Université Paris-Dauphine

Mise à niveau en analyse

Séance 4

Paul Pegon

2020-2021

Est indiqué en noir ce qui a été traité, en bleu ce qui n'a pas été traité mais qu'on encourage à regarder et en rouge des compléments qui pourront être lus en seconde lecture.

Table des matières

	3.4	Mesures de Borel et de Radon
	3.5	Exercices
4	Espa	aces L^p
	4.1	Inégalités de Hölder et de Minkowski
	4.2	<u>Généralités</u>
	4.3	Convolution
	4.4	Transformée de Fourier
	4.5	Exercices

Remarque 3.30. Pour intégrer sur un sous-ensemble mesurable E, c'est très facile :

$$\int_E f \, \mathrm{d}\mu := \int \mathbf{1}_E f \, \mathrm{d}\mu.$$

Exemple 3.31. — Lorsque μ est la mesure de Lebesgue sur \mathbb{R} , si f est une fonction continue sur un segment, ou plus généralement une fonction réglée, on retrouve l'intégrale de Riemann.

— Sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, si μ est la mesure de comptage (qui à un ensemble associe son nombre d'éléments), et $u: \mathbb{N} \to \overline{\mathbb{R}}$ est une fonction sur \mathbb{N} , c'est-à-dire une suite (u_n) on retrouve la somme d'une série numérique :

$$\int u \, \mathrm{d}\mu = \sum_n u_n,$$

lorsque u est positive ou intégrable (c'est-à-dire sommable!).

L'intégrale de Lebesgue jouit des même propriétés de positivité et linéarité que l'intégrale de Riemann.

Proposition 3.32. — Si f est mesurable positive alors $\int f d\mu \ge 0$.

— Si f, g sont mesurables positives (resp. intégrables) et $\alpha, \beta \in [0, +\infty]$ (resp. $\alpha, \beta \in \mathbb{R}$) alors

$$\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta \int g d\mu,$$

— Si f est d'intégrale définie, $|\int f d\mu| \leq \int |f| d\mu$.

Exercice 3.6. Soit f une fonction mesurable positive. Montrer que $\int f d\mu < +\infty$ implique que f(x) est fini pour μ -presque tout x.

En réalité, pour établir la proposition précédente, on commence par l'établir dans le cas où f est étagée positive, puis on passe au cas général à l'aide de l'approximation par des fonctions étagées et du théorème de convergence monotone qui suit.

Théorème 3.33 (Théorème de convergence monotone (Beppo-Levi)). $Si(f_n)$ est une suite croissante de fonctions mesurables positives convergeant presque partout vers f, alors f est mesurable et

$$\lim \int f_n \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu.$$

Il y a trois théorèmes de convergence à connaître absolument sur l'intégrale de Lebesgue : le théorème de convergence monotone, le lemme de Fatou et le théorème de convergence dominée. Il nous reste à établir les deux derniers.

Lemme 3.34 (Lemme de Fatou). Si (f_n) est une fonction mesurable positive, alors

$$\int \liminf_{n} f_n \, \mathrm{d}\mu \le \liminf_{n} \int f_n \, \mathrm{d}\mu.$$

Démonstration. Rappelons-nous de la définition de la limite inférieure : $\liminf_n f_n = \lim_n^{\uparrow} g_n$ où $g_n = \inf_{k \geq n} f_k$. Les g_k sont mesurables positives, et d'après le théorème de convergencce montone on a

$$\int \liminf_{n} f_n \, \mathrm{d}\mu = \int \lim_{n} g_n \, \mathrm{d}\mu = \lim_{n} \int g_n \, \mathrm{d}\mu = \liminf_{n} \int g_n \, \mathrm{d}\mu \stackrel{g_n \leq f_n}{\leq} \liminf_{n} \int f_n \, \mathrm{d}\mu.$$

Remarque 3.35 (Fatou renversé). Si il existe g intégrable tel que pour tout $n |f_n| \leq g$ presque partout, alors

 $\int \limsup f_n \, \mathrm{d}\mu \ge \limsup_n \int f_n \, \mathrm{d}\mu.$

2

Théorème 3.36 (Théorème de convergence dominée). Si (f_n) est une suite de fonctions mesurables convergeant simplement vers f et g une fonction intégrable telle que pour tout n, $|f_n| \leq g$ presque partout, alors

$$\lim_{n} \int |f_n - f| \, \mathrm{d}\mu = 0,$$

et en particulier

$$\int f_n \, \mathrm{d}\mu \xrightarrow{n \to \infty} \int f \, \mathrm{d}\mu.$$

Démonstration. On a $|f - f_n| \le 2g$ et on pose $g_n = 2g - |f - f_n| \ge 0$. D'après le lemme de Fatou, on sait que $\int \liminf g_n d\mu \le \liminf \int g_n d\mu$, c'est-à-dire, en sachant que $\lim \inf g_n = 2g$,

$$\int 2g \, \mathrm{d}\mu \le \int 2g \, \mathrm{d}\mu + \liminf \left(-\int |f - f_n| \, \mathrm{d}\mu \right) = \int 2g \, \mathrm{d}\mu - \limsup_n \int |f - f_n| \, \mathrm{d}\mu.$$

D'où en simplifiant par $\int 2g \, \mathrm{d}\mu$ (qui est fini) : $\limsup_n \int |f-f_n| \, \mathrm{d}\mu \leq 0$, d'où le résultat.

Proposition 3.37 (Continuité d'une intégrale à paramètres). Soit $f: X \times \Lambda \to \overline{\mathbb{R}}$ une fonction dépendant d'un paramètre $\lambda \in \Lambda$, Λ espace métrique. On suppose que

- (i) pour presque tout x, $f(x, \cdot)$ est continue,
- (ii) pour tout λ , $f(\cdot, \lambda)$ est mesurable,
- (iii) il existe une fonction g intégrable telle que $\sup_{\lambda \in \Lambda} |f(x,\lambda)| \leq g(x)$ pour presque tout x

Alors $\lambda \mapsto \int_X f(x,\lambda) d\mu(x)$ est (bien définie et) continue sur Λ .

Proposition 3.38 (Régularité d'une intégrale à paramètres). Soit $f: X \times \Lambda \to \overline{\mathbb{R}}$ une fonction dépendant d'un paramètre $\lambda \in \Lambda$, Λ un intervalle de \mathbb{R} . On suppose que

- (i) pour presque tout x, $f(x, \cdot)$ est de classe C^n , $n \ge 1$,
- (ii) pour tout λ , $\partial_{\lambda}^{n}(\cdot,\lambda)$ est mesurable,
- (iii) il existe λ_0 tel que pour tout k < n, $\partial_{\lambda}^k(\cdot, \lambda_0)$ est intégrable,
- (iv) il existe une fonction g intégrable telle que $\sup_{\lambda \in \Lambda} |\partial_{\lambda}^n f(x,\lambda)| \leq g(x)$ pour presque tout x.

Alors $F: \lambda \mapsto \int_X f(x,\lambda) \, \mathrm{d}\mu(x)$ est (bien définie et) de classe \mathcal{C}^n sur Λ et pour tout $k \leq n$

$$F^{(k)}(\lambda) = \int_{X} \partial_{\lambda}^{k} f(x, \lambda) \, \mathrm{d}\mu(x).$$

Étant donnée une mesure μ , on peut définir des mesures à partir d'une densité f.

Exercice 3.7 (Mesures à densité). Étant donnée une fonction mesurable positive f et une mesure μ , montrer que l'application $f\mu$ définie par

$$\forall E \in \mathcal{T}, \quad [f\mu](E) \coloneqq \int_E f \,\mathrm{d}\mu$$

est une mesure.

La linéarité de l'intégrale est à l'origine de la fameuse inégalité de Jensen.

Proposition 3.39 (Inégalité de Jensen). Si μ est une mesure de probabilité, f est intégrable et ϕ est une fonction convexe à valeurs réelles, alors

$$\phi\left(\int f\,\mathrm{d}\mu\right) \le \int \phi\circ f\,\mathrm{d}\mu.$$

Remarque 3.40. Remarquons que l'intégrale $\int \phi \circ f \, d\mu$ est définie car $(f \in L^1(\mu))$ et $f \leq g$ implique que $\int g \, d\mu$ est bien définie. En effet, on a $f_+ \leq g_+$ et $-g \leq -f$ implique que $g_- \leq f_-$ donc $\int g_- \leq \int f_- < +\infty$.

Démonstration. Soit a une application affine telle que $\alpha \leq \phi$ en tout point. On a alors

$$\alpha\left(\int f d\mu\right) = \int \alpha(f(x)) d\mu(x) \le \int \phi(f(x)) d\mu(x).$$

Ceci est vrai pour toute minorante affine $\alpha \leq \phi$, d'où

$$\sup_{\alpha \le \phi, \alpha \text{ affine}} \alpha \left(\int f d\mu \right) \le \int \phi \circ f d\mu.$$

Or on sait qu'en tout point p, une fonction convexe réelle admet une minorante affine passant par p, de sorte qu'avec $p = \int f d\mu$, il existe α^* minorante affine telle que $\alpha^*(p) = \phi(p)$. Il vient

$$\phi\left(\int f d\mu\right) = \alpha^{\star}\left(\int f d\mu\right) = \sup_{\alpha < \phi, \alpha \text{ affine}} \alpha\left(\int f d\mu\right) \le \int \phi \circ f \,\mathrm{d}\mu.$$

Terminons par les théorèmes de Tonelli et Fubini pour calculer des intégrales multiples.

Théorème 3.41 (Théorème de Tonelli). Soit $(X_1, \mathcal{T}_1, \mu_1), (X_2, \mathcal{T}_2, \mu_2)$ deux espaces mesurés σ -finis. On suppose que f est une fonction positive mesurable pour la tribu $\mathcal{T}_1 \otimes \mathcal{T}_2$. Alors les applications $x_1 \mapsto \int_{X_2} f(x_1, x_2) d\mu_2(x_2)$ et $x_2 \mapsto \int_{X_1} f(x_1, x_2) d\mu_1(x_1)$ sont respectives \mathcal{T}_1 - et \mathcal{T}_2 -mesurables, et

$$\int_{X_1 \times X_2} f \, \mathrm{d}\mu_1 \otimes \mu_2 = \int_{X_1} \int_{X_2} f(x_1, x_2) \, \mathrm{d}\mu_2(x_2) \, \mathrm{d}\mu_1(x_1) = \int_{X_2} \int_{X_1} f(x_1, x_2) \, \mathrm{d}\mu_1(x_1) \, \mathrm{d}\mu_2(x_2).$$

Théorème 3.42 (Théorème de Fubini). Soit $(X_1, \mathcal{T}_1, \mu_1), (X_2, \mathcal{T}_2, \mu_2)$ deux espaces mesurés σ -finis. On suppose que f est une fonction mesurable réelle qui est $\mu_1 \otimes \mu_2$ -intégrable. Alors les applications $x_1 \mapsto \int_{X_2} f(x_1, x_2) d\mu_2(x_2)$ et $x_2 \mapsto \int_{X_1} f(x_1, x_2) d\mu_1(x_1)$ sont respectivement définies μ_1 - et μ_2 - presque partout, respectivement μ_1 - et μ_2 -intégrables, et

$$\int_{X_1 \times X_2} f \, \mathrm{d} \mu_1 \otimes \mu_2 = \int_{X_1} \int_{X_2} f(x_1, x_2) \, \mathrm{d} \mu_2(x_2) \, \mathrm{d} \mu_1(x_1) = \int_{X_2} \int_{X_1} f(x_1, x_2) \, \mathrm{d} \mu_1(x_1) \, \mathrm{d} \mu_2(x_2).$$

3.4 Mesures de Borel et de Radon

Sur un espace métrique (ou topologique), on peut définir des mesures compatibles avec la topologie : les mesures de Borel. Dans de nombreux cas d'espaces métriques, ces mesures seront automatiquement *régulières* de sorte que les espaces de fonctions régulières jouiront de bonnes propriétés de densité dans les espaces de fonctions intégrables.

Dans cette section, X est un espace métrique, dont la collection des ouverts est notée \mathcal{O} et celle des compacts \mathcal{K} .

Définition 3.43 (Régularité d'une mesure). Une mesure de Borel μ sur un espace métrique X est dite

— extérieurement régulière si

$$\forall B \in \mathcal{B}(X), \quad \mu(B) = \inf\{\mu(O) : B \subseteq O, O \in \mathcal{O}\},\$$

— intérieurement régulière si

$$\forall B \in \mathcal{B}(X), \quad \mu(B) = \sup{\{\mu(K) : K \subseteq B, K \in \mathcal{K}\}},$$

— réqulière si elle est extérieurement et intérieurement régulière.

Définition 3.44 (Espace polonais). Un espace polonais est un espace métrique séparable et complet ¹.

Théorème 3.45. Toute mesure de Borel finie sur un espace polonais est régulière.

Remarque 3.46. Puisque \mathbb{R}^d est un espace polonais, tout mesure de Borel finie sur \mathbb{R}^d est automatiquement régulière.

Définition 3.47 (Mesure de Radon). Une mesure μ sur X est dite localement finie si pour tout $x \in X$, il existe un ouvert O contenant x tel que $\mu(O) < \infty$. Une mesure de Radon est une mesure localement finie et régulière.

Remarque 3.48. Dans un espace métrique qui est localement compact, le fait d'être localement fini se reformule en $\mu(K) < \infty$ pour tout compact K.

Voici un autre théorème important de régularité automatique :

Théorème 3.49. Toute mesure localement finie sur un espace métrique localement compact séparable est régulière : c'est une mesure de Radon.

Corollaire 3.50. Puisque la mesure de Lebesgue sur \mathbb{R}^d est localement finie, et que \mathbb{R}^d est localement compact, elle est réqulière : c'est une mesure de Radon.

Ces propriétés de régularités seront utiles notamment pour approcher les ensembles boréliens par des fonctions continues bornées ou continues à support compact et obtenir des résultats de densité das les espace L^p .

Terminons cette section par le Théorème de Lusin, qui dit qu'une fonction borélienne est continue en-dehors d'un morceau de mesure arbitrairement petite.

^{1.} La définition la plus courante est en réalité un peu plus générale.

Théorème 3.51 (Théorème de Lusin (version faible)). Soit $f: X \to Y$ une fonction borélienne entre deux espaces métriques et μ une mesure finie extérieurement régulière sur X. On suppose que Y est séparable. Alors pour tout $\varepsilon > 0$, il existe un ensemble fermé $F \subseteq X$ tel que f est continue sur F et $\mu(X \setminus F) \le \varepsilon$.

Exercice 3.8. [Preuve du théorème de Lusin] Soit $f: X \to Y$ une fonction Borélienne entre deux espaces métriques et μ une mesure de Borel finie régulière sur X, avec Y séparable. On fixe $\varepsilon > 0$.

- 1. Montrer qu'il existe une base dénombrable d'ouverts, c'est-à-dire une suite $(U_n)_{n\in N}$ d'ouverts de Y tels que tout ouvert O s'écrive comme une réunion des $\{U_n: U_n\subseteq O\}$.
- 2. Soit $\varepsilon > 0$ et $n \in \mathbb{N}$. Montrer qu'il existe deux ensembles fermés $F_n^1 \subseteq f^{-1}(U_n), F_n^2 \subseteq f^{-1}(U_n^c)$ tels que $\mu(f^{-1}(U_n) \setminus F_n^1) \le \varepsilon 2^{-n}$ et $\mu(f^{-1}(U_n^c) \setminus F_n^2) \le \varepsilon 2^{-n}$.
- 3. On pose $F = \bigcap_n (F_n^1 \cup F_n^2)$. Montrer que $\mu(X \setminus (F_n^1 \cup F_n^2)) \le \varepsilon 2^{-n}$ et que $\mu(X \setminus F) \le 2\varepsilon$.
- 4. Montrer que f est continue sur E. (On pourra regarder l'image réciproque de $f_{|F|}^{-1}(U_n^c)$.)

Remarque 3.52. Remarquons que si μ est intérieurement régulière à la place de l'être extérieurement, on peut de plus avoir F compact.

3.5 Exercices

Exercice 3.9. Donner des conditions sur un ensemble E pour que les classes suivantes soient des tribus :

- 1. $\{\emptyset, \{x\}, E\}$ où $x \in E$ est donné.
- 2. $\{\emptyset, \{x\}, \{x\}^c, E\}$ où $x \in E$ est donné.
- 3. La classe des singletons de E.
- 4. La classe des parties finies de E.
- 5. La classe des parties dénombrables de E.
- 6. La classe des parties finies ou cofinies de E. On dit qu'une partie A de E est cofinie si $E \setminus A$ est finie.
- 7. La classe des parties dénombrables ou codénombrables de E. On dit qu'une partie A de E est codénombrable si $E \setminus A$ est dénombrable.

Comparer les tribus engendrées par les différentes classes de parties décrites ci-dessus.

Exercice 3.10. 1. Montrer que si \mathcal{F} est une semi-algèbre sur X, l'algèbre engendrée $\mathcal{A} = \alpha(\mathcal{F})$ est formée des réunions finies d'éléments de \mathcal{F} .

2. Montrer que la tribu engendrée par une semi-algèbre est celle engendrée par l'algèbre engendrée.

3. Montrer que la famille \mathcal{F} est intervalles de \mathbb{R} est une semi-algèbre, de même que les intervalles semi-ouverts à droite.

Exercice 3.11. Soient (E, \mathcal{A}) et (F, \mathcal{B}) deux espaces mesurés, $\mathcal{E} \subset \mathcal{P}(E)$ et $\mathcal{F} \subset \mathcal{P}(F)$ tels que $\mathcal{A} = \sigma(\mathcal{E})$ et $\mathcal{B} = \sigma(\mathcal{F})$ et $E \in \mathcal{E}, F \in \mathcal{F}$. On définit

$$\mathcal{C} := \{ A \times B, A \in \mathcal{E}, B \in \mathcal{F} \}, \quad \mathcal{G} := \{ A \times F, A \in \mathcal{E} \} \cup \{ E \times B, B \in \mathcal{F} \}.$$

- 1. Montrer que si \mathcal{E} et \mathcal{F} sont des semi-algèbres alors \mathcal{C} est une semi-algèbre.
- 2. Montrer que $\sigma(\mathcal{G}) = \sigma(\mathcal{C}) = \mathcal{A} \otimes \mathcal{B}$.

Exercice 3.12. On considère l'espace mesuré $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, où λ est la mesure de Lebesgue.

- 1. Montrer que λ est σ -finie.
- 2. Montrer que $\lambda(K) < +\infty$ pour tout ensemble compact (fermé borné) de \mathbb{R} .
- 3. Un ouvert de \mathbb{R} de mesure finie est-il forcément borné? Même question pour un fermé?
- 4. Construire un ensemble dense dans \mathbb{R} de mesure de Lebegue nulle.
- 5. Construire un ouvert dense dans \mathbb{R} de mesure de Lebegue égale à 3.

Exercice 3.13. Soit (E, A) un espace mesurable et soient μ , ν deux mesures finies sur (E, A). On suppose que, pour tout $A \in A$, on a $\mu(A) = 0 \Rightarrow \nu(A) = 0$. Démontrer que, pour tout $\varepsilon > 0$, il existe $\eta > 0$ tel que, $\forall A \in \mathcal{A}, \mu(A) < \eta \Rightarrow \nu(A) < \varepsilon$. (Ind. On pensera à utiliser le Lemme de Fatou et le Lemme de Borel-Cantelli).

Exercice 3.14. Dans les cas suivants (où $f_n : \mathbb{R}^+ \to \mathbb{R}$) montrer que la suite $(\int_{\mathbb{R}^+} f_n d\lambda)_{n \in \mathbb{N}}$ converge et déterminer sa limite.

1.
$$f_n(x) = \frac{ne^{-x}}{\sqrt{1+n^2x^2}}$$

4.
$$f_n(x) = |\cos(x)|^{1/n} e^{-x}$$

2.
$$f_n(x) = \frac{ne^{-nx}}{\sqrt{1+n^2x^2}}$$
,

5.
$$f_n(x) = \frac{ne^{-x}}{nx+1} \mathbf{1}_{[0,1]},$$

3.
$$f_n(x) = \sin(nx)\mathbf{1}_{[0,n]}(x)$$
,

6.
$$f_n(x) = \frac{\sin(nx^n)}{nx^{n+\frac{1}{2}}}$$
.

Exercice 3.15. Calculer la limite des suites suivantes :

$$\int_{\mathbb{R}} e^{-|x|/n} dx, \qquad \int_{\mathbb{R}} \frac{e^{-x^2}}{2\cos(\frac{x}{n}) - 1} \ \mathbf{1}_{\{3|\cos(\frac{x}{n})| \ge 2\}} \ dx, \qquad \sum_{m \ge 1} \frac{n}{m} \sin(\frac{1}{nm}).$$

Exercice 3.16. 1. Montrer que l'application φ définie sur \mathbb{R}^2 par $\varphi(u,v)=(u^2+v^2,2uv)$ est un C^1 -difféomorphisme de $\Delta=\{(u,v)\in\mathbb{R}^2;u>v>0\}$ sur $D=\{(x,y)\in\mathbb{R}^2;x>y>0\}$.

7

2. En déduire la valeur de $\int_{(\mathbb{R}_+)^2} |u^4 - v^4| e^{-(u+v)^2} du dv$.

Exercice 3.17. Soit (X, \mathcal{B}, μ) un espace mesuré σ -fini.

1. Soit $u: X \to [0, +\infty[$ une fonction positive et mesurable. Montrer que

$$\int_{X} u \, d\mu = \int_{0}^{+\infty} \mu(\{x \in X : u(x) \ge t\}) dt.$$

2. Plus généralement, soit $p \ge 1$ et $u: X \to [0, +\infty]$ une fonction positive mesurable. Montrer que

$$\int_X u^p \, d\mu = p \int_0^{+\infty} t^{p-1} \mu(\{x \in X : u(x) \ge t\}) dt.$$

Exercice 3.18. Calculer l'intégrale

$$I = \int_{y>x>0} e^{-y+x} \frac{\sqrt{y-x}}{y^2} d\lambda_2(x,y).$$

[Indication : on pourra considérer le changement de variable u = y - x, v = y/x.]

Exercice 3.19. Calculer le volume de la boule euclidienne de rayon r de \mathbb{R}^n .

4 Espaces L^p

Soit (X, \mathcal{T}, μ) un espace mesuré. Si f est une fonction mesurable réelle, pour tout $p \in [1, +\infty[$, on définit

$$||f||_p \coloneqq \left(\int |f|^p \,\mathrm{d}\mu\right)^{\frac{1}{p}},$$

et pour $p = +\infty$, on définit

$$||f||_{\infty} := \mu - \operatorname{ess\,sup}|f| := \inf\{M : |f| \le M \text{ p.p.}\}$$

4.1 Inégalités de Hölder et de Minkowski

Proposition 4.1 (Inégalité de Hölder). Si f, g sont mesurables et $p, q \in [1, +\infty]$ sont deux exposants conjugués, au sens où $\frac{1}{p} + \frac{1}{q} = 1$, alors

$$||fg||_1 \le ||f||_p ||g||_q$$

Remarque 4.2. L'exposant conjugué de 1 est $+\infty$ et réciproquement.

Démonstration. Commençons par le cas $p,q\in]1,+\infty[$, et supposons sans perte de généralité que $f,g\geq 0$. Si $\|f\|_p=0$, f est nulle presque partout et fg aussi donc l'inégalité est évidente. Il en est de même pour g donc on peut supposer que $\|f\|_p>0$ et $\|g\|_q>0$. Quitte à diviser f par $\|f\|_p$ et g par $\|g\|_q$, on peut supposer que $\|f\|_p=\|g\|_q=1$. Il s'agit alors de montrer que $\int fg \,\mathrm{d}\mu \leq 1$. On utilise alors l'inégalité de Young $ab\leq \frac{a^p}{p}+\frac{b^q}{q}$ pour tout a,b>0. Pour la démontrer il suffit de fixer par exemple a et de montrer par

une étude des variations de $u: x \mapsto \frac{a^p}{p} + \frac{x^q}{q} - ax$ que $u \ge 0$ sur \mathbb{R}_+ . Il vient pour tout $x, f(x)g(x) \le \frac{f(x)^p}{p} + \frac{g(x)^q}{q}$, et en intégrant :

$$\int f g \, d\mu \le \frac{1}{p} \int f^p \, d\mu + \frac{1}{q} \int g^q \, d\mu = \frac{1}{p} + \frac{1}{q} = 1.$$

Le cas $p=1, q=+\infty$ (ou l'inverse) est en réalité plus simple, puisque $|f(x)g(x)| \le |f(x)| ||g||_{\infty}$ pour presque tout x, de sorte qu'en intégrant on obtienne

$$\int |fg| \, \mathrm{d}\mu \le ||g||_{\infty} \int |f| \, \mathrm{d}\mu = ||g||_{\infty} ||f||_{1}.$$

Exercice 4.1. Démontrer l'inégalité de Hölder pour $p,q\in]1,+\infty[$ en utilisant l'inégalité de Jensen. Étant données deux fonctions mesurables positive f,g, on pourra, lorsque c'est possible, considérer la mesure $\nu=\frac{g^q\mu}{[g^q\mu](X)}$.

Proposition 4.3 (Inégalité de Minkowski). Pour toutes fonctions réelles mesurables f, g, on a

$$||f + g||_p \le ||f||_p + ||g||_p.$$

Démonstration. Sans perte de généralité, on peut considérer $f,g \geq 0$, f et g non-(nulles presque partout). Commençons par remarquer que le cas p=1 est clair d'après l'inégalité triangulaire sur $\mathbb{R}: |f(x)+g(x)| \leq |f(x)|+|g(x)|$ pour tout x. Le cas $p=+\infty$ est aussi facile, puisque $|f(x)+g(x)| \leq ||f||_{\infty} + ||g||_{\infty}$ pour presque tout x, de sorte que par définition, $||f+g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}$.

Passons au cas intéressant $p \in]1, +\infty[$. On a

$$\int (f+g)^p d\mu = \int (f+g)^{p-1} (f+g) d\mu$$
$$= \int f(f+g)^{p-1} d\mu + \int g(f+g)^{p-1} d\mu$$

puis en utilisant l'inégalité de Hölder avec (p,q) tels que $\frac{1}{p}+\frac{1}{q}=1$

$$\leq \left(\int f^p \, d\mu \right)^{\frac{1}{p}} \left(\int (f+g)^{(p-1)q} \, d\mu \right)^{\frac{1}{q}} + \left(\int g^p \, d\mu \right)^{\frac{1}{p}} \left(\int (f+g)^{(p-1)q} \, d\mu \right)^{\frac{1}{q}}$$

or puisque pq = p + q, (p - 1)q = p, ceci donne

$$= \left(\int (f+g)^p \, \mathrm{d}\mu \right)^{\frac{1}{q}} \left(\left(\int f^p \, \mathrm{d}\mu \right)^{\frac{1}{p}} + \left(\int g^p \, \mathrm{d}\mu \right)^{\frac{1}{p}} \right).$$

En divisant par $(\int (f+g)^p d\mu)^{\frac{1}{q}}$ et en sachant que $1-\frac{1}{q}=\frac{1}{p}$ on trouve :

$$\left(\int (f+g)^p \,\mathrm{d}\mu\right)^{\frac{1}{p}} \le \left(\int f^p \,\mathrm{d}\mu\right)^{\frac{1}{p}} + \left(\int g^p \,\mathrm{d}\mu\right)^{\frac{1}{p}}.$$

Exercice 4.2. Montrer que si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions mesurables et $p\in[1,+\infty]$, alors

$$\left\| \sum_{n=0}^{\infty} f_n \right\|_p \le \sum_{n=0}^{\infty} \|f_n\|_p.$$

4.2 Généralités

On définit pour tout $p \in [1, +\infty]$,

$$\mathcal{L}^p(\mu) = \{ f \text{ mesurable } : ||f||_p < +\infty \}.$$

D'après l'inégalité de Minkowski $\|\cdot\|_p$ vérifie l'inégalité triangulaire, donc $\mathcal{L}^p(\mu)$ est une semi-norme, mais attention ce n'est pas une norme : $\|f\|_p = 0$ implique que f est nulle μ -presque partout, mais pas partout!

Exercice 4.3. Soit f une fonction mesurable positive. Montrer que f est nulle μ -presque partout si et seulement si $\int f d\mu = 0$.

Afin d'obtenir un espace normé, on *choisit* de considérer que deux fonctions égales presque partout sont identiques. Rigoureusement, on quotiente l'ensemble \mathcal{F} des fonctions mesurables par la relation d'équivalence

$$f\mathcal{R}_{\mu}g \iff f = g \mu$$
-presque partout.

On note $\mathcal{F}/\mathcal{R}_{\mu}$ l'ensemble des classes d'équivalences pour cette relation. On vérifie que la somme, le produit et le produit par un scalaire « passent au quotient » ². De plus, on vérifie que $\|\cdot\|_p$ est indépendante du représentant choisi dans une classe d'équivalence et peut donc être définie sur le quotient. Ainsi, l'ensemble $\mathcal{L}^p(\mu)/\mathcal{R}_{\mu}$ muni des opérations + et . est un espace vectoriel, et par définition $\|\cdot\|_p$ est une norme sur cet espace. On définit ainsi l'espace vectoriel normé $L^p(\mu)$:

$$L^p(\mu) = (\mathcal{L}^p(\mu)/\mathcal{R}_\mu, \|\cdot\|_p).$$

Remarque 4.4. Même si théoriquement, il est satisfaisant d'avoir construit un espace vectoriel normé bien classique, il faudra faire attention à ce qu'on ne manipule plus vraiment des fonctions mais des classes d'équivalence, bien que l'on note toujours f une telle classe d'équivalence. En particulier, les valeurs ponctuelles f(x) pour x fixé n'ont plus nécessairement de sens : par exemple pour la mesure de Lebesgue, un singleton est de mesure nulle. Ce pourquoi il sera parfois plus commode de recourir à nouveau aux « vrais » fonctions $f \in \mathcal{L}^p$.

^{2.} Par exemple si $f_1 \mathcal{R}_{\mu} f_2$ et $g_1 \mathcal{R}_{\mu} g_2$, alors $f_1 + g_1 \mathcal{R}_{\mu} f_2 + g_2$.

Complétude

Théorème 4.5. Pour tout $p \in [1, +\infty]$, $L^p(\mu)$ est un espace de Banach.

Démonstration. Commençons par le cas $p < +\infty$. Soit (f_n) une suite de Cauchy dans $L^p(\mu)$. On construit une sous-suite $g_k = f_{n_k}$ par récurrence de sorte que

$$||f_{n_{k+1}} - f_{n_k}||_p \le 2^{-k}.$$

Ainsi $\sum_{k} \|g_{k+1} - g_k\|_p < +\infty$, et donc

$$\left\| \sum_{k} |g_{k+1} - g_k| \right\|_p \le \sum_{k} \||g_{k+1} - g_k|\|_p < +\infty.$$

Par conséquent la puissance p-ième de $\sum_{k} |g_{k+1} - g_{k}|$ est d'intégrale finie, donc cette fonction est finie presque partout. Ainsi, la série $\sum_{k} (g_{k+1}(x) - g_{k}(x))$ est absolument convergente donc convergente pour presque tout x. On peut alors poser

$$h := \sum_{k} |g_{k+1} - g_k|,$$

et

$$g := \sum_{k} (g_{k+1} - g_k) + g_0 = \lim_{n} g_n,$$

qui sont définies presque partout. Puisque h et g_0 sont dans $L^p(\mu)$, g l'est aussi. Montrons enfin que $g_k \to g$ dans $L^p(\mu)$. On a

$$|g - g_k| = \left| \sum_{l>k} g_{l+1} - g_l \right| \le \sum_{l>k} |g_{l+1} - g_l| \le h \in L^p,$$

donc $|g-g_k|^p \to 0$ presque partout et $|g-g_k|^p \le h^p \in L^1$, d'où l'on conclut par le théorème de convergence dominée que $\int |g-g_k|^p \, \mathrm{d}\mu \to 0$, soit $\|g-g_k\|_p \to 0$. On a donc montré que (f_n) est une suite de Cauchy admettant une sous-suite convergente : elle est donc convergente.

Passons au cas $p = +\infty$. Soit (f_n) une suite de Cauchy dans L^{∞} . Prenons des représentants dans \mathcal{L}^{∞} , notés de la manière par abus. Ainsi

$$\forall k \in \mathbb{N}^*, \exists N_k, \forall p, q \ge N_k, ||f_p - f_q||_{\infty} \le \frac{1}{k},$$

donc pour tous $p, q \ge N_k$, il existe $S_{p,q}$ de mesure nulle tel que $|f_p(x) - f_q(x)| \le \frac{1}{k}$ pour tout $x \in X \setminus S_{p,q}$. On pose

$$S = \bigcup_{k>0} \bigcup_{p,q \ge N_k} S_{p,q},$$

qui est de mesure nulle comme réunion dénombrable d'ensembles de mesure nulle. On a

$$\forall k > 0, \forall p, q \ge N_k, \forall x \in X \setminus S, \quad |f_p(x) - f_q(x)| \le \frac{1}{k},$$

donc pour tout $x \in X \setminus S$, $(f_n(x))_n$ est une suite de Cauchy dans \mathbb{R} donc elle est convergente vers un certain $f(x) \in \mathbb{R}$ et f est mesurable. En faisant tendre $p \to \infty$ dans la précédente inégalité on obtient $\forall x \in X \setminus S$, $|f(x) - f_q(x)| \leq \frac{1}{k}$, et donc puisque S est de mesure nulle,

$$\forall k > 0, \forall q \ge N_k, ||f - f_q||_{\infty} \le \frac{1}{k},$$

ce qui veut dire que $f_n \to f$ dans $L^{\infty}(\mu)$.

Densité et séparabilité

On suppose dans cette section que X est un espace métrique localement compact et séparable, par exemple \mathbb{R}^d , et que μ est une mesure localement finie (c'est-à-dire ici, finie sur les compacts), par exemple la mesure de Lebesgue. Remarquons que sous ces hypothèses, μ est σ -finie.

Commençons par un premier résultat de densité de fonctions étagées concentrées sur un ensemble de mesure finie.

Proposition 4.6. Si $f \in L^p(\mu)$ il existe une suite (f_n) de fonctions étagées telles que $\mu(\{f_n \neq 0\}) < \infty$ et $f_n \xrightarrow{L^p(\mu)} f$.

Démonstration. Voir l'exercice 4.4.

Exercice 4.4. On décompose f en $f = f_+ - f_-$.

- (i) Justifier l'existence de deux suites croissantes $(a_n), (b_n)$ de fonctions étagées telles que $\mu(\{a_n \neq 0\}), \mu(\{b_n \neq 0\}) < \infty$ et $a_n \uparrow f_+, b_n \uparrow f_-$.
- (ii) Montrer que $a_n \to f_+$ et $b_n \to f_-$ dans $L^p(\mu)$ et conclure.

Lemme 4.7. Si K est un compact inclus dans un ouvert U, il existe une fonction ϕ continue à support compact telle que

$$\mathbf{1}_K < \phi < \mathbf{1}_U$$
.

Démonstration. Voir l'exercice 4.5

Exercice 4.5. Soit X un espace métrique localement compact, une partie compacte K et un ouvert U tels que $K \subseteq U$.

- (i) Montrer qu'il existe un compact K' et un ouvert U' tels que $K \subseteq \tilde{U} \subseteq \tilde{K} \subseteq U$.
- (ii) À l'aide de la question précédente, construire une fonction ϕ continue qui vaut 1 sur K et 0 sur \tilde{U}^c . On pourra utiliser les fonctions distance à un ensemble.
- (iii) Conclure.

Démonstration. Il suffit de poser

$$\frac{d(\cdot, \tilde{U}^c)}{d(\cdot, K) + d(\cdot, \tilde{U}^c)}$$

Théorème 4.8. L'espace $C_c(X)$ des fonctions continues à support compact³ est dense dans $L^p(\mu)$ pour $p \in]1, +\infty[$.

Démonstration. Commençons par approcher les Boréliens de mesure finie par des fonctions continues à support compact. Soit B un borélien de mesure finie et $\varepsilon > 0$. Puisque μ est une mesure de Radon, il existe un compact K et un ouvert U tels que $K \subseteq B \subseteq U$ et $\mu(U \setminus K) \leq \varepsilon$. D'après le Lemme 4.7, il existe une fonction $\phi \in \mathcal{C}_c(X)$ telle que $\mathbf{1}K \leq \phi \leq \mathbf{1}_U$, de sorte que ϕ et $\mathbf{1}_B$ sont tous deux compris entre $\mathbf{1}_K$ et $\mathbf{1}_U$. Par conséquent

$$\int |f - \mathbf{1}_B|^p d\mu \le \int |\mathbf{1}_U - \mathbf{1}_K|^p d\mu = \int \mathbf{1}_{U \setminus K} d\mu = \mu(U \setminus K) \le \varepsilon.$$

Soit maintenant $f \in L^p(\mu)$. On sait d'après la Proposition 4.6 qu'il existe une fonction \tilde{f} étagée telle que $\mu(\{\tilde{f} \neq 0\}) < \infty$ et $\|\tilde{f} - f\|_p \leq \varepsilon$. La fonction \tilde{f} s'écrit

$$\tilde{f} = \sum_{i=1}^{N} \alpha_i \mathbf{1}_{B_i}, \quad \alpha_i \neq 0.$$

D'après ce qu'on vient de voir, pour tout i, il existe $g_i \in \mathcal{C}_c(X)$ telle que $\|\mathbf{1}_{B_i} - g_i\|_p \le \varepsilon/(N|\alpha_i|)$. On pose alors

$$g = \sum_{i} g_i,$$

et on vérifie

$$\|\tilde{f} - g\|_p \le \sum_{i=1}^N |\alpha_i| \|\mathbf{1}_{B_i} - g_i\|_p \le \sum_{i=1}^N |\alpha_i| \frac{\varepsilon}{N|\alpha_i|} \le \varepsilon,$$

pour obtenir enfin $||f - g||_p \le 2\varepsilon$.

Remarque 4.9. — La densité des fonctions étagées dans L^p est vraie sans hypothèse sur X.

- La densité des fonctions étagées de concentration μ -finie est vrai dès lors que μ est σ -finie.
- Lorsque X est un espace polonais et μ est finie, on peut démontrer qu'on a densité des fonctions continues bornées $\mathcal{C}_b(X)$ au lieu de $\mathcal{C}_c(X)$.

Théorème 4.10 (Séparabilité des L^p). Pour tout $p \in [1, +\infty[$, l'espace $L^p(\mu)$ est séparable.

 $D\acute{e}monstration$. On sait que tout borélien de mesure de finie peut s'approcher par un ouvert pris dans une base dénombrable $(O_n)_{n\in\mathbb{N}}$. La collection

$$\mathcal{F} = \left\{ \sum_{\text{finie}} \alpha_n \mathbf{1}_{O_n} : \alpha_n \in \mathbb{Q} \right\}$$

est dénombrable et dense, d'où la séparabilité.

^{3.} C'est-à-dire nulle en-dehors d'une partie compact.

4.3 Convolution

Intérêt Régularisation de fonctions, bon comportement avec la transformée de Fourier. On se place à présent dans \mathbb{R}^d . Si f et g sont dans $\mathcal{C}_c(\mathbb{R}^d)$, on peut définir

$$f \star g(x) = \int_{\mathbb{R}^d} f(y)g(x - y) \, \mathrm{d}y \quad (= g \star f(x)),$$

il s'agit en en quelque sorte d'une « moyenne » de f autour de x, pondérée par g. On l'appelle la convolée de f et g. On veut maintenant définir la convolée de deux fonctions qui ne sont pas nécessairement continues à support compact mais dans des espaces $L^p(\mu)$.

Théorème 4.11. Supposons que $p,q,r \in [1,+\infty]$ sont trois exposants tels que

$$\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$$

et $f \in L^p(\mu)$, $g \in L^q(\mu)$. Alors pour presque tout $x, y \mapsto f(y)g(x-y)$ est dans $L^1(\mu)$ donc $f \star g$ est bien définie presque partout, et $f \star g \in L^r(\mu)$. Plus précisément :

$$||f \star g||_r \le ||f||_p ||g||_q$$
.

Remarque 4.12. Ainsi, la convolée de deux fonctions L^1 est une fonction L^1 , ce qui fait de L^1 une algèbre. Elle n'est pas unitaire : définie dans un cadre plus général, l'élément neutre pour la convolution est la mesure de Dirac δ_0 , or ce n'est une fonction.

Preuve du cas q=1. Dans ce cas, r=p. Commençons déjà par le cas p=1. D'après le théorème de Tonelli,

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} |f(y)g(x-y)| \, \mathrm{d}(\lambda^d \otimes \lambda^d)(x,y) = \int_{\mathbb{R}^d} |f(y)| \int_{\mathbb{R}^d} |g(x-y)| \, \mathrm{d}x \, \mathrm{d}y$$

$$\stackrel{z=x-y}{=} \int_{\mathbb{R}^d} |f(y)| \, \mathrm{d}y \int_{\mathbb{R}^d} |g(z)| \, \mathrm{d}z \qquad <+\infty.$$

Or cette même intégrale est aussi égale par Tonelli à $\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(y)g(x-y)| \, dy \, dx$, donc $\int_{\mathbb{R}^d} |f(y)g(x-y)| \, dy$ est finie pour presque tout x, i.e. $y \mapsto f(y)g(x-y)$ est dans $L^1(\mu)$ et $f \star g$ est bien définie. Enfin

$$||f \star g||_1 = \int_{\mathbb{R}^d} \left| \int_{\mathbb{R}^d} f(y)g(x-y) \, \mathrm{d}y \right| \, \mathrm{d}x$$

$$\leq \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(y)g(x-y)| \, \mathrm{d}y \, \mathrm{d}x$$

$$< +\infty.$$

donc $f \star g \in L^1(\mu)$.

Passons au cas p quelconque. Pour cela, montrons que $\int (\int |f(x-y)g(y)| dy)^p dx < +\infty$. On va appliquer l'inégalité de Hölder en réécrivant le produit comme suit :

$$|f(x-y)g(y)| = \left(|f(x-y)||g(y)|^{\frac{1}{p}}\right) \left(|g(y)|^{\frac{1}{p'}}\right)$$

où
$$\frac{1}{p} + \frac{1}{p'} = 1$$
. On a

$$\left(\int |f(x-y)g(y)| \, \mathrm{d}y\right)^p = \left(\int \left(|f(x-y)||g(y)|^{\frac{1}{p}} \, \mathrm{d}y\right) \left(\int |g(y)|^{\frac{1}{p'}}\right) \, \mathrm{d}y\right)^p$$

$$\leq \int |f(x-y)|^p |g(y)| \, \mathrm{d}y \left(\int |g(y)| \, \mathrm{d}y\right)^{\frac{p}{p'}},$$

et en intégrant en x et appliquant le théorème de Tonelli à la première intégrale :

$$\int \left(\int |f(x-y)g(y)| \, \mathrm{d}y \right)^p \, \mathrm{d}x \le \int \int |f(x-y)|^p |g(y)| \, \mathrm{d}y \, \mathrm{d}x \left(\int |g(y)| \, \mathrm{d}y \right)^{\frac{p}{p'}} \\
= \|f\|_p^p \|g\|_1 \|g\|_1^{\frac{p}{p'}} \\
\stackrel{\frac{1}{p} + \frac{1}{p'} = 1}{=} \|f\|_p^p \|g\|_1^p \\
\le 10^{-2}$$

En conséquence, $f \star g$ est bien défini, et de plus en prenant la puissance 1/p-ième, ceci montre que $||f \star g||_1 \leq ||f||_p ||g||_1$.

Convolution et probabilités

Proposition 4.13. Si X, Y sont deux variables aléatoires réelles indépendantes sur un espace de probabilité (X, Ω, \mathbb{P}) , de lois à densité $f_1, f_2L^1(\mathbb{R})$ respectivement, alors la loi de Z = X + Y a pour densité $f_1 \star f_2$.

Exercice 4.6. Soient X, Y deux variables aléatoires indépendantes réelles. Calculer la loi de X + Y dans les cas suivants :

- (i) X et Y ont loi uniforme sur [-1,1].
- (ii) X et Y ont respectivement une loi de densité $\gamma_{a,\lambda}$ et $\gamma_{b,\lambda}$ où

$$\gamma_{a,\lambda}(x) = \frac{\lambda^a}{\Gamma(a)} e^{-\lambda x} x^{a-1} \mathbf{1}_{\mathbb{R}_+}(x), \quad \Gamma(a) := \int_0^\infty e^{-x} x^{a-1} dx.$$

On pourra vérifier et utiliser le fait que $\int_{\mathbb{R}_+} \gamma_{a,\lambda} = 1$.

On peut définir de manière générale la convolée de mesures finies (donc de lois de variables aléatoires réelles quelconques), comme le montre l'exercice suivant.

Exercice 4.7. Soient μ et ν sont deux mesures de Borel finies sur \mathbb{R}^d . On pose

$$\sigma(A) := \int_{\mathbb{R}^d \times \mathbb{R}^d} one_{x+y \in A} d(\mu \otimes \nu)(x,y), \quad \text{pour tout borélien } A \subseteq \mathbb{R}^d.$$

- (i) Montrer que σ est une mesure positive sur \mathbb{R}^d , on note $\mu * \nu$.
- (ii) Remarquer que $\mu * \nu$ est une mesure finie et que $\mu * \nu = \nu * \mu$.
- (iii) Montrer que si $\mu = f\lambda^d$, $\nu = g\lambda^d$, où $f, g \ge$ sont intégrables, $\mu \star \nu = (f \star g)\lambda^d$.

Retour à la convolution dans L^p

Exercice 4.8 (Convolution dans L^p , cas général). Soit $p, q, r \in [1, +\infty]$ tels que $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$.

1. On pose p', q' tels que $\frac{1}{p} + \frac{1}{p'} = 1 = \frac{1}{q} + \frac{1}{q'}$. Vérifier que

$$\frac{1}{p'} + \frac{1}{q'} + \frac{1}{r} = 1.$$

2. Démontrer l'inégalité de Hölder pour 3 fonctions f_1, f_2, f_3 :

$$||f_1f_2f_3||_1 \le ||f_1||_{p'}||f_2||_{q'}||f_3||_r.$$

- 3. Pour $r < +\infty$, démontrer que $\int (\int |f(x-y)g(y)| dy)^r dx \le (\|f\|_p \|g\|_q)^r$. On pourra appliquer l'inégalité de Hölder en décomposant $f(x-\cdot)g(\cdot) = f_1f_2f_3$ pour 3 fonctions bien choisies.
- 4. Cas $r = +\infty$: démontrer que $f \star g(x)$ est bien défini pour tout x, et que $||f \star g||_{\infty} \le ||f||_p ||g||_q$.

Remarque 4.14. Remarquons que dans le cas où les exposants p,q sont conjugués, $r = +\infty$ et la convolée a un sens ponctuel.

Si f est une fonction sur \mathbb{R}^d et $h \in \mathbb{R}^d$, on définit l'opérateur de translation $\tau_h f = x \mapsto (x - h)$. Remarquons que $\|\tau_h f\| = \|f\|$ pour tous f, h. Si $A \subseteq \mathbb{R}^d$, on note $\|f\|_{p,A}$ ou $\|f\|_{L^p(A)}$ la quantité $\|f\mathbf{1}_A\|_p$.

Proposition 4.15 (Continuité de l'opérateur de translation). — Version globale : si $f \in L^p(\mathbb{R}^d), p < +\infty, \ alors \|f - \tau_h f\|_p \xrightarrow{h \to 0} 0.$

- Version locale: $si\ f \in L^p_{loc}(\mathbb{R}^d)$ alors pour tout compact $K \subseteq \mathbb{R}^d$, $||f - \tau_h f||_{p,K} \xrightarrow{h \to 0}$ 0.

Preuve du cas global. Soit $f \in L^p(\mathbb{R}^d)$ et $\varepsilon > 0$. On sait par densité des fonctions continues à support compact qu'il existe $g \in \mathcal{C}_c(\mathbb{R}^d)$ telle que $||f - g||_p \le \varepsilon$. Par conséquent $||\tau_h f - \tau_h g||_p \le \varepsilon$ et

$$\|\tau_h f - f\|_p \le \|\tau_h f - \tau_h g\|_p + \|g - f\|_p + \|\tau_h g - g\|_p \le 2\varepsilon + \|\tau_h g - g\|_p.$$

Or on sait que g est continue à support compact K donc uniformément continue d'après le théorème de Heine. Notons $\omega_g(\delta) \coloneqq \sup_{x,y:\|x-y\| \le \delta} |g(y)-g(x)|$ le module de continuité de g. On a

$$\|\tau_h g - g\|_p = \int_{\tilde{K}} |g(x+h) - g(x)|^p dx \quad \text{où } \tilde{K} = K + B_f(0,1)$$

$$\leq \lambda^d(\tilde{K})\omega_g(\|h\|)$$

$$\xrightarrow{h \to 0} 0,$$

car g est uniformément continue. Ainsi $\|\tau_h g - g\|_p \le \varepsilon$ lorsque h est assez petit et donc $\|\tau_h f - f\|_p \le 3\varepsilon$, ce qui conclut.

Exercice 4.9. Démontrer la version locale de la continuité de l'opérateur de translation.

Commençons par un exercice simple de régularité d'une convolée par une fonction continue.

Exercice 4.10 (Convolée par une fonction continue). 1. Montrer que si $f \in L^1(\mathbb{R}^d)$ et $g \in C_b(\mathbb{R}^d)$ est uniformément continue, alors $f \circ g$ est uniformément continue.

2. Montrer qu si $f \in L^1_{loc}(\mathbb{R}^d)$ et $g \in \mathcal{C}_c(\mathbb{R}^d)$, alors $f \circ g$ est continue.

Démonstration. Soit $f \in L^1(\mathbb{R}^d)$ et $g \in \mathcal{C}_b(\mathbb{R}^d)$ uniformément continue, de module de continuité ω . On a alors pour tout x_1, x_2 ,

$$|f \circ g(x_1) - f \circ g(x_2)| = \left| \int_{\mathbb{R}^d} f(y) (g(x_1 - y) - g(x_2 - y))) \, dy \right|$$

$$\stackrel{\text{H\"{o}lder}}{\leq} ||f||_1 \omega (||x_1 - x_2||)$$

$$\xrightarrow{x_1 - x_2 \to 0} 0.$$

.

En réalité, l'opération de convolution elle-même a un effet régularisant, même si les fonctions ne sont pas régulières, comme le montre le résultat suivant.

Proposition 4.16 (Convolée pour des exposants conjugués). — Version globale : Si $f \in L^p(\mu)$ et $g \in L^{p'}(\mu)$ alors $f \star g$ est définie en tout point, $f \star g \in C_b(\mathbb{R}^d)$ et est uniformément continue, et $||f \star g||_{\infty} \leq ||f||_p ||g||_{p'}$.

— Version locale: Si $f \in L^p_{loc}(\mathbb{R}^d)$ et $g \in L^{p'}_c(\mathbb{R}^d)$ alors $f \star g$ est définie en tout point et $f \star g \in \mathcal{C}(\mathbb{R}^d)$.

Remarque 4.17. En pariculier la convolée d'une fonction $L^1_{loc}(\mathbb{R}^d)$ et $g \in \mathcal{C}_c(\mathbb{R}^d)$ est continue.

Preuve dans le cas global. L'un des exposants p ou p' est fini, par exemple p. On a déjà vu par l'inégalité de Hölder que $\int |f(x-y)g(y)| dy \leq ||f||_p ||g||_{p'}$ de sorte que $f \star g$ est bien définie et pour tout x, $|f \star g(x)| \leq ||f||_p ||g||_{p'}$. Prenons maintenant deux points u et v:

$$|f \star g(u) - f \star g(v)| \le \left| \int (f(u - y) - f(v - y))g(y) \, dy \right|$$

$$\le ||g||_{p'} ||f(u - \cdot) - f(v - \cdot)||_{p}$$

$$= ||g||_{p'} ||f - \tau_{u - v} f||_{p}$$

$$\xrightarrow{u - v \to 0} 0,$$

par continuité de l'opérateur de translation.

Exercice 4.11. Démontrer la version locale de la continuité de la convolée dans le cas de deux exposants conjugués.

Lorsque f est continue, le support de f est définie comme spt $f = \overline{\{f \neq 0\}}$: il s'agit du plus petit fermé en-dehors duquel la fonction est nulle.

Exercice 4.12 (Support d'une fonction). Si f est une fonction borélienne sur \mathbb{R}^d , montrer qu'il existe un plus petit ensemble fermé en-dehors duquel f s'annule Lebesgue-presque partout.

 $D\acute{e}monstration$. Soit $(O_n)_n$ une base dénombrable d'ouverts de \mathbb{R}^d . On pose

$$\Omega = \bigcup \{O_n : n \in \mathbb{N}, f \text{ est nulle p.p. sur } O_n\},$$

et $F = \mathbb{R}^d \setminus \Omega$. Montrons que Ω est le plus grand ouvert sur lequel f est nulle presque partout, ce qui conclura. Soit O un ouvert sur lequel f s'annule presque partout. Comme (O_n) est une base d'ouvert, on peut en extraire de sorte que $O = \bigcup_k O_{n_k}$. Comme $O_{n_k} \subseteq O$, O_{n_k} est de mesure nulle donc $\Omega \supseteq \bigcup_k O_{n_k} = O$.

Ainsi, si f est seulement borélienne, on définit le support de f, noté spt f, comme le plus petit ensemble fermé en-dehors duquel f s'annule Lebesgue-presque partout.

Proposition 4.18. Si f, g sont deux fonctions mesurables, spt $f \star g \subseteq \overline{\operatorname{spt} f \cup \operatorname{spt} g}$.

Exercice 4.13 (Support d'une convolée). Montrer que le support de la convolée de deux fonctions boréliennes f, g est inclus dans $\overline{\operatorname{spt} f + \operatorname{spt} g}$, et que l'inclusion peut être stricte.

Définition 4.19 (Approximation de l'unité). Une suite $(\rho_n) \in L^1(\mathbb{R}^d)$ est une approximation de l'unité si

- $-\rho_n \geq 0$,
- $-\int \rho_n \to 1$,
- $-\forall \varepsilon > 0, \quad \int_{B(0,\varepsilon)^c} \rho_n \to 0.$

Exercice 4.14. Soit ρ une fonction positive sur \mathbb{R}^d telle que $\int \rho = 1$. Soit (δ_n) une suite de réels strictement positive tendant vers 0 et posons pour tout n, $\rho_n(x) = \delta_n^{-d} \rho(x/\delta)$. Montrer que (ρ_n) est une approximation de l'unité.

Proposition 4.20 (Approximation de l'unité). Soit (ρ_n) une approximation de l'unité.

- $Si \ f \in L^p(\mathbb{R}^d), p \in [1, \infty[, \ alors \ f \star \rho_n \xrightarrow{L^p} f.$
- Si $f \in \mathcal{C}_b(\mathbb{R}^d)$ alors $f \star \rho_n$ converge uniformément sur tout compact vers f.

 $D\acute{e}monstration$. On suppose dans un premier temps que $\int \rho_n = 1$ pour tout n. On a

$$f(x) - (f \star \rho_n)(x) = \int (f(x) - f(x - y))\rho_n(y) dy,$$

et donc

$$\int |f - f \star \rho_n|^p = \int \left| \int (f(x)f(x - y))\rho_n(y) \, \mathrm{d}y \right|^p \, \mathrm{d}x$$

$$\stackrel{\text{Jensen}}{\leq} \int \int |f(x) - f(x - y)|^p \rho_n(y) \, \mathrm{d}y \, \mathrm{d}x$$

$$\stackrel{\text{Tonelli}}{=} \int \|\tau_y f - f\|_p^p \rho_n(y) \, \mathrm{d}y$$

et pour $\delta > 0$ fixé

$$= \int_{B(0,\delta)} \underbrace{\|\tau_y f - f\|_p^p}_{\varepsilon \to 0} \rho_n(y) \, \mathrm{d}y + 2^{p-1} \|f\|_p^p \underbrace{\int_{B(0,\delta)^c} \rho_n(y) \, \mathrm{d}y}_{n \to \infty},$$

ce qui permet de conclure : prendre d'abord δ petit pour que la première intégrale soit plus petite que $\varepsilon > 0$ arbitrairement fixé, puis faire tendre $n \to \infty$.

Si maintenant $m_n := \int \rho_n$ n'est pas identiquement égal à 1, on applique le résultat précédent à ρ_n/m_n , qui est d'intégrale 1, et on remarque que

$$||f \star \rho_n - f \star \rho_n/m_n||_p \le \left(1 - \frac{1}{m_n}\right) ||f \star \rho_n||_p \le \left(1 - \frac{1}{m_n}\right) ||f||_p ||\rho_n||_1 \to 0,$$

ce qui conclut.

Passons au second point, en supposant à nouveau que $\int \rho_n = 1$. Soit $f \in \mathcal{C}_b(\mathbb{R}^d)$. Soit K un compact de \mathbb{R}^d et $\varepsilon > 0$. Pour $0 < \delta \le 1$, on a

$$|f(x) - f \star \rho_n(x)| \le \int_{B_f(0,\delta)} |f(x) - f(x-y)| \rho_n(y) \, \mathrm{d}y$$

$$+ \int_{\mathbb{R}^d \setminus B_f(0,\delta)} |f(x) - f(x-y)| \rho_n(y) \, \mathrm{d}y$$

$$\le \sup_{\substack{x,y \in K + B_f(0,1) \\ ||x-y|| \le \delta}} |f(x) - f(y)| + 2||f||_{\infty} \int_{\mathbb{R}^d \setminus B_f(0,\delta)} \rho_n,$$

le premier terme étant plus petit que ε lorsque δ est assez petit, puisque f est uniformément sur le compact $K + B_f(0,1)$. Ensuite, le second terme est plus petit que ε lorsque n est assez grand. On obtient donc

$$\sup_{x \in K} |f(x) - f \star \rho_n(x)| \le 2\varepsilon.$$

Comme pour le premier point, le cas $\int \rho_n \neq 1$ se déduit aisément.

Exercice 4.15. Soit f une fonction continue sur \mathbb{R}^d est (ρ_n) une approximation de l'unité.

1. Montrer que si f est bornée et uniformément continue, alors $f\star\rho_n\to\rho$ uniformément sur \mathbb{R}^d .

- 2. Montrer que si (diam spt ρ_n) est borné alors $f \star \rho_n \to f$ uniformément sur tout compact.
- 3. Montrer que si diam spt $\rho_n \to 0$ et f est uniformément continue, alors $f \star \rho_n \to f$ uniformément sur tout compact.

Définition 4.21 (Famille/Suite régularisante). Une famille $(\rho_{\varepsilon})_{\varepsilon} \in L^1(\mathbb{R}^d)$ est une suite régularisante lorsque $\varepsilon \to 0$ si

- $--\rho_{\varepsilon} \geq 0$,
- $-\int \rho_{\varepsilon} = 1,$
- diam(spt ρ_{ε}) $\leq \varepsilon$,
- $-\rho_{\varepsilon} \in \mathcal{C}_{c}^{\infty}(\mathbb{R}^{d}).$

On dit qu'elle est radiale si $\rho_{\varepsilon}(x) = \bar{\rho}_{\varepsilon}(||x||)$ pour une certaine fonction $\bar{\rho}_{\varepsilon}$.

Exemple 4.22 (Une suite régularisante standard). On pose $\rho(x) = e^{\frac{1}{\|x\|^2}-1}$ si $\|x\| < 1$ et $\rho(x) = 0$ si $\|x\| \ge 1$, puis $\rho_{\varepsilon}(x) = \varepsilon^{-d}\rho(x/\varepsilon)$. C'est une suite régularisante radiale.

Remarque 4.23. Une suite régularisante est en particulier une approximation de l'unité, mais elle jouit de meilleures propriétés encore.

Proposition 4.24 (Dérivation d'une convolée). — Version globale : si $f \in L^1(\mathbb{R}^d)$ et $\rho \in \mathcal{C}^1_b$, c'est-à-dire bornée de dérivée bornée, alors $f \star \rho \in \mathcal{C}^1(\mathbb{R}^d)$ et $\partial_{x_k}(f \star \rho) = f \star \partial_{x_k} \rho$.

— Version locale: si $f \in L^1_{loc}(\mathbb{R}^d)$ et $\rho \in C^1_c(\mathbb{R}^d)$, alors $f \star \rho \in C^1(\mathbb{R}^d)$ et $\partial_{x_k}(f \star \rho) = f \star \partial_{x_k}\rho$.

Preuve dans le cas d=1. On sait déjà d'après Proposition 4.16 que $f\star\rho$ et $f\star\rho'$ sont continues, mais on va l'obtenir ici par le théorème de dérivation sous l'intégrale.

Traitons la version globale. On a

$$f \star \rho(x) = \int_{\mathbb{R}} h(x, y) \, dy$$
 où $h(x, y) = f(y)\rho(x - y)$.

La fonction $h(x,\cdot)$ est intégrable puisque f est borné est ρ est intégrable. De plus, elle est \mathcal{C}^1 en la première variable et $\partial_x h(x,y) = f(y)\rho'(x-y)$, de sorte que

$$|\partial_x h(x,y)| \le |f(y)| \|\rho'\|_{\infty}.$$

On a donc un chapeau intégrable pour la dérivée, qui est indépendante du paramètre x. Aisi, par le théorème de dérivation sous l'intégrale, $f \star \rho$ est de classe \mathcal{C}^1 sur \mathbb{R} et

$$(f \star \rho)'(x) = \int_{\mathbb{R}} f(y)\rho'(x-y) \, \mathrm{d}y = (f \star \rho')(x).$$

Exercice 4.16. Montrer que si $f \in L^1_{loc}(\mathbb{R}^d)$ et $\rho \in C^1_c(\mathbb{R}^d)$, alors $f \star \rho \in C^1(\mathbb{R}^d)$ et $\partial_{x_k}(f \star \rho) = f \star \partial_{x_k}\rho$ pour tout $k = 1, \ldots, d$.

Corollaire 4.25. L'espace $C_c^{\infty}(\mathbb{R}^d)$ est dense dans $L^p(\mathbb{R}^d)$ pour tout $1 \leq p < \infty$.

Démonstration. Puisque $C_c(\mathbb{R}^d)$ est dense dans $L^p(\mathbb{R}^d)$, il suffit de considérer une fonction f continue à support compact et montrer qu'on peut l'approcher en norme L^p par une suite de fonctions de classe C^{∞} . Prenons une suite régularisante (ρ_{ε}) et considérons $\underline{f} \star \rho_{\varepsilon}$. En itérant Proposition 4.24, on obtient que $f \star \rho_{\varepsilon}$ est de classe C^{∞} , et spt $f \star \rho_{\varepsilon} \subseteq \overline{\text{spt } f + B_f(0, \varepsilon)}$, donc f est à support compact. Par Proposition 4.20, on obtient que $f \star \rho_{\varepsilon} \xrightarrow{L^p} f$.

Jusqu'à présent, dans cette section nous nous sommes concentrés sur \mathbb{R}^d tout entier ⁴. On peut néanmoins se servir des convolutions pour régulariser des fonctions sur un ouvert Ω en faisant au préalable une découpe lisse de notre fonction (« cut-off » en anglais).

Lemme 4.26 (Existence d'une découpe lisse). Soit K un compact et U un ouvert tels que $K \subseteq U$. Il existe $\phi : \mathbb{R}^d \to [0,1]$ telle que $\phi \in \mathcal{C}_c^{\infty}(\mathbb{R}^d)$, spt $\phi \subseteq U$ et $\phi(x) = 1$ pour tout $x \in K$.

Démonstration. On pose $\varepsilon = d(K, U^c)$. On définit $K_{\varepsilon} = \{x : d(x, K) \leq \varepsilon/4\}$ et $U_{\varepsilon} = \{x : d(x, K) < \frac{\varepsilon}{2}\}$. D'après Lemme 4.7, il existe une fonction $\psi \in \mathcal{C}_c(\mathbb{R}^d)$ telle que $\mathbf{1}_{K_{\varepsilon}} \leq \psi \leq \mathbf{1}_{U_{\varepsilon}}$. On pose alors $\phi = \psi \star \rho_{\varepsilon/4}$. On sait que

$$\operatorname{spt} \phi \subseteq \overline{\operatorname{spt} \psi + B_f(\varepsilon/4)} \subseteq \overline{U_\varepsilon + B_f(\varepsilon/4)} \subseteq \overline{\{x : d(x,K) < 3\varepsilon/4\}} \subseteq U.$$

Si $x \in K$, on a par ailleurs

$$\phi(x) = \int_{y \in x + B_f(\varepsilon/4)} \psi(y) \rho_{\varepsilon/4}(x - y) \, \mathrm{d}y$$
$$= \int \rho_{\varepsilon/4}(x - y) \, \mathrm{d}y$$
$$\operatorname{car} x + B_f(\varepsilon/4) \subseteq K + B_f(\varepsilon/4) \subseteq K_\varepsilon \text{ et } \psi = 1 \text{ sur } K_\varepsilon,$$
$$= 1.$$

Théorème 4.27. Si Ω est un ouvert de \mathbb{R}^d , $C_c^{\infty}(\Omega)$ est dense dans $L^p(\Omega)$ pour tout $1 \leq p < +\infty$.

Démonstration. Soit $f \in L^p(\Omega)$. On étend f à tout \mathbb{R}^d en posant $\bar{f}(x) = f(x)$ sur Ω et $\bar{f}(x) = 0$ si $x \notin \Omega$. Pour tout $n \in \mathbb{N}^*$, il existe un compact $K_n \subseteq \Omega$ tel que $\lambda^d(\Omega \setminus K_n) \leq \frac{1}{n}$

^{4.} Il nous faut un groupe pour la convolution

par régularité intérieure. D'après le lemme précédent, il existe $\chi_n \in \mathcal{C}_c^{\infty}(\Omega)$ tel que $\chi_n = 1$ sur K_n . On pose alors

$$f_n(x) = (\bar{f} \star \rho_n) \chi_n.$$

On a

$$||f - f_n||_{p,\Omega} \le ||f - f\chi_n||_{p,\Omega} + ||f\chi_n - \bar{f} \star \rho_n \chi_n||_{p,\Omega}$$

$$\le ||f - f\mathbf{1}_{K_n}||_{p,\Omega} + ||\bar{f} - \bar{f} \star \rho_n||_{p,\mathbb{R}^d}$$

$$\to 0.$$

en utilisant le théorème de convergence dominée pour le premier terme, et Proposition 4.20 pour le second.

4.4 Transformée de Fourier

On se placera sur \mathbb{R} dans les démonstrations pour simplifier.

Définition 4.28 (Transformée de Fourier dans L^1). Si $f \in L^1(\mathbb{R}^d)$, on définit sa transformée de Fourier par

$$\forall \xi \in \mathbb{R}^d, \quad \hat{f}(\xi) = \mathcal{F}f(\xi) = \int_{\mathbb{R}^d} e^{-2i\pi x \cdot \xi} f(x) \, \mathrm{d}x.$$

Remarque 4.29. Elle est bien définie pour tout ξ car $\int_{\mathbb{R}^d} |e^{2i\pi x \cdot \xi} f(x)| dx = \int_{\mathbb{R}^d} |f(x)| dx < \infty$.

Théorème 4.30 (Lemme de Riemann-Lebesgue). Si $f \in L^1(\mathbb{R}^d)$, alors \hat{f} appartient à l'espace $C_0(\mathbb{R}^d)$ des fonctions continues qui tendent vers 0 lorsque $\|\xi\| \to +\infty$, et

$$\|\hat{f}\|_{\infty} \le \|f\|_1.$$

Preuve dans le cas d=1. La continuité de \hat{f} vient de la continuité d'une intégrale à paramètre. L'intégrande $g(x,\xi)=e^{2i\pi x\xi}f(x)$ est majorée en module par |f(x)|, intégrable indépendante du paramètre, et g est continue, ce qui conclut.

Par l'inégalité triangulaire, pour tout ξ , $|\hat{f}(\xi)| \leq \int_{\mathbb{R}} |f(x)| \, \mathrm{d}x = \|f\|_1$, donc $\|\hat{f}\|_{\infty} \leq \|f\|_1$ et \mathcal{F} est un opérateur linéaire continu de $L^1(\mathbb{R}^d)$ dans $C_b(\mathbb{R}^d)$. Or les fonctions continues à support compact sont denses dans L^1 et l'espace $C_0(\mathbb{R}^d)$ est fermé dans $C_b(\mathbb{R}^d)$, donc il suffit de montrer que la transformée de Fourier d'une fonction continue à support compact est dans $C_0(\mathbb{R}^d)$. Supposons donc que f est continue à support compact, et plaçons nous dans \mathbb{R} pour simplifier. Par intégration par parties sur un intervalle [-R, R] en-dehors duquel f est nulle, on obtient

$$\hat{f}(\xi) = \left[\frac{e^{-2i\pi\xi}}{-2i\pi\xi} f(x) \right]_{-R}^{R} + \int_{-R}^{R} \frac{e^{-2i\pi\xi}}{-2i\pi\xi} f'(x) \, dx$$
$$= 0 + \int_{-R}^{R} \frac{e^{-2i\pi\xi}}{-2i\pi\xi} f(x) \, dx$$

donc

$$|\hat{f}(\xi)| \le \frac{1}{2\pi |\xi|} ||f'||_1,$$

et $|\hat{f}(\xi)| \to 0$ lorsque $|\xi| \to +\infty$. D'où le résultat.

Dans \mathbb{R}^d , un multi-indice α un vecteur $\alpha = (\alpha_1, \dots, \alpha_d)$ à valeurs dans \mathbb{N} , soit $\alpha \in \mathbb{N}^d$. Sa longueur est définie par $|\alpha| = \sum \alpha_i$, et par $\partial^{\alpha} f$ on désigne la dérivée parielle $\partial_{x_1}^{\alpha_1} \partial_{x_2}^{\alpha_2} \dots \partial_{x_d}^{\alpha_d} f$. En première lecture, on pourra considérer d = 1, et α est simplement un entier, $\partial^{\alpha} f = f^{(\alpha)}$.

Définition 4.31 (Espace de Schwartz). On définit *l'espace de Schwartz* $\mathcal{S}(\mathbb{R}^d)$, ou des fonctions à décroissance rapide, comme l'ensemble des fonctions $f \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ telles que pour tout $\ell \in \mathbb{N}$ et tout multi-indice $\alpha \in \mathbb{N}^d$,

$$\sup_{x \in \mathbb{R}^d} ||x||^{\ell} |\partial^{\alpha} f(x)| < +\infty.$$

Remarque 4.32. L'espace $\mathcal{S}(\mathbb{R}^d)$ est dense dans $L^p(\mathbb{R}^d)$ pour tout $p \in [1, \infty[$ puisque $\mathcal{C}_c^{\infty}(\mathbb{R}^d) \subseteq \mathcal{S}(\mathbb{R}^d)$.

Exercice 4.17. Soit $f \in \mathcal{S}(\mathbb{R}^d)$.

- 1. En supposant que d=1, montrer que $Xf=x\mapsto xf(x)\in\mathcal{S}(\mathbb{R})$ et $f'\in\mathcal{S}(\mathbb{R})$.
- 2. En supposant que d=1, montrer que pour tout $\alpha \in \mathbb{N}$ et tout $p \in [1,+\infty]$, $f^{(\alpha)} \in L^p(\mathbb{R}^d)$.
- 3. Généraliser à la dimension d quelconque.

Proposition 4.33 (Petit formulaire de Fourier). On note $e_{\lambda} = x \mapsto e^{2i\pi\lambda \cdot x}$, $\tau_{\lambda} f = f(\cdot - \lambda)$ et $h_{\lambda} f = f(\cdot / \lambda)$ pour $\lambda \in \mathbb{R}^d$ et $\check{f} = f(\cdot \cdot)$. Alors pour tout $f, g \in \mathcal{S}(\mathbb{R}^d)$,

- (a) $\widehat{e_{\lambda}f} = \tau_{\lambda}\widehat{f}$,
- (b) $\widehat{\tau_{\lambda}f} = e_{-\lambda}\hat{f}$,
- (c) $\widehat{f \star g} = \widehat{f}\widehat{g}$,
- $(d) \ \hat{\vec{f}} = \check{\vec{f}},$
- $(e) \ \hat{\bar{f}} = \bar{\hat{f}},$
- $(f) \ \widehat{h_{\lambda}f} = \lambda h_{\frac{1}{2}}\widehat{f},$
- $(g) \ \widehat{f}' = 2i\pi X \widehat{f},$
- (h) $\widehat{-2i\pi X}f = \hat{f}'$, avec $\hat{f} \in \mathcal{C}^1(\mathbb{R}^d)$.

Démonstration. En exercice.

Remarque 4.34. Toutes ces propriétés restent vraies dans L^1 par densité de l'espace de Schwartz.

Théorème 4.35. $\mathcal{S}(\mathbb{R}^d)$ est stable par la transformation de Fourier.

Preuve pour d=1. En sachant que $(2i\pi X)^p f^{(k)} \in \mathcal{S}(\mathbb{R})$, en appliquant successivement (g) et (h) de Proposition 4.33, on a

$$[(-2i\pi X)^p f]^{(k)} = (2i\pi X)^k (-2i\pi X)^p f = (2i\pi X)^k \hat{f}^{(p)},$$

or on sait que la transformée d'une fonction intégrable (donc de Schwartz aussi) and dans $\mathcal{C}^0(\mathbb{R}^d)$, et donc $(2i\pi X)^k \hat{f}^{(p)} \in \mathcal{C}_0(\mathbb{R}^d) \subseteq \mathcal{C}_b(\mathbb{R}^d)$, ce qui implique que \hat{f} est (de classe \mathcal{C}^{∞} et) à décroissance rapide.

Exercice 4.18 (Transformée de Fourier d'une Gaussienne). Soit $G_{\lambda}(x) = \sqrt{\lambda}e^{-\lambda\pi|x|^2}$ une Gaussienne centrée. On se place en dimension 1.

- 1. Montrer que $G_{\lambda} \in \mathcal{S}(\mathbb{R})$ et que $\int_{\mathbb{R}} G_{\lambda} = 1$.
- 2. Montrer que G_{λ} satisfait l'EDO $y' = -2\lambda \pi xy$.
- 3. En déduire que $\widehat{G_{\lambda}}' = -\frac{2\pi}{\lambda} x \widehat{G_{\lambda}}$.
- 4. En déduire que $\widehat{G}_{\lambda} = e^{-\frac{\pi x^2}{\lambda}}$.
- 5. En déduire que $\widehat{G}_{\lambda} = G_{\lambda}$.

Proposition 4.36. La famille de gaussiennes normalisées G_{λ} vérifie :

- 1. $(G_{\lambda})_{\lambda} \in \mathcal{S}(\mathbb{R}^d)$ est une approximation de l'unité lorsque $\lambda \to 0$.
- 2. $\|\widehat{G}_{\lambda}\|_{\infty} \leq 1$ et $\widehat{G}_{\lambda} \uparrow 1$ simplement.
- 3. $\widehat{\widehat{G}_{\lambda}} = G_{\lambda}$.

Proposition 4.37. Pour tout $f, g \in \mathcal{S}(\mathbb{R}^d)$, $\int f \hat{g} = \int \hat{f} g$.

Démonstration. C'est une simple application du théorème de Fubini.

Théorème 4.38 (Théorème d'inversion). Pour tout $f \in \mathcal{S}(\mathbb{R}^d)$, $\check{\mathcal{F}}\mathcal{F}f = f = \mathcal{F}\check{\mathcal{F}}f$, de sorte que $\check{\mathcal{F}} = f \mapsto \hat{f}(-\cdot)$ est l'inverse de la transformation de Fourier.

Démonstration. Soit $f, g \in \mathcal{S}(\mathbb{R}^d)$. On a

$$\int \breve{\mathcal{F}}\mathcal{F}(f)g = \int \mathcal{F}\mathcal{F}(f)\breve{g} = \int \mathcal{F}(f)\mathcal{F}(\breve{g}) = \int f\mathcal{F}\mathcal{F}\breve{g}.$$

Prenons alors $g = G_{\lambda}$. On a $\check{g} = g = G_{\lambda}$ et $\hat{G}_{\lambda} = G_{\lambda}$, de sorte que $\int \check{\mathcal{F}} \mathcal{F}(f) G_{\lambda} = \int f G_{\lambda}$, ce qui s'écrit encore :

$$\breve{\mathcal{F}}\mathcal{F}(f)\star G_{\lambda}(0)=f\star G_{\lambda}(0).$$

On sait que $\mathcal{S}(\mathbb{R}) \subseteq \mathcal{C}_0$ et donc, puisque G_{λ} est une approximation de l'unité, que pour tout $\phi \in \mathcal{S}(\mathbb{R})$, $\phi \star G_{\lambda} \to \phi$ sur tout compact lorsque $\lambda \to 0$, et donc en particulier en faisant tendre λ vers 0 on obtient

$$\breve{\mathcal{F}}\mathcal{F}(f)(0) = f(0).$$

En remplaçant f par $\tau_{-x}f$ on vérifie par le formulaire donné plus haut que ceci se réécrit $\hat{f}(-x) = f(x)$, d'où le résultat.

Corollaire 4.39. Si $f \in L^1(\mathbb{R})$ et $\hat{f} \in L^1(\mathbb{R}^d)$ alors $\breve{\mathcal{F}}\mathcal{F}f = f$ presque partout.

Théorème 4.40 (Théorème de Plancherel). Pour tout $f \in \mathcal{S}$, on a $\int_{\mathbb{R}} |f|^2 = \int_{\mathbb{R}} |\hat{f}|^2$. En particulier, la transformation de Fourier sur $\mathcal{S}(\mathbb{R})$ se prolonge de manière unique en une isométrie linéaire \mathcal{F}_{L^2} sur $L^2(\mathbb{R})$ tout entier. De plus si $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, alors $\mathcal{F}_{L^2}f = \mathcal{F}f$ preque partout.

Démonstration. On a

$$\int |\hat{f}|^2 = \int \hat{f}\bar{\hat{f}} = \int f\bar{\hat{f}} = \int f\overline{\check{\mathcal{F}}\mathcal{F}f} = \int f\bar{f} = \int |f|^2,$$

et on conclut par le théorème de prolongement des applications linéaires continues sur un sous-espace dense. $\hfill\Box$

4.5 Exercices

Exercice 4.19. Pour quelle(s) valeur(s) de p les fonction suivantes définies de $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ sont-elles dans l'espace \mathcal{L}^p ?

1.
$$x \mapsto \mathbf{1}_{\mathbb{Q}}(x)$$

3.
$$x \mapsto \frac{\arctan x}{x} \mathbf{1}_{]0,+\infty]}(x)$$

2.
$$x \mapsto x \mathbf{1}_{[0,1]}(x)$$

4.
$$x \mapsto \sum_{n} \frac{1}{\sqrt{n}} \mathbf{1}_{[n,n+1]}(x)$$

Exercice 4.20. Soit $\alpha \in \mathbb{R}$ et soient f_{α} et g_{α} les fonctions définies par

$$f_a(x) = \frac{1}{x^{\alpha}} \mathbf{1}_{[-1;1]}(x), \quad g_{\alpha}(x) = \frac{1}{x^{\alpha}} \mathbf{1}_{[1;+\infty[}(x) \quad \text{et} \quad h_{\alpha}(x) = \frac{1}{x^{\alpha}}.$$

- 1. A quelle condition sur α et p, $f_{\alpha} \in L^{p}$?
- 2. Même question pour g_{α} .
- 3. Et pour h_{α} ?
- 4. Montrer que si p < q, il n'y a pas d'inclusion entre $L^p(\mathbb{R})$ et $L^q(\mathbb{R})$.

Exercice 4.21 (Inégalités de Hölder et de Minkowski). Soit (X, \mathcal{A}, μ) un espace mesuré et $p, q \in]0, 1[$ deux exposants conjugués : $\frac{1}{p} + \frac{1}{q} = 1$. Considère deux fonctions mesurables f, g.

1. Démontrer l'inégalité de Hölder

$$\int |fg|d\mu \leq \left(\int |f|^p d\mu\right)^{\frac{1}{p}} \left(\int |f|^q d\mu\right)^{\frac{1}{q}}$$

en utilisant l'inégalité de Jensen.

Indication : considérer la mesure μ_{ϕ} où $\phi = |f|^p / \int |f|^p d\mu$ (lorsqu'elle est bien définie) et la fonction $h = |g|/|f|^{p-1} \mathbf{1}_{f \neq 0}$.

2. Démontrer l'inégalité de Young $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$ pour $a,b \geq 0$ et en déduire une autre preuve de l'inégalité de Hölder.

Indication : considérer d'abord le cas où $\int |f|^p d\mu = \int |g|^q d\mu = 1$.

3. Démontrer l'inégalité de Minkowski

$$\left(\int |f+g|^p d\mu\right)^{\frac{1}{p}} \leq \left(\int |f|^p d\mu\right)^{\frac{1}{p}} + \left(\int |g|^p d\mu\right)^{\frac{1}{p}}$$

en utilisant l'inégalité de Hölder.

 $Indication: se\ ramener\ au\ cas\ f,g\geq 0\ et\ \'ecrire\ (f+g)^p=f(f+g)^{p-1}+g(f+g)^{p-1}.$

Exercice 4.22. Calculer \hat{f} lorsque

1.
$$f := 1$$
;

3.
$$f(x) := \frac{\lambda}{2} e^{-\lambda |x|}, \lambda > 0;$$

2.
$$f := \mathbf{1}_{[-a,a]}, a > 0;$$

4.
$$f(x) := \frac{\lambda}{\pi(x^2 + \lambda^2)}, \ \lambda > 0;$$

Exercice 4.23. Soit $f(x) = (1 - |x|) \mathbf{1}_{[-1,1]}(x)$.

- 1. Montrer que $f(x) = \mathbf{1}_{\left[\frac{-1}{2},\frac{1}{2}\right]} * \mathbf{1}_{\left[\frac{-1}{2},\frac{1}{2}\right]}(x)$ et calculer $\int_{-\infty}^{\infty} e^{itx} f(x) dx$.
- 2. En déduire que $f\left(x\right)=\frac{1}{\pi}\int_{-\infty}^{\infty}e^{-itx}\frac{1-\cos t}{t^{2}}dx.$