Heat Equations on Vector Bundles: Application to Images Regularization

Thomas Batard

Lab. Mathematics, Image and Applications
University of La Rochelle

Mathematics and Image Analysis
December 14-16 2009
Institut Henri Poincaré, Paris
PDEs devoted to nD image regularization

\[
\frac{\partial I^i}{\partial t} = \sum_{j,k=1}^2 f_{jk} \frac{\partial^2 I^i}{\partial j \partial k} + \text{(part of order } \leq 1)
\]

where \(I|_{t=0} = I_0 : \Omega \to \mathbb{R}^n \) nD image, and \(f_{jk} \) functions on \(\Omega \).

Geometric interpretation: \(E \) vector bundle of rank \(n \) over \((\Omega, g) \) well-chosen \(\implies \) Differential operator \(H \) of order 2 acting on \(I \in \Gamma(E) \) is a Generalized Laplacian.

\(\implies \) Solution of \(\partial I/\partial t - HI = 0 \) given by

\[
(e^{-tH}I_0)(x) = \int_{\Omega} K_t(x, y, -H)I_0(y) dy
\]
Motivation

- PDEs devoted to nD image regularization

\[
\frac{\partial I^i}{\partial t} = \sum_{j,k=1}^{2} f_{jk} \frac{\partial^2 I^i}{\partial j \partial k} + \text{(part of order } \leq 1)\]

where \(I|_{t=0} = I_0 : \Omega \rightarrow \mathbb{R}^n \) nD image, and \(f_{jk} \) functions on \(\Omega \).

- Geometric interpretation: \(E \) vector bundle of rank \(n \) over \((\Omega, g) \) well-chosen \(\implies \) Differential operator \(H \) of order 2 acting on \(I \in \Gamma(E) \) is a **Generalized Laplacian**.

\[\implies \text{Solution of } \frac{\partial I}{\partial t} - HI = 0 \text{ given by} \]

\[
(e^{-tH}I_0)(x) = \int_{\Omega} K_t(x, y, -H)I_0(y) \, dy
\]
Motivation

- PDEs devoted to nD image regularization

\[
\frac{\partial I^i}{\partial t} = \sum_{j,k=1}^{2} f_{jk} \frac{\partial^2 I^i}{\partial j \partial k} + \text{(part of order } \leq 1)\]

where \(I |_{t=0} = I_0 : \Omega \rightarrow \mathbb{R}^n \) nD image, and \(f_{jk} \) functions on \(\Omega \).

- Geometric interpretation: \(E \) vector bundle of rank \(n \) over \((\Omega, g) \)
 well-chosen \(\implies \) Differential operator \(H \) of order 2 acting on \(I \in \Gamma(E) \) is a Generalized Laplacian.

\(\implies \) Solution of \(\partial I / \partial t - HI = 0 \) given by

\[
(e^{-tH}I_0)(x) = \int_{\Omega} K_t(x, y, -H)I_0(y)dy
\]
Let $v, v' \in \Gamma(TX)$ be two tangent vector fields on X and $f, g \in C^\infty(X)$.

Definition

A connection ∇ is a map $\Gamma(TX) \times \Gamma(E) \longrightarrow \Gamma(E)$ satisfying

- $\nabla_{fv'+gv'}S = f\nabla_vS + g\nabla_{v'}S$
- $\nabla_v(S + S') = \nabla_vS + \nabla_{v'}S'$
- $\nabla_v fS = f\, \nabla_v S + (d_v f)S$

The operator ∇_v is called the covariant derivative along v.

Definition

Let E be a vector bundle over a manifold X equipped with a connection ∇^E, $y \in X$, and $Y_0 \in E_y$. Let γ be a C^1 curve in X such that $\gamma(0) = y$. The parallel transport of Y_0 along γ is the solution $Y(t) \in E_{\gamma(t)}$ of the differential equation

\[
\begin{cases}
\nabla^E_{\gamma'} Y(t) = 0 \\
Y(0) = Y_0
\end{cases}
\]
Let $v, v' \in \Gamma(TX)$ be two tangent vector fields on X and $f, g \in C^\infty(X)$.

Definition

A connection ∇ is a map $\Gamma(TX) \times \Gamma(E) \longrightarrow \Gamma(E)$ satisfying

\[-\nabla_{fv + gv'} S = f \nabla_v S + g \nabla_{v'} S\]
\[-\nabla_v (S + S') = \nabla_v S + \nabla_v S'\]
\[-\nabla_v fS = f \nabla_v S + (d_v f)S\]

The operator ∇_v is called the **covariant derivative** along v.

Definition

Let E be a vector bundle over a manifold X equipped with a connection ∇^E, $y \in X$, and $Y_0 \in E_y$. Let γ be a C^1 curve in X such that $\gamma(0) = y$. The parallel transport of Y_0 along γ is the solution $Y(t) \in E_{\gamma(t)}$ of the differential equation

\[
\begin{cases}
\nabla^E_{\dot{\gamma}} Y(t) = 0 \\
Y(0) = Y_0
\end{cases}
\]
Definition (Generalized Laplacian)

Let E vector bundle over (X, g). A **generalized Laplacian** on E is a differential operator of order 2 $H : \Gamma(E) \longrightarrow \Gamma(E)$ that may be written

$$H = - \sum_{ij} g^{ij} \partial_i \partial_j + \text{part of order } \leq 1$$

in any local coordinates system.

Solution $e^{-tH}u_0$ of the heat equation:

$$\frac{\partial u}{\partial t} + Hu = 0, \quad u|_{t=0} = u_0$$

given by

$$e^{-tH}u_0(x) = \int_X K_t(x, y, H)u_0(y) \, dy$$
Definition (Connection Laplacian)

Let ∇^E a connection on E. The connection Laplacian associated to ∇^E is a generalized Laplacian on E defined by

$$\Delta^E = - \sum_{ij} g^{ij} \left(\nabla^E_{\partial_i} \nabla^E_{\partial_j} - \sum_k \Gamma^E_{ij} \nabla^E_{\partial_k} \right)$$

in a local coordinates system.

Proposition (Berline et al., *Heat kernels and Dirac operators*)

Given H a generalized Laplacian on E, we may equip E with a connection ∇^E such that $H = \Delta^E + F$ for some $F \in \Gamma(\text{End}(E))$.
Approximations of heat equations solutions

- Approximation of the heat kernel $K_t(x, y, H)$:
 \[
 K_t^0(x, y, H) = \left(\frac{1}{4\pi t} \right)^{m/2} e^{-d(x, y)^2/4t} \Psi(d(x, y)^2) \tau(x, y) J(x, y)^{-1/2}
 \]
 where
 - d geodesic distance on X
 - Ψ cut-off function
 - $\tau : E_y \rightarrow E_x$ transport parallel map wrt ∇^E along the unique geodesic joining x and y.
 - $J(x, y)$ jacobian of the coordinates change.

- Approximation of the solution $e^{-tH} u_0$ of the heat equation:
 \[
 \frac{\partial u}{\partial t} + Hu = 0, \quad u|_{t=0} = u_0
 \]
 given by
 \[
 k_t^0 u_0(x) = \int_X K_t^0(x, y, H) u_0(y) dy
 \]
 \[
 k_t^0 u_0(x) = \left(\frac{1}{4\pi t} \right)^{m/2} \int_X e^{-d(x, y)^2/4t} \Psi(d(x, y)^2) \tau(x, y) u_0(y) J(x, y)^{-1/2} dy
 \]
Approximations of heat equations solutions

- Approximation of the heat kernel $K_t(x, y, H)$:

$$K_t^0(x, y, H) = \left(\frac{1}{4\pi t} \right)^{m/2} e^{-d(x, y)^2/4t} \Psi(d(x, y)^2) \tau(x, y) J(x, y)^{-1/2}$$

where
- d geodesic distance on X
- Ψ cut-off function
- $\tau : E_y \to E_x$ transport parallel map wrt ∇^E along the unique geodesic joining x and y.
- $J(x, y)$ jacobian of the coordinates change.

- Approximation of the solution $e^{-tH}u_0$ of the heat equation:

$$\frac{\partial u}{\partial t} + Hu = 0, \quad u\big|_{t=0} = u_0$$

given by

$$k_t^0 u_0(x) = \int_X K_t^0(x, y, H)u_0(y)dy$$

$$k_t^0 u_0(x) = \left(\frac{1}{4\pi t} \right)^{m/2} \int_X e^{-d(x, y)^2/4t} \Psi(d(x, y)^2) \tau(x, y)u_0(y) J(x, y)^{-1/2} dy$$
Discrete approximations of heat equations solutions

- Discretization of $k_t^0 u_0$ by discrete convolutions.

- $J(x, y) \approx 1$ near x. Approximate J by $1 \Rightarrow$ convolutions with small masks.

- Construction of V_x:
 - for each $i, j \in \{-1, 0, 1\}$, construct the geodesic from x with tangent vector (i, j) at x, by the use of the transport parallel map on TX associated to L-C connection.
 - for each y, set $y \in V_x$ if two geodesics from x do not intersect at y, and y does not follow such a point on a geodesic from x.

- Discrete convolution of $\tau(x, y) u_0(y)$ with a mask whose input in y is the geodesic distance to x if $y \in V_x$ and 0 otherwise.
Discrete approximations of heat equations solutions

- Discretization of $k_t^0 u_0$ by discrete convolutions.

- $J(x, y) \approx 1$ near x. Approximate J by 1 \Rightarrow convolutions with small masks.

- Construction of \mathcal{V}_x:
 - for each $i, j \in \{-1, 0, 1\}$, construct the geodesic from x with tangent vector (i, j) at x, by the use of the transport parallel map on TX associated to L-C connection.
 - for each y, set $y \in \mathcal{V}_x$ if two geodesics from x do not intersect at y, and y does not follow such a point on a geodesic from x.

- Discrete convolution of $\tau(x, y) u_0(y)$ with a mask whose input in y is the geodesic distance to x if $y \in \mathcal{V}_x$ and 0 otherwise.
Discrete approximations of heat equations solutions

- Discretization of $k_t^0 u_0$ by discrete convolutions.

- $J(x, y) \simeq 1$ near x. Approximate J by $1 \implies$ convolutions with small masks.

- Construction of \mathcal{V}_x:
 - for each $i, j \in \{-1, 0, 1\}$, construct the geodesic from x with tangent vector (i, j) at x, by the use of the transport parallel map on TX associated to L-C connection.
 - for each y, set $y \in \mathcal{V}_x$ if two geodesics from x do not intersect at y, and y does not follow such a point on a geodesic from x.

- Discrete convolution of $\tau(x, y) u_0(y)$ with a mask whose input in y is the geodesic distance to x if $y \in \mathcal{V}_x$ and 0 otherwise.
Discrete approximations of heat equations solutions

- Discretization of $k_t^0 u_0$ by discrete convolutions.

- $J(x, y) \sim 1$ near x. Approximate J by $1 \implies$ convolutions with small masks.

- Construction of V_x:
 - for each $i, j \in \{-1, 0, 1\}$, construct the geodesic from x with tangent vector (i, j) at x, by the use of the transport parallel map on TX associated to L-C connection.
 - for each y, set $y \in V_x$ if two geodesics from x do not intersect at y, and y does not follow such a point on a geodesic from x.

- Discrete convolution of $\tau(x, y) u_0(y)$ with a mask whose input in y is the geodesic distance to x if $y \in V_x$ and 0 otherwise.
Discrete approximations of heat equations solutions

- Discretization of $k_t^0 u_0$ by discrete convolutions.

- $J(x, y) \simeq 1$ near x. Approximate J by 1 \implies convolutions with small masks.

- Construction of \mathcal{V}_x:
 - for each $i, j \in \{-1, 0, 1\}$, construct the geodesic from x with tangent vector (i, j) at x, by the use of the transport parallel map on TX associated to L-C connection.
 - for each y, set $y \in \mathcal{V}_x$ if two geodesics from x do not intersect at y, and y does not follow such a point on a geodesic from x.

- Discrete convolution of $\tau(x, y)u_0(y)$ with a mask whose input in y is the geodesic distance to x if $y \in \mathcal{V}_x$ and 0 otherwise.
The scalar Laplacian Δ

Definition

Let (X, g) be a Riemannian manifold. The scalar Laplacian on (X, g) is the connection Laplacian on a vector bundle of rank 1, endowed with the connection ∇^E defined by $\nabla^E e_1 = 0$ in a frame e_1 of E. In a local coordinates system, it is defined by

$$\Delta(fe_1) = - \sum_{ij} g^{ij} \left(\partial_i \partial_j - \sum_k \Gamma_{ij}^k \partial_k \right) f e_1$$

Proposition (Parallel transport associated to ∇^E)

Let γ be a C^1 curve in X such that $\gamma(0) = y$. The parallel transport Y of the vector $Y_0 = Y_0 e_1(y)$ along γ is $Y(t) = Y_0 e_1(\gamma(t))$.

Consequence: $\tau(x, y)(Y_0 e_1(y)) = Y_0 e_1(x)$
The scalar Laplacian Δ

Definition

Let (X, g) be a Riemannian manifold. The scalar Laplacian on (X, g) is the connection Laplacian on a vector bundle of rank 1, endowed with the connection ∇^E defined by $\nabla^E e_1 = 0$ in a frame e_1 of E. In a local coordinates system, it is defined by

$$\Delta(f e_1) = -\sum_{ij} g^{ij} \left(\partial_i \partial_j - \sum_k \Gamma_{ij}^k \partial_k \right) f \, e_1$$

Proposition (Parallel transport associated to ∇^E)

Let γ be a C^1 curve in X such that $\gamma(0) = y$. The parallel transport Y of the vector $Y_0 = Y_0 \, e_1(y)$ along γ is $Y(t) = Y_0 \, e_1(\gamma(t))$.

Consequence: $\tau(x, y)(Y_0 \, e_1(y)) = Y_0 \, e_1(x)$
Remark: Identify $C^\infty(X)$ with a vector bundle E of rank 1 of frame e_1 equipped with the connection ∇^E defined by $\nabla^E e_1 = 0$, and equip (X, g) with the L-C connection $\implies \Delta = -\Delta_g$.

Consequence: PDEs $\partial u/\partial t = \Delta_g u$ and $\partial u/\partial t + \Delta u = 0$ are equivalent.

\implies Beltrami flow [Sochen et al.]

\implies The kernel $K_t^0(x, y, \Delta)$ corresponds to the 'short time Beltrami kernel'.
Remark: Identify $C^\infty(X)$ with a vector bundle E of rank 1 of frame e_1 equipped with the connection ∇^E defined by $\nabla^E e_1 = 0$, and equip (X, g) with the L-C connection $\nabla^E \Rightarrow \Delta = -\Delta_g$.

Consequence: PDEs $\frac{\partial u}{\partial t} = \Delta_g u$ and $\frac{\partial u}{\partial t} + \Delta u = 0$ are equivalent.

\Rightarrow Beltrami flow [Sochen et al.]
\Rightarrow The kernel $K_t^0(x, y, \Delta)$ corresponds to the 'short time Beltrami kernel'.
Let X be a manifold of dimension 2, and $f \in C^\infty(X)$. We consider the differential operator Δ of order 2 given by

$$\Delta(f) = -c_1 \, d^2_{\xi,\xi} f - c_2 \, d^2_{\eta,\eta} f$$

where (ξ, η) is a mobile frame of TX, and $c_1, c_2 \in C^\infty(X)$.

$\Rightarrow \Delta$: generalized Laplacian H on a vector bundle of rank 1.
Two order differential operator wrt mobile frame as generalized Laplacian

Proposition

Let \((X, g)\) be a Riemannian manifold of dim 2, with

\[
g = \frac{1}{c_1 c_2 (\xi_1 \eta_2 - \eta_1 \xi_2)^2} \begin{pmatrix}
 c_1 \xi_2^2 + c_2 \eta_2^2 & -(c_1 \xi_1 \xi_2 + c_2 \eta_1 \eta_2) \\
 -(c_1 \xi_1 \xi_2 + c_2 \eta_1 \eta_2) & c_1 \xi_1^2 + c_2 \eta_1^2
\end{pmatrix}
\]

in a local coordinates system \((x_1, x_2)\).

Let \(E\) be a vector bundle of rank 1 over \(X\), of global frame \(e_1\), equipped with a connection \(\nabla^E\) defined by \(\nabla^E_{\partial_{x_1}} e_1 = \gamma_1 e_1\) et \(\nabla^E_{\partial_{x_2}} e_1 = \gamma_2 e_1\) where

\[
\gamma_1 = 0.5(g_{11} a + g_{12} b) \quad \gamma_2 = 0.5(g_{12} a + g_{22} b)
\]

and

\[
a = c_1 \frac{\partial \xi_1}{\partial x_1} \xi_1 + c_1 \frac{\partial \xi_1}{\partial x_2} \xi_2 + c_2 \frac{\partial \eta_1}{\partial x_1} \eta_1 + c_2 \frac{\partial \eta_1}{\partial x_2} \eta_2 + 2g_{12} \Gamma^1_{12} + g_{11} \Gamma^1_{11} + g_{22} \Gamma^1_{22}
\]

\[
b = c_1 \frac{\partial \xi_2}{\partial x_1} \xi_1 + c_1 \frac{\partial \xi_2}{\partial x_2} \xi_2 + c_2 \frac{\partial \eta_2}{\partial x_1} \eta_1 + c_2 \frac{\partial \eta_2}{\partial x_2} \eta_2 + 2g_{12} \Gamma^2_{12} + g_{11} \Gamma^2_{11} + g_{22} \Gamma^2_{22}
\]

Let \(\tilde{f} = f e_1 \in \Gamma(E)\). Then, \(H\) given by \(H(\tilde{f}) = \Delta(f) e_1\) is a generalized Laplacian on \(E\).
Two order differential operator wrt mobile frame as generalized Laplacian

Proposition

Let \((X, g)\) be a Riemannian manifold of dim 2, with

\[
g = \frac{1}{c_1 c_2 (\xi_1 \eta_2 - \eta_1 \xi_2)^2} \begin{pmatrix}
 c_1 \xi_2^2 + c_2 \eta_2^2 & -(c_1 \xi_1 \xi_2 + c_2 \eta_1 \eta_2) \\
 -(c_1 \xi_1 \xi_2 + c_2 \eta_1 \eta_2) & c_1 \xi_1^2 + c_2 \eta_1^2
\end{pmatrix}
\]

in a local coordinates system \((x_1, x_2)\).

Let \(E\) be a vector bundle of rank 1 over \(X\), of global frame \(e_1\), equipped with a connection \(\nabla^E\) defined by \(\nabla^E_{\partial_{x_1}} e_1 = \gamma_1 e_1\) et \(\nabla^E_{\partial_{x_2}} e_1 = \gamma_2 e_1\) where

\[
\gamma_1 = 0.5(g_{11} a + g_{12} b) \quad \gamma_2 = 0.5(g_{12} a + g_{22} b)
\]

and

\[
a = c_1 \frac{\partial \xi_1}{\partial x_1} \xi_1 + c_1 \frac{\partial \xi_1}{\partial x_2} \xi_2 + c_2 \frac{\partial \eta_1}{\partial x_1} \eta_2 + c_2 \frac{\partial \eta_2}{\partial x_2} \eta_1 + 2 g_{12} \Gamma^1_{12} + g_{11} \Gamma^1_{11} + g_{22} \Gamma^1_{22}
\]

\[
b = c_1 \frac{\partial \xi_2}{\partial x_1} \xi_1 + c_1 \frac{\partial \xi_2}{\partial x_2} \xi_2 + c_2 \frac{\partial \eta_2}{\partial x_1} \eta_1 + c_2 \frac{\partial \eta_2}{\partial x_2} \eta_1 + 2 g_{12} \Gamma^2_{12} + g_{11} \Gamma^2_{11} + g_{22} \Gamma^2_{22}
\]

Let \(\tilde{f} = f e_1 \in \Gamma(E)\). Then, \(H\) given by \(H(\tilde{f}) = \Delta(f) e_1\) is a generalized Laplacian on \(E\).
Proposition

Let \((X, g)\) be a Riemannian manifold of dim 2, with

\[
g = \frac{1}{c_1 c_2 (\xi_1 \eta_2 - \eta_1 \xi_2)^2} \begin{pmatrix}
c_1 \xi_2^2 + c_2 \eta_2^2 & -(c_1 \xi_1 \xi_2 + c_2 \eta_1 \eta_2) \\
-(c_1 \xi_1 \xi_2 + c_2 \eta_1 \eta_2) & c_1 \xi_1^2 + c_2 \eta_1^2
\end{pmatrix}
\]

in a local coordinates system \((x_1, x_2)\).

Let \(E\) be a vector bundle of rank 1 over \(X\), of global frame \(e_1\), equipped with a connection \(\nabla^E\) defined by \(\nabla^E_{\partial_{x_1}} e_1 = \gamma_1 e_1\) et \(\nabla^E_{\partial_{x_2}} e_1 = \gamma_2 e_1\) where

\[
\gamma_1 = 0.5(g_{11} a + g_{12} b) \quad \gamma_2 = 0.5(g_{12} a + g_{22} b)
\]

and

\[
a = c_1 \frac{\partial \xi_1}{\partial x_1} \xi_1 + c_1 \frac{\partial \xi_1}{\partial x_2} \xi_2 + c_2 \frac{\partial \eta_1}{\partial x_1} \eta_1 + c_2 \frac{\partial \eta_1}{\partial x_2} \eta_2 + 2g_{12} \Gamma_{12}^1 + g_{11} \Gamma_{11}^1 + g_{22} \Gamma_{22}^1
\]

\[
b = c_1 \frac{\partial \xi_2}{\partial x_1} \xi_1 + c_1 \frac{\partial \xi_2}{\partial x_2} \xi_2 + c_2 \frac{\partial \eta_2}{\partial x_1} \eta_1 + c_2 \frac{\partial \eta_2}{\partial x_2} \eta_2 + 2g_{12} \Gamma_{12}^2 + g_{11} \Gamma_{11}^2 + g_{22} \Gamma_{22}^2
\]

Let \(\tilde{f} = f e_1 \in \Gamma(E)\). Then, \(H\) given by \(H(\tilde{f}) = \Delta(f) e_1\) is a generalized Laplacian on \(E\).
Proposition

Let \((X, g)\) be a Riemannian manifold of dim 2, with

\[
g = \frac{1}{c_1 c_2(\xi_1 \eta_2 - \eta_1 \xi_2)^2} \begin{pmatrix}
 c_1 \xi_2^2 + c_2 \eta_2^2 & -(c_1 \xi_1 \xi_2 + c_2 \eta_1 \eta_2) \\
 -(c_1 \xi_1 \xi_2 + c_2 \eta_1 \eta_2) & c_1 \xi_1^2 + c_2 \eta_1^2
\end{pmatrix}
\]

in a local coordinates system \((x_1, x_2)\).

Let \(E\) be a vector bundle of rank 1 over \(X\), of global frame \(e_1\), equipped with a connection \(\nabla^E\) defined by \(\nabla^E_{\partial x_1} e_1 = \gamma_1 e_1\) and \(\nabla^E_{\partial x_2} e_1 = \gamma_2 e_1\) where

\[
\gamma_1 = 0.5(g_{11} a + g_{12} b) \quad \gamma_2 = 0.5(g_{12} a + g_{22} b)
\]

and

\[
a = c_1 \frac{\partial}{\partial x_1} \xi_1 + c_1 \frac{\partial}{\partial x_2} \xi_2 + c_2 \frac{\partial}{\partial x_1} \eta_1 + c_2 \frac{\partial}{\partial x_2} \eta_2 + 2g^{12} \Gamma_2^{12} + g^{11} \Gamma_2^{11} + g^{22} \Gamma_2^{22}
\]

\[
b = c_1 \frac{\partial}{\partial x_1} \xi_2 + c_1 \frac{\partial}{\partial x_2} \xi_2 + c_2 \frac{\partial}{\partial x_1} \eta_1 + c_2 \frac{\partial}{\partial x_2} \eta_2 + 2g^{12} \Gamma_1^{12} + g^{11} \Gamma_1^{11} + g^{22} \Gamma_1^{22}
\]

Let \(\tilde{f} = f e_1 \in \Gamma(E)\). Then, \(H\) given by \(H(\tilde{f}) = \Delta(f) e_1\) is a generalized Laplacian on \(E\).
Proposition

Let $\gamma(t) = (\gamma_1(t), \gamma_2(t))$ be a C^1 curve in X such that $\gamma(0) = y$, and $Y_0 = Y_0 e_1(y) \in E_y$. The parallel transport Y of the vector Y_0 along γ is defined by

$$Y(t) = Y_0 \exp \left(-\int_0^t \dot{\gamma}_1(s) \gamma_1(\gamma(s)) + \dot{\gamma}_2(s) \gamma_2(\gamma(s)) \ ds\right) e_1(\gamma(t))$$

Proof: The parallel transport of Y_0 along γ is the solution $Y(t) = Y(t) e_1(\gamma(t))$ of the differential equation

$$\begin{cases} \nabla^E_{\dot{\gamma}} Y(t) = 0 \\ Y(0) = Y_0 \end{cases}$$
Assume that functions c_1, c_2 and components $\xi_1, \xi_2, \eta_1, \eta_2$ are constant on a neighborhood D of $x \in X$. Then

$$H(\tilde{f})(x) = \text{Trace}(T(x)\text{Hess}(x))e_1$$

where $T(x) = c_1(x)\xi(x)\xi(x)^T + c_2(x)\eta(x)\eta(x)^T$, and Hess hessian matrix of f at x in the usual coordinates system.

Consequences: Symbols Γ^k_{ij} et Υ_i vanish on D, and the kernel $K^0_t(x, y, H)$ is given on $D \times D$ by

$$(1/4\pi t)e^{-g((x_1-y_1,x_2-y_2),(x_1-y_1,x_2-y_2))/4t}Id(x, y)$$

where $Id(x, y) : E_y \rightarrow E_x$ is the 'Identity' map.

\implies Oriented Gaussian kernel [Tschumperlé et al.]
Assume that functions c_1, c_2 and components $\xi_1, \xi_2, \eta_1, \eta_2$ are constant on a neighborhood D of $x \in X$. Then

$$H(\tilde{f})(x) = \text{Trace}(T(x)\text{Hess}(x))e_1$$

where $T(x) = c_1(x)\xi(x)\xi(x)^T + c_2(x)\eta(x)\eta(x)^T$, and Hess hessian matrix of f at x in the usual coordinates system.

Consequences: Symbols Γ^k_{ij} et Υ_i vanish on D, and the kernel $K_t^0(x, y, H)$ is given on $D \times D$ by

$$(1/4\pi t)e^{-g((x_1-y_1, x_2-y_2), (x_1-y_1, x_2-y_2))/4t} \text{Id}(x, y)$$

where $\text{Id}(x, y) : E_y \to E_x$ is the 'Identity' map.

\implies Oriented Gaussian kernel [Tschumperlé et al.]
Example: Color image regularization

Original image
Scalar/Beltrami Laplacian kernel
Oriented Gaussian kernel
Laplacian wrt mobile frames kernel
Heat Equations on Vector Bundles: Application to Regularization

- Heat equation associated to the scalar/Beltrami operator on $C^\infty(X)$:
 \Rightarrow Regularize functions on a Riemannian manifold.
 \Rightarrow Regularize nD images.

- Heat equation associated to the Hodge operator on $\text{Cl}(X, g)$:
 \Rightarrow Regularize functions, tangent vector fields and orthonormal frame fields on a Riemannian manifold.
 \Rightarrow Regularize nD images and related fields: vector fields and orientation fields.
Heat Equations on Vector Bundles: Application to Regularization

- Heat equation associated to the scalar/Beltrami operator on $C^\infty(X)$:
 \Rightarrow Regularize functions on a Riemannian manifold.
 \Rightarrow Regularize nD images.

- Heat equation associated to the Hodge operator on $Cl(X, g)$:
 \Rightarrow Regularize functions, tangent vector fields and orthonormal frame fields on a Riemannian manifold.
 \Rightarrow Regularize nD images and related fields: vector fields and orientation fields.
Application 1: Vector fields regularization

Figure: Clifford-Hodge flow on tangent vector fields
Application 1: Vector fields regularization

Figure: Clifford-Hodge flow on tangent vector fields
Application 2: Orientation fields regularization

Figure: Clifford-Hodge flow on orthonormal frame fields
Summary/Future works

PDEs in image regularization as heat equations on vector bundles:
- Short time Beltrami kernel.
- Extension of the oriented Gaussian kernel diffusion.
- Extension of the Short time Beltrami kernel diffusion to tangent vector fields and orthonormal frame fields.

- Better continuous/discrete approximations.
- Extension to base manifolds of dimension 3 → Extension to videos.