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Weak KAM pairs and Monge-Kantorovich duality

Patrick Bernard and Boris Buffoni

Abstract.

The dynamics of globally minimizing orbits of Lagrangian systems
can be studied using the Barrier function, as Mather first did, or using
the pairs of weak KAM solutions introduced by Fathi. The central
observation of the present paper is that Fathi weak KAM pairs are
precisely the admissible pairs for the Kantorovich problem dual to the
Monge transportation problem with the Barrier function as cost. We
exploit this observation to recover several relations between the Bar-
rier functions and the set of weak KAM pairs in an axiomatic and
elementary way.

§1. Introduction

Let M be a compact connected manifold and consider a C2 La-
grangian function

L : TM × R → R

that satisfies the standard hypotheses of the calculus of variations,

(L1) L(x, v, t + 1) = L(x, v, t) on TM × R,

(L2) ∂2
vvL(x, v, t) > 0 on TM × R,

(L3) lim
‖v‖→∞

L(x, v, t)/‖v‖ = ∞ on M × R.

It is standard that, under these assumptions, there exists a well-defined
time-periodic continuous vectorfield E(x, v, t) on TM such that the in-
tegral curves of E satisfy the Euler-Lagrange equations associate to L.
We assume in addition that this vectorfield generates a complete flow,
and denote by ϕ the time-one flow, which is a diffeomorphism of TM .
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In this paper we show that the theory developed by Mather [11],
Mañé [14] and Fathi [10] amounts for a large part to the analysis of the
function A : M × M → R defined by the expression

A(x, y) = min
γ

∫ 1

0
L(γ(t), γ̇(t), t)dt,

where the minimum is taken on the set of C2 curves γ : [0, 1] → M
which satisfy γ(0) = x and γ(1) = y.

To emphasize this point of view, we develop an abstract theory based
solely on an arbitrary continuous function A : M ×M → R, where M is
a connected compact metric space. We then define A1 = A and

An(x, y) = min
z1,...,zn−1∈M

A(x, z1) + A(z1, z2) + . . . + A(zn−1, y)

for all integers n ! 2. It turns out that the family (An) is equicontinu-
ous and our only hypothesis on A is that the family (An) is uniformly
bounded (this can be achieved by adding some constant to A). It then
follows that the expression

c(x, y) = lim inf
n→∞

An(x, y)

defines a continuous function c : M × M → R.
We call (φ0, φ1) an admissible Kantorovich pair for c if

∀y ∈ M φ1(y) = min
x∈M

φ0(x) + c(x, y)

and
∀x ∈ M φ0(x) = max

y∈M
φ1(y) − c(x, y).

The first main result (Theorem 12) states that (φ0, φ1) is an admissible
Kantorovich pair for c if and only if

• φ0(x) = maxy∈M φ0(y) − A(x, y) for all x ∈ M ,
• φ1(x) = miny∈M φ1(y) + A(y, x) for all x ∈ M ,
• and φ0(x) = φ1(x) whenever c(x, x) = 0.

The second main result (Theorem 13) concerns the minimization
problem

min
η

∫

M×M
A(x, y)dη(x, y),

where the minimum is taken on the set of Borel probability measures
η on M × M with equal marginal measures, that is, π0#(η) = π1#(η)
with π0 and π1 denoting the canonical projections on M . Among all
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admissible measures, the minimizing ones are shown to be exactly those
supported on the set

D = {(x, y) ∈ M × M |A(x, y) + c(y, x) = 0}.

This is also restated in the following way in Theorem 15. Let
X = MZ be endowed with the product topology and denote by MT (X)
the set of Borelian probability measures on X which are invariant by
translation. Consider the minimization problem

min
ν∈MT (X)

∫

X
A(x0, x1)dν(x),

where a generic x ∈ X is written x = (. . . , x−1, x0, x1, . . .). Then we
show with the help of the Ergodic Decomposition Theorem that ν in
MT (X) is minimizing exactly when the push-forward of ν by the pro-
jection x → (x0, x1) is concentrated on D.

The paper ends with the interpretation of these abstract theorems
in the setting of the Aubry-Mather theory, recovering in this way some
key results of [14, 11, 10].

§2. Monge-Kantorovich theory

We present some standard facts of Monge-Kantorovich theory, first
in the general case, and then when the cost satisfies some given assump-
tions.

2.1. Generalities
We recall the basics of Monge-Kantorovich duality. The proofs are

available in many texts on the subjects, for example [1, 15, 16]. We
assume that M and N are compact metric spaces, and that c(x, y) is a
continuous cost function on M × N . Given Borel probability measures
µ0 on M and µ1 on N , a transport plan between µ0 and µ1 is a measure
on M × N which satisfies

π0#(η) = µ0 and π1#(η) = µ1,

where π0 : M × N → M is the projection on the first factor, and
π1 : M × N → N is the projection on the second factor. We denote by
K(µ0, µ1), after Kantorovich, the set of transport plans. Kantorovich
proved the existence of a minimum in the expression

(1) C(µ0, µ1) = min
η∈K(µ0,µ1)

∫

M×N
cdη
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for each pair (µ0, µ1) of probability measures. The plans which realize
this minimum are called optimal transfer plans. Let φ0 be a real func-
tion on M and φ1 a real function on N . The pair (φ0, φ1) is called an
admissible Kantorovich pair if it satisfies the relations

φ1(y) = min
x∈M

φ0(x) + c(x, y) and φ0(x) = max
y∈N

φ1(y) − c(x, y)

for all point x ∈ M and y ∈ N . Another discovery of Kantorovich is
that

(2) C(µ0, µ1) = max
φ0,φ1

(∫

N
φ1dµ1 −

∫

M
φ0dµ0

)

where the maximum is taken on the non-empty set of admissible Kan-
torovich pairs (φ0, φ1). This maximization problem is called the dual
Kantorovich problem, the admissible pairs which reach this maximum
are called optimal Kantorovich pairs. The direct problem (1) and dual
problem (2) are related as follows.

Proposition 1. If η is an optimal transfer plan, and if (φ0, φ1) is
a Kantorovich optimal pair, then the support of η is contained in the set

{(x, y) ∈ M × N such that φ1(y) − φ0(x) = c(x, y)},

which is a closed subset of M × N because φ0 and φ1 are continuous.

Let us remark that the knowledge of the set of Kantorovich admis-
sible pairs is equivalent to the knowledge of the cost function c.

Lemma 2. We have

c(x, y) = max
(φ0,φ1)

φ1(y) − φ0(x)

where the maximum is taken on the set of Kantorovich admissible pairs.

Proof. This Lemma is elementary and can be proved by easy ma-
nipulation of inequalities, see [4]. However, we present a short proof
based on the non-elementary Monge-Kantorovich duality. Let us fix
points x ∈ M and y ∈ N , and let µ0 be the Dirac measure at x and
µ1 be the Dirac measure at y. There exists one and only one trans-
port plan between µ0 and µ1, it is the Dirac measure at (x, y). As a
consequence, we have c(x, y) = C(µ0, µ1). Hence the equality above is
precisely the conclusion of Kantorovich duality for the transportation
problem between µ0 and µ1.
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Proposition 3. Let (φ0, φ1) be an admissible pair, and let µ0 be a
probability measure on M . Then there exists a probability measure µ1 on
N such that the pair (φ0, φ1) is optimal for the transportation problem
of the measure µ0 onto the measure µ1

Proof. If µ0 is the Dirac at x, then take a point y such that φ1(y) =
φ0(x) + c(x, y), and observe that the conclusion obviously holds if µ1 is
the Dirac at y. The set of measures µ0 for which the conclusion holds
(given φ0, φ1) is clearly convex and closed (with respect to the weak
topology), it contains the Dirac measures, hence it is the whole set of
probability measures.

2.2. Distance-like costs
Kantorovich stated his duality theorem first in the case where M =

N and the cost is a distance. Then, the dual problem takes a simpler
form that we now describe. In fact, it is not necessary to assume that
the cost is a distance. It is sufficient to assume that, for all x, y and z
in M , we have

(C1) c(x, z) " c(x, y) + c(y, z),

(C2) c(x, x) = 0.

A function φ : M → R is called c-Lipschitz if it satisfies the inequality

φ(y) − φ(x) " c(x, y)

for all x and y in M . Note that, in the above and in what follows, we
assume that M = N is a compact and connected metric space, and that
c : M × M → R is a continuous cost function.

Theorem 4. Assume that the cost c ∈ C(M2, R) satisfies the as-
sumptions (C1) and (C2). Then for each pair µ0, µ1 of probability
measures on M , we have

C(µ0, µ1) = max
φ

∫

M
φd(µ1 − µ0)

where the maximum is taken on the set of c-Lipschitz functions φ.

This is a well-known direct rewriting of Kantorovich duality in view
of the following description of admissible pairs.

Lemma 5. If the cost satisfies (C1) and (C2), then the Kantorovich
admissible pairs are precisely the pairs of the form (φ, φ), with φ c-
Lipschitz.
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Proof. If φ is a c-Lipschitz function, then (φ, φ) is an admissi-
ble pair. Indeed, let us prove for example that φ(x) = miny φ(y) +
c(y, x). On the one hand, we have φ(x) " φ(y) + c(y, x) because φ
is c-Lipschitz, hence φ(x) " miny φ(y) + c(y, x). On the other hand,
φ(x) = φ(x) + c(x, x) ! miny φ(y) + c(y, x). One can prove similarly
that φ(x) = maxy φ(y) − c(x, y). It follows that (φ, φ) is an admissible
pair. Conversely, if (φ0, φ1) is an admissible pair, then φ0 = φ1 is a
c-Lipschitz function. This is a special case of Lemma 6 below.

Let us now study costs which satisfy (C1) but not necessarily (C2).
It is then useful to define the set

A := {x ∈ M, c(x, x) = 0} ⊂ M.

Note that the restriction of the cost c to A×A obviously satisfies (C1)
and (C2). In this more general case, we have:

Lemma 6. Let c ∈ C(M2, R) satisfy (C1). Let (φ0, φ1) be an ad-
missible pair. Then the functions φ0 and φ1 are c-Lipschitz. In addition,
we have φ0 " φ1 with equality on A.

Proof. Let us first prove that the function φ1 is c-Lipschitz. Given
x ∈ M , there exists y such that φ1(x) = φ0(y) + c(y, x), and then, for
each z,

φ1(x) = φ0(y) + c(y, x) ! φ1(z) − c(y, z) + c(y, x) ! φ1(z) − c(x, z).

One can prove similarly that φ0 is c-Lipschitz.
We then have

φ0(x) = max
y

φ1(y) − c(x, y) " max
y

φ1(x) = φ1(x).

because φ1 is c-Lipschitz. If x ∈ A, we have, in addition,

φ0(x) = max
y

φ1(y) − c(x, y) ! φ1(x) − c(x, x) = φ1(x).

We now introduce another hypothesis which is certainly less natural
than (C1) and (C2), but is useful for the applications we have in mind.
We assume that

(C3) A )= ∅ and c(x, y) = min
a∈A

c(x, a) + c(a, y)

for each x and y in M . Note that, under (C1), (C3) is implied by (C2).
The hypothesis (C3) implies that each optimal transport can be factored
through the set A.
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Lemma 7. If the cost satisfies (C1) and (C3), then for each pair
(µ0, µ1) of probability measures, there exists a probability measure µ sup-
ported on A and such that

C(µ0, µ1) = C(µ0, µ) + C(µ, µ1)

Proof. First note that C(µ0, µ1) " C(µ0, µ)+C(µ, µ1) is true for all
Borelian probability measures µ on M . This can be seen as follows. Let
η0 and η1 be optimal transport plans for (µ0, µ) and (µ, µ1) respectively.
Disintegrate η0 with respect to π1 and η1 with respect to π0: η0 =∫

M η0zdµ(z) and η1 =
∫

M η1zdµ(z) (see e.g. Theorem 5.3.1 in [2] for the
disintegration theorem; here η0z and η1z are seen as probability measures
on M). Following Section 5.3 in [2], define the probability measure η on
M2 by

η(A × B) =
∫

M
η0z(A)η1z(B) dµ(z)

for all Borelian subsets A, B ⊂ M . Then η ∈ K(µ0, µ1) and
∫

M2
c dη =

∫

M3
c(x, y)dη0z(x)dη1z(y)dµ(z)

"
∫

M3
{c(x, z)+c(z, y)}dη0z(x)dη1z(y)dµ(z) =

∫

M2
c dη0 +

∫

M2
c dη1.

Let us now prove the reverse inequality when µ0 and µ1 are Dirac
measures supported in x and y. In this case, one can take for µ the
Dirac measure supported at a, where a is any point such that c(x, y) =
c(x, a) + c(a, y). The general case is then deduced once again using the
fact that, on M2, the set of probability measures is the closed convex
envelop of the set of Dirac measures, so that we can approximate any
optimal transfer plan in K(µ0, µ1) by Dirac measures.

Proposition 8. If the cost c ∈ C(M2, R) satisfies (C1) and (C3),
then for each admissible pair (φ0, φ1), there exists a function φ : A → R,
which is c-Lipschitz, and such that

φ1(a) = φ0(a) = φ(a)

for all a ∈ A,

(3) φ1(x) = min
a∈A

φ(a) + c(a, x)

for all x ∈ M and

(4) φ0(x) = max
a∈A

φ(a) − c(x, a).
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Conversely, given any c-Lipschitz function φ on A, the functions φ0 and
φ1 defined by (4) and (3) form an admissible pair. In other words, there
is a bijection between the set of admissible pairs and the set of c-Lipschitz
functions on A.

Proof. The fact that φ0 and φ1 are c-Lipschitz and that, on A,
φ0 = φ1 := φ results from Lemma 6. Let us prove (4), the proof of (3)
being similar:

φ0(x) = max
y

φ1(y) − c(x, y)
(C3)
= max

y∈M,a∈A
φ1(y) − c(x, a) − c(a, y)

= max
a∈A

φ0(a) − c(x, a) = max
a∈A

φ(a) − c(x, a).

Conversely, let φ be a c-Lipschitz function on A, and let φ0 and φ1

be defined by (4) and (3). The reader will easily check that φ0 and φ1

are c-Lipschitz, and that φ1 " φ " φ0 on A. We now prove that φ0 " φ1

(and then that there is equality on A):

φ0(x) − φ1(x) = max
a,b∈A

φ(a) − c(x, a) − φ(b) − c(b, x)

" max
a,b∈A

φ(a) − φ(b) − c(b, a) " 0

because φ is c-Lipschitz on A. In order to check that the pair (φ0, φ1)
is an admissible pair, we shall prove that

φ0(x) = max
y

φ1(y) − c(x, y)

and leave the other half to the reader. For each x in M , we have

φ0(x) = max
a∈A

φ(a) − c(x, a) = max
a∈A

φ1(a)− c(x, a) " max
y∈M

φ1(y)− c(x, y).

In order to obtain the other inequality, let us prove that

φ1(y) − φ0(x) " c(x, y)

for all x an y in M . Indeed, we have

φ1(y) − φ0(x) = min
a,b∈A

φ(a) + c(a, y) − φ(b) + c(x, b)

" min
a,b∈A

c(b, a) + c(a, y) + c(x, b) = min
a∈A

c(x, a) + c(a, y) = c(x, y)

by (C3).
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Since φ1 and φ2 are c-Lipschitz (Lemma 6), equations (3) and (4)
imply

φ1(x) = min
y∈M

φ1(y) + c(y, x) and φ0(x) = max
y∈M

φ0(y) − c(x, y)

for all x ∈ M .

§3. Abstract Mather-Fathi Theory

In this section, we consider a continuous function A(x, y) : M×M →
R. Recall that M is a compact connected metric space. We shall build
several functions out of A. First, we define the sequence of functions
An(x, y) by setting A1 = A and

An(x, y) = min
z∈M

A(x, z) + An−1(z, y)

= min
z1,...,zn−1∈M

A(x, z1) + A(z1, z2) + . . . + A(zn−1, y).

Lemma 9. The functions An are equicontinuous. In addition, there
exists a real number l and a positive constant C such that

|An(x, y) − ln| " C

for all n ∈ N and all x and y in M .

Proof. The function A is continuous, hence uniformly continuous,
hence there exists a modulus of continuity δ : [0,∞) → [0,∞) such that
limε→0 δ(ε) = δ(0) = 0 and such that

|A(x, y) − A(X, Y )| " δ(d(x, X)) + δ(d(y, Y ))

for all x, y, X, Y in M . Clearly, for all n ! 2 and all z1, . . . , zn−1 ∈ M ,
the function (x, y) → A(x, z1)+A(z1, z2)+ . . .+A(zn−1, y) is uniformly
continuous, with the same modulus of continuity as A. Hence An is
uniformly continuous with the same modulus of continuity as A because
it is the infimum of functions having all the same modulus of continuity.

Let us define the sequences Mn := max(x,y)∈M2 An(x, y) and mn :=
min(x,y)∈M2 An(x, y). It is clear that the sequence Mn is subadditive,
i. e. that Mn+k " Mn + Mk for all n and k in N. In order to check this
claim, we take x and y in M such that An+k(x, y) = Mn+k. Then there
exists a point z in M such that

Mn+k = An+k(x, y) = An(x, z) + Ak(z, y) " Mn + Mk.
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Similarly, the sequence mn is super-additive, i. e. mn+k ! mn + mk.
On the other hand, on view of the equicontinuity of An, there exists
a constant C such that Mn − mn " C. Applying a standard result on
subadditive sequences (see e.g. Lemma 1.18 in [5]), we obtain that Mn/n
converges to its infimum M , and that mn/n converges to its supremum
m. Then for each x and y,

nM − C " Mn − C " mn " An(x, y) " Mn " mn + C " nm + C

which implies that M = m and proves the Lemma.

We make, on the function A, the hypothesis

(A1) l = 0.

Note that this hypothesis implies that A(x, x) ! 0 for all x, and more
generally that An(x, x) ! 0 for all x. Then, we can define a cost function
c by the expression

(5) c(x, y) = lim inf
n→∞

An(x, y).

In view of Lemma 9, the function c takes finite values and is contin-
uous. We have c(x, x) ! 0 and, by Lemma 11 below, c(x, y) + c(y, x) !
c(x, x) ! 0 for all x and y in M .

Lemma 10. For each n ∈ N, we have

c(x, y) = min
z∈M

c(x, z) + An(z, y) = min
z∈M

An(x, z) + c(z, y).

Proof. Let us fix n. Passing at the liminf (m → ∞) in the inequal-
ity

Am+n(x, y) " Am(x, z) + An(z, y),

we obtain
c(x, y) " c(x, z) + An(z, y).

For the opposite inequality, let us notice that, for each m, there exists a
point zm in M such that

Am+n(x, y) = Am(x, zm) + An(zm, y).

Let us consider an increasing sequence of integers mk such that the
subsequence zmk has a limit z and limk→∞ Amk+n(x, y) = c(x, y). At
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the liminf, we get, taking advantage of the equicontinuity of the functions
An,

c(x, y) ! c(x, z) + An(z, y).

This proves that

c(x, y) = min
z

c(x, z) + An(z, y).

The proof of the second equality of the statement is similar.

Lemma 11. The cost function c satisfies (C1) and (C3).

Proof. The triangle inequality is easily deduced from Lemma 10.
Let us now prove (C3). We first prove that, given x and y in M , there
exists a point z in M such that c(x, y) = c(x, z) + c(z, y). Indeed,
for each n in N, there exists a point zn such that c(x, y) = c(x, zn) +
An(zn, y). Considering an increasing sequence of integers nk such that
the subsequence znk has a limit z, we obtain at the liminf along this
subsequence that c(x, y) ! c(x, z) + c(z, y) which is then an equality.

By recurrence, there exists a sequence Zn ∈ M such that, for each
k ∈ N, we have

c(x, y) = c(x, Z1) + c(Z1, Z2) + . . . + c(Zk−1, Zk) + c(Zk, y).

Note that
∑m

i=' c(Zi, Zi+1) = c(Z', Zm+1) if 0 " * < m " k, where
Z0 = x and Zk+1 = y.

Let Z be an accumulation point of the sequence Zn. For each ε > 0,
we can suppose, by taking a subsequence in Zn, that all the points Zn

belong to the ball of radius ε centered at Z. We conclude that, for each
k ∈ N,

c(x, y) ! c(x, Z) + (k − 1)c(Z, Z) + c(Z, y) − 2(k + 1)δ(ε).

This is possible only if c(Z, Z) " 2δ(ε), and since this should hold for
all ε we conclude that c(Z, Z) " 0, hence c(Z, Z) = 0. We have proved
the existence of a point Z ∈ A such that c(x, y) = c(x, Z) + c(Z, y).

Let us define, the two operators T± on the space C(M, R) of con-
tinuous functions on M by the expressions

T−u(x) = min
y∈M

u(y) + A(y, x)

and
T +u(x) = max

y∈M
u(y) − A(x, y).
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We have the following relation between the fixed points of these
operators and the admissible pairs of the Kantorovich dual problem
with cost c. Recall the definition A := {x ∈ M, c(x, x) = 0} ⊂ M.

Theorem 12. Let A be a function satisfying (A1), and let c be the
cost defined by (5). The pair (φ0, φ1) of functions on M is a Kantorovich
admissible pair (for c) if and only if

• the function φ0 is a fixed point of T +,
• the function φ1 is a fixed point of T−,
• φ0 = φ1 on A.

Finally, for each fixed point φ1 of T−, there exists one and only one
function φ0 such that (φ0, φ1) is an admissible pair.

Proof. Let (φ0, φ1) be an admissible pair. Then we have the ex-
pression

φ1(y) = min
x∈M

φ0(x) + c(x, y).

We obtain that

T−φ1(z) = min
x,y∈M

φ0(x) + c(x, y) + A(y, z)

= min
x∈M

φ0(x) + c(x, z) = φ1(z).

We prove in the same way that the function φ0 is a fixed point of T +.
Lemma 6 implies that φ0 = φ1 on A.

Conversely, let (φ0, φ1) satisfy the three conditions of the statement.
We first observe that the functions φ0 and φ1 are c-Lipschitz. Indeed,
we have, for each n,

φi(y) − φi(x) " An(x, y).

When n = 1, this is a direct consequence of the fact that φi is a fixed
point of T±, and the general case is proved by induction. We get

φi(y) − φi(x) " lim inf
n→∞

An(x, y) = c(x, y).

The function φ1 being a fixed point of T−, for each n ∈ N, there exists
a point yn in M such that φ1(x) = φ1(yn) + An(yn, x). Indeed, we can
find successively y1, y2, . . . such that

φ1(x) = φ1(y1) + A(y1, x) = φ1(y2) + A(y2, y1) + A(y1, x)
= . . . = φ1(yn) + A(yn, yn−1) + . . . + A(y1, x).
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By definition of An, we get φ1(x) ! φ1(yn) + An(yn, x). The reverse
inequality has just been proved above.

Let nk be a subsequence such that ynk has a limit y. At the limit,
we obtain the inequality

φ1(x) ! φ1(y) + c(y, x),

which is then an equality. We have proved that

φ1(x) = min
y∈M

φ1(y) + c(y, x).

Let us call φ the common value of φ0 and φ1 on A. In view of (C3), we
have

φ1(x) = min
y∈M,a∈A

φ1(y) + c(y, a) + c(a, x)

= min
a∈A

φ1(a) + c(a, x) = min
a∈A

φ(a) + c(a, x).

One can prove in a similar way that

φ0(x) = max
a∈A

φ0(a) − c(x, a) = max
a∈A

φ(a) − c(x, a).

We conclude that (φ0, φ1) is an admissible pair by Proposition 8. This
also proves the uniqueness claim.

In order to prove the last part of the statement, let us consider a
fixed point φ1 of T−. Let us define the function φ0 by

φ0(x) = max
a∈A

φ1(a) − c(x, a).

Since the function φ1 is c-Lipschitz (as seen above), we have φ0 " φ1.
On the other hand, it is clear that φ1 " φ0 on A. As a consequence, we
have φ0 = φ1 on A. By Lemma 10, we have for all z ∈ M that

max
x∈M

φ0(x) − A(z, x) = max
x∈M,a∈A

φ1(a) − c(x, a) − A(z, x)

= max
a∈A

φ1(a) − c(z, a) = φ0(z).

Hence the function φ0 is a fixed point of T + and, as a consequence, the
pair (φ0, φ1) is an admissible pair.
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§4. Dynamics

Let us define the subset

D := {(x, y) ∈ M × M s. t. A(x, y) + c(y, x) = 0} ⊂ A×A

(see Lemma 10). We shall explain in two different ways that the Borel
probability measures η on M ×M which are supported on D and satisfy
π0#(η) = π1#(η) can be seen in a natural way as the analog of Mather
minimizing measures in our setting.

4.1. Construction via Kantorovich pairs
We first expose a construction based on Kantorovich pairs.

Theorem 13. Under the assumption (A1), we have

min
η

∫

M×M
A(x, y)dη(x, y) = 0,

where the minimum is taken on the set of Borel probability measures
η on M × M such that π0#(η) = π1#(η). The minimizing measures are
those which are supported on D.

Proof. Let us first prove that there exists a measure η on M × M
which is supported on D and such that π0#(η) = π1#(η). By Lemma 10,
for each x0 ∈ A, there exists a point x1 in A such that (x0, x1) ∈ D.
Hence there exists a sequence x0, x1, x2, . . . xn, . . . of points of A such
that (xn, xn+1) ∈ D for each n. Let us now consider the sequence

ηn =
δ(x0,x1) + δ(x1,x2) + · · · + δ(xn−1,xn)

n

of probability measures on A × A. Every accumulation point (for the
weak topology) of the sequence ηn satisfies the desired property. Since
the set of probability measures on M × M is compact for the weak
topology, such accumulation points exist.

Consider a measure η on M ×M which is supported on D and such
that π0#(η) = π1#(η). We have
∫

A(x, y)dη(x, y) =
∫

−c(y, x)dη(y, x) "
∫

φ(y) − φ(x)dη(x, y) = 0,

where φ is any c-Lipschitz function.
On the other hand, let η be a probability measure on M × M such

that π0#(η) = π1#(η). Consider a function φ which is A-Lipschitz. Such
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functions exist, for example, take z2 → c(z1, z2) for any z1 ∈ M (see
Lemma 10) or fixed points of T− or T +. We have

(6) 0 =
∫

φ(y) − φ(x)dη(x, y) "
∫

A(x, y)dη(x, y).

We have proved that the minimum in the statement is indeed zero, and
that the measures supported on D are minimizing. There remains to
prove that every minimizing measure is supported on D.

It is clear that a measure η is minimizing if and only if, for each
A-Lipschitz function φ, there is equality in (6), which means that the
measure η is supported on the set

D1 = {(x, y) ∈ M2 |
φ(y) − φ(x) = A(x, y) for all A-Lipschitz functions φ}.

Let D∞ be the set of pairs (x0, x1) such that there exists a sequence xi,
i ∈ Z satisfying (xi, xi+1) ∈ D1 for all i ∈ Z (and of course with the
given points x0 and x1).

We claim that D∞ ⊂ D. In order to prove this claim, let φ be A-
Lipschitz. Observe that φ is An-Lipschitz for all n ∈ N and c-Lipschitz.
If (x0, x1) is a point in D∞, then there exists a sequence xi, i ∈ Z such
that

φ(xj) − φ(xi) = Aj−i(xi, xj)

for each i < j in Z. If α is an accumulation point of the sequence xi at
−∞, we get the equality

φ(xj) − φ(α) = c(α, xj)

for each j ∈ Z and then, in the same way, c(α, α) = φ(α) − φ(α) = 0,
hence α ∈ A. Let (φ0, φ1) be a Kantorovich pair for c, so that both
φ0 and φ1 are A-Lipschitz (see Theorem 12). We get φ1(α) = φ0(α)
(because α ∈ A, see Theorem 12) hence φ1(xj) = φ0(xj). Since this
holds for all Kantorovich pairs, we get that xj ∈ A (see Lemma 2).
In other words, we have proved that D∞ ⊂ A × A. Now let (x0, x1)
be a point of D∞. We have x1 ∈ A, and, since the function c(x1, .)
is A-Lipschitz, we have the equality c(x1, x1) − c(x1, x0) = A(x0, x1).
Recalling that c(x1, x1) = 0, we get c(x1, x0) + A(x0, x1) = 0, hence
(x0, x1) ∈ D. The proof of the Theorem then follows from the next
Lemma.
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Lemma 14. If η is a probability measure on M × M which is sup-
ported on D1 and such that π0#(η) = π1#(η), then η is concentrated on
D∞.

Proof. Let us set µ = π0#(η) = π1#(η) and let

X1 = π0(D1) ∩ π1(D1) ⊂ M

be the set of points x0 ∈ M such that a sequence x−1, x0, x1 exists,
with (x−1, x0) ∈ D1 and (x0, x1) ∈ D1. Clearly, we have µ(π0(D1)) =
µ(π1(D1)) = 1 hence µ(X1) = 1. Let

D2 = D1 ∩ (X1 × X1)

be the set of pairs (x0, x1) ∈ M2 such that there exist x−1, x0, x1, x2

with (xi, xi+1) ∈ D1 for i = −1, 0, 1. Let

X2 = π0(D2) ∩ π1(D2) ⊂ M

be the set of points x0 ∈ M such that a sequence x−2, x−1, x0, x1, x2

exists, with (xi, xi+1) ∈ D1 for all −2 " i " 1. Since µ(X1) = 1, we
have η(D2) = 1, hence µ(X2) = 1. By recurrence, we build a sequences
Dn ⊂ M × M and Xn ⊂ M such that

Dn = D1 ∩ (Xn−1 × Xn−1)

and
Xn = π0(Dn) ∩ π1(Dn) ⊂ M.

By recurrence, we see that η(Dn) = 1 and that µ(Xn) = 1. Now we
have

D∞ =
⋂

n∈Z
Dn

hence η(D∞) = 1.

4.2. Ergodic Construction
It is worth explaining that the preceding construction could have

been performed in a quite different way, which does not use our theory
of Kantorovich pairs, but relies on Ergodic theory, as the first papers of
Mather.

Consider X = MZ endowed with the product topology, so that X
is a metrizable compact space. We shall denote by MT (X) the set of



Weak KAM pairs and Monge-Kantorovich duality 413

Borelian probability measures on X which are invariant by translation.
More precisely, we denote by T : X → X the translation map

T (. . . , a−2, a−1, a0, a1, a2, . . .) = (. . . , b−2, b−1, b0, b1, b2, . . .)

with bi = ai+1 for all i ∈ Z, so that MT (X) is the set of probability
measures ν on X such that T#ν = ν.

Theorem 15. We have

min
ν∈MT (X)

∫

X
A(x0, x1) dν(x) = 0.

The measure ν is minimizing if and only if its marginal η = (π0 × π1)#ν
is concentrated on D.

Note that Theorem 15 is equivalent to Theorem 13 in view of the
following:

Lemma 16. Let η be a Borelian probability measure on M2 such
that π0#(η) = π1#(η). Then there exists a Borelian measure ν on X that
is T -invariant and such that η is its push-forward by the map X , x →
(x0, x1) ∈ M2.

Proof. This follows from the Hahn-Kolmogorov extension theorem
(see e.g. Theorem 0.1.5 in [12], Lemma 10.2.4 in [7] and Theorem 12.1.2
in [7]). Let Ω be the algebra of finite unions of subsets G of X of the
type G = Πi∈ZGi where Gi )= M for at most a finite number of indices
i (the number depending on G) and every Gi is a Borelian subset of
M . We first define the T -invariant probability measure ν on Ω and
then apply the Hahn-Kolmogorov extension theorem, which provides an
unique extension to the Borel σ-algebra (by uniqueness, the extension
is T -invariant).

Let η =
∫

M ηx1dµ(x1) be the disintegration of η with respect to the
projection M2 , (x0, x1) → x1 ∈ M . In particular µ = π1#(η) (see e.g.
Theorem 5.3.1 in [2] for the disintegration theorem). Define for m < n

ν(. . . × M × M × Gm × . . . × Gn × M × M × . . .)

=
∫

Gm×...×Gn

dηxm+1(xm) . . . dηxn(xn−1)dµ(xn).

This is well defined because if Gm−1 = M then
∫

Gm−1×Gm×...×Gn

dηxm(xm−1)dηxm+1(xm) . . . dηxn(xn−1)dµ(xn)

=
∫

Gm×...×Gn

dηxm+1(xm) . . . dηxn(xn−1)dµ(xn)
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and if Gn+1 = M then

=
∫

Gm×...×Gn×Gn+1

dηxm+1(xm) . . . dηxn(xn−1)dηxn+1(xn)dµ(xn+1)

=
∫

Gn×M

{∫

Gm×...×Gn−1

dηxm+1(xm) . . . dηxn(xn−1)

}
dηxn+1(xn)dµ(xn+1)

=
∫

Gn×M

{∫

Gm×...×Gn−1

dηxm+1(xm) . . . dηxn(xn−1)

}
dη(xn, xn+1)

=
∫

Gn

{∫

Gm×...×Gn−1

dηxm+1(xm) . . . dηxn(xn−1)

}
dµ(xn)

=
∫

Gm×...×Gn

dηxm+1(xm) . . . dηxn(xn−1)dµ(xn)

because µ = π1#(η) = π0#(η).
Clearly ν(X) = 1 and ν is T -invariant on Ω.

Although we have proved the equivalence between Theorem 15 and
Theorem 13 we shall, as announced, detail another proof of Theorem 15.

For x ∈ X and every Borelian subset B, we define

τB(x) = lim
n→+∞

1
n

card{0 " j " n − 1 |T j(x) ∈ B}

(when the notation is used, it is understood that the limit exists). A
Borelian probability ν on X is ergodic if and only if, for every Borelian
subset B ⊂ X , there holds τB(x) = ν(B) ν-almost surely.

Following Section II.6 in the book by Mañé [12], there exists a Borel
set Σ ⊂ X such that ν(Σ) = 1 for each ν ∈ MT (X), and, for each x ∈ Σ,
the measure

νx := lim
n→+∞

1
n

n−1∑

j=0

δT j(x)

is well defined and ergodic, where the limit is understood in the sense
of the weak topology, that is

(7) ∀f ∈ C(X, R)
∫

X
f dνx = lim

n→∞

1
n

n−1∑

j=0

f(T j(x)).

Moreover νx ∈ MT (X) and x belongs to the support of νx for all x ∈ Σ.
In addition, still following [12], we have that the function x -−→

∫
fdνx
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is ν-integrable and T -invariant, and that

(8)
∫

X

(∫

X
fdνx

)
dν =

∫

X
f dν.

holds for every f ∈ L1(X, ν). Note that the measure νx is the conditional
probability measure of ν with respect to the σ-algebra of T -invariant
Borel sets.

We define the continuous function Γ : X → R by Γ(x) = A(x0, x1).
By standard convexity arguments, the following minimum is reached:

α = min
ν∈MT (X)

∫

X
Γ(x)dν(x).

Let us prove that α " 0. Fix x0 ∈ M . For all ε > 0, we can find
n ! 1 and x1, . . . , xn ∈ M such that

xn = x0 and
1
n

n−1∑

j=0

A(xj , xj+1) < ε

(thanks to assumption (A1)). Let x = (. . . , x0, . . . , xn, . . .) ∈ X have
periodic components with period n and define ν ∈ MT (X) by

ν =
1
n

n−1∑

j=0

δT j(x)

where δT j(x) is the Dirac measure at T j(x). Then
∫

X Γ dν < ε, which
proves that α " 0 (because ε can be chosen arbitrarily small).

Let ν ∈ MT (X) be any optimal measure. The equality
∫

X

(∫

X
Γdνx

)
dν =

∫

X
Γ dν = α

shows that
∫

X Γdνx = α for ν-almost all x ∈ Σ. For such a x, we get

(9) 0 ! α = lim
n→+∞

1
n

n−1∑

j=0

Γ(T j(x)) = lim
n→+∞

1
n

n−1∑

j=0

A(xj , xj+1).

Assume for a while that x0 )∈ A. Then there exists a neighborhood U
of x0 in M , δ > 0 and N ! 1 such that

(10) An(y0, z0) > δ > 0 for all y0, z0 ∈ U and n ! N
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(we use here the equicontinuity of the functions An). Setting Ũ = {y ∈
X | y0 ∈ U}, we get

0 < νx(Ũ) " lim inf
n→+∞

1
n

card{0 " j " n − 1 |xj ∈ U}.

The first inequality is a consequence of the fact that x is in the sup-
port of νx and the second one follows from (7) and the fact that the
characteristic function of U is the supremum of an increasing sequence
of continuous functions. We denote by (xjk : k ! 0) the sequence of
components of x in U (of non-negative index). We obtain (see (10))

0 < νx(Ũ) " lim inf
m→+∞

mN

jmN

and the contradiction

lim inf
m→∞

1
jmN

jmN−1∑

j=0

A(xj , xj+1)

= lim inf
m→∞

1
jmN

m−1∑

k=0

j(k+1)N−1∑

j=jkN

A(xj , xj+1)

! lim inf
m→∞

1
jmN

m−1∑

k=0

Aj(k+1)N−jkN (xjkN , xj(k+1)N )

! lim inf
m→∞

mδ

jmN
! νx(Ũ)δ/N > 0

(compare with (9)). This contradiction shows that x0 ∈ A for ν-almost
all x, that is, the marginal µ = π0#ν is concentrated on A.

Let us now check that α ! 0. For contradiction, suppose α < 0.
Then for x ∈ Σ as above such that νx ∈ MT (X) and Γ(νx) = α, we get

0 > α = Γ(νx) = lim
n→+∞

1
n

n−1∑

j=0

A(xj , xj+1)

= lim
n→+∞

1
n + 1




n−1∑

j=0

A(xj , xj+1) + A(xn, x0)





! lim sup
n→+∞

1
n + 1

An+1(x0, x0).

This contradicts l = 0 (see hypothesis (A1)).
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We have proved that α = 0, and that every minimizing T -invariant
measure ν has its marginal µ = π0#ν concentrated on A. Let us now
prove that every minimizing measure ν ∈ MT (X) is supported on {x ∈
X |A(x0, x1) + c(x1, x0) = 0}. Let x belong to the support of ν and
observe that (see Lemma 10) c(x1, y1) " c(x1, y0) + A(y0, y1) for all
y0, y1 ∈ M . Therefore

0 =
∫

X
c(x1, y1) − c(x1, y0) dν(y) "

∫

X
A(y0, y1) dν(y) = α = 0

and ∫

X
A(y0, y1) − c(x1, y1) + c(x1, y0) dν(y) = 0

where the integrand is non negative. Hence c(x1, y1) = c(x1, y0) +
A(y0, y1) for ν-almost all y. Since x is in the support of ν, we get
c(x1, x1) = c(x1, x0) + A(x0, x1). We have just seen that y0 ∈ A for ν-
almost all y. By the T -invariance of ν, we also have y1 ∈ A for ν-almost
all y. Since x is in the support of ν, we therefore obtain x1 ∈ A and
0 = c(x1, x1) = c(x1, x0) + A(x0, x1).

Finally let ν ∈ MT (X) be concentrated on

D̃ = {y ∈ X |A(y0, y1) + c(y1, y0) = 0}

and let us prove that
∫

X Γdν = α. By (8) applied to the characteristic
function of D̃, we get that νx(D̃) = 1 for ν-almost all x ∈ Σ. By (8)
applied to Γ, we see that it suffices to check that

∫
X Γdνx = α for all

x ∈ Σ such that νx is concentrated on D̃. This follows from (C1):

0 = α "
∫

X
A(y0, y1) dνx(y) = −

∫

X
c(y1, y0) dνx(y)

= − lim
n→∞

1
n

n−1∑

j=0

c(xj+1, xj) " − lim inf
n→∞

1
n

c(xn, x0) = 0.

§5. Aubry-Mather theory

We now briefly explain the relations between our discussions and
the literature on Aubry-Mather theory, and especially [11], [14] and [10].
From now on, the space M is a compact connected manifold and we con-
sider a C2 Lagrangian function L : TM ×R → R as in the Introduction.
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In this context, we define A : M × M → R by

A(x, y) = min
γ

∫ 1

0
L(γ(t), γ̇(t), t)dt,

where the minimum is taken on the set of C2 curves γ : [0, 1] → M
which satisfy γ(0) = x and γ(1) = y.

The function c defined by (5) is one of the central objects of Mather’s
theory of globally minimizing orbits, see [11]. He called it the Peierls
barrier. It contains most of the information concerning the globally
minimizing orbits, as was explained by Mather, see also [3]. The set A
of points x ∈ M such that c(x, x) = 0 is called the projected Aubry
set. It is especially important because Mather proved the existence of
a vectorfield X(x) on A whose graph is invariant under the Lagrangian
flow ϕ. This invariant set is called the Aubry set. The analog of the
Aubry set in our general theory is the set D defined in the beginning of
section 4.

The operators T± have been introduced by Albert Fathi in this
context, see [8],[9] and [10]. He called Weak KAM solutions the fixed
points of T−, and we call backward weak KAM solutions the fixed points
of T +. He also noticed that, for each weak KAM solution φ1, there exists
one and only one backward weak KAM solution φ0 which is equal to φ1

on the projected Aubry set. This is the main part of our Theorem
12. Albert Fathi also proved Lemma 2 in this context. Our novelty in
these matters consists of pointing out and using the equivalence with
Kantorovich admissible pairs, which allows, for example, a strikingly
simple proof of the important result of Fathi called Lemma 2 in our
paper. The representation of weak KAM solutions given in Proposition
8 was obtained by Contreras in [6].

The minimizing measures of Theorem 13 are the famous Mather
measures, see [11]. To be more precise, we should say that there is a
natural bijection between the set of minimizing measures in Theorem
13 and the set of Mather measures. This bijection is described in [4].
In order to give the reader a clue of this bijection, let us recall that
the Mather measures are probability measures on the tangent bundle
TM , and that the minimizing measures of Theorem 13 are probability
measures on M × M . Denoting by ϕ the time-one Lagrangian flow,
and by π : TM → M the standard projection, we have a well-defined
mapping (π, π ◦ ϕ)# from the set of probability measures on TM to the
set of probability measures on M×M . This mapping induces a bijection
between the set of Mather measures on TM and the set of minimizing
measures of Theorem 13.
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The part of Theorem 13 stating that the minimizing measures are
precisely the measures supported on D is the analogous in our setting of
the theorem of Mañé stating that all invariant measures supported on
the Aubry set are minimizing, see [13].
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