x), and for this value ofy, we havev(x, t) ≤

φ0(y) + ct0(y, x), hencev(x, t) ≤ u(x, t). The proof thatŭ ≤ v is similar. In order to
prove the second part of the lemma, it is enough to prove thatv(γ (t), t) = u(γ (t), t) for
each curveγ ∈ F(φ0, φ1). Sincev is a subsolution, we have

v(γ (T ), T ) ≤ v(γ (t), t)+ cTt (γ (t), γ (T )).

On the other hand,

v(γ (t), t) ≤ u(γ (t), t) ≤ u(γ (0),0)+ ct0(γ (0), γ (t)).
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As a consequence,

φ1(γ (T )) = v(γ (T ), T ) ≤ u(γ (0),0)+ ct0(γ (0), γ (t))+ cTt (γ (t), γ (T ))

≤ φ0(γ (0))+ cT0 (γ (0), γ (T )),

which is an equality becauseγ ∈ F(φ0, φ1). Hence all the inequalities involved are
equalities, and we havev(γ (t), t) = u(γ (t), t). ut

The end of the proof of the proposition is straightforward. Point 2 follows from Propo-
sition 13 applied to the locally semiconcave functionsu and−ŭ. Point 3 follows from
Proposition 15. ut

3.3. OptimalC1 subsolution

The following result, on which a large part of the present paper is based, is inspired by
[21], but seems new in the present context.

Proposition 21. We have

CT0 (µ0, µT ) = max
v

( ∫
M

vT dµT −

∫
M

v0 dµ0

)
,

where the maximum is taken over the set of Lipschitz functionsv : M× [0, T ] → R which
areC1 onM × ]0, T [ and satisfy

∂tv(x, t)+H(x, ∂xv(x, t), t) ≤ 0 at each(x, t) ∈ M × ]0, T [. (8)

Proof. First, let v be a continuous function ofM × [0, T ] which is differentiable on
M × ]0, T [, where it satisfies (8). Then, for eachC1 curveγ : [0, T ] → M,∫ T

0
L(γ (t), γ̇ (t), t) dt ≥

∫ T

0
(∂xv(γ (t), t) · γ̇ (t)−H(γ (t), v(γ (t), t), t)) dt

≥

∫ T

0
(∂xv(γ (t), t) · γ̇ (t)+ ∂tv(γ (t), t)) dt = v(γ (T ), T )− v(γ (0),0).

As a consequence,v(y, T )− v(x,0) ≤ cT0 (x, y) for eachx andy, so that∫
vT dµT −

∫
v0 dµ0 ≤ CT0 (µ0, µT ).

The converse follows directly from the next theorem, which is an analog in our context of
the main result of [21]. ut

Theorem 3. For each optimal Kantorovich pair(φ0, φ1), there exists a Lipschitz function
v : M × [0, T ] → R which isC1 onM × ]0, T [, coincides withu onM × {0, T } ∪

T (φ0, φ1), and satisfies the inequality(8) strictly at each point ofM×]0, T [−T (φ0, φ1).
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Proof. The proof of [21] cannot be translated to our context in a straightforward way. Our
proof is different, and, we believe, simpler. It is based on:

Proposition 22. There exists a functionV ∈C2(M×[0, T ],R)which is null onT (φ0, φ1),
positive onM × ]0, T [ − T (φ0, φ1), and such that

φ1(y) = min
γ (T )=y

(
φ0(γ (0))+

∫ T

0
(L(γ (t), γ̇ (t), t)− V (γ (t), t)) dt

)
. (9)

Proof. Define the norm

‖u‖2 =

∑
θ∈2

‖u ◦ θ‖C2(B1×[0,T ],R)

of functionsu ∈ C2(M × [0, T ],R), where2 is the atlas ofM defined in the Appendix.
Denote byU the open setM × ]0, T [ − T (φ0, φ1). We need a lemma.

Lemma 23. LetU1 ⊂ U be an open set whose closureŪ1 is compact and contained in
U , and letε > 0 be given. There exists a functionV1 ∈ C2(M × [0, T ],R) which is
positive onU1, null outside ofŪ1, and such that(9) holds withV = V1, and‖V1‖2 ≤ ε.

Proof. Fix the open setU1, the pair(φ0, φ1) andy ∈ M. We claim that the minimum in

min
γ (T )=y

(
φ0(γ (0))+

∫ T

0
(L(γ (t), γ̇ (t), t)− V1(γ (t), t)) dt

)
is reached at a pathγ whose graph does not meetU1, provided thatV1 is supported in
U1 and is sufficiently small in theC0 topology. In order to prove the claim, suppose the
contrary. There exist sequencesV 1

n (n ∈ N) andγn such that

min
γ (T )=y

(
φ0(γ (0))+

∫ T

0
(L(γ (t), γ̇ (t), t)− Vn(γ (t), t)) dt

)
is reached atγn, the graph ofγn meetsU1, Vn is supported inU1 (for all n ∈ N) and
Vn → 0 in theC0 topology. As a consequence eachγn isC2 and the sequenceγn (n ∈ N)
is a minimizing sequence for

φ1(y) = min
γ (T )=y

(
φ0(γ (0))+

∫ T

0
L(γ (t), γ̇ (t), t) dt

)
. (10)

Hence this sequence is compact for theC2 topology and, by extracting a subsequence if
needed, it can be assumed to converge to someγ∞. Clearlyγ∞ is a minimizer for (10)
with graph meetingU1. This contradictsU1 ⊂ U = M× ]0, T [ −T (φ0, φ1) and the fact
that the graph ofγ∞ is included inT (φ0, φ1) (see Definition 18). ut

LetUn ⊂ U , n ∈ N, be a sequence of open sets coveringU with closures contained inU .
There exists a sequence of functionsVn ∈ C2(M × [0, T ],R) such that, for eachn ∈ N:
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• Vn is positive inUn and null outside ofŪn.
• ‖Vn‖2 ≤ 2−nε.
• The equality (9) holds for the functionV n =

∑n
i=1Vi .

Such a sequence can be build inductively by applying Lemma 23 to the LagrangianL −

V n−1 with εn = 2−nε. Since‖Vn‖ ≤ 2−nε, the sequenceV n converges inC2 norm to a
limit V ∈ C2(M× [0, T ],R). This functionV has the desired properties. The proposition
is proved. ut

In order to finish the proof of the theorem, we shall consider the new LagrangianL̃ =

L − V , and the associated HamiltoniañH = H + V , as well as the associated cost
functionsc̃ts . Let

ũ(x, t) := min
y∈M

(φ0(y)+ c̃t0(y, x))

be the viscosity solution of the Hamilton–Jacobi equation

∂t ũ+H(x, ∂x ũ, t) = −V (x, t) (H̃J )

emanating fromφ0. The equality (9) says thatũT = φ1 = uT . The functionũ is Lipschitz
onM × [0, T ], as a viscosity solution of(H̃J ) emanating from a Lipschitz function. It
is obviously a viscosity subsolution of(HJ ), which is strict outside ofM × {0, T } ∪

T (φ0, φ1) (whereV is positive). This means that the inequality (8) is strict at each point
of differentiability of ũ outside ofM × {0, T } ∪ T (φ0, φ1). We haveŭ ≤ ũ ≤ u, this
relation being satisfied by each viscosity subsolution of(HJ ) which satisfiesu0 = φ0
anduT = φ1. As a consequence, we haveŭ = ũ = u onT (φ0, φ1), andũ is differentiable
at each point ofT (φ0, φ1). Furthermore,du = dũ = dŭ on this set. We then obtain the
desired functionv of the theorem from̃u by regularization, applying Theorem 9.2 of [21].

ut

4. Optimal objects of the direct problems

We now prove Theorem A as well as the results of Section 2. The following lemma
generalizes a result of Benamou and Brenier [6].

Lemma 24. We have

CT0 (µ0, µT ) = min
m0∈I(µ0,µT )

A(m0) = min
m∈M(µ0,µT )

A(m) = min
χ∈C(µ0,µT )

A(χ).

Moreoverχ(dv) = A(χ) for every optimalχ , wherev is given by Theorem3.

Proof. In view of Lemma 11, it is enough to prove that, for each transport currentχ ∈

C(µ0, µT ), we haveA(χ) ≥ CT0 (µ0, µT ). Let v : M × [0, T ] → R be a Lipschitz sub-
solution of(HJ ) which isC1 onM × ]0, T [, and such that(v0, vT ) is an optimal Kan-
torovich pair. For each currentχ ∈ C(µ0, µT ), we haveA(χ) ≥ χ(dv) = CT0 (µ0, µT ),
which ends the proof. ut

From now on we fix:
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• An optimal Kantorovich pair(φ0, φ1).
• A Lipschitz subsolutionv : M × [0, T ] → R of the Hamilton–Jacobi equation which

satisfiesv0 = φ0 andvT = φ1 and which isC1 onM × ]0, T [.
• A bounded vector fieldX : M × ]0, T [ → TM which is locally Lipschitz and satisfies

X(x, t) = ∂pH(x, ∂xv(x, t), t) onT (φ0, φ1). (11)

4.1. Characterization of optimal currents

Each optimal transport currentχ can be written as

χ = (X,1) ∧ µχ ,

with a measureµχ concentrated onT (φ0, φ1). The currentχ is then Lipschitz regular,
so that there exists a transport interpolationµt , t ∈ [0, T ], such thatµχ = µt ⊗ dt (see
Appendix) andµt = (9 ts)]µs for eachs andt in ]0, T [.

Proof. Let χ be an optimal transport current, that is, a transport currentχ ∈ C(µ0, µT )

such thatA(χ) = CT0 (µ0, µT ). Recall the definition of the actionA(χ) that will be used
here:

A(χ) = sup
ω∈�0

(
χ(ωx,0)−

∫
M×[0,T ]

H(x, ωx(x, t), t) dµχ

)
.

SinceH(x, ∂xv, t)+ ∂tv ≤ 0, we have

A(χ) = χ(dv) ≤ χ(dv)−

∫
(H(x, ∂xv(x, t), t)+ ∂tv) dµχ

= χ(∂xv,0)−

∫
H(x, ∂xv(x, t), t) dµχ .

The other inequality holds by the definition ofA, so that

χ(dv) = χ(dv)−

∫
(H(x, ∂xv(x, t), t)+ ∂tv) dµχ

= χ(∂xv,0)−

∫
H(x, ∂xv(x, t), t) dµχ ,

and we conclude thatH(x, ∂xv(x, t), t)+ ∂tv vanishes on the support ofµχ , or in other
words the measureµχ is concentrated onT (φ0, φ1). In addition, for all formsω = ωx +

ωtdt , we have

χ(∂xv+ωx,0)−
∫
H(x, ∂xv+ωx, t) dµχ ≤ χ(∂xv,0)−

∫
H(x, ∂xv, t) dµχ = A(χ).

Hence

χ(ωx,0) =

∫
∂pH(x, ∂xv, t)(ω

x) dµχ
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for each formω. This equality can be rewritten as

χ(ω) =

∫
(∂pH(x, ∂xv, t)(ω

x)+ ωt ) dµχ ,

which precisely says that

χ = (∂pH(x, ∂xv(x, t), t),1) ∧ µχ = (X,1) ∧ µχ .

The last equality follows from the fact that the vector fieldsX and∂pH(x, ∂xv(x, t), t)
are equal on the support ofµχ . By the structure of Lipschitz regular transport currents, we
obtain the existence of a continuous familyµt , t ∈ [0, T ], of probability measures such
thatµχ = µt ⊗ dt andµt = (9 ts)]µs for eachs andt in ]0, T [. Since the restriction to a
subinterval [s, t ] ⊂ [0, T ] of an optimal transport currentχ is clearly an optimal transport
current for the transportation problem betweenµs andµt with costcts , we conclude that
the pathµt is a transport interpolation. ut

4.2. Characterization of transport interpolations

Each transport interpolationµt satisfies

µt = (9 ts)]µs

for each(s, t) ∈ ]0, T [2. The mapping

µt 7→ (X,1) ∧ (µt ⊗ dt)

is a bijection between the set of transport interpolations and the set of optimal transport
currents.

Proof. We fix a transport interpolationµt and two timess < s′ in ]0, T [. Let χ1 be a
transport current onM × [0, s] between the measuresµ0 andµs which is optimal for the
costcs0, letχ2 be a transport current onM × [s, s′] betweenµs andµs′ which is optimal

for cs
′

s , and letχ3 be a transport current onM × [s′, T ] betweenµs′ andµT which is
optimal forcT

s′
. Then the currentχ onM× [0, T ] which coincides withχ1 onM× [0, s],

with χ2 onM × [s, s′] and withχ3 on [s′, T ] belongs toC(µ0, µT ). In addition, sinceµt
is a transport interpolation, we have

A(χ) = Cs0(µ0, µs)+ Cs
′

s (µs, µs′)+ CTs′ (µs′ , µT ) = CT0 (µ0, µT ).

Henceχ is an optimal transport current for the costcT0 . In view of the characterization of
optimal currents, this implies thatχ = (X,1) ∧ µχ , and

µχ = ((9 ts)]µs)⊗ dt = ((9 ts′)]µs′)⊗ dt.
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By uniqueness of the continuous desintegration ofµχ , we deduce that, for eacht ∈ ]0, T [,
(9 ts)]µs = (9 t

s′
)]µs′ , and since this holds for alls ands′, we have(9 ts)]µs = µt for all

(s, t) ∈ ]0, T [2. It follows thatχ = (X,1)∧ (µt ⊗ dt). We have proved that the mapping

µt 7→ (X,1) ∧ (µt ⊗ dt)

associates an optimal transport current to each transport interpolation. This mapping is
obviously injective, and it is surjective in view of the characterization of optimal currents.

ut

4.3. Characterization of optimal measures

The mapping
χ 7→ (X × τ)]µχ

is a bijection between the set of optimal transport currents and the set of optimal transport
measures (τ : M× [0, T ] → [0, T ] is the projection on the second factor; see Appendix).
Each optimal transport measure is thus invariant (see(4) and Definition5). The mapping

m0 7→ µt = (π ◦ ψ t0)]m0

is a bijection between the set of optimal initial measuresm0 and the set of interpolations.
An invariant measurem is optimal if and only if it is supported on the setT̃ (φ0, φ1).

Proof. If m is an optimal transport measure, then the associated currentχm is an optimal
transport current, andA(m) = A(χm). Let µm be the time component ofχm, which is
also the measure(π × τ)]m. In view of the characterization of optimal currents, we have
χm = (X,1)∧µm. We claim that the equalityA(χm) = A(m) implies thatm is supported
on the graph ofX. Indeed, we have the pointwise inequality

∂xv(x, t) · V −H(x, ∂xv(x, t), t) ≤ L(x, V, t) (12)

for each(x, V , t) ∈ TM × ]0, T [. Integrating with respect tom, we get

A(χm) = χm(dv) =

∫
TM×[0,T ]

(∂xv(x, t) · V + ∂tv(x, t)) dm(x, V, t)

=

∫
TM×[0,T ]

(∂xv(x, t) · V −H(x, ∂xv(x, t), t)) dm(x, V, t)

=

∫
M×[0,T ]

L(x, V, t) dm(x, V, t) = A(m),

which means thatm is concentrated on the set where the inequality (12) is an equality,
that is, on the graph of the vector field∂pH(x, ∂xv(x, t), t). Sinceµm is supported onT ,
the measurem is supported oñT and satisfiesm = (X × τ)]µm. Letµt be the transport
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interpolation such thatµm = µt ⊗ dt . Settingmt = (Xt )]µt , we havem = mt ⊗ dt .
Observing that

Xt ◦9 ts = ψ ts ◦Xs

onTs , we conclude, sinceµs is supported onTs , that

(ψ ts )]ms = mt ,

which means that the measurem is invariant.
Conversely, letm = mt ⊗ dt be an invariant measure supported onT̃ (φ0, φ1). We

have

A(m) =

∫ T

0

∫
TM

L(x, v, t) dmt (x, v) dt =

∫ T

0

∫
TM

L(ψ t0(x, v), t) dm0(x, v) dt,

and by Fubini,

A(m) =

∫
TM

∫ T

0
L(ψ t0(x, v), t) dt dm0(x, v)

=

∫
TM

(φ1(π ◦ ψT0 (x, v))− φ0(x)) dm0(x, v),

and sincem0 is an initial transport measure, we get

A(m) =

∫
TM

φ1 dµT −

∫
TM

φ0 dµ0 = CT0 (µ0, µT ). ut

5. Absolute continuity

In this section, we make the additional assumption that the initial measureµ0 is absolutely
continuous, and prove Theorem B. The following lemma answers a question asked to us
by Cedric Villani.

Lemma 25. If µ0 or µT is absolutely continuous with respect to the Lebesgue class, then
each interpolating measureµt , t ∈ ]0, T [, is absolutely continuous.

Proof. If µt , t ∈ [0, T ], is a transport interpolation, we have proved that

µt = (π ◦ ψ ts ◦Xs)]µs

for all s ∈ ]0, T [ and t ∈ [0, T ]. Since the functionπ ◦ ψ st ◦ Xt is Lipschitz, it maps
Lebesgue zero measure sets into Lebesgue zero measure sets, and so it transports singular
measures into singular measures. It follows that if, for somes ∈ ]0, T [, the measureµs
is not absolutely continuous, then none of the measuresµt , t ∈ [0, T ], are absolutely
continuous. ut

In order to continue the investigation of the specific properties satisfied whenµ0 is ab-
solutely continuous, we first need some more general results. Let(φ0, φ1) be an optimal
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Kantorovich pair for the measuresµ0 andµT and for the costcT0 . Recall that we have
definedF(φ0, φ1) ⊂ C2([0, T ],M) as the set of curvesγ such that

φ1(γ (T )) = φ0(γ (0))+

∫ T

0
L(γ (t), γ̇ (t), t) dt.

Let F0(φ0, φ1) be the set of initial velocities(x, v) ∈ TM such that the curvet 7→ π ◦

ψ t0(x, v) belongs toF(φ0, φ1). Note that there is a natural bijection betweenF0(φ0, φ1)

andF(φ0, φ1).

Lemma 26. The setF0(φ0, φ1) is compact. The mapsπ andπ ◦ψT0 : F0(φ0, φ1) → M

are surjective. Ifx is a point of differentiability ofφ0, then the setπ−1(x) ∩ F0(φ0, φ1)

contains a single point. There exists a Borel measurable set6 ⊂ M of full measure,
whose points are points of differentiability ofφ0, and such that the map

x 7→ S(x) = π−1(x) ∩ F0(φ0, φ1)

is Borel measurable on6.

Proof. The compactness ofF0(φ0, φ1) follows from the fact, already mentioned, that the
set of minimizing extremalsγ : [0, T ] → M is compact for theC2 topology.

It is equivalent to say that the projectionπ restricted toF0(φ0, φ1) is surjective, and,
for eachx ∈ M, there exists a curve emanating fromx in F(φ0, φ1). In order to build
such curves, recall that

φ0(x) = max
γ

(
φ1(γ (T ))−

∫ T

0
L(γ (t), γ̇ (t), t) dt

)
where the maximum is taken over the set of curves which satisfyγ (0) = x. Any max-
imizing curve is then a curve inF(φ0, φ1) which satisfiesγ (0) = x. In order to prove
that the mapπ ◦ψT0 restricted toF0(φ0, φ1) is surjective, it is sufficient to build, for each
x ∈ M, a curve inF(φ0, φ1) which ends atx. Such a curve is obtained as a minimizer in
the expression

φ1(x) = min
γ

(
φ0(γ (0))+

∫ T

0
L(γ (t), γ̇ (t), t) dt

)
.

Now consider a pointx of differentiability of φ0. Applying the general result on the
differentiability of viscosity solutions to the backward viscosity solutionŭ, we find that
there exists a unique maximizer to the problem

φ0(x) = max
γ

(
φ1(γ (T ))−

∫ T

0
L(γ (t), γ̇ (t), t) dt

)
and that this maximizer is the extremal with initial condition(x, ∂pH(x, dφ0(x),0)). As
a consequence, there exists a single pointS(x) in F0(φ0, φ1) abovex, and in addition we
have the explicit expression

S(x) = ∂pH(x, dφ0(x),0).
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Since the set of points of differentiability ofφ0 has total Lebesgue measure—because
φ0 is Lipschitz—there exists a sequenceKn of compact sets such thatφ0 is differentiable
at each point ofKn and the Lebesgue measure ofM −Kn converges to zero. For eachn,
the setπ−1(Kn) ∩ F0(φ0, φ1) is compact, and the restriction to this set of the canonical
projectionπ is injective and continuous. It follows that the inverse functionS is continu-
ous onKn. As a consequence,S is Borel measurable on6 :=

⋃
nKn. ut

Lemma 27. The initial transport measurem0 is optimal if and only if it is an initial
transport measure supported onF0(φ0, φ1).

Proof. This statement is a reformulation of the result in 4.3 stating that the optimal trans-
port measures are the invariant measures supported onT̃ (φ0, φ1). ut

Proposition 28. If µ0 is absolutely continuous, then there exists a unique optimal initial
measurem0. There exists a Borel sectionS : M → TM of the canonical projection such
thatm0 = S]µ0, and this section is uniqueµ0-almost everywhere. For eacht ∈ [0, T ],
the mapπ ◦ ψ t0 ◦ S : M → M is then an optimal transport map betweenµ0 andµt .

Proof. Let S : 6 → TM be the Borel map constructed in Lemma 26. For convenience,
we shall also denote byS the same map extended by zero outside of6, which is a Borel
sectionS : M → TM. Since the set6 is of full Lebesgue measure, and since the measure
µ0 is absolutely continuous, we haveµ0(6) = 1. Consider the measurem0 = S](µ0|6).
This is a probability measure onTM which is concentrated onF0(φ0, φ1) and satisfies
π]m0 = µ0. We claim that it is the only measure with these properties. Indeed, ifm̃0 is a
measure with these properties, thenπ]m̃0 = µ0, hencem̃0 is concentrated onπ−1(6) ∩

F0(φ0, φ1). But then, sinceπ induces a Borel isomorphism fromπ−1(6) ∩ F0(φ0, φ1)

onto its image6, with inverseS, we must havem̃0 = S]µ0. As a consequence,m0 =

S]µ0 is the only candidate to be an optimal initial transport measure. Since we have
already proved the existence of an optimal initial transport measure, this implies thatm0
is the only optimal initial transport measure. Of course, we could prove directly thatm0
is an initial transport measure, but as we have seen, this is not necessary. ut

5.1. Remark

That there exists an optimal transport map ifµ0 is absolutely continuous could be proved
directly as a consequence of the following properties of the cost function.

Lemma 29. The cost functioncT0 (x, y) is semiconcave onM ×M. In addition, we have
the following injectivity property for eachx ∈ M: If the differentials∂xcT0 (x, y) and
∂xc

T
0 (x, y

′) exist and are equal, theny = y′.

In view of these properties of the cost function, it is not hard to prove the following lemma
using an optimal Kantorovich pair in the spirit of works of Brenier [12] and Carlier [16].

Lemma 30. There exists a compact subsetK ⊂ M ×M such that the fiberKx = K ∩

π−1
0 (x) is a single point for Lebesgue almost everyx, and such thatK contains the

support of all optimal plans.
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The proof of the existence of an optimal map for an absolutely continuous measureµ0
can then be terminated using the following result (see [1, Proposition 2.1]).

Proposition 31. A transport planη is induced from a transport map if and only if it is
concentrated on anη-measurable graph.

5.2. Remark

Assuming only thatµ0 vanishes on countably(d−1)-rectifiable sets, we can conclude that
the same property holds for all interpolating measuresµt , t < T , and that the assertion of
Proposition 28 holds. This is proved almost identically. The only refinement needed is that
the set of singular points of the semiconvex functionφ0 is countably(d − 1)-rectifiable
(see [14]).

6. Aubry–Mather theory

We explain the relations between the results obtained so far and Mather theory, and prove
Theorem C. Up to now, we have worked with fixed measuresµ0 andµT . Let us study the
optimal valueCT0 (µ0, µT ) as a function of the measuresµ0 andµT .

Lemma 32. The function
(µ0, µT ) 7→ CT0 (µ0, µT )

is convex and lower semicontinuous on the set of pairs of probability measures onM.

Proof. This follows directly from the expression

CT0 (µ0, µT ) = max
(φ0,φ1)

(∫
M

φ1 dµT −

∫
M

φ0 dµ0

)
as a maximum of continuous linear functions. ut

From now on, we assume that the LagrangianL is defined for all times,L ∈ C2(TM ×

R,R), and satisfies
L(x, v, t + 1) = L(x, v, t)

in addition to the standing hypotheses. Let us restate Theorem C with more details. Recall
thatα is the action of Mather measures, as defined in the introduction.

Theorem C′. There exists a Lipschitz vector fieldX0 on M such that all the Mather
measures are supported on the graph ofX0. We have

α = min
µ
C1

0(µ,µ),

where the minimum is taken over the set of probability measures onM. The mapping
m0 7→ π]m0 is a bijection between the set of Mather measuresm0 and the set of prob-
ability measuresµ onM satisfyingC1

0(µ,µ) = α. More precisely, ifµ is such a proba-
bility measure, then there exists a unique initial transport measurem0 for the transport
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problem betweenµ0 = µ andµ1 = µ with costc1
0; this measure ism0 = (X0)]µ, and it

is a Mather measure.

The proof, and related digressions, occupy the rest of the section.

Lemma 33. The minima

αT := min
µ∈B1(M)

1

T
CT0 (µ,µ), T ∈ N,

exist and are all equal. In addition, any measureµ1
∈ B1(M) which minimizesC1

0(µ,µ)

also minimizesCT0 (µ,µ) for all T ∈ N.

Proof. The existence of the minima follows from the compactness of the set of proba-
bility measures and from the semicontinuity of the functionCT0 . Letµ1 be a minimizing
measure forα1 and letm1 be an optimal transport measure for the transportation prob-
lemC1

0(µ
1, µ1). LetmT be the measure onTM × [0, T ] obtained by concatenatingT

translated versions ofm1. This means thatmT is the only measure onTM× [0, T ] whose
restriction toTM × [i, i + 1] is obtained by translation fromm, for each integeri. It is
easy to check thatmT is indeed a transport measure betweenµ0 = µ1 andµT = µ1 on
the time interval [0, T ], and thatAT0 (m

T ) = TA1
0(m

1). As a consequence, we have

T αT ≤ CT0 (µ
1, µ1) ≤ AT0 (m

T ) = T C1
0(µ

1, µ1) = T α1,

which impliesαT ≤ α1.

Let us now prove thatαT ≥ α1. In order to do so, we consider an optimal measure
µT for αT , and consider a transport interpolationµTt , t ∈ [0, T ], between the measures
µ0 = µT andµT = µT . Consider, fort ∈ [0,1], the measure

µ̃Tt :=
1

T

T−1∑
i=0

µTt+i,

and note thatT µ̃T0 = µT0 +
∑T−1
i=1 µ

T
i = µTT +

∑T−1
i=1 µ

T
i = T µ̃T1 . In view of the

convexity ofC1
0,

C1
0(µ̃

T
0 , µ̃

T
1 ) = C1

0

(
1

T

T−1∑
i=0

(µTi , µ
T
i+1)

)
≤

1

T

T−1∑
i=0

Ci+1
i (µTi , µ

T
i+1)

=
1

T
CT0 (µ

T , µT ) = αT .

Sinceµ̃T0 = µ̃T1 , this implies thatα1 ≤ αT , as desired. ut

Lemma 34. We haveα1 ≤ α.

Proof. If m0 is a Mather measure, then it is an initial measure for the transport problem
betweenµ0 = π]m0 andµ1 = π]m0 for the costc1

0. As a consequence, we haveα =

A1
0(m0) ≥ C1

0(µ0, µ0) ≥ α1. ut
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Lemma 35. Let µ1 be a probability measure onM such thatC1
0(µ

1, µ1) = α1. Then
there exists a unique initial transport measurem0 for the transportation problem between
µ0 = µ1 andµ1 = µ1 for the costc1

0. This measure satisfies(ψ1
0)]m0 = m0. We have

α1 = A1
0(m0) ≥ α, so thatα = α1 andm0 is a Mather measure. There exists a constant

K, which depends only onL, such thatm0 is supported on the graph of aK-Lipschitz
vector field.

Proof. Fix a probability measureµ1 onM such thatC1
0(µ

1, µ1) = α1. Let X : M ×

[0,2] → TM be a vector field associated to the transport problemC2
0(µ

1, µ1) by The-
orem A. Note thatX1 is Lipschitz onM with a Lipschitz constantK which does not
depend onµ1. We chooseX once and for all and fix it.

To each optimal transport measurem1 for the transport problemC1
0(µ

1, µ1), we asso-
ciate the transport measurem2 onTM×[0,2] obtained by concatenation of two translated
versions ofm1, as in the proof of Lemma 33. We have

A2
0(m

2) = 2A1
0(m

1) = 2α1 = 2α2 = C2
0(µ

1, µ1).

The measurem2 is thus an optimal transport measure for the transportation problem
C2

0(µ
1, µ1). Let mt , t ∈ [0,2], be the continuous family of probability measures on

TM such thatm2
= mt ⊗ dt . Note thatmt = (ψ ts )]ms for all s and t in [0,2], and

thatm0 is the initial transport measure for the transportation problemC1
0(µ

1, µ1) asso-
ciated tom1. Sincem2 was obtained by concatenation of two translated versions of the
same measurem1, we must havemt+1 = mt for almost allt ∈ ]0,1[, and, by continuity,
m0 = m1 = m2. This implies thatm0 = (ψ1

0)]m0. Finally, the characterization of op-
timal measures implies thatm0 = m1 = (X1)]µ

1. We have proved that(X1)]µ
1 is the

only optimal initial transport measure for the transportation problemC1
0(µ

1, µ1). ut

Proof of Theorem C.Letm0 be a Mather measure, and letµ0 = π]m0. Note that we also
haveµ0 = (π ◦ ψ1

0)]m0. As a consequence,m0 is an initial transport measure for the
transport betweenµ0 andµ0 for the costc1

0, and we have

α = A1
0(m0) ≥ C1

0(µ0, µ0) ≥ α1.

Sinceα1 = α, all these inequalities are equalities, so thatm0 is an optimal initial transport
measure, andC1

0(µ0, µ0) = α1. It follows from Lemma 35 thatm0 is supported on the
graph of aK-Lipschitz vector field.

Up to now, we have proved that each Mather measure is supported on the graph of
a K-Lipschitz vector field. It remains to prove that all Mather measures are supported
on a singleK-Lipschitz graph. In order to do this, denote bỹM ⊂ TM the union of
the supports of Mather measures. If(x, v) and(x′, v′) are two points ofM̃, then there
exists a Mather measurem0 whose support contains(x, v) and a measurem′

0 whose
support contains(x′, v′). But then(m0+m

′

0)/2 is clearly a Mather measure whose support
contains{(x, v), (x′, v′)} and is itself included in the graph of aK-Lipschitz vector field.
Assuming thatx andx′ lie in the imageθ(B1) of a common chart (see Appendix), so that
(x, v) = dθ(X, V ) and(x′, v′) = dθ(X′, V ′), we obtain

‖V − V ′
‖ ≤ K‖x − x′

‖.
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It follows that the restriction toM̃ of the canonical projectionTM → M is a bi-Lipschitz
homeomorphism, or equivalently that the setM̃ is contained in the graph of a Lipschitz
vector field. ut

Appendix. Notations and standing conventions

• M is a compact manifold of dimensiond, andπ : TM → M is the canonical projec-
tion.

• We denote byτ : TM × [0, T ] → [0, T ] or M × [0, T ] → [0, T ] the projection on
the second factor.

• If N is any separable, complete, locally compact metric space (for exampleM, M ×

[0, T ], TM or TM × [0, T ])) the setsB1(N) ⊂ B+(N) ⊂ B(N) are respectively
the set of Borel probability measures, non-negative Borel finite measures, and finite
Borel signed measures. IfCc(N) is the set of continuous compactly supported functions
on N , endowed with the topology of uniform convergence, then the spaceB(N) is
identified with the set of continuous linear forms onCc(N) by the Riesz theorem. We
will always endow the spaceB(N) with the weak∗ topology that we will also call the
weak topology. Note that the setB1(N) is compact ifN is. Prokhorov’s theorem states
that a sequence of probability measuresPn ∈ B1(N) has a subsequence converging in
B1(N) for the weak∗ topology if for all ε > 0 there exists a compact setKε such that
Pn(N −Kε) ≤ ε for all n ∈ N. See e.g. [39, 17, 10].

• Given two manifoldsN andN ′, a Borel mapF : N → N ′, and a measureµ ∈ B(N),
we define the push-forwardF]µ of µ byF as the unique measure onN ′ which satisfies

F]µ(B) = µ(F−1(B))

for all Borel setsB ∈ N , or equivalently∫
N ′

f d(F]µ) =

∫
N

f ◦ F dµ

for all continuous functionsf : N ′
→ R.

• A family µt , t ∈ [0, T ], of measures inB(N) is calledmeasurableif the mapt 7→∫
N
ft dµt is Borel measurable for eachf ∈ Cc(N × [0, T ]). We define the measure

µt ⊗ dt onN × [0, T ] by∫
N×[0,T ]

f d(µt ⊗ dt) =

∫ T

0

∫
N

ft dµt dt

for eachf ∈ Cc(N × [0, T ]). The well-known desintegration theorem states that, ifµ

is a measure onN × [0, T ] such that the projected measure on [0, T ] is the Lebesgue
measuredt , then there exists a measurable family of measuresµt onN such thatµ =

µt ⊗ dt .
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• The setK(µ0, µT ) of transport plans is defined in Section 1.2.

• The setI(µ0, µT ) of initial transport measures is defined in Section 2.1.

• The setM(µ0, µT ) of transport measures is defined in Section 2.1.

• The setC(µ0, µT ) of transport currents is defined in Section 2.2.

• We fix, once and for all, a finite atlas2 of M, formed by chartsθ : B5 → M, where
Br is the open ball of radiusr centered at zero inRd . We assume in addition that the
setsθ(B1), θ ∈ 2, coverM.

• We say that a vector fieldX : M → TM is K-Lipschitz if, for each chartθ ∈ 2,
the mapping5 ◦ (dθ)−1

◦ X ◦ θ : B5 → Rd is K-Lipschitz onB1, where5 is the
projectionB5 × Rd → Rd .

• We mention the following results which are used throughout the paper. There exists
a constantC such that, ifA is a subset ofM, andXA : A → TM is aK-Lipschitz
vector field, then there exists aCK-Lipschitz vector fieldX onM which extendsXA.
In addition, ifA is a subset ofM × [0, T ] andXA : A → TM is aK-Lipschitz vector
field, then there exists aCK-Lipschitz vector fieldX onM × [0, T ] which extends
XA. If A is a compact subset ofM × [0, T ] andXA : A ∩ M × ]0, T [ → TM is a
locally Lipschitz vector field (which isK(ε)-Lipschitz onA ∩M × [ε, T − ε]), then
there exists a locally Lipschitz (CK(ε)-Lipschitz onM × [ε, T − ε]) vector fieldX on
M × ]0, T [ which extendsXA,
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[3] Ambrosio, L., Gigli, N., Savaŕe, G.: Gradient Flows in Metric Spaces and in the Space of
Probability Measures. Lectures in Math. ETH Zürich, Birkḧauser (2005) Zbl pre02152346
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