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Abstract

We expose different methods of regularizations of subsolutions in the context of discrete weak
KAM theory. They allow to prove the existence and the density of C1,1 subsolutions. Moreover,
these subsolutions can be made strict and smooth outside of the Aubry set.

1 Introduction

We consider a smooth connected Riemannian manifold M endowed with the distance d(., .) coming
from the Riemannian metric. Fixing a cost function c : M×M → R we study the functions u : M → R
which satisfy

∀(x, y) ∈M ×M, u(y)− u(x) 6 c(x, y),

we call them subsolutions, by analogy with those appearing in Weak KAM theory (see [FS04, Ber07]
for example). Defining, as usual, the discrete Lax–Oleinik operators

T−c u(x) = inf
y∈M

u(y) + c(y, x), T+
c u(x) = sup

y∈M
u(y)− c(x, y),

we see that a function u is a subsolution if and only if one of the equivalent relations is verified:

u 6 T−c u or T+
c u 6 u.

Our goal is to extend and simplify the results of [Zav10]. Our first result uses the following
hypothesis on c. We will give later more concrete hypotheses which imply this one.

Hypothesis 1. For each subsolution u, the functions T−c u and −T+
c u are locally semiconcave 1.

Under this hypothesis, we have:

Theorem 1. The set of locally C1,1 subsolutions is dense in the set of continuous subsolutions for the
strong topology.

We recall that the strong (or Whitney) topology on C0(M,R) is induced by the basis of open sets:

Oε,f = {g ∈ C0(M,R), ∀x ∈M, |f(x)− g(x)| < ε(x)}

where f ∈ C0(M,R) and ε is a continuous positive valued function on M . For further precisions on
this topology, see [Hir94, Chapter 2]. The existence of C1,1 subsolutions was proved in [Zav12], but
the density is new. In [Zav12], the existence of C1,1 subsolutions is deduced from the following result
of Ilmanen (see [Ilm93, Car01, FZ10, Ber10]):

Theorem 2. Let f and g be locally semiconcave functions on M such that f + g > 0. Then there
exists a locally C1,1 function u such that −g 6 u 6 f .

1Throughout the paper, we call semiconcave what is sometimes called semiconcave with a linear modulus.
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We will offer a direct proof of Theorem 1, which is inspired from the proof of Ilmanen’s Lemma given
in [Ber10]. Note that Theorem 1 implies Theorem 2. This follows immediately from the equivalence,
for a given function u, between the following properties:

• the function g + u is bounded from below and −g 6 u− inf(g + u) 6 f ;

• the function u is a subsolution for the cost c(x, y) = g(x) + f(y).

Our next result uses either of the following stronger hypotheses on c, closer to the setting of [Zav10]:

Hypothesis 2. The function c satisfies the following properties:

• uniform super-linearity: for every k > 0, there exists C(k) ∈ R such that

∀(x, y) ∈M ×M, c(x, y) > kd(x, y)− C(k);

• uniform boundedness: for every R ∈ R, there exists A(R) ∈ R such that

∀(x, y) ∈M ×M, d(x, y) 6 R⇒ c(x, y) 6 A(R);

• local semiconcavity: for each point (x0, y0) there is a domain of chart containing (x0, y0) and
a smooth function f(x, y) such that c− f is concave in the chart.

Hypothesis 3. The function c is locally bi–semiconcave:
for all (x, y) ∈M ×M we can find the following:

• neighborhoods U and V of respectively x and y,

• diffeomorphisms ϕ1 and ϕ2 from Bn to respectively U and V (Bn is the unit ball in Rn),

• smooth functions f and g from Bn to R,

such that for each x ∈ M , the function z 7→ c
(
x, ϕ2(z)

)
− g(z) is concave and for all y ∈ M , the

function z 7→ c
(
ϕ1(z), y

)
− f(z) is concave.

It is proved in [Zav10, Proposition 4.6] that Hypothesis 2 implies Hypothesis 1. It is easy to prove
in a similar way that Hypothesis 3 also implies Hypothesis 1.

We need to introduce more definitions before we state our second result. The subsolution u is
called strict at (x, y) if u(y) − u(x) < c(x, y). We denote by Au the set of pairs (x, y) at which u is
not strict,

Au = {(x, y) ∈M2, u(y)− u(x) = c(x, y)} ⊂M ×M.

We define the Aubry set as

A =
⋂
u

{(x, y) ∈M2, u(y)− u(x) = c(x, y)} ⊂M ×M,

where the intersection is taken on the set of continuous subsolutions. A pair (x, y) belongs to the
Aubry set if and only if no continuous subsolution is strict at (x, y). The Aubry set is a closed,
possibly empty, subset of M ×M . We will also use the projection A of A on the first factor (which, as
we will see later, is equal to its projection on the second factor under hypothesis 2). We also introduce

A∗ =
⋂
u

{x ∈M, T−c u(x) = u(x)}.

Notice that A∗ ⊃ A. Moreover, as proved in [Zav12], these two sets are equal if Hypothesis 2 is
verified, see Appendix A.
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Theorem 3. Assume that c verifies either hypothesis 2 or 3. If there exists a continuous subsolution,
then there exists a locally C1,1 subsolution strict in the complement of A. Moreover, this subsolution
may be taken C∞ in the complement of A∗.

Strict C1,1 subsolutions were obtained in [Zav10] under an additional twist assumption. We will
use a simple trick of [Ber07] to obtain easily the general result from Theorem 1. That the subsolutions
can be made smooth outside of A∗ is well-known. It will certainly not be a surprise to specialists
that this can be done without destroying the global C1,1 regularity, although we do not know any
reference for this statement. We prove it using a regularization procedure due to De Rham [dR73].
This proof also applies to the “classical” (as opposed to discrete) weak KAM theory. We will often
use the following criterion for subsolutions, taken from [Zav12]:

Lemma 1.1. Let u be a subsolution and let us consider a function v such that

u 6 v 6 T−c u,

then v itself is a subsolution.

Proof. The statement follows from the inequalities u 6 v 6 T−c u 6 T−c v.

2 The uniform case on Rn and the Jensen transforms

In this section we work on M = Rn. A function u : Rn −→ R is called k–semiconcave if u(x)− k‖x‖2
is concave. We make the following assumption on the cost c:

There exists a constant K such that the function x 7−→ c(x, y) is K–semiconcave for each y and
the function y 7−→ c(x, y) is K–semiconcave for each x.

We will use the Jensen transforms. If u : Rn → R is a function and t ∈ R+ then

∀x ∈ Rn, J−tu(x) = inf
y∈Rn

(
u(y) +

1

t
‖y − x‖2

)
,

∀x ∈ Rn, J+tu(x) = sup
y∈Rn

(
u(y)− 1

t
‖y − x‖2

)
.

Theorem 4. Let u be a uniformly continuous subsolution. The function J−t ◦ J+2t ◦ J−tu is finite
and, for t small enough, it is a C1,1 subsolution. Moreover, it converges uniformly to u as t→ 0. More
precisely, if u is a uniformly continuous subsolution then for t, s < K−1 the functions J−t◦J t+s◦J−su
and J+t ◦ J−(t+s) ◦ J+su are C1,1 subsolutions which converge uniformly to u as t, s→ 0.

We recall a few properties of the Jensen transforms, most of which are proved in [Ber10] or [AD00].
Both families of operators J− and J+ are semigroups. They are monotonous in the following way:

∀s > t > 0, inf u 6 J−su 6 J−tu 6 u 6 J+tu 6 J+su 6 supu

and in the following one:

u 6 v ⇒ {∀t > 0, J−tu 6 J−tv and J+tu 6 J+tv}.

We call modulus of continuity a continuous function ρ : [0,∞) −→ [0,∞) such that ρ(0) = 0. A
function f is said ρ–continuous if |f(y) − f(x)| 6 ρ(‖y − x‖) for all x and y. Given a modulus of
continuity ρ, there exists a modulus of continuity ε such that, for each ρ–continuous function u, the
following properties hold:

• the functions J−tu and J+tu are finite-valued and ρ–continuous for each t > 0,

• J−tu is t−1–semiconcave and J+tu is t−1–semiconvex,
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• ‖J−tu− u‖∞ + ‖J+tu− u‖∞ 6 ε(t),

• J−t ◦ J+tu > u and J+t ◦ J−tu 6 u,

• the equality J−t ◦ J+tu = u (resp. J+t ◦ J−tu = u) holds if and only if u is t−1–semiconcave
(resp. t−1–semiconvex),

• if u is semiconvex (resp. semiconcave) then J−t ◦ J+tu (resp. J+t ◦ J−tu) is C1,1 (and finite
valued).

Using these properties, we now prove Theorem 4. Let u be a uniformly continuous subsolution, with
modulus ρ. Since the function u is a subsolution, we have u 6 T−c u hence T−c u is finite–valued. Our
hypothesis on the cost c implies that the function T−c u is K–semiconcave, being a finite infimum of
K–semiconcave functions. For s < K−1, we have

u 6 J−s ◦ J+su 6 J−s ◦ J+s(T−c u) = T−c u,

where the last inequality follows from the K–semiconcavity of T−c u and the properties of J−◦J+ listed
above. We conclude that the function J−s ◦ J+su is a ρ–continuous, s−1–semiconcave subsolution.
Similarly, if u is ρ–continuous and t < K−1, then the function J+t ◦ J−tu is a ρ–continuous, t−1–
semiconvex subsolution. Applying this observation to the function J−s ◦ J+su, we conclude that
J+t ◦ J−t ◦ J−s ◦ J+su is a ρ–continuous subsolution. This subsolution is C1,1 since J−s ◦ J+su is
semiconcave. Finally, we observe that

u− ε(t) 6 J+t ◦ J−(t+s) ◦ J+su 6 u+ ε(s),

where ε is the modulus associated to ρ in the list of properties of J , which ends the proof.

3 The general case

In this section, we come back to the general setting and prove Theorem 1. We derive it from the
uniform version using partitions of unity, as was done in [Ber10] for Ilmanen’s Lemma. We fix a
locally finite atlas (φi)i∈I constituted of smooth maps φi : Bn → M , where Bn is the open unit ball.
We assume that all the images φi(Bn), for i ∈ I, are relatively compact in M . Moreover, we consider
a smooth partition of unity (gi)i∈I subordinated to the locally finite open covering

(
φi(Bn)

)
i∈I . Given

positive numbers ai, bi, i ∈ I, we define the operators

∀x ∈M, Su(x) =
∑
i∈I

[J−ai ◦ J+ai(giu ◦ φi)] ◦ φ−1i (x), (1)

∀x ∈M, Šu(x) =
∑
i∈I

[J+bi ◦ J−bi(giu ◦ φi)] ◦ φ−1i (x). (2)

Theorem 1 follows from:

Theorem 5. Let u be a continuous subsolution and ε : M → R∗+ be a continuous function. For
suitably chosen positive constants (ai)i∈I and (bi)i∈I , the function Š ◦S(u) is a locally C1,1 subsolution
such that |u− Š ◦ Su| 6 ε.

Proof. Since the image φi(Bn) is relatively compact and since the atlas is locally finite the set
Ai = {j ∈ I, φj(Bn) ∩ φi(Bn) 6= ∅} is finite, let us denote by ei its cardinal. Setting

εi :=

min
j∈Ai

inf
x∈Bn

ε
(
φi(x)

)
2 max
j∈Ai

ej
,
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we observe that

∀i ∈ I,
∑
j∈Ai

εj 6
1

2
inf
x∈Bn

ε
(
φi(x)

)
. (3)

For each i, we choose a positive constant ai such that∥∥(giu) ◦ φi − J−ai ◦ J+ai
(
(giu) ◦ φi

)∥∥
∞ < εi. (4)

Such a constant exists because the function (giu) ◦ φi is uniformly continuous. Since the functions
(supφi(Bn) u)gi ◦ φi and (infφi(Bn) u)gi ◦ φi (extended by 0 outside of Bn) are C2 and compactly sup-
ported, they are semiconcave, hence we can choose the positive constants ai such that, in addition,

J−ai ◦ J+ai

((
inf

φi(Bn)
u
)
gi ◦ φi

)
=
(

inf
φi(Bn)

u
)
gi ◦ φi,

J−ai ◦ J+ai

((
sup
φi(Bn)

u
)
gi ◦ φi

)
=
(

sup
φi(Bn)

u
)
gi ◦ φi.

Then, (
inf

φi(Bn)
u
)
gi ◦ φi =J−ai ◦ J+ai

((
inf

φi(Bn)
u
)
gi ◦ φi

)
6J−ai ◦ J+ai(giu ◦ φi)

6J−ai ◦ J+ai

((
sup
φi(Bn)

u
)
gi ◦ φi

)
=
(

sup
φi(Bn)

u
)
gi ◦ φi,

hence the function J−ai ◦ J+ai(giu ◦ φi) is supported in Bn.
Finally, since T−c u is locally semiconcave, the function (giT

−
c u) ◦ φi is semiconcave (see [Ber10]),

and we can assume by taking ai > 0 small enough that it is a−1i –semiconcave. Then, we have

(giu) ◦ φi 6 J−ai ◦ J+ai(giu ◦ φi) 6 J−ai ◦ J+ai
(
[giT

−
c u] ◦ φi

)
=
[
giT
−
c u
]
◦ φi,

hence
u =

∑
i∈I

(giu) ◦ φi ◦ φ−1i 6 Su 6
∑
i∈I

[
giT
−
c u
]
◦ φi ◦ φ−1i = T−c u,

which, by Lemma 1.1, implies that Su is a subsolution. It is locally semiconcave, as a locally finite
sum of locally semiconcave functions, and |u−Su| < ε/2 everywhere. Similarly, we can choose positive
constants bi such that:

•
∥∥(giSu) ◦ φi − J+bi ◦ J−bi

(
(giSu) ◦ φi

)∥∥
∞ < εi,

• J+bi ◦ J−bi
(
(giSu) ◦ φi

)
is C1,1 and supported in Bn,

• (giT
+
c Su) ◦ φi is b−1i –semiconvex.

Then, ŠSu is a locally C1,1 subsolution such that |u− ŠSu| 6 ε.

4 Existence of strict subsolutions

In this section, we make the additional assumption that there exists a continuous subsolution.

Lemma 4.1. There exists a continuous subsolution w0 such that Aw0 = A.
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Proof. Since M is separable, the set of continuous subsolutions is also separable (for the compact–
open topology), and we consider a dense subsequence (un)n∈N. Set

w0 =
∑
n∈N

anun (5)

where the an are positive real numbers such that
∑
an = 1 and the sum (5) is uniformly convergent on

each compact subset. The function w0 is a subsolution since it is a convex combination of subsolutions.
If now (x, y) ∈ Aw0 , summing the inequalities

∀n ∈ N, an
(
un(y)− un(x)

)
6 anc(x, y),

gives an equality, therefore all inequalities are equalities and

∀n ∈ N, (x, y) ∈ Aun .

By density of the sequence un, we deduce that (x, y) ∈ Au for each continuous solution u and therefore
Aw0 ⊂ A. The reverse inequality follows from the definition of A.

We now prove the main result of this section.

Theorem 6. Assume the cost c verifies one of the Hypotheses 2 or 3. If u is a continuous subsolution,
then there exists a locally C1,1 subsolution u′ such that u and u′ coincide on Au and u′ is strict outside
of Au. There exists a C1,1 subsolution which is strict outside of A.

Proof. Let u be a continuous subsolution. The function

F : (x, y) 7→ c(x, y) + u(x)− u(y)

is therefore continuous, non-negative on M and positive on the complement of Au. Let now ϕ :
M ×M → R be a C∞ function which is bounded, non-negative, positive on the complement of Au
and verifies ϕ 6 F . In the case where c verifies hypothesis 3, we require in addition that ϕ be locally
bi–semiconcave (see lemma C.1 in the appendix for the construction of such a function).

We introduce the modified cost cϕ = c − ϕ. It verifies the same hypothesis as c. By definition, u
is a cϕ–subsolution. Using Theorem 5, applied with the cost cϕ, we can choose the constants ai and
bi such that w = ŠSw0 is a C1,1 subsolution for the cost cϕ, hence a subsolution for the cost c which
is strict outside of Au.

Finally, to prove the second part of the theorem, we apply the preceding construction to the func-
tion w0 obtained in Lemma 4.1.

The proof also yields:

Corollary 4.2. The set of locally C1,1 subsolutions strict outside A is dense for the open compact
topology in the set of continuous subsolutions.

5 Smoothness

We regularize strict subsolutions outside of the Aubry set and prove Theorem 3. We start with:

Definition 5.1. The leverage function λu : M −→ [0,∞) of the subsolution u is defined by:

λu(x) :=
1

3
min

(
T−c u(x)− u(x), u(x)− T+

c u(x)
)
.

The following lemma justifies the denomination of leverage function:
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Lemma 5.2. Let u be a continuous subsolution and let v be another function such that

∀x ∈M, |u(x)− v(x)| 6 λu(x),

then v is itself a subsolution. Moreover, if u is strict at (x, y) then so is v.

Proof. By definition, we have

3 max{λu(x), λu(y)} 6 max{u(x)− T+
c u(x), T−c u(y)− u(y)} 6 c(x, y)− u(y) + u(x).

Therefore, the following inequalities hold:

v(y)− v(x) 6 u(y)− u(x) + λu(x) + λu(y) 6 u(y)− u(x) +
2

3

(
c(x, y)− u(y) + u(x)

)
6

2

3
c(x, y) +

1

3

(
u(y)− u(x)

)
6 c(x, y),

which proves that v is a subsolution and that it is strict at (x, y) whenever u is.

The previous proposition shows that it is possible to regularize subsolutions where their leverage
function does not vanish. We will prove in Proposition 5.6 that there exists a subsolution whose
leverage function is positive outside of A∗. We need some preparation.

Definition 5.3. Let u be a subsolution. Define A∗u ⊂M as

A∗u = {x ∈M, T−c u(x) = u(x)}.

We then obtain A∗ = ∩A∗u, where the intersection is taken over continuous subsolution.

Lemma 5.4. There exists a continuous subsolution w1 such that A∗w1
= A∗ and Aw1 = A.

Proof. If u is a continuous subsolution, then A∗u is closed, hence so is A∗. Let us consider a
point x /∈ A∗. By definition, there exists a subsolution ux such that T−c ux(x) > ux(x). Moreover, by
continuity of ux and T−c ux, we may consider a positive number εx and an open neighborhood of x,
Ox, on which the following holds:

∀y ∈ Ox, T−c ux(y) > ux(y) + εx.

The set M \ A∗ satisfies the Lindelöf property (it is a separable metric space). We can thus extract a
countable cover On, for n ∈ N of the cover Ox, where x ∈ M \ A∗. We will denote by un and εn the
continuous subsolution and positive real number associated to On. As in Lemma 4.1, we consider a
convex combination

w =
∑
n∈N

anun.

The function w is then a continuous subsolution. For each x /∈ A∗, there exists n0 ∈ N such that
x ∈ On0 , and we have

T−c w(x) = T−c

(∑
n∈N

anun

)
(x) >

∑
n∈N

anT
−
c un(x) >

∑
n∈N

anun + an0εn0 = w(x) + an0εn0 .

This proves that A∗w ⊂ A∗ and then that in fact A∗w = A∗ (the reverse inequality falls from the
definition of A∗). Finally, setting w1 = (w+w0)/2, where w0 is given by Lemma 4.1 proves the result.

Lemma 5.5. If x0 ∈ A∗, then for any continuous subsolution u, we have u(x0) = T+
c u(x0).
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Proof. We will use the following general fact: if f is any function, then T−c T
+
c f > f . Indeed,

∀x ∈M, T−c T
+
c f(x) = inf

y∈M
sup
z∈M

f(z)− c(y, z) + c(y, x) > f(x),

the inequality being found by taking z = x. Since u is a subsolution, we have T−c T
+
c u > u > T+

c u.
Evaluating at x0 gives

T+
c u(x0) = T−c T

+
c u(x0) > u(x0) > T+

c u(x0),

where the first equality comes from the definition of A∗, since T+
c u is a subsolution.

Proposition 5.6. The set A∗ verifies

A∗ = {x ∈M, for any continuous subsolution u, u(x) = T−c u(x) = T+
c u(x)}.

Moreover, there exists a locally C1,1 subsolution w such that T+
c w < w < T−c w, on M \ A∗.

Proof. The first statement follows immediately from Lemma 5.5. We define, similarly to A∗, the set

A+ =
⋂
u

{x ∈M, T+
c u(x) = u(x)},

where the intersection is once again taken on all continuous subsolutions. By Lemma 5.5, we have
A∗ ⊂ A+. A symetric version of Lemma 5.5 implies that A∗ = A+. A variant of Lemma 5.4 gives
the existence of a continuous subsolution w+

1 such that T+
c w

+
1 > w+

1 on the complement of A+ = A∗.
The continuous subsolution w2 := (w+

1 + w1)/2 then satisfies the inequalities T+
c w2 < w2 < T−c w2 or

equivalentely λw2 > 0 on the complement of A∗.
Let ψ be a smooth bounded function such that 0 6 ψ 6 λw2 , with strict inequalities outside of

A∗. The function w2 is a subsolution for the cost c̃(x, y) = c(x, y)− ψ(y), since

T−c̃ w2(x) > T−c w2(x)− ψ(x) > w2(x).

By applying Theorem 5 to the cost c̃, we obtain the existence of a C1,1 subsolution w− for the cost c̃.
This implies that

w−(x) 6 T−c̃ w
−(x) = T−c w

−(x)− ψ(x) 6 T−c w
−(x),

with a strict inequality outside of A∗. Similarly, by considering the cost c(x, y)− ψ(x), we obtain the
existence of a C1,1 subsolution w+ which satisfies

w+(x) > T+
c w

+(x) + ψ(x) > T+
c w

+(x).

The locally C1,1 subsolution w = (w− + w+)/2 then satisfies T+
c w < w < T−c w outside of A∗.

Proof of Theorem 3. Let us consider the C1,1 subsolution u = (v + w)/2, where v is given by
Theorem 6 and w is given by Proposition 5.6. This subsolution is C1,1, it is strict outside of A, and
its leverage function λu is positive outside of A∗. We can apply Theorem 7 below to the function u
with ε(x) = λu(x). By lemma 5.2, the function we obtain is a subsolution which is strict outside of
A. It is not hard to prove in addition that its leverage function is positive outside of A∗.

The key regularization result in the proof is the following theorem (used with k = 1), which will
be proved in the Appendix using a procedure due to De Rham.

Theorem 7. Let f be a locally Ck,1 function on M and let ε : M −→ [0,∞) be a continuous function.
Then, there exists a locally Ck,1 function g : M → R which is smooth on the open set Ω := ε−1(0,+∞)
and satisfies, for all x ∈M ,

|f(x)− g(x)|+ ‖dxf − dxg‖+ · · ·+ ‖dkxf − dkxg‖ 6 ε(x).
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A More on the Aubry set

In this section, we assume c verifies hypothesis 2. We prove the sets A and A∗ introduced in the
introduction are actually the usual Aubry set and projected Aubry set introduced in the framework of
discrete weak KAM theory in [Zav12] (see also [BB07]). In particular, in this case, the projection of A
on either the first or the second component is A∗. As explained in [Zav12], hypothesis 2 ensures that,
if u is a continuous subsolution and x ∈M then there exists y ∈M such that T−c u(x) = u(y)+c(y, x).

Proposition A.1. There exists a set Ã ⊂ MZ invariant by both left and right shifts and whose
projection on M ×M by π : (xi)i∈Z 7→ (x0, x1) is A.

In other terms, if (xi)i∈Z ∈ Ã then for any i ∈ Z, (xi, xi+1) ∈ A and conversely, if (x0, x1) ∈ A,
there exists a sequence (xi)i∈Z ∈ Ã extending (x0, x1).

Proof. We will prove that if (x0, x1) ∈ A then there are x−1 and x2 such that (x−1, x0) and (x1, x2)
are in A. Iterating this process then gives the bi-infinite chain in Ã.

Let w1 be given by lemma 5.4 and x−1 verify T−c w1(x0) = w1(x−1) + c(x−1, x0). Existence of
such a point can be proved using the continuity of w0 and the superlinearity of c (see [Zav12]). The
following inequalities now hold:

T−c w1(x1) = T−c w1(x0) + c(x0, x1) > w1(x0) + c(x0, x1) > T−c w1(x1),

where the first equality comes from (x0, x1) ∈ A, the rest comes from the definition of T−c and the
fact that w1 is a subsolution.

This chain of inequalities tells us two things. First, T−c w1(x0) = w1(x0) and also w1(x0) +
c(x0, x1) = T−c w1(x1). But this yields that

w1(x0) = T−c w1(x0) = w1(x−1) + c(x−1, x0),

hence (x−1, x0) ∈ Aw1 = A. The construction of the point x2 is similar using T+
c .

The following proposition implies that the set A is the Aubry set introduced in [Zav12].

Proposition A.2. Let u be a (not necessarily continuous) subsolution, then A ⊂ Au.

Proof. Let (xi)i∈Z ∈ Ã. Recall that T−c u is continuous. From the inequalities

∀i ∈ Z, T−c u(xi+1) = T−c u(xi) + c(xi, xi+1) > u(xi) + c(xi, xi+1) > T−c u(xi+1),

we infer that for each i, T−c u(xi) = u(xi). Since T−c u is continuous, we conclude that

∀i ∈ Z, u(xi+1)− u(xi) = T−c u(xi+1)− T−c u(xi) = c(xi, xi+1).

Hence (xi, xi+1) ∈ Au and A ⊂ Au.
We can now prove that A∗ is the projection of A on the first factor, as well as its projection on the
second factor.

Proposition A.3. Let y ∈ A∗, then there exist x and z such that (x, y) and (y, z) are in A.

Proof. Let w1 be the subsolution given by lemma 5.4. Let x be such that T−c w1(y) = w1(x)+c(x, y).
Since y ∈ A∗ we obtain that w1(y)− w1(x) = c(x, y). Hence (x, y) ∈ Aw1 = A. The existence of z is
proved in the same way, using T+

c .
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B Proof of Theorem 7

We prove Theorem 7 using a regularization procedure due to De Rham, see [dR73]. The idea of De
Rham is to construct an action t of Rn on Rn by smooth diffeomorphisms supported on the unit sphere
Bn, in such a way that the induced action on Bn is conjugated to the standard action of Rn on itself
by translations. More precisely, there exists a diffeomorphism h : Bn −→ Rn and diffeomorphisms ty,
y ∈ Rn, of Rn, equal to the identity outside of the open unit ball Bn, such that the map (x, y) 7−→ ty(x)
is smooth and such that

h ◦ ty = y + h

on Bn. This implies that t is an action of the group Rn on Rn, which means that ty ◦ ty′ = ty+y′

for each y, y′. Since t is smooth, t0 = Id, and ty = Id outside of the unit ball, the maps ty converge
uniformly to the identity as y −→ 0, and all their derivatives converge uniformly to the derivatives of
the identity.

Let us give some details on the construction of h and t. We set

h(x) =
h(‖x‖)
‖x‖

x,

where h : [0, 1[→ R+ is a smooth, strictly increasing (h′ > 0) function such that{
h(r) = r, 0 6 r 6 1/3,
h(r) = exp

(
(r − 1)−2

)
, 2/3 6 r 6 1.

We then define ty, for each y ∈ Rn by{
ty(x) = h−1

(
h(x) + y

)
if x ∈ Bn,

ty(x) = x if x ∈ Rn \Bn.

It is clear from these formula that ty+y′ = ty ◦ty′ . The only issue is the smoothness of t. Differentiating
the previous group property with respect to y′ and taking y′ = 0 yields the following relation:

∂

∂y
ty =

∂

∂y
t0 ◦ ty.

This implies that

ty(x) = x+

∫ 1

0

d

dt
tty(x)dt = x+

∫ 1

0

( ∂
∂y

tty(x)
)
ydt = x+

∫ 1

0

( ∂
∂y

t0
(
tty(x)

))
ydt.

In other words, the map ty is the time-one flow of the vectorfield Xy(x) := M(x)y, where M(x) =
∂yty(x)|y=0. In order to prove that the map t is smooth, it is enough to observe that the matrix
M(x) depends smoothly on x. This matrix can be computed, recalling that the gradient of the norm
x 7→ ‖x‖ is rx := x/‖x‖:

M(x) = dh(x)h
−1 =

1

h′(‖x‖)
r t
x rx +

‖x‖
h(‖x‖)

(In − r t
x rx).

Since 1/h, 1/h′, as well as all their derivatives go to 0 when ‖x‖ → 1, we conclude that M(x) is
smooth.

We have exposed the construction of h and t. They allow to define a local regularization procedure
with the help of a smooth kernel K1 : Rn → [0,∞). We assume that K1 is supported in the unit ball
Bn, and that

∫
K1 = 1. For η > 0, we set Kη(x) = η−nK1(η

−1x).

Lemma B.1. Let O ⊂ Rn be an open set containing Bn. Given a locally integrable function f : O −→
R and η ∈]0, 1[, we define

fη(x) =

∫
Rn

f
(
ty(x)

)
Kη(−y)dy.

The following assertions hold:
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1. The function fη is C∞ in Bn, and equal to f outside of Bn,

2. If f is Ck on O, then so are the functions fη, and fη −→ f in Ck as η −→ 0.

3. If f is Ck,1 on O, then so are the functions fη, and lim supη−→0 Lip(dkfη) 6 Lip(dkf).

4. If, in some open set O′ ⊂ O, f is C l in O′, then so is fη.

Proof. On Bn we have
fη ◦ h−1 = (f ◦ h−1) ? Kη,

where ? is the convolution. Since the functions Kη are smooth, this implies the first claim. Writing

fη − f =

∫
B(0,η)

(f ◦ ty − f)Kη(−y)dy

and observing that f ◦ ty− f −→ 0 in Ck(Rn,Rn) as y −→ 0
(
because ty −→ Id in Ck(Rn,Rn)

)
yields

the second claim. We will now prove that

lim sup
y−→0

Lip
(
dk(f ◦ ty)

)
6 Lip(dkf), (6)

which yields the third claim in view of the relation

dkxfη =

∫
B(0,η)

dkx(f ◦ ty)Kη(−y)dy.

Let us consider a component ∂αx (f ◦ ty) of the differential dk(f ◦ ty), where α = (α1, . . . , αn) is a
multi-index such that |α| =

∑
αi = k. By the Faà di Bruno formula, expressed in terms of partial

differentials (see [CS96] for example), we have

∂αx (f ◦ ty) =
∑

16|λ|6|α|

∂λty(x)f ·Bα,λ(dxty, . . . ,d
|α|
x ty),

where the Bα,λ are universal multi-variable polynomials with no constant terms. These polynomials
satisfy the equalities

Bα,α(Id, 0, · · · , 0) = 1 and Bα,λ(Id, 0, · · · , 0) = 0

for all λ 6= α. Since ty −→ Id in C∞, the first of these equalities implies that the function x 7−→
Bα,α(dxty, . . . ,d

|α|
x ty) is converging to 1 in C∞. Concerning the other factor in this term, we have

Lip
(
(∂αf) ◦ ty

)
6 Lip(∂αf)Lip(ty) −→ Lip(∂αf).

We deduce that the upper limit of the Lipschitz constants of the term corresponding to λ = α is not
greater than Lip(∂αf).

On the other hand, for each of the terms with λ 6= α, the function x 7−→ Bα,λ(dxty, . . . ,d
|α|
x ty) is

converging to 0 in C∞ hence the Lipschitz constant of the function

x 7−→ ∂λty(x)f ·Bα,λ(dxty, . . . ,d
|α|
x ty)

is converging to 0. We conclude that

lim sup Lip
(
∂α(f ◦ ty)

)
6 Lip(∂αf),

which implies (6) hence the third point of the statement.
Regarding the last claim of the statement, we observe that the function fη is smooth inside Bn

and that it is C l in O′ \Bn. Moreover, it is C l on the set ∩y∈B(0,η)t
−1
y (O′). By a standard compactness

argument, this set is open, and it contains O′ \ Bn. We have covered O′ by two open sets such that
the function fη is C l on each of them, we conclude that this function is C l on O′.
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Lemma B.2. Let O be open subsets of Rn and let f : O → R be a Ck,1 function. Given a continuous
function ε : O → [0,∞), there exists a function fε such that:

1. the function fε is C∞ in the open set {x ∈ O, ε(x) > 0} ⊂ O,

2. |fε(x)− f(x)|+ ‖dxfε − dxf‖+ · · ·+ ‖dkxfε − dkxf‖ 6 ε(x) for each x ∈ O,

3. the function fε is Ck,1 on O, and Lip(dkfε) 6 1 + Lip(dkf).

Proof. Let us denote by F the closed set {ε = 0}. The complement of F in O is open, and we
consider a locally finite covering (Oi)i∈N∗ of O \ F by open balls compactly included in O \ F . Since
inf{ε(x), x ∈ Oi} > 0. we can construct inductively, using Lemma B.1 a sequence of functions,
(fi)i∈N such that

• f0 = f ,

• for each i ∈ N, the function fi+1 is C∞ in O1 ∪ · · · ∪Oi+1,

• for each i ∈ N, the functions fi and fi+1 are equal in O \Oi+1,

• for each i ∈ N, the function fi+1 is Ck,1 in O, and Lip(dkfi+1) 6 2−i−1 + Lip(dkfi),

• |fi+1(x)− fi(x)|+ ‖dxfi+1 − dxfi‖+ · · ·+ ‖dkxfi+1 − dkxfi‖ 6 2−1−iε(x) for each x ∈ O, i ∈ N,

Each point of O has a neighborhood on which the sequence fi is eventually constant, hence the limit
fε := lim fi is well-defined and smooth on ∪iOi = O \ F . The desired estimates on fε follow immedi-
ately from the inductive estimates by summation.

Proof of Theorem 7. We fix a locally finite atlas (φi)i∈N∗ constituted of smooth maps φi :
2Bn → M , where Bn is the open unit ball. We assume that all the images φi(2Bn), i ∈ N∗ are
relatively compact in M and that the φi(Bn), i ∈ N∗ still cover M . By Lemma B.2, it is possible to
construct inductively a sequence of functions fi, by iteratively modifying fi ◦ φi+1 on Bn, such that

• f0 = f ,

• for each i ∈ N, the function fi+1 is C∞ in
⋃
j6i+1 φj(Bn) ∩ Ω,

• for each i ∈ N, in M \ φi+1(Bn), the functions fi and fi+1 are equal,

• for each i ∈ N, the function fi+1 is Ck,1 on M ,

• for each i ∈ N, x ∈M , |fi(x)− fi+1(x)|+ · · ·+ ‖dkxfi − dkxfi+1‖ 6 2−i−1ε(x).

Each point x ∈M has a neighborhood on which the sequence fi is eventually constant, hence the
limit g = lim fi is well defined, locally Ck,1, and smooth on Ω. The inequality on the differentials
follows by summation from the iterative assumptions.

C Existence of small smooth bi–semiconcave functions

This last section is devoted to finish the proof of theorem 6 by giving explicit ways to construct the
function ϕ used to correct the cost.

Lemma C.1. Let F : M ×M → R+ be a continuous function. There exists a smooth bi–semiconcave
function ϕ : M ×M → R+ such that ϕ−1{0} = F−1{0} and ϕ 6 F .
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Proof. Let (φi : Bn →M, i ∈ N) be an atlas of M such that the images φi(Bn) are relatively
compact in M , and the diffeomorphisms φ−1j ◦ φi are C2-bounded.

We will construct a smooth function ϕ : M ×M → R+ such that ϕ−1{0} = F−1{0}, ϕ 6 F , and
such that the following holds:

∀(i, j, x, y) ∈ N× N×Bn ×Bn,
∥∥D2

(x,y)

(
f ◦ (φi, φj)

)∥∥
∞ < 1,

which implies that ϕ is locally bi-semiconcave. Let us consider a locally finite cover of M × M \
F−1{0} = O by open sets of the form Oi = Ai × Bi, i ∈ N∗. Assume moreover that each Oi is
relatively compact in O and that each Ai and Bi are included in a chart of the atlas.

For each i ∈ N we consider a smooth function fi on M ×M such that fi > 0 and f−1i {0} = M \Oi.
We will construct the function ϕ of the form

∑
εifi with carefully chosen εi > 0.

First, since Oi is compactly included in O, we will assume that εi is small enough for

0 < εi < 2−i inf
(x,y)∈Oi

F (x, y) (7)

to hold.
Let us fix here i ∈ N∗ and set ji and ki such that Oi ⊂ φji(Bn)×φki(Bn). The function fi◦(φji , φki)

is then smooth and bounded along with all its derivatives up to order two. By the hypothesis made
on the changes of coordinates, this remains true for all fi ◦ (φj , φk), (j, k) ∈ N∗ × N∗. Since the atlas
is locally finite and Oi is relatively compact, only a finite number of these functions fi ◦ (φj , φk) are
actually non everywhere vanishing. Up to taking εi smaller, we may therefore also assume

∀(i, j, k, x, y) ∈ N× N× N×Bn ×Bn,
∥∥εiD2

(x,y)

(
fi ◦ (φj , φk)

)∥∥
∞ < 2−i.

Finally, by a standard Cantor diagonal argument, up to taking the εi smaller, we will assume that
the sum

∑
εifi is locally uniformly convergent for the open–compact topology on C∞(M,R). The

function
ϕ =

∑
i∈N∗

εifi

is then a smooth bi–semiconcave function taking nonnegative values and such that ϕ−1{0} = F−1{0}.
Moreover, by (7), we have ϕ 6 F which concludes the proof.
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