POISSON PROCESSES

Cyril Labbé
Stefano Olla
Université Paris-Dauphine
olla@ceremade.dauphine.fr
www.ceremade.dauphine.fr/olla/

January 6, 2023


https://www.ceremade.dauphine.fr/~olla/




Contents

Counting processes and the Poisson process

1.1 Counting ProCeSSES . . . v v v v v v v e v e e e e e e e e e e e e
1.2 Some classical probability distributions . . . . . . .. ... ... L ..
1.3 The Poisson process . . . . . . . . . . o o i e e
1.4 A reminder on conditional expectations . . . . . . . . . ... ...
1.5 Some properties of the Poissonprocess . . . . . . .. . .. ... L oL
1.6 The mixed Poisson process . . . . . . . . . . . o v it e
1.7 The compound Poisson process . . . . . . . . . . . . .ot e
1.8 ANEXerCiSe . . . . . . . i i e e e e e

Continuous-time Markov processes with countable state-space

2.1 The Markov property: from discrete-time to continuous-time processes . . . . . . . . . .
2.2 Theembedded Markovchain . . . . . . ... ... ... ... .. .. .. .. ... ...
2.3 Construction of Markov processes . . . . . . . . . . . ...
2.4 Semigroup and Kolmogorov equations . . . . . . . . . .. ..o
2.5 Recurrence and transience of Markov processes . . . . . .. ... ... L.
2.6 Invariant measure . . . . . . . . . ... e e e e e e e e e e e e e
2.7 General remarks on Markov processes . . . . . . . .. ...

Some examples of Markov processes
3.1 Queueingtheory. . . . . . . . . . e e
3.2 Branching processes . . . . . . . . . e e

Introduction to Renewal Theory

4.1 Renewal ProCesSes . . . . . v v v i e e e e e e e e e e e e e e
4.2 Areminder on convolution of measures . . . . .. ... ... Lo
43 Therenewalequation . . . . . . . . . . . .. ...
4.4 Blackwell’s Renewal Theorem and Key Renewal Theorem . . . .. ... ... ... ..
4.5 Theexponential case . . . . . . . . . . ...

11
13
15
16
19
22
24

27
27
31
32
35
40
42
46

47
47
51






Introduction

In this course, we will introduce stochastic processes in continuous time. They form a very rich class of
processes that arise in many different situations. The aim of this course is to introduce a few important
continuous-time processes (counting processes, Poisson processes, compound Poisson processes, jump
Markov processes) . We will start with counting processes, that are the simplest example of continuous-
time processes: they are processes that are non-decreasing, right continuous with left limits, and take
values in N. The most important such process is the Poisson process that we will study thoroughly in
Chapter 1. In Chapter 2 we will introduce elements of the theory of Markov processes on a countable
state-space. Chapter 3 we will introduce queueing theory and branching processes. Finally, in Chapter 4
we will move to renewal processes and renewal theory, which is used in risk theory.

Continuous-time stochastic proc.

Counting proc.

Markov proc.

Renewal proc. Poisson proc.

Figure 1: Continuous-time stochastic processes include Counting processes and Markov processes.
Among Counting processes, one finds the class of Renewal processes. The intersection of all these
classes of processes consists of Poisson processes.

We conclude this introduction with general definitions on continuous-time stochastic processes. Let
(Q, F,P) be a probability space.

A random variable Y is a measurable map from (2, F) into some measurable space (E, ). Most
of the time, the measurable space is (R, B(R)), that is, the set of real values endowed with its Borel
sigma-field, or (N, P(N)) the set of integers endowed with its natural sigma-field. From time to time
(and implicitly), the measurable space is taken to be R U {+o0} endowed with its natural sigma-field.
The law of a random variable Y is the pushforward (=mesure image) of P through the map Y: itis a



probability measure y on the space (E, £) defined by

for all Ain £. Recallthat Y ~1(A) ={w e Q:Y(w) € A}.

At the first semester, were introduced stochastic processes in discrete time, that is, collections of
real-valued random variables indexed by the set N. For many different reasons, it is natural to deal with
stochastic processes in continuous time.

Definition 0.0.1. A stochastic process X = (X,t > 0) is a collection of real-valued random variables
indexed by the set of nonnegative real numbers [0, 00).

In discrete time, the trajectories of the process, that is the maps n — X,,(w) for w € €, are random
sequences. In continuous time, they become “random functions” ¢ — X;(w) and one can ask about the
regularity of these functions.

Fix w € Q. The map t — X;(w) is said to be right continuous if for all ¢ > 0, Xy(w) =
limg g X¢4s(w). Similarly, it is said to be left continuous if for all ¢ > 0, X;(w) = limgjo X;—s(w).
It is said to admit left limits if for all ¢ > 0, lim, o X;_(w) exists: in that case, we denote by X;_(w)
the left limit at ¢.

Definition 0.0.2 (Continuity). We say that a stochastic process (X;,t € Ry) is almost surely right
continuous, respectively left continuous, if the event

{weQ:Vte Ry, Xi(w) = hJI}’)lXtJ,_S(W)} ,
respectively the event

{weQ:VteRN\{0}, Xi(w) = lsiﬁ)lXt_s(w)} )

belongs to F and has probability 1.
We say that (X, t € Ry) is almost surely continuous if it is right and left continuous.

Definition 0.0.3 (Cadlag). We say that (X;,t € Ry) admits almost surely left limits if
{weQ:Vt>0, liﬁ)l Xi—s(w) exists}
S.
belongs to F and has probability 1.
We say that (X;,t € Ry) is almost surely cadlag if it is right continuous and if it admits left limits.
In English, non-decreasing means "croissant” while increasing means "strictement croissant”.

Definition 0.0.4 (Non-decreasing). We say that (Xy,t € Ry.) is almost surely non-decreasing if the event
{we:Vt>s>0,Xi(w) > Xs(w)},
belongs to F and has probability 1.

Frequently, we will simply write "continuous” or "cadlag" for "almost surely continuous" or "almost
surely cadlag".



Remark 0.0.5. The measurability of the events above is not granted by the mere fact that (X;,t € Ry)
is a stochastic process. Indeed, these events depend on uncountably many random variables Xy, t € R..

Recall that
]P)(OJ S Q:Vt S RJr,Xt(CU) = hﬂ)lXt+s(oJ)) =1 s
S

is equivalent to saying that P-almost surely

YVt e R+,Xt = tht—i—S .
sJ0

P-almost surely is often abbreviated P-a.s.






Chapter 1

Counting processes and the Poisson
process

1.1 Counting processes
Definition 1.1.1. A process N = (N, t > 0) is a counting process if P-a.s.:
* Ng =0,
* N is non-decreasing and right continuous,
* Ny e NU{+oo} forallt > 0.
The jump times of a counting process N are defined as the sequence of random variables
T, =inf{t>0: Ny>n}, n>0,
with the convention inf () = +o00. Notice that Ty = 0 and (7},, n > 0) is non-decreasing, P-a.s.

Example 1.1.2. The total number of claims to an insurance company can be modelled by a counting
process (Ny,t > 0). The r.v. T,, is the time of the n-th claim.

Lemma 1.1.3. We have P-a.s.

Nt:#{kzliTkgt}:Zl{Tkgt}, t>0.
k>1

Proof. By definition, N takes values in NU {+o0} and is non-decreasing. Consequently, P-a.s. we have
forall ¢t > O and all n > O:

Ne=nen<Ny<n+leT, <t<Thypne#k>1:T,<t}=n,
thus yielding the first identity. The second identity is immediate. O

Proposition 1.1.4. The law of a counting process N is completely characterised by the law of its se-
quence of jump times (T,)pn>1.



Remark 1.1.5. Before talking about the notion of law of a stochastic process, we need to specify the
measurable space it lives in: we consider the product space R endowed with the product sigma-
algebra. The law of a stochastic process X is the pushforward of P through the map w — (X¢(w),t €
[0, 00)).

Proof. The law of N is characterised by the law of its marginals (N;,,..., Ny, ) forall 0 < t; <t <
...<tpandalln > 1. Forany k1 < ko < ... < ky,, the events

{N¢, = k1,y..., Ny, = kn} s

n

and

{Tkl S tl < Tk:1+1)Tk2 S t2 < Tkz-{—lv cee )Tkn S tn < Tkzn—i-l} )
coincide up to P-negligible sets. As a consequence, the law of (IVy,, . .., Ny, ) is completely characterised
by the law of the sequence (7} );>1, thus concluding the proof. U

Definition 1.1.6. We say that N is a standard counting process if it is a counting process and
1. Ny = ooast — oo, P-a.s.,
2. Ny — N, €{0,1} forallt > 0, P-a.s.,
3. Ny <ooforallt >0, P-a.s.
Recall that increasing means "strictement croissant".
Proposition 1.1.7. Let N be a counting process and (T,)n>0 its jump times. N is standard if and only if
(a) T, < oo foralln > 0, P-a.s.,
(b) (Ty)n>0 is increasing, P-a.s.,
(c) T,, — o0 asn — oo, P-a.s.
Proof. We prove the equivalence (c) < 3. Almost surely we have

{T,, > o0} ={Vt>0,3In, e N: T),, >t}
:{VtZO,HHtENiNt<nt}
:{thO,Nt<OO}

We turn to the equivalence (a) < 1. Almost surely we have
{Nt = 00} ={3ng:Vt >0, N <ng} ={3ng : Ty, =0} ={¥n>0:T, < o0}°.

We now prove that (b) implies 2. If there exists ¢ > 0 such that Ny — Ny > 2, then Ty, = T'n,—1.
Consequently P-a.s.

{(T)n>o is increasing } C {Vt > 0: N, — N, € {0,1}}.

Finally we prove that 2 implies (b). If there exists n > 0 such that 7, = T},11, then N;,, = N, >
n+ 1. If n = 0, this implies that Ny > 1 but this holds with null probability since NV is a counting
process. If n > 1, we find Ny — N;_ > 2 for ¢t =T, but this holds with null probability by 2. O

10



Definition 1.1.8 (Stationarity and independence). A counting process N has independent increments if
foralln > landall0 =ty < t; < ... < tn, (Ny, — Ny, ,,i = 1,...,n) is a vector of independent
random variables.

A counting process N has stationary increments if for all 0 < s < t, Ny — Ng and Ny_¢ have the same
law.

Definition 1.1.9. Given a counting process N and its sequence of jump times (T}, )n>0, we call
o =Tp—Th_1, n>1,

the inter-arrival times of N.

Notice that (d,,),>1 is not necessarily a sequence of i.i.d. r.v.

Definition 1.1.10 (Renewal process). Let (0,,,n > 1) be a sequence of i.i.d. random variables taking
values in (0,00). Set To = 0 and T), = 61 + ... + Oy, for all n > 0. Then, (T),)n>0 is called a renewal
process.

1.2 Some classical probability distributions

Recall that the exponential distribution () with parameter A > 0 is the probability distribution on
[0, 00) associated to the density Ae **1,~. If X has law £()), then

1 1
Its characteristic function is given by:
E[e"X] = 1it , teR
1-=%)

The exponential distribution is memoryless: the law of X — ¢ given X > ¢ is £(\). More precisely,
we have the following.

Lemma 1.2.1. Let X be distributed as E(N). Forallt,s > 0:
PX>t+s|X>t)=P(X >s).

Conversely, let X be a (strictly) positive random variable. If for all s,t > 0 we have
PX >t+s|X>t)=P(X >s),

then there exists A > 0 such that X has law E(X).

Proof. The first part of the proof comes from a simple computation based on the identity P(X > t) =
e M forallt > 0:

PIX>t+s5X>t) PX>t+s) (s
PX>t+s|X>t)= FX > 1) = PX > 1) = e AN _pX > )

11



We turn to the converse property. First assume that P(X > ¢) > Oforall ¢t > O and set p(t) = P(X > t).
We have for all t,s > 0

Pt+s)=PX>t+8)=P(X >t+s; X>t)=P(X >t+s|X >t)P(X > )
=P(X > s)P(X > t) = o(t)p(s) .

Consequently, a simple recursion shows that for all k, p € N* we have

o(k) =o(1)F, (k) =(k/p)’

and therefore
o(k/p) = (1)

Notice that 0 < ¢(1) < 1 so that we can set A\ = —log (1) > 0. We have shown that ¢(t) = e~
for all t € Q7 . From the right continuity of distribution functions, we deduce that ¢ — P(X > t) =
1 — P(X < t) is right continuous itself. The density of Q* in R ensures that () = e~*! holds for
all £ > 0. To show that X is actually strictly positive, it suffices to observe that, if it were equal to O then
@(t) = 1forall ¢t > 0 and so P(X = oo) = 1 thus raising a contradiction.

Let us now show that P(X > ¢) > 0 for all ¢ > 0. Since X is a positive random variable, there exists
€ > 0 such that P(X > €) > 0. Thus, P(X > 2¢) = P(X > 2¢| X > e)P(X > ¢) = P(X > €)% A
simple recursion yields P(X > ne) = P(X > ¢)” for all n € N. Consequently, P(X > ¢) > 0 for all
t>0. ]

Lemma 1.2.2. Let X,...,X,, be n independent random variables with law E(X\;), A; > 0. If we set
M, = min(Xy,...,X,,) then
M, ™ EM+...4+\) .

Proof. Forallt > 0, using the independence of the X;’s we get:

n n
P(M, > t) = PN {X; > t}) = [[P(X; > ) = [Je Mt = em 2 Mt
=1 =1

thus identifying completely the law of M,,. O
The Gamma distribution I'(«, 5) with parameter v, 5 > 0 is the probability distribution on [0, c0)

associated to the density
zo 1 7@1 e P71

T (a) >0 >
where I'(o) = [;° 2* Le "dx. Recall that I'(n) = (n — 1)! for all n € N*. If X has law I'(, 3) then

«@ «

EX = 5 VX = 7
Its characteristic function is given by:
E[e”X]:%, teR.
(1—%)
It turns out that the distribution I'(1, \) coincides with the distribution £(\). Furthermore, if X, ..., X,

are independent r.v. with distribution I'(ay, 8) for a1, ..., a, > 0, then their sum X; + ... + X, has

law I'(aq + ... + an, B).

12



A random variable X has a Poisson distribution P (y) with parameter p > 0 if for all n € N, we
have P(X = n) = e #£+. Then,

n:

EX=up, VX=p.

Its characteristic function is given by:

E[e?X] = A1) , tER.

1.3 The Poisson process

Definition 1.3.1 (First definition of the Poisson process). Let A > 0. A Poisson process with intensity A
is a counting process with stationary and independent increments such that

(law)

Ny —Ng =P(A(t—s)), Vt>s>0.

The existence of this process will be proven later on. Let us check that this definition characterises
the law of a unique process. To that end, it suffices to show that the definition characterises completely
the law of the vector (N¢,,..., Ny, ) forany 0 = tg < t; < ... < t, and any n > 1. But this vector
is a linear transformation of the vector (Ny,, Ny, — Ny, ..., Ny, — Ng,, ) which is distributed as n
independent Poisson random variables with parameters ¢; — ¢;_1.

Notice that if N is a Poisson process, then Ny = 0 a.s. and therefore N; =’ P(At) for all ¢t > 0.
Furthermore, we have

n

B[N, — Ny = A(t—s), V[N, — N =A(t—s).

Theorem 1. A counting process N is a Poisson process of intensity X\ if and only if its sequence of
inter-arrival times (0p,)p>1 is i.i.d. with law E(N).

This result yields a second, equivalent definition of the Poisson process.

Definition 1.3.2 (Second definition of the Poisson process). Let A > 0. A Poisson process with intensity
A is a counting process whose sequence of inter-arrival times is i.i.d. with law E(N).

Then, the existence of the Poisson process is immediate as it can be constructed from a sequence of
i.i.d. random variables with law £(\). This second definition ensures that the law of T}, is I'(n, A) since
this is the sum of n independent £(\) r.v.

Proof. By Proposition 1.1.4, the law of a counting process is completely characterised by the law of its
sequence of jump times. Consequently, it suffices to check that the law of (77, ...,T},) is the same in
both cases.

Case 1: The law of (T4, ..., T,) when N is a Poisson process. Suppose that N is a Poisson process
of intensity A\. Fixn > 1and 0 < s; < ... < s,. For any hy,...,h, > O such that s; + h; < s9 <
So 4+ he < ... < sp, < Sy + h, we use the independence and stationarity of the increments of N to

13



derive the following identities:

IP’( iy {1 € (84,8 + hz]})

=P(Ns, =0, Ng,4n, — Nsy =1,Ng, — Ny, 1, =0, ...
s N5, = Noy 1 thn, = 0, Ny, g, — Ny, > 1)

=P(Ns, = 0)P(Ngy4n, — Ns, = 1)P(Ng, — Ny, =0) ...
P(Ns, = No,_y+h,, = 0)P(Ns,1n, — Ns, > 1)

n—1
=P(Ne, = 0)P(Ng,1n, — Now = 1) [[ P(Neyn, = Ney = )P(Ns,, — Ny, = 0)
i=1
n—1 z
— 6—>\31(1 _ e—Ahn) H G_AhiAhie—)\(si+l_si_hi) .
i=1

This computation suggests to define for all 0 < s; < ... < sp:

PNy {T; € (si, i + hil})

fnlor,-- -y 8m) = hl,.l.i.%w T, b = Nl n
and to set this function to O for all other values of (s1, ..., sy). In other words
Ju(s1580) = Lo < csp e
Let us show recursively that
n
fn(Sl,--.,sn)Hdsi =1.
R" i=1

For any n > 2, we have:

n—1

n
(81,0, 8n) H ds; = / A lemsn—1 / e~ (sn—sn-1) g H ds;
i=1 0<81<...<Sn—1 sn€(Sn—1,00) i1
n—1
n—1_—sn_
:/ AT e ot H ds;
0<81<...<Sn—1 i—1

n—1
:/ . fnfl(s].)"-ysnfl)l_‘[dsl‘.
R"™ Py

Consequently, a simple recursion shows that this last expression equals

/ e Mds = 1.
(0,00)

Hence f, is the density of a probability distribution on R" supported in {0 < s; < ... < s, }. Moreover,
for all s;, h; as above we have

R"

P(Ny {T; € (5,51 + il}) = /

TT7 1 (si,si+hs)

fn(tla e 7tn) Hdtl .
i=1

14



Consequently, (71, ...,T),) admits a density on R" given by the function f,.

Case 2: The law of (T4, ...,T,) when N is built from a sequence of i.i.d. £(\). Assume that (6, ),>1 is
a sequence of i.i.d. r.v. with law £(X\) and set T,, = ) " , ¢; for all n > 1. Observe that §; = T; — T;_1
for every ¢ > 1.

Fix n > 1. If we denote by § the vector (d1,...,0,) and similarly, we denote by T the vector
(Th,...,T,) then § = AT where

1 0 0
-1 1 0 O
0 -1 0 O
A=
: : 0 O
0 o ... 1 o0
0 0o ... =11

A is an invertible matrix so that the map ¢ — At is a diffeomorphism from R" into itself, and its
determinant is equal to 1. Let ¢ : R — R" be a bounded measurable map, and denote by g(s1, ..., sp)
the density of the vector ¢:

n
s
In (8155 8n) = H/\e *1s,50 -
=1

By the change-of-variable formula and the fact that > " | (At); = t,,, we find

E[o(Th, ..., T)] = Elp(A~16)] :/

seR™

P(AT ) gu(s1, - 50) [ [ ds:
=1

/ o (£)gn(At)|det A| T dt:
teR™

=1

n
/ . p(t)A" e N H o<t <..<t,}di
teR paley

thus identifying the density of (71, ...,T),) as being given by f,. O

1.4 A reminder on conditional expectations

Let B be a sigma-field included in . Let X be a real-valued random variable in L!(2, P).

Definition 1.4.1. The conditional expectation E[X|B] of X given B is the unique (up to almost sure
equivalence) B-measurable random variable that satisfies for all B € B

E[X15] = E[E[X[B]15] .

Theorem 2. Let B be a sigma-field, and let X,Y be two real valued random variables, such that X is
B-measurable and Y is independent from B. Then for any bounded measurable map f : R> — R, we
have the following almost sure identity:

E[f(X,Y)|B] = F(X),

where

F(x) =E[f(z,Y)], z€R.

15



Proof. Fix B € B. We aim at showing that
E[f(X,Y)1p] = E[F(X)15].

It suffices to show that it holds true for all maps f of the form f = 1, with A € B(R?). Indeed, by
linearity of this identity, we then deduce that it holds true for all linear combination of such indicators,
and by the Dominated Convergence Theorem for any map f which is non-negative. The general case is
then obtained by splitting f into its positive and negative parts.

Let us introduce the class M := {A € B(R?) : E[14(X,Y)1p] = E[Fa(X)1p]} where Fa(z) =
E[14(z,Y)]. If A C A’ are in M, then by linearity A"\ A is in M as well. Furthermore, M is stable
under increasing limit. Finally, {2 belongs to M since Fo = 1. Hence M is a monotone class that
contains {2. Now if we let C be the class of all product sets A; x Ay with A1, Ay € B(R), then C is stable
under finite intersection and belongs to M. By the Monotone Class Theorem, we deduce that o(C) also
belongs to M: since o(C) = B(R?) this concludes the proof. O

1.5 Some properties of the Poisson process
From now on, N is a Poisson process of intensity A > 0.

Proposition 1.5.1 (Law of large numbers). As t — oo, we have the following almost sure convergence:

N,
Tt—v\.

Proof. For any n > 1, observe that N, = > " | (N; — N;_1). Since the increments of a Poisson
process are stationary and independents, we can apply the strong law of large numbers to the sequence
(N; — N;—1);>1 and get the following almost sure convergence as n — 0o:

Ny,
7 — E[Nl — N()] = E[Nl] =A.

Let us now write n; = |t] for the integer part of ¢ > 0. Since N has non-decreasing paths, we have for
allt > 1:
nt Nnt o Nnt < Nt < an,-‘rl o nt+1Nnt+1

ng+1 ng n+1 7~ ¢t 7 N nt—i—l'

Observe that n;/(ny + 1) — 1 as t — oo. Consequently, the almost sure convergence N,,/n — A
ensures that the leftmost and rightmost terms of the previous inequalities converge to A almost surely,
thus yielding the asserted result. O

We introduce the filtration generated by the process V:
Fi:=0(Ngy,s<t), t>0.
Lemma 1.5.2. Forallt,s > 0, the random variable Ny s — Ny is independent of F.

Proof. Let M be the collection of all events I/ € F; such that E is independent from Ny g — Ng. It is
simple to check that 2 € M. Furthermore, if E C E’ are in M, then for all f : R — R measurable and

16



bounded we have

E[1pngf(Netrs — Ni)l

E[(1p — 1) f(Niys — Ni)]

L f(Negs = Ni)] = E[1pf(Niws — Ni)
NE[f(Nis — Ni)] = P(E)E[f (Nits — Np)]

E\E)E[f(Ni+s — Ni)]

E
P
P

[
[
(E
(

so that E'\ E is in M as well. Similarly, one can check that if F,, is an increasing sequence of events in
M, then U, E, is also in M. Consequently, M is a monotone class that contains €2. Let us introduce C
as the collection of all events of the form

{Ns, € A1,...,N;, € Ap},

for0 < sy <...< s, <t, Aq,..., A, some Borel sets of R and n > 1. Notice that C is stable under
finite intersections. From the independence of the increments of a Poisson process, we deduce that C is
a subset of M. The Monotone Class Theorem yields that ¢(C) C M. By definition, F; coincides with
o (C) so this concludes the proof. O

Proposition 1.5.3. If N, M are two independent Poisson processes of intensity A, j then their sum is a
Poisson process of intensity A + .

Proof. Left as an exercise. O

Our next proposition describes the law of the jump times (77, ..., T},) conditionally given N; = n.
In order to state the result, we need to introduce the following.

Definition 1.5.4 (Order statistics). Let (X;,i = 1,...,n) be a collection of real valued random variables
which are almost surely pairwise distinct. We define Xy := inf{X;,i € {1,...,n}} and recursively

X(z) = inf{Xj : Xj > X(z—l)} .
The random variables (X ;),i = 1,...,n) are called the order statistics of (X;,i = 1,...,n).

Notice that this definition makes sense almost surely since the r.v. (X;,7 = 1,...,n) are pairwise
distinct with probability one. Notice that if the X; are independent and have a density, then they are
pairwise distinct with probability one. We now state a simple property of order statistics.

Lemma 1.5.5. If (X;,i = 1,...,n) is a sequence of i.i.d., real valued r.v. with common density f, then
the vector (X(1y,- -, X(n)) admzts the following density:

n
fn(yl’ cee )yn) =n! Hf(yi)1y1<...<yn .
=1

Proof. Let ¥, be the set of all permutations of {1,...,n}. We have for every measurable and bounded
map g : R®" - R

Elg(Xay, - X))l = Y E[Q(Xa(l),--~,Xa(n))1{X0(1)<...<Xa(n)}] :
oEX,

17



We define D := {z € R" : 21 < ... < z,}. For every permutation o of {1,...,n}, we set
Dy :={x € R" : 251) < ... < Zg(n)}. The mapping 0o : & € Dy = (Tp(1)s -+ -5 To(n)) € Disa
diffeomorphism. Consequently, by the change of variables formula we get

E[Q(Xa(l)a-~-7Xa(n))1{X0(1)<...<X0(n)}} = /xeD 9oy s o)) f(21) - f@n)day ... day

=/ 9,y Je | Fn) - f(yn)dys - - dyn
yeD

Since ‘J w0 ’ = 1, this last expression does not depend on o. Since ¥,, contains n! elements, we deduce
that

Elg(X@), -, X))l =n! / . 9w, yn) fy1) - Flyn)dyr - - - dyn
ye
thus identifying uniquely the density of the distribution of (X(y),..., X(;)). O
As usual, we let NV be a Poisson process of intensity A and we denote by 77,75, . .. its jump times.

Theorem 3. Fixt > 0 andn € N. Let U;,i = 1...n be a sequence of i.i.d. uniform r.v. on [0,t]. Then,
the law of (T1,...,T,) given {Ny = n} coincides with the law of (U, . .., Uy)), the order statistics
of (Ui, ..., Uy).

Proof. Let f be a measurable and bounded map from R" into R. We have

E[f(Tb s 7Tn)1Nz=n]

= B[ (61,01 + 02,0 01+ 4 Bl et tsui) |
n+1

n+1 —As;
/ 817 oy S1 + L) SH)A 1{31+..A+sn§t<sl+...+sn+1} H € sti
S1,.- 757L+1>0 i=1
n
— s, AN(t—81—89—...—
= / f(s1,...,81 +"'5n)1{s1+...+sn§t}He Sidsi\"e (t—s1—s2 sn)
S1yeees sn>0 i=1

n
= / f(sl, R e el Sn)1{51+...+sn§t} H dSi/\ne_)‘t
814e00y8n >0

i=1

n
= / F1, - tn) Ly <oz <tn<t} H dt;\"e M
t1,05tn >0

i=1
Since in addition P(N; = n) = e~ *(At)"/n! we obtain

Elf(Ty,...,Tn) | Ny = n]

E[f(Ti,- .., Tn)1n,—n)
B P(N; = n)

= Tl,' / f(tl, e 7tn)1{O<t1<...<tngt}t_ndt1 e dtn
t1,e.stn >0

We deduce that the law of (77, . .., T},) given { N; = n} admits the following density: n!1¢os, < <t <yt
By Lemma 1.5.5, we recognise the density of the order statistics of n i.i.d. uniform r.v. on [0, ¢]. O

18



1.6 The mixed Poisson process

Definition 1.6.1. Let N be a Poisson process of intensity 1, and let © be a positive random variable,
independent of N. The process .
Ni:=Net, t>0,

is called a mixed Poisson process with random intensity ©.

Remark 1.6.2. It is not completely immediate to check that the marginals of N are well-defined random
variables.

To make computations on the law of a mixed Poisson process, one can condition first on its random
intensity. Indeed, conditionally given ©, NN is a Poisson process of intensity © as the following result
shows.

Proposition 1.6.3. Conditionally given ©, N has the law of a Poisson process of intensity ©.

Proof. First of all, t — N; is an N-valued, non-decreasing, right-continuous process starting from 0: it
is therefore a counting process. It makes jumps of size 1 a.s. and its inter-arrival times ¢,, satisfy:

5 = On /O, n>1.
Consequently, for all bounded measurable maps fi, ..., f, we have by Theorem 2

E[f1(01) - fa(6n) | ©] = E[f1(61/©) ... fa(6./0) | O] = F(8),

where

Since for all z > 0, (01/, ..., 0,/z) has the law of n independent £(z) r.v., we deduce that the condi-
tional law of (d1,...,d,) given O is the law of n independent £(O) r.v. This yields the statement of the
proposition. 0

Lemma 1.6.4. Let N be a mixed Poisson process with random intensity ©. For all t > 0, we have
E[Ny] = E[O]t, Var [Ny =E[O]t + Var [O]t*.
Proof. Since N, conditionally given ©, is a Poisson r.v. with parameter O¢, we get
E[N;] = E[E[N, | 6] = E[01],

as well as

E[N?] = E[E[N? | ©]] = E[(©t)2 + Ot] .
Consequently,

Var [N;] = E[N?] — E[N;]?> = E[(©1)? + ©t] — E[Ot]* = Var [0]t* + E[O]¢ .

Proposition 1.6.5. Let N be a mixed Poisson process with random intensity ©. Then:

(i) Ny does not follow a Poisson distribution, except if © is deterministic,
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(ii) N does not have independent increments, except if © is deterministic,
(iii) N has stationary increments.

Proof. Recall that the expectation and variance of a Poisson r.v. coincide. By the previous lemma, the
expectation and variance of /V; coincide if and only if Var © = (. But

VarO =0 = E[(© -EO) =020 -EO =0as.,

which is equivalent to saying that © is deterministic. Consequently, if © is not deterministic then N,
does not follow a Poisson distribution. On the other hand, if © is deterministic, then Nt is a Poisson
random variable with intensity ©. This proves (i).

For all £ > s > 0, we have

E[N;(N; — Ny)] = E[E[N;(N; — N;) | O] = E[0sO(t — 5)] = E[0?]s(t — 5) ,
while
E[N,]JE[N; — N,] = E[O)?s(t — s) .

Consequently, as soon as E[©?] # E[O]?, the random variables N, and N; — N are not independent so
that the increment of N are not independent. Notice that E[©?] # E[©]? is equivalent with Var © # 0,
which is itself equivalent with © is not deterministic. On the other hand, if © is deterministic, then N is
a Poisson process of intensity © and its increments are independent. This proves (ii).

To prove the stationarity, we observe that for all y € Rand all ¢ > s > 0 we have

E[e (M) = BE[VN N | 0] = BE[Y - | O] = Elev -]
This proves (iii). O]

Proposition 1.6.6. Fixt > Oandn € N. Let 0 < Ty < ...<T, < ... bethe Jjump times of a

mixed Poisson process N of random intensity ©. The law of (Tl, ..., T,,) conditionally given Ny = n
is independent of © and coincides with the law of (U, . .., Uy), the order statistics of (U, ..., Up),
taken to be n i.i.d. uniform r.v. over [0, t]

Proof. Recall that N, conditionally given ©, is a Poisson process of intensity ©. Similarly as in the
proof of Theorem 3, we find for every bounded and measurable function g : R — R:

E[g(f’l, .. ’Tn)l{fn<t<Tn+1} | @] = "t / e_Gt"“g(tl, e ytn)l{tngt<tn+1}dt1 coodtng
- 0<t1<...<tp41

= @nC_Qt/ g(t]_, ey t’n)l{tn<t}dtl e dtn
0<t1<...<tn -
(©1)" _or
=P(N, =n|O)E[gUpn),---,Uwn)] ;
where the equality before the last comes from Lemma 1.5.5 applied to (Uq, ..., U,).
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We now take h : R — R bounded measurable. We have

- = ~ ]E Tl,...,T h@ V. —n
Elg(Th, ..., Tu)h(©) | Ny = n] = l9( o ):( )) (Fi=n)]
 E[g (T1, - TR(ON 4, <oty
- IEl{ §t<Tn+1}]

[
E[h(© )E[Q( 1 )1{T <t<Tn +1}’ o]l
E[E[1 {Tn<t<Tn+1}\9]]

so that using the previous calculation, we get

(@t)" o—Ot
= il [ _Zi]@)]E[Q(U(l)w“>U(n))]

[@"e_eth( )]
E[One©1]

Taking h = 1, we deduce that

Elg(Th,....,Tn) [Ny =n] =E[g(Uqy, ..., U] »

and taking ¢ = 1 we find
E[O"e®th(0)]
E[©7e—91]

Therefore, for any g and h bounded and measurable, we have the identity

E[h(©)|N; =n] =

Elg(T, ..., To)h(©)| Ny = n] = Blg(Th, ..., T,) | Ny = n]E[A(O) | Ny = n],
which proves the statement of the proposition. 0

Corollary 1.6.7. Letn > 1land 0 < t; < ... < t,. The law of (Ntl, e ,Ntn) conditionally given
Ni, = m is independent of © and therefore coincides with the law of (Ny,, ..., N, ) conditionally
given Ny, = m, where N is a Poisson process of arbitrary intensity X > 0.

Proof. Forall0 < k; < ... <k, =m, we have

]P)(Ntl = k17--'7Ntn = kn’Ntn :m)
=P(Th, <kt <Tpyg1-- - Thy <to <. Tpyy Sty < Ty 11| Ny, =m) .

By the previous proposition, we know that the law of (Tl, . ,Tkn) conditionally given Ntn = kn
is independent of © and coincides with the same quantity for a Poisson process of arbitrary intensity
A > 0. Consequently, the last quantity equals

= ]P)(Tkl <t < Tk1+1 .. .Tk2 <ty <.. -Tkn,1 <th_1 < Tk:n71+1 ‘ Ntn = m)
:]P)(Ntl :klp---,Ntn:kn|Ntn:m)'
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1.7 The compound Poisson process

Definition 1.7.1. The process S; = Ef\;tl X, t > 0, is called a compound Poisson process if the
sequence (X;);>1 is i.i.d. with values in R, and N is a Poisson process independent of (X;)i>1.

As usual, we will denote by A > 0 the intensity of the Poisson process N.
Proposition 1.7.2. Let S be a compound Poisson process. Then:
(i) S is almost surely cadlag and has stationary and independent increments,

(ii) The distribution function of Sy satisfies for all x € R

P(S; <z) = ZIP’Nt—n (Xi+...+ X, <2,
n>0

(iii) If X is integrable, then
E[S:] = E[NJE[X] ,

and if furthermore X has a finite second moment, then
Var [Sy] = Var [N{|E[X]* + Var [X|E[Ny] .
(iv) Forallt > 0 and all ¢ € R such that E[e?X] < oo we have
E[e?®] = exp (A(E[eX] — 1)) .

Proof. To prove that S is almost surely cadlag, it suffices to use the fact that N is itself almost surely
cadlag so that almost surely for all ¢ > 0:
Niys

Nt
lsiﬁ)lst—i-s = 18%1 ; Xi= ZXi =5,

and for all ¢ > 0:

Ni_s Ni_
lim S S_hmZX ZXZ-:St,.
Let us show that .S has stationary and independent increments. Fix n > 1, and let ¢1,...,¢q, € R and

0=ty <t; <...<ty Denoteby ®x(q) = E[e¥] the characteristic function of the law of X. We
have

E[ei2’£=1 qk(Stk*Stkil):| |:H iqk Z] Nip_y+1 Xj:|

=1

[E[ﬁ qu] Ny 1+1Xj|NH .

k=1

o
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Since the random variables (X;);>1 are independent of N, their conditional law given N is the same: in
particular, they are i.i.d. Consequently, we have

[ [T = ]
k=1

= B[ [T ®x(ge)™s ]
k=1

Since the process IV has stationary and independent increments, we get

I
=

E|@x(ge) " |

e
Il

1

Il
=

E [eiQkStk—tk.71 } )

i

1

This concludes the proof of (i).
Regarding (ii), by independence we have

P(S, <x) =Y P(S; <z, N, = n)

n>0

=> P(X1+...4+ Xp <2,N, =n)
n>0

=3 P(X1+... 4+ X <2)P(N; =n) .
n>0

To prove (iii), we first show that | S| is integrable:

E[|Si]] = E[[Si15,=n]

n>0

=Y E[X1 + ... X,||P(N; = n)
n>0

<> nE[|X1[JP(N; = n)
n>0

< E[NIE[ X1]] < o0

Then, a similar computation shows that E[S;] = E[N;]E[X]. If X has finite second moment, a similar
argument shows that .Sy also has a finite second moment and we get

=Y E[(X1+...+ Xn)’|P(N; = n)
n>0

= Z (nE[XT] + n(n — 1)E[X1]*)P(N; = n)
n>0

= E[N{JE[X?] + E[N? — N{E[X;]?

= E[N,J(E[X7] — E[X1]?) + E[N?]E[X1)?
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Consequently,
Var S; = E[S?] — E[S;)? = E[N;]Var X + E[N7?]Var X .

Property (iv) is a consequence of the following computation:

E[e?5t] = Z E[e?5t1 y,—p]
n>0

=3 E[e! A EIP(NG = n)
n>0
= E[e™)"P(N, = n)
n>0
n A" t
= Z;)E[eqxl] (n!)e A
= exp (\(E[e?Y] — 1)) .

O]

Proposition 1.7.3. Let S be a compound Poisson process and assume that E[| X |] < oo. Then, ast — oo
we have the following almost sure convergence

St — AE[X] .

Proof. Set

Ni(w)
t

O ={we: — A}, QQ::{MEQ:iZn:XZ‘(w)—)E[Xl]}.
i=1

By Proposition 1.5.1 for the first event, and the classical law of large numbers for the second event, we
deduce that P(2; N Q) = 1. Then for every w € £ N Q9 we have as t — oo

Si(w Ni(w 1 Nelw)
i ) _ i )Nt(w) ; X;(w) = AE[X1] .

1.8 An exercise

Insects fall into a soup bowl according to a Poisson process N with intensity A > 0 (the event {V; = n}
means that there are n insects in the bowl at time ¢). Assume that every insect is green with probability
p € (0,1) and that its colour is independent of the colours of all other insects. Show that the number of
green insects that fall into the bowl, as a function of time, is a Poisson process with intensity Ap.

Correction: First of all, we need to introduce mathematical objects to model the problem. We let IV be
the Poisson process of intensity A whose jump times 7, are the times at which an insect falls into the
bowl. We assume that the insects are numbered from 1 to oo according to their order of appearance in
the bowl. We then consider a sequence (€, ),>1 of i.i.d. Bernoulli(p) r.v., independent of NV, that models
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the colours of the insects: the colour of the n-th insect is green if and only if €, = 1.

It is clear then that the number of green insects at time ¢ in the bowl is given by

Ny
N =) ¢, t>0,
7=1

that is a compound Poisson process. As such it has independent and stationary increments, and all we
have to do is to compute the distribution at time .

E (ethg> = exp (Mt (E [e91] — 1)) = exp (At ([pe? + 1 — p] — 1)) = D),

that implies that N/ has a Poisson distribution of parameter Apt.
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Chapter 2

Continuous-time Markov processes with
countable state-space

In this chapter, we study continuous-time processes that take values in a countable set ' and satisfy the
Markov property. Recall that E is a countable set if it is either a finite set or a set in bijection with N. We
will see that continuous-time Markov processes are intimately related with Markov chains, which were
studied at the first semester.

2.1 The Markov property: from discrete-time to continuous-time pro-
cesses

Let us recall the definition of Markov chains from the first semester.

Definition 2.1.1 (Markov chain - first version). Let (Xy,),>0 be a discrete-time process taking values in
E. We say that (X,,)n>0 is a time-homogeneous Markov chain if:

1. (Markov property): For all n > 0 and all (xg,...,Tn_1,2,y) € E"? such that P(Xy =

X0y vy Xn—1 = Tp_1,Xp = x) > 0, we have

P(Xn—H :y‘X() :$0,...,Xn_1 :l’n_l,Xn :.I) :]P)(Xn—f—l :y]Xn :.I) .

2. (Time-homogeneity): There exists a matrix 11 : E x E — R such that

P(Xpy1 =y | Xp =2) =1I(z,y) .

Recall that IT is often called the transition matrix of the chain, although it is an “infinite” matrix as
soon as F is an infinite set. Recall also that IT satisfies II(x,y) > 0 for all z,y € E and

> Mz,y) =1,
yeE

forallxz € E.

Our first task in this chapter is to extend this definition to the setting of continuous-time processes.
While the intuition behind the Markov property (the relevant information to determine the future evolu-
tion of the process consists of the current state of the process) remains the same in continuous-time, the
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precise definition is a priori unclear: the time parameter being continuous, there is no obvious way to
generalise the conditioning by Xg = zg, ..., Xn—1 = Tn—1, X = z from the definition.

At this point, we actually observe that one can simplify the above definition using the notion of filtration.
Let 7, := 0(Xo,...,Xn), n > 0, be the natural filtration associated to the process (X,,,n > 0).

Definition 2.1.2 (Markov chain - second version). Let (X,,)n>0 be a discrete-time process taking values
in E. We say that (X,,)n>0 is a time-homogeneous Markov chain if:

1. (Markov property): Foralln > 0 and all y € E, we have
P(Xpt1 =y | Fn) = P(Xpp1 =y | Xn)
2. (Time-homogeneity): There exists a matrix 11 : E2 x EE — R such that almost surely

P(Xnt1 =y | Xn) = (X, y) -

Lemma 2.1.3. These two definitions are equivalent.

Proof. Let us start from the second definition. Under the assumption that P(Xy = xg,..., X,—1 =
ZTp—1,Xp = x) > 0, we have

P(Xn—l-l =Y, XO =Ty -- 7Xn—1 = Tp—1, Xn = [13) =K 1Xn+1:y1X0:11307---7Xn—1:xn—l7Xn:$]

]E[1Xn+1:le():mOr--vanl:xnfl7Xn:37 |]:YLH

[
[
(1 x0=20,... Xp_1=2n—1,Xn=2c B[ 1 X, 4 1=y | Fnl]
(1 x0=z0,... Xp—1=2n—1,Xn=c B[ 1 X, 1=y | Xn]]
[

1X0:a:0,...,Xn,1:xn,1,Xn:m ‘;Dn(Xn)]

Il
S B E B H

n('r)E{]‘XO:CEOy--anfl:xnfl7Xn:$] )
where ¢, (2) := E[1x,,,—y | X, = 2] forall z € E. Hence
P(Xny1 =y Xo=20,..., Xpn-1 =2p_1, X, = )
_ IED()(n+1 = y,XO =Z0y---, Xn-1=2p—1,Xp = x)
IP)(XO = X0y .- ,Xn,1 = Tn—1, Xn = CU)
= (@) =P( X1 =y| Xpn=2).

Let us now prove the converse implication. We start from the first definition. We aim at showing that for
all A € F,,, we have

Ellx,,  =y1a] = E[E[1x, =y | Xn]14]. (2.1)

We claim that this is true whenever A is of the form A = {Xy = xo,..., X1 = z—1, X,, = x}.
Indeed, if P(A) = 0 then both sides of the identity vanish. If P(A) > 0, then the assertion of the first
definition yields

Elx,, ,—y1a] =P(Xp11 =y | Xo=20,..., Xp1 =21, Xy = 2)
x P(Xo =x0y..., Xn-1=2Tpn_1,Xn =1)
=P( X1 =y| Xn=2)P(Xo =20,...,Xn-1=2Tpn_1,Xn =12)
= on(2)P(Xo = zg, ..., Xp-1=Tp-1,Xn =2),
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where ¢, is the (measurable) map from E to R such that ¢, (X,,) = P(X,,+1 = y| X,,) almost surely.
Hence

E[lXﬂ,+1:y1A] («T)]P)(XO =0y --- 7Xn—1 = Tn-1, Xn - ZE)
[

= ¥n
= pn(x)E[14]
= E[‘Pn<Xn)1A] ,

which concludes the proof of the claim. Since the class C,, of all events A of the above form is stable
under finite intersections and is such that o(C,,) = F,,, the Monotone Class Theorem allows to deduce
(2.1). O

Given the second definition above, we can easily pass to continuous-time processes.

Definition 2.1.4. A cadlag process (X,t > 0) that takes values in E is a time-homogeneous Markov
process if:

1. (Markov property): For all t,s > 0 we have almost surely
PlXtrs =y | Fe) = P[Xeys = y | X¢]
where Fy := o(Xs, s € [0,1]).

2. (Time-homogeneity): For every s > 0 there exists a matrix P; : E X E — R such that for all
y € E we have almost surely

P[Xt+s =y | Xt] = Ps(Xm@/) .

It will be convenient to write P, and [E, when the process X starts from the deterministic initial
condition Xy = .

Observe that we impose X to be cadlag. Since FE is countable, any cadlag function with values in £
is necessarily piecewise constant.

Remark 2.1.5. We have not specified the topology on E while we have been talking of continuity for
FE-valued functions. Here F is endowed with the discrete topology, that is, the topology induced by the

metric
lLife #y,
d(z,y) =4 .
Oifr=y.

From now on, all our Markov processes will be time-homogeneous so we will simply write “Markov
process” for “time-homogeneous Markov process”.

The next result shows that conditionally given F;, (Xy1s,s > 0) is a Markov process starting from
X;.

Lemma 2.1.6. Let X be a Markov process. Then forallt > 0,0 <t; < ...<tpandy,...,y, € E"
we have

P(Xeyt, = Y15 Xewt, = Yn | Ft) = Pry (X, 91) Pry—ty (Y1, 92) - - Pty (Yn—1,Yn) -
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Proof. The proof consists of a recursion on n. The case n = 1 comes from the definition. Assume that
the identity holds true at rank n. At rank n + 1, for all A € F;, we have

E[1 X (t441)=y1,., X (41 )=ynsr LA]
= E[E[lx(t+t1)—y1, X (1) =yngr 1A | Tt ]
E[1x (t441)=y1,.. X (t4t) =y LAR[LX (44t ) =gmsr | Ftttnl] 5
E[1x (t4t0)=y1,., X (t4t0)=yn LA Pt 1 —tn (Yns Ynt1))]
[1 X (t4+t1)=y1,...X (t+tn)= yn]'A]PtrH—l —tn (Yn» Ynt1)
—IE[lAPtl(Xt,yl)]ﬂ2 —ts (Y1, 92) - Pry—t 1 (Yn—15Yn) Pr 1 —tn (Y Ynt1)
which ensures that the conditional probability of X (¢t +t1) = y1,..., X(t + tp+1) = Yn+1 given Fy is
Py (X, y1) Pry—t; (Y1,92) - Prr—t, Uns Y1) O
Similarly as in discrete-time, we say that a non-negative r.v. 7" is an F-stopping time if {7" < ¢}

is Fi-measurable for all ¢ > 0. We then define the sigma-field Fr as the set of events A such that
AN{T <t} € Fforallt > 0.

Proposition 2.1.7 (Strong Markov Property). Let T' be an F-stopping time such that T < oo almost
surely. Then, the process (X¢i7,t > 0) is a Markov process such that for all y € E and all s > 0 we
have almost surely

P(Xsrr =y|Fr) = Po(X1,y) -

Proof. 1t suffices to prove the identity of the statement: then, the fact that the process starting at time 7" is
a Markov process is proven similarly as in Lemma 2.1.6. When T’ is deterministic, this is the definition.
Let us now assume that 7" takes values in a countable set, say Q.. Then, for every event A € Fr, we
have

P(Xopr =y, 4) = Y P(Xgyr =4 AN{T = q})
q€Qy

= Y EE[1x,,,—pnanir=q | Fall
q6Q+

= Z E[]-AD{T:q}E[]-{Xs.;_q:y} "Fqﬂ )
q€Q+

At this point, we apply the Markov property at time ¢ and obtain:

= > Elangr—gEl{x. =y | X

q€Q+

= > Ellanir—q Ps(Xq,v)]
‘IGQ+

= E[]'APS(XT7 y)} :

Henceforth, the conditional expectation E[1;x_, ,.—, | Fr] coincides with Ps(X7, y) almost surely, thus
establishing the proposition in this case.
We now consider a general stopping time 7. We consider its dyadic approximation:
oo
kE+1
T, = +
k=0




It is not difficult to check that 7;, > T" almost surely, and 7, | T" almost surely as n — co. Furthermore,
for every n > 1, T, is an F-stopping time. Finally, the right continuity of X and the Dominated
Convergence Theorem show that for all A € Fr we have

P(Xs1r =9, 4) = lim P(Xsy1, =y, A) .
n—oo
Since 7;, takes values in a countable set, we can apply the result proved right before and deduce that
IP>()(S+Tn =Y A) = E[]-APS(XTna y)] :
This readily shows that

IP)()(erT =Y, A) = nh_ggo]E[lAPS(XTnvy)] = E[lAPS(XT7 y)] .

2.2 The embedded Markov chain

In this section, we establish a deep connection between Markov processes and Markov chains. The key
observation is the following result.

Proposition 2.2.1. Let X be a Markov process starting from Xo = x almost surely, for some x € E.
Denote by 7 := inf{s > 0 : X, # Xo}. Then the random variable T has an exponential law whose
parameter will be denoted A, or \(x).

If \y > 0 then 7 < o0 a.s. and the r.v. X, is independent of T. We denote by 11(x, -) the corresponding
probability measure on E.

If \y = 0 then T = co. In that case, we set I(x,z) = 1 and I1(x,y) = 0 for all y # x.

This result shows the following fact. A continuous-time Markov process starting from some point
x € FE at time 0 stays at this point for a random time 7; of exponential law with parameter \,: at that
time, the process “jumps” to a random point y independent of 7; and chosen according to a probability
law II(z, ). Then, the process stays at point y for a random time 75 of exponential law with parameter
Ay: at time 71 + 73 it jumps to a point z chosen according to the probability law II(y, -) and independent
of 71, 7. And so on.

This implies that the law of a Markov process is completely characterised by A, and II(z, -) for all
rze k.
Proof. We work under P,.. Fix t, s > 0 and introduce 7’ := inf{r > 0 : X;,, # X;}. We have
Pu(r >t +5) = Eu[Ea[Lirsrisy | Ftll = EulEa[lrsiyngrssy | Ftl] = Ea[lirany Ea[lirs gy [ F2]] -
At this point, we observe that
Eu[1rs6) [ F) = Ea[Lpvreo,o, Xor=x13 | F2] -
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From the Markov property, we know that the process (X;,, > 0) is a Markov process starting from the
random initial condition X;, and that its conditional expectation given J; is the same as its conditional
expectation given X;. Therefore, there exists a measurable map ¢ such that

Em[]‘{V’I‘E[O,S],Xt+T:Xt} ‘ft] = Em[l{VT€[07S],Xt+T:Xt} | Xt] = (p(Xt) *

Let us determine . Conditionally given X; = y, the process (Xyy,,” > 0) has the same law as
(X,,r > 0) starting from y. Consequently

©(y) = By[Livrefo,s), x,=y}] = Py(7 > 5) .
Furthermore, on the event 7 > t we have X; = X|. Hence,
Eo[1ironEa[lirssy | Fll = Ea[lrsiyo(Xe)]

= Ew[1{7>t}90(93)}
= Eu[1(750Pu(T > 8)] = Pu(7 > 5)Pu(7 > 1) .

By Lemma 1.2.1, we deduce that the r.v. 7 has an exponential distribution. Regarding the independence
of X (7) with 7, we observe that on the event {7 > ¢} we have 7 = t + 7’. Consequently

This is sufficient to conclude to the asserted independence. O
Let us now introduce 7}, as the n-th jump time of the process X:
T, :=inf{t >T,_1: X(t)#X(Th-1)}, To:=0,
then the discrete-time process Y,, := X (7},), n > 0 is a Markov chain.
Proposition 2.2.2. The process Yy, := X (T),) is a discrete-time Markov chain of transition matrix I1.
Proof. The proof consists of a recursion of the previous result. O

It is also possible to show that the process (Y,,,n > 0) is independent of (7,,Ay;, ,,n > 1), where
Tn =T, — T, forevery n > 1.
2.3 Construction of Markov processes

Given a transition matrix IT and a collection of non-negative parameters \,, x € E we can construct a
Markov process starting from some initial condition Xg as follows. Assume that we are given:

1. acollection of IID r.v. E,, n > 1 of exponential law with parameter 1,
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2. an independent Markov chain (Y,,,n > 0) of transition matrix II, starting from Y} := X.

Remark 2.3.1. The careful reader will notice that, to be consistent with the notations introduced in
Proposition 2.2.1, one needs to impose a little restriction on I1 and )\, namely: for all x € F, we have

M(z,z) #0 = (z,x2) =1 X, =0.
Remark 2.3.2. We do not address the construction of the chain (Y,,n > 0). However this can be

achieved using random recursions, see Section 3.1.2 of the lecture notes of “Processus Discrets”.

We set 7, := /\f"

n—1

for every n > 1, and we define 7 := 0 and

T, =71+ ...+7n.

We define ¢ := sup,,~o Ty. Forall t € [0, ([, we let n > 0 be the unique (random) integer such that
t € [Ty, Th+1] and we set
Xt = Yn .

Lemma 2.3.3. We have P({ < co) = 0 in any of the following situations:
1. E is a finite set,
2. SUpLep Az < OO,
3. the chain'Y is irreducible and recurrent.

Proof. 1f E is finite then sup,cp A\, < oo. Consequently, the first case is a particular instance of the
second. Let us therefore prove the second case: assume that A\ := sup,cp A, < oo. Since A\, > Ej,
almost surely for all £ > 1, we deduce that

X =D By

k>1

Since the E}’s are IID £(1) r.v., the law of large numbers ensures that their sum is infinite almost surely.
Consequently ( = oo almost surely.

Let us now assume that Y is irreducible and recurrent, and that E is not finite (if £ is finite then we can
apply the previous arguments). Necessarily for any x € E, Y visits = infinitely many times almost surely.
Moreover II(z,z) # 1: indeed, if it were equal to 1 then Y would not be irreducible. Consequently
Az > 0. Let’s call N7, No, ... the successive discrete times n at which Y,, = x. We have

o0
XG> N > N1 = Y Engpa -
k=1 k>1

Since (Nj)r>1 only depends on the chain Y, it is independent of (E,),>1. Hence, (En, )i>1 is a
sequence of IID £(1) r.v. Its sum is infinite almost surely. O

Proposition 2.3.4. If { = oo almost surely, then the process (X¢,t > 0) is a continuous-time Markov
process.

The proof of this proposition is delicate and will not be presented in the lectures.
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Proof. Letus show thatforalln > 1,all0 <t < ... <t, <t<t+sandallzy,...,zn,2,y,2 € FE,
we have

Pw(th = CL‘l,...,Xt = .fL'n,Xt = y,XtJrS = Z) = Px(th = l‘l,...,Xt

n

=xn, Xt = Y)Py(Xs = 2) .

n

This will be enough to deduce that X satisfies the Markov property and is time-homogeneous.

First of all, observe that it suffices to show that for any m > 0

Pm(th =T1y... ,th =Xp, Xt = y;Xt—l-s =z,T,<t< Tm+1)

(2.2)
=P.(Xy, =21, X, =20, Xy =9, Ty <t < Tppg1)Py(Xs = 2) .

From now on, m > 0 is fixed. By construction, there exists a map ® such that X = ®((Ey,)n>1, (Yn)n>0)-
We do not give a precise definition of this map but it is intuitive that X is completely characterised by
(En)n>1, (Yn)n>o0. In particular, note that for all » > 0, we have X, = Y,, where n > 0 is the unique
integer such that 7,, < r < T}, 41 and where T,, = >_"" Ej

=1y
On the event {7}, <t < Ty,+1}, set

El =My, (T — 1), By = Ay, (T2 — Tins1) = B,

and for every k > 1

k /
FE
T,é = Z —
j=1
Define X/ := X, forallr > 0. On the event {T},, <t < Ty,+1}, we see that X|. = Y,,,,, where n > 0
is the unique integer such that 7, < r < Ty ;. We can then deduce that X' = ®((E},)n>1, (Yin4n)n>0)-
For i := (i1,42,...,4n) With0 <i; < ... <i, <mand§:= (yi,...,ym) € E™ define the event

Yimyj—1

Af,gj = m?:l{Tij <t; < Tij-‘rl} N{Tn <t < Ty} N {(V1,0 0, Yi) = (W1, -+, Ym) |-

This event only depends on Ey, .. ., Ei i1 and Y1, .. ., Yy, By construction, conditionally given A; ; the
process (Y45 )n>0 is @ Markov chain starting from Ym Which is independent from (E),),>1. Note that
E{ = Eny1— Ay, (t—T,,,). By the absence of memory of exponential r.v. we see that £, conditionally
given Aj ; is still an exponential r.v. of parameter 1. Finally, one can check that conditionally given this
same event the sequence (E),)n>1 is made of i.i.d. £(1) r.v.

We therefore have

Pp( Xty =21, Xty = 20, Xy = 4, Xiys = 2] 45 )
=L o=y} Hy=ym) Lo (Xe=z] A7)
= lon faj=ui,} Ly=ym} Py (Xs=2).

Moreover

PI(th =x1,...,Xt, =Tp, Xe =y, T <t < Terl)

n

= Z]P):E(th =T, .- 'ath = fL’n,Xt = y7AE,§)

- Z 10 {"EJ yz 1{y ym}]P)(A )

34



Consequently

P (th :xlv"‘7Xt ::Eant :vat-i-S :ZaT’n’L §t<Tm+l)

n

—ZIP’ (Xt, = 1,0, Xy, = T, Xy =y, Xpgs = 2, Ay )
= ZP (X4, =21, Xy, =, Xt = Y, Xps = z]A;’g)]P’(Agvg)

- Zlmn 1{xj =Yi; } {y= ym}P ( Z)P(Ag,g)

7y
= ]P)x(th =T1,.. .,th = I‘n,Xt = y,Tm <t< Tm+1)Py(XS = Z) s

so that (2.2) is proved. ]

Remark 2.3.5. Our definition of Markov processes excludes the so-called explosions, that is, the case
where ( < oo with positive probability. It is possible to introduce a more general definition that encom-
passes this case, see Section 2.7.

2.4 Semigroup and Kolmogorov equations

Definition 2.4.1. We call semigroup a collection of matrices (P,,t > 0) that satisfies the following
properties:

1. Bby=1d,

2. For every t > 0, P, is a stochastic matrix, that is, for all x,y € E we have P;(z,y) > 0 and
ZyGE Pt(l‘,y) = 1’

3. Foreveryt,s > 0, we have P,ys = P, Ps, that is, for all x,y

Piys(z,y) = ZPtxz Y) -

zelE

Lemma 2.4.2. Let X be a Markov process. The collection of matrices (P;,t > 0) defined by
Fi(z,y) = Pe(Xs =y),
is a semigroup.
Proof. Left as an exercise. ]

Given a semigroup (P, ¢ > 0) and a measure p, one can define a collection of measures pP;, t > 0
by setting
(1P (y Zu )P(z,y), yeE.

Note that the mass of P is the same as the mass of .
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Let 1 be a probability measure on F, and let X be a Markov process starting from the probability
measure (i, that is, such that X has law p. Then the law of X; is given by pP;: indeed we have

W(Xe=y) = w@)Pe(Xy=y)=>_ ux)Pi(z,y) = pPi(y) .
el el
More generally, forall 0 < t; < ... < t,andall z1,...,z, € F we have
Pu(X(t) =a1,...,X(tn) =an) = Y p(x0) Py (20, 21) Prysp, (w1, 22) ... Pyt (Tn1,7n) .
ro€ER

Recall that ), is the rate of the exponential distribution of the time the process X stays at x, and 11
is the transition matrix of the embedded Markov chain Y. We define a matrix () by setting

A@)(z,y) ifz#y,

Qy) = {—)\(x) ifr=y.

The matrix @ is called the generator of the Markov process X. Roughly speaking, Q(x, y) is the “rate”
at which the Markov process jumps from z to y while Q(z, x) is the opposite of the rate at which the
Markov process leaves z, that is, the sum over y # x of the rates from x to y.

Remark 2.4.3. We saw that if Xg = x then X stays at x an exponential time T of parameter A\, and then
Jumps to a random point drawn according to the probability measure I1(x, -). An equivalent point of view
is the following. Consider independent exponential rv. Sy, of parameters N\ 11(x,y) for every y # .
Then miny Sy, is an exponential r.v. of parameter Zy M1(x,y) = Ay Furthermore arg min,, Sy, has
law I1(z, -). As a consequence, there is a competition between independent exponential r.v. of parameters
Q(z,y) for y # x: the next transition of the Markov process corresponds to the minimum of these r.v.

The generator is intimately related to the semigroup of X as the following theorem shows. In the
following f is a bounded function on X, and we denote || f||oc = sup,cx |f(2)].

Theorem 4. For any x € X we have

lim ~ [Pif(x) — f(2)] = QF (), (23)

t—0 ¢

furthermore there exists a constant C' < oo such that

LIPS () — F(@)] — QF()| < Ctll @4

sup
x

Proof. Recall that by 2.2.1 T} and X7, are independent. Then

Pif(z) =Py(Th > t) f(z) + Ex(Lir, <y f( X))
= efmf( ) +E; (1{T1<t}f(XT1)) +Es (Iyn <y (F(Xe) = f(X1y)))

)= (1= e™) f(@) + PolT1 < OBa(f(X1,)) + Ea (Lrysy (F(Xe) = £(X1,))
)= (1= F@) + (1= ) SN f0) + B (L (1K) = £ (X))
y#T

= [@) +1Qf (@) + (1= e = xat) | YoM, ) f(y) = [(@) | + B (Imyzy (F(X0) = F(X7,)),
y#£T
2.5)
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that gives

1 (1 — e Nt )\xt)
P (@) = f(2)] + Qf (x) = : > (. 9)f(y) = f(x)
T (2.6)
+2Eq (I (F(X0) — f(X1,)))
that gives the bound
LIPS (@) — £+ QF@)| < Nt oo + 2B (T < 1) | @)

Since sup,, )\, is assumed finite, we have also that %]P)x (Ty < t) < Ct (see the following Lemma 2.4.4)
and (2.4) follows. ]

Lemma 2.4.4. Given two independent r.v, 71 ~ E(\1), T2 ~ E(Xa), then P (11 + 72 < t) < Ct2.

Proof of 2.4.4. Exercise. [

Theorem 5. The semigroup (P;,t > 0) satisfies:

1. The Chapman-Kolmogorov backward equation:

atPt(x7y) = (Q‘Pt)(xvy) > Pﬂ(x7y) = 1$(y) ) (2.8)

2. The Chapman-Kolmogorov forward equation:

OiFi(z,y) = (RQ)(z,y) ,  Po(w,y) = La(y) - (2.9)

Furthermore, there exists a unique semigroup satisfying any of the two equations.

Proof of Chapman-Kolmogorov backward equation (2.8).

1 .1
OUPf)(@) = lim ~(Prys = P) (@) = lim ~ (P(P)(2) - Pof(2)) = QPf(z).  (210)
O
Proof of Chapman-Kolmogorov forward equation (2.9).
.1 ) P.fz)— f(x
P a) = Iy (Prv = POf(o) =ty (DO =T, @11
and the bound (2.4) justify the exchange of the lim;_,g with P; and (2.9) follows. O
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2.5 Recurrence and transience of Markov processes

The notions of recurrence and transience, already introduced for Markov chains, find natural counterparts
in continuous time.

Definition 2.5.1. Fix x € E. We say that x is transient for X if P, ({t > 0 : X (t) = x} is unbounded) =
0. We say that x is recurrent for X if P, ({t > 0 : X (t) = x} is unbounded) = 1.
If x is recurrent for X, we say that x is positive recurrent for X if A\, = 0 or if A > 0 and

E.[R;] < oo, where Ry :=inf{t>1T:X(t)=uz},
otherwise we say that x is null recurrent.

As we will see, any state x is either recurrent or transient.

Remark 2.5.2. An equivalent definition of recurrence/transience would be: x is recurrent if A\, = 0 or
if \y > 0and P, (R, < c0) = 1; otherwise x is transient.

Remark 2.5.3. Note that if \, = 0, then the process X stays at x at all times if X (0) = .
Recall that Y is the Markov chain embedded in X.

Proposition 2.5.4. Any state x is either transient or recurrent for X. Furthermore:
1. x is transient for X if and only x is transient for Y,
2. x is recurrent for X if and only x is recurrent for Y.

In addition, if 0 < inf, Ay < sup, Ay < 00, then x is positive recurrent (respectively null recurrent) for
X if and only if x is positive recurrent (respectively null recurrent) for'Y .

Proof. Suppose z is transient for Y. Then there exists a random integer /N such that almost surely
Y,, # x forall n > N. Consequently, almost surely X (¢) # x for all ¢ > T, and therefore almost
surely {¢ > 0 : X(¢) = =} is bounded. This shows that z is transient for X.

Suppose x is recurrent for Y. Then there exists an infinite random sequence N7 < N3 < ... such that
almost surely Yy, = z for all £ > 1. Consequently, almost surely X (7, ) = « for all k£ > 1. From the
construction of Markov processes, we know that almost surely T, — oo as k — oo. Therefore almost
surely {¢t > 0 : X(¢) = «} is unbounded: x is recurrent for X.

Since any state z is either transient or recurrent for Y, we thus deduce that the same holds for X and that
there is an equivalence between transience/recurrence for X and Y.

Let us introduce RY :=inf{n > 0 :Y,, = x}. Recall that x is positive recurrent for Y if E,[R}] <
oo, and z is null recurrent for Y if E,[R)] = co. From the construction of Markov processes, we have
almost surely

RY
R, = ZTn .
n=1

Now set A := sup, Ay and A := inf; A,. We have almost surely

T < Ep <X
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Consequently,
Ry
RASY By < R\

n=1

Since RY is mesurable w.r.t. ¢(Y") and since (E,),>1 is independent of (Y"), we deduce that

RY RY
Em[z E,| =E, [Em[z E, Y]] =E, [RXE[EIH = EI[R;/} :
n=1 n=1
We therefore obtain
Eu[Ro]A < EL[RY] < B[R\ .
This shows that [ R,] is finite if and only if E,[RY] is finite. O
Let us finally introduce the notion of irreducibility.

Definition 2.5.5. We say that X is irreducible if for all x # y € E there exists t > 0 such that
P.(Xy=y)>0.
We have the following result whose proof is admitted.

Proposition 2.5.6. If X is irreducible then for all x # y € E and all t > 0 we have
Py( Xy =y)>0.
Furthermore, X is irreducible if and only if Y is irreducible.

We then deduce that if X is irreducible then all states are either recurrent or transient. Indeed, if X is
irreducible then Y is irreducible too: all states of Y are either recurrent or transient. From the previous
proposition, we deduce the asserted property.

Therefore we say that an irreducible Markov process X is recurrent if one state (and therefore all states)
is (are) transient.

2.6 Invariant measure

From now on, we will assume that A\, > 0 for all z € E in order to avoid ‘“pathological” cases. Of
course, all the results presented below can be adapted to encompass the general setting but at the price
of complexifying the statements and the proofs.

Definition 2.6.1. Let i1 be a positive measure on E and let X be a Markov process. We say that u is
invariant for X if u@Q = 0, that is, if forall x €

p(@)de = p(y)A Iy, z) .
Y#T

The next result shows that any invariant measure is invariant for the embedded Markov chain Y and
vice versa.
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Lemma 2.6.2. Let i and v be two positive measures on E satisfying for all x € E

Azpp(z) = v(x) .
Then @ = 0 if and only if V11 = v.
Proof. We have foranyy € E
= w@)Q(x,y) YAy + > @)Xz, y) = —v(y) + > vz
z TEY TFy

From the above identity we deduce that uQ(y) = 0 if and only if v(y) = vII(y), this proves the
lemma. O

We now present results on existence and uniqueness of invariant measure in the irreducible and
recurrent case.

Theorem 6. Assume that X is an irreducible and recurrent Markov process. Then for any given x € F,
the measure 1\%) defined by

R,
1 () :EI[/ I{Xt:y}dt] . yeE, (2.12)
0

is an invariant measure. Furthermore, any invariant measure ' satisfies ji' = cu(“) for some c > 0.

This theorem implies that if X is irreducible and recurrent, then it admits at most one invariant
probability measure: indeed, either ;(*) has infinite mass and there is no invariant probability (even
finite) measure, or (%) has finite mass and there exists exactly one ¢ > 0 that makes ;' a probability
measure.

Proof. We recall that the measure

RY -1

V) (y) = Ex[ Z 1{yn:y}:| ., YEE,
n=0

is invariant for the Markov chain Y and that any measure ¢/ that is invariant for Y is of the form v/ =
cv®) for some ¢ > 0 (see Theorem 3 9 from the course “Processus discrets”). If we show that ,u( z)
defined in (2.14) satisfies () (y) := v(*)(y) /), for all y € E, then we will deduce from Lemma 2.6.2
the statement of the proposition.

Recall that 7,, is the random time that X spends in state Y,,_; before jumping to Y,,. We have

Ra RY 1
/0 1{Xt:y}dt Z Tn+11{y, =y} _ZTnJrll{Yn =y;n<RY} >

n>0
so that Fubini’s Theorem yields
Re
i [/ Lot t] = 3 B lrnii Ly, oy neny]
0 n>0
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From the construction of Markov processes, we know that conditionally given the process Y the r.v. (7,,)p>1
are IID £(\y,_, ). Consequently

Em [Tn-l-l]-{Yn:y ; n<R};}] = E33 [Ew [T"+11{3/7L:y ;n<RY'} ’ Y”
Ey [1{Yn:y i n<rY HEa [Tot1 Y]]
E

1
$[V1{Yn:y ; n<R{}]

1
= B [Liymymerny] -
Yy

Consequently

Ra 1
N(m) (y) =E, |:/ 1{Xt=y}dt} = )\7 Z E, [1{Yn:y ; n<R¥}]
0 Y n>0

O]

Proposition 2.6.3. Let X be irreducible and recurrent. Let u' be a measure on E. Then p/Q = 0 if and
only if i/ P, = ! for some t > 0 if and only if /' P, = i/ for all t > 0.

This proposition gives a more intuitive meaning to the notion of invariant measure: in the irreducible
and recurrent case, a measure is invariant if and only if the law of the process starting from this measure
is the same at all times.

Proof. Assume that ;//@QQ = 0. By Theorem 6, there exists ¢ > 0 such that x4/ = cu'®) where u(x) is
defined in (2.14). Therefore, it suffices to show u(*) P, = ;(*) for all ¢ > 0. Fix t > 0. By the strong
Markov property applied at time R,, we have

Ry+t

Em[/otl{xs_y}ds} :Em[/R

1{X5:y}d3} .

x

Consequently

E, [/DRm 1{Xs=y}d3} =E, /Ot 1{Xs=y}d8} +E; [/tRI 1{Xs=y}d3}
- [Ra+t Ry
= Ez / 1{sty}d8} + Ex |:/t 1{XS:y}dS}

- R+t
= E:U / 1{X3:y}d5:|
-Jt

- o0
= ]Ex / 1S<R11{Xs+t:y}d5] .
-J0
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We then compute

1 (y) = By [/0 1S<Rx1{Xs+t=y}dS}

= / Py (Xst =y,8 < Ry)ds

D Pu(Xs = 2,5 < Ry)P(X; = y)ds
zeE

R;
- YR /0 1ix,—syds| Pi(z,9)

z€E

= 3" U )Pz

zeE
= I Pi(y) .

R
Ry

We have therefore proved that 1/Q = 0 implies p/ P, = p/ for all ¢ > 0.

If 4/ P, =/ for all t > 0, then of course, ' P, = p’ for some ¢t > 0.

It remains to prove that if 4/ P, = ' for some ¢ > 0 then p/Q = 0: this will be proven in the exercises.
[

Proposition 2.6.4. Let X be irreducible. The following are equivalent:
1. All states x are positive recurrent,
2. One state x is positive recurrent,
3. There exists an invariant probability measure 11'.

If one these conditions hold, then the invariant probability measure 1 is unique and is given by

1
/
= — E.

To prove the proposition, we will need an intermediate fact on Markov chains, whose proof will be
given in the exercises.

Lemma 2.6.5. Fix x € E. Let us introduce the measure

RY -1
V@ () i= By Z Ly, y€EE.

n=0
If V' satisfies V'T1 = ' and V' (z) = 1 then v/ > v(®).

Proof of Proposition 2.6.4. Recall the measure (") of (2.14). In the proof of Theorem 6 we have shown
that forally € £



Let us now assume that there exists an invariant probability measure 1'. Fix x € E. We claim that
' ()X > 0. We postpone the proof of this claim and carry on the proof. We define

/
: (1Y) Ay
v = , ek.
W i
Observe that the measure y — 1/ (y)/(p/(x));) is invariant for X. By Lemma 2.6.2, we deduce that
V'II = /. Moreover, v/ (x) = 1. Consequently by Lemma 2.6.5

v > p(@)

Using the identity recalled at the beginning of the proof, we obtain

B b =D (y) V(y) Wy 1
E.[R.] = Zy:u( M(y) = Zy: X = Zy: Ay Zy: p(x)Ae  p(2)As

Given the claim, this last quantity is finite and therefore z is positive recurrent. Since x was arbitrary, we
deduce that all states are positive recurrent.

Let us prove the claim. First of all, for any y € E we have A\, > 0 by assumption (this is the standing
assumption of this section). If x/(z) = 0, then the fact that 1/Q(x) = 0 implies that

W (@)Qx,2) + > fW)Qy,x) =Y 1 (1)Qy, ) =0,
yF£T y#T

and then p/(y) = 0 whenever Q(y,z) > 0, that is, whenever II(y, z) > 0. Iterating this argument, we
see that 11/(y) = 0 whenever IT"(y, x) = 0 for some n > 0. Since Y is irreducible

Unzo{y eE:MM"(y,x) >0} =F.

Consequently, i/(y) = 0 for all y € E thus contradicting the fact that 1 is a probability measure.
If all states are positive recurrent, then obviously there exists one state which is positive recurrent.

Let us now assume that some z is positive recurrent. Then the measure (%) of (2.14) satisfies

P E) =Y uP(y)

yekE

where we used Fubini’s Theorem to go from the second to the third line. Since x is positive recurrent
we deduce that ,u(z) is a finite measure. By Theorem 6, we deduce that there exists a unique invariant
probability measure 4/, which is given by i/ = cu® with ¢ = 1/E,[R,]. The identity recalled at the
beginning of the proof shows that x(*) (x) = v(®)(z)/\,. Since v(*)(z) = 1, we deduce that
1
!/
T) = ——F5— .
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Since we showed that the existence of an invariant probability measure implies that all states are positive
recurrent, the above identity holds for all x, thus concluding the proof. 0

A consequence of the last result is that an irreducible and transient Markov process does never admit
a finite invariant measure.

2.7 General remarks on Markov processes

Generally speaking, the theory of Markov processes is delicate. Here we have concentrated on the case
where the state-space F is countable, but uncountable state-spaces are relevant too (for instance, the
Brownian motion takes values in R and satisfies the Markov property).

Our presentation did not encompass all Markov processes taking values in countable spaces: indeed, we
assumed that our Markov processes are cadlag and this assumption is actually restrictive. In particular,
Markov processes that explode in finite time, that is, Markov processes for which ¢ = lim,,_,~ 7, < 00,
do not admit a left limit at ( and therefore do not satisfy this assumption. However, explosive Markov
processes appear in many different situations. If one replaces cadlag by simply right-continuous in
Definition 2.1.4, then explosive processes are allowed.

More generally, one can suppress the regularity assumption on the trajectories: in that case, the definition
of Markov processes allow for “monsters”. For instance, if one considers a collection X, t > 0 of IID
random variables then X is a Markov process but its trajectories do not have any regularity (except if the
law of X is trivial).
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Chapter 3

Some examples of Markov processes

3.1 Queueing theory

In this section, we will study stochastic processes that model a gueue in a service unit. A service unit is
made of one or several servers. Customers arrive at random times in the queue. If a server is available at
the time a customer arrives, then the customer goes to that server - otherwise it waits in the queue. Each
customer requires some service time: this is the duration of a time required for the customer to be served.
The service unit has a maximal capacity (possibly infinite). The quantity of interest in this model is the
total number of customers that are either being served or are waiting in the queue.

There is a standard terminology to specify the parameters/characteristics of a queue. It consists of
[A]/[S]/[s]/[c]/ [Discipline] where :

* A indicates the distribution of the interarrival times of customers. It can be G (general), nothing
is specified ; GI (general independent), that is, the interarrival times are IID; M (Markov), the
interarrival times are IID with exponential distribution; D (deterministic), the interarrival times are
deterministic.

* S indicates the distribution of the service time. The possible values are the same as for A.
* s is the total number of servers in the service unit: it’s either an integer or 400,

* ¢ is capacity of the service unit, that is, the maximal number of customers in the queue it’s either
an integer or 400,

* Discipline is the service discipline: usually it is either FIFO (first in first out), which means that
among all customers that are waiting in the queue the first one who arrived will be the first one
to be served, or LIFO (last in first out), which means that the last customer who arrived is served
first.

By abuse of notation, the word “queue” is often used insead of “service unit”.

Let us give an example. M/GI/1/00/FIFO denotes the queue where: customers arrive according to a
Poisson process, service times are 11D, there is only one server, the service unit has infinite capacity, the
service discipline is FIFO.

If we do not specify the last two parameters, then they are implicitly taken to be oo and FIFO.

The total number of customer in the service unit at time ¢ is denoted X (¢).
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3.1.1 M/M/1

We first examine the queue M/M/1. We let A > 0 be the parameter of the exponential r.v. associated
to the arrival of new customers and v > 0 the parameter of the exponential r.v. for the duration of the
service times. If there are n customers in the queue at time ¢, that is, if X (¢) = n then:

» Either n > 1. Then, the process X will jump by 1 after an exponential time of parameter A or
by —1 after an exponential time of parameter . Consequently, the next jump of X occurs at the
minimum of two independent exponential r.v. of parameters A and -y, which is itself an exponential
r.v. of parameter A\ + 7.

* Orn = 0. Then, the process X will jump by +1 after an exponential time of parameter \.

This discussion suffices to deduce that X is a Markov process with values in £ = N. Its transition matrix
IT and transition rates A are given by

A=A+, I(n,n+1) = ——, m(n,n—1) = ——, n>1,

and

(For all other values of n, m, II(n,m) = 0.)

Remark 3.1.1. The process X is “almost” a compound Poisson process of intensity XA+~ and jump law
Ab41 + pd_1. This is true when the process is strictly positive.

It is clear that X is irreducible.
We turn to the investigation of invariant measures. Let us set p = A\ /. Given Lemma 2.6.2, we start
with the invariant measure for the embedded Markov chain Y.

Proposition 3.1.2. A measure v is invariant for Y if and only if it satisfies
v(n) =p" N1+ pw(0), n>1.
Proof. The measure v is invariant for Y if and only if v = vII. The later identity is equivalent to
v(0) =v(DII(1,0), v(n)=v(n—1In-1,n)+v(n+1)In+1,n), n>1.
This can be rewritten as

(14 pw(0) = v(1), wln) = vln = D=+ v(n+1)

>1. 3.1
1+ " G-

1+p7 =

Consider a measure v that satisfies the condition of the statement of the proposition. Then, it is easy to
check that (3.1) is satisfied. Conversely, assume that (3.1) is satisfied, and let us prove by recursion that

v(n)=p" 11+ pv(0), n>0.

At rank n = 1 this holds true. Assume that this is true up to some rank n > 1. Then, at rank n + 1 we
have
v(n+1) = (L+p)r(n) = pr(n —1) = p>v(n = 1) = p"(1+ p)r(0) .

This concludes the proof. O
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We therefore deduce from Lemma 2.6.2 that the only invariant measures for X are the measures u
that satisfy

p(n) = p"u(0), n=>1.

We deduce that X admits an invariant probability measure if and only if p < 1. If this condition
holds, then the invariant probability measure is Geometric with parameter p. From Proposition 2.6.4, we
deduce that X is positive recurrent if and only if p < 1.

Proposition 3.1.3. The following holds:
1. If p < 1, then X is positive recurrent,
2. If p=1, then X is null recurrent,
3. If p > 1, then X is transient.

To prove this proposition, we start with an auxiliary lemma. Let (Z,,n > 0) be a discrete-time
Markov chain with transition matrix ITZ given by

M (nn+1) = \(A+7), Tnn-1)=v/(A+1), VneZ,
and T1Z (n, m) = 0 for all other values of m, n.

Lemma 3.1.4. Forany q € R, let ¢g == ep(1 + p)~' + e~ 9(1 + p)~L. The process M,,,n > 0is a
martingale where
M, = qu"cq_” , n>0.

Furthermore, if we let Ty := inf{n > 1: Z, = 0} we have for all ¢ € (—oo,In(p~ A 1))
Eilexp(=Tplncy)] =e?.
As a consequence P(Ty < c0) = 1 A p~! and E[Tp] < oo ifand only if p < 1.

Proof. Note that we have the deterministic bound |Z,, — Zy| < n for all n > 0 so that M, is integrable
for all n > 0. Regarding the martingale property, we have

E[et%r | Fy] = e (A (A +7) + €79/ (A +7)
= e (etp(1 4 p) !+ e (14 p) 7).

Consequently E[M,, 11 | F,] = M,,.
A simple computation shows that (—oo, In(p~' A1)] 3 ¢ — ¢, is decreasing and equals 1 atIn(p~ 1 A 1).
Consequently, (M,1,,n > 0) is a bounded martingale for all ¢ € (—oo, In(p~* A 1)]. By the Stopping
Theorem, we deduce that

E1[Muaty] = Eq[Mo] = e .

On the event {7y = 400}, we have Z,, > 1 for all n > 1. Since ¢ < 0, we have M,, < cg " so that
M,, — oo as n — oo on this same event. Consequently, almost surely

Mn/\Tg — MTol{To<oo} , N —00.
By the Dominated Convergence Theorem, we thus deduce that
E[M1,1{1y<00}] = €7 .
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This yields for ¢ < In(p~! A 1)

and forg =In(p~t A1)
P(Th <oo)=1Apt.

This immediately ensures that for p > 1, E[Ty] = +o0. Let us now assume that p < 1, in which case
In(p~* A1) = 0. For any ¢ < 0, by the Differentiation Theorem under the integral we have

cl
E[-Tp-Lc; ] = et .
q
Rearranging terms, we get
¢
E[TQC(;TO] = ——

76(1 )
Cq

By the Monotone Convergence Theorem we have

lim E[Tye: 10 = B[T,] .
lim [Toc, *°] = E[Tq]

On the other hand .
lim —c—?eq _
q10 Cq 1-— p
We thus deduce that E[Tj] < oo if and only if p < 1. O

Proof of Proposition 3.1.3. Since the jump rates are bounded from above and below, Proposition 2.5.4
ensures that it suffices to determine the recurrence/transience nature of the irreducible Markov chain Y.
Let us determine the recurrence/transience of the state z = 0: by irreducibility, this suffices to deduce
the recurrence/transience of the whole chain. Let us observe that, if Yy = 0 then Y; = 1. Consequently
RY under Py has the same law as 1 + R} under Py. Furthermore, since the processes Y and Z have
the same law up to their first hitting time of 0, we deduce that Ré/ under PP; has the same law as Tj for
Z starting from 1. From the previous lemma, we deduce that Py (R} < oo) = 1 if and only if p < 1.
Consequently 0 is recurrent if and only if p < 1, and therefore Y is recurrent if and only if p < 1.
Furthermore, E1[R} ] < oo if and only if p < 1. Consequently 0 is positive recurrent for Y if and only
if p < 1. By Proposition 2.5.4, 0 is positive recurrent for X if and only if p < 1. By Proposition 2.6.4
we deduce that X is positive recurrent if and only if p < 1. O

Hence we see that, if p > 1 then almost surely the queue is never empty (X never hits 0) after some
random time, while if p < 1 then the set of times at which the queue is empty is unbounded.

3.1.2 M/M/s and M/M/oco

Let us examine the M/M/s queue with s € N U {+o00}. If there are n customers in the queue at time ¢,
that is, if X (¢) = n then:

» Either n > 1. Then, the process X will jump by 1 after an exponential time of parameter A\ or by
—1 after an exponential time of parameter min(n, s)7. Consequently, the next jump of X occurs at
the minimum of two independent exponential r.v. of parameters A and min(n, s)v, which is itself
an exponential r.v. of parameter A + min(n, s)-.
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* Or n = 0. Then, the process X will jump by +1 after an exponential time of parameter \.

This discussion suffices to deduce that X is a Markov process with values in £ = N. Its transition matrix
IT and transition rates A are given by

A min(n, s)7y

A (nyn-1) = ST
A + min(n, s)y ’ (n,n—1) "

An = A+min(n, s)y, (n,n+1) = A+ min(n, s)y ’

and
A=A, I1(0,1) =1.

(For all other values of n, m, II(n,m) = 0.)
We will concentrate on the case s = co. Recall that p = )\ /.

Proposition 3.1.5. When s = oo, the process X admits an invariant probability measure given by

p'rb
,u(n)zaefp, n>0.

As a consequence X is recurrent positive.

The proof will be the content of an exercise.

3.2 Branching processes

Let £ be a probability law on N, called the offspring distribution and denote by ¢(r) = >, rke(k)
its generating function. We start with the following Markov chain Z, usually called a Galton-Watson
process. If Z,, = k, then each of the k individuals is replaced at time n + 1 by a random number of
children distributed according to £. The associated transition matrix is given by

%(1,k)=¢(k), keN,

and

1% (n, k) = > Ekr) ... &(kn), n>2k>0,
k1,k2,..., kn:k1+..+kn=k

and T14(0,0) = 1.
Proposition 3.2.1. We have for all r € (0, 1]

E.[r?"] = (¢n(r))” |
where ¢ (1) = ¢ 0 ¢p—1(r) and ¢o(r) = 7.

We now consider a continuous-time process associated to the above model. Fix ¢ > 0. To each
individual we associate a random liftetime distributed according to an exponential law of parameter
¢ > 0. We call X(t),t > 0 the corresponding process.

The following result is admitted.
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Proposition 3.2.2. Forall r € (0,1) and all t > 0, we have
Eo[r*®] = F(t,r)"

where F(t,r) is the unique value satisfying

F(t,r) dy _
/r c(o(y) —y)

Introduce 7o = inf{t > 0: X(¢) = oo} and 79 = inf{t > 0: X (¢) = 0}.
Lemma 3.2.3. We have forallt > 0
Py(ro <t) = F(t,04+)", Pu(700 <t)=1-F(t,1-)".
At least intuitively, X is a Markov process with generator
Qn,n)=—-cn, Qn,n—1+k)=-cnlk).

However, our definition of Markov process does not allow for explosion in finite time and therefore, only
in the case where 7o, = oo almost surely we can apply our definition.
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Chapter 4

Introduction to Renewal Theory

4.1 Renewal processes

Recall that a renewal process (77,),,>1 is a non-decreasing sequence defined by setting:
T,.=0+...46,, n>1,

where (0,,),>1 is a sequence of i.i.d. positive random variables.

Proposition 4.1.1. Let (T},),>1 be a renewal process and set

Ne=Y Lip<y, t20.

n>1
Then, N is a standard counting process.

Proof. Since d,, € (0,00) for all n > 1, P-a.s., we deduce that (7},),,>0 is increasing and 7}, < oo for
alln > 0, P-a.s.
By the law of large numbers applied to the sequence (min(dy, 1)), >1, we have P-a.s.

1 n
=) " min(6;,1) — E[min(6;,1)] .
[t
Notice that E[min(d;,1)] > 0 since, otherwise, we would have 0; = 0 almost surely. Since 7,, >

>, min(d;, 1), we deduce that T,, — oo as n — oo, P-a.s. Finally, given the definition of N, it is
simple to check that it is a counting process (left as an exercise). O

Lemma 4.1.2 (Wald’s identity). Ler X,, be a sequence of i.i.d. random variables. Let R be a stopping
time in the filtration F,, := o(X1,...,X,). Assume that X1 and R are integrable. Then, if we set
Sn=X1+ ...+ X, foreveryn > 0, we have

E[Sg] = E[RIE[X]] .

Proof. We set
Z:=>) |Xnllo<r -

n>1
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The event {n < R} is the complement of { R < n — 1} which belongs to F,,_; by assumption. Since
X, 1s independent from X7, ..., X,,_1, it is independent from F,,_;. Consequently

E[|Xn|1n<r] = E[|Xa|[P(n < R) = E[[X1||P(n < R) .

Since R is integrable, we have E[R] = > -, P(n < R) < oo, and therefore E[Z] < oco. As Z
is integrable, we can apply Fubini’s Theorem (the version for non-necessarily positive functions) and
deduce that

E)) " Xnlo<r] = Y E[Xnln<r] .

n>1 n>1

By the same argument as above E[X,1,,<r] = E[X;]P(n < R) and therefore

E[) " Xulo<r] = E[X1]E[R].

n>1
O

Corollary 4.1.3. Let N be a counting process associated with a renewal process. Assume that 81 is
integrable. Then for every t > 0, we have

E[T+1] = E[N; + LJE[3)] .

Proof. Fix m > 1 and take R = Ny A m + 1. The event {R < n} belongs to F,, = o(d1,...,0n).
Indeed, either n > m+ 1 in which case {R < n} = Q. Orn < m+ 1 in which case this event coincides
with {N; <n -1} ={t <T,} € F,.

Since R is bounded by m + 1, it is integrable. Applying Wald’s identity, we get

E[TNtAm+1] = E[Nt Am + 1]E[(51] .

Since N is standard, N; < oo almost surely. Applying the Monotone Convergence Theorem, we can
pass to the limit on m — oo and get

E[Ty,.1] = E[N; + 1E[5,] .
OJ

Proposition 4.1.4. Let N be a counting process associated with a renewal process. Assume that E[61] <
0o0. As t — oo we have

N N 1
e e a.s.
t E[61] ’
and
ENe 1
t E[61]

Proof. By the strong law of large numbers we know that almost surely

& — E{(Sl] s
n
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as n — oo. By Proposition 1.1.7, we know that V is a standard counting process so that N; — oo as
t — oo almost surely. Consequently we have the almost sure convergence Ty, /N; — E[d1] as t — oc.

Then we write
Nt —+ 1 Nt Nt Nt Nt

_ < 2t < .
Tny+1 Ne+1 T4

t T Ty

t

The leftmost and rightmost terms converge to 1/E[d;] almost surely. This yields the first convergence of
the statement.
Applying Fatou’s Lemma, we get

o < Bllm; _ '
hggg)le[Nt/t] > E[hgg(l;lf N /t] ]
To bound the lim sup, we proceed as follows. Let §; := min(d;, K) for some K > 0 and let N’ be the

associated counting process. Since the interarrival times of N’ are shorter than those of N, we have the
almost sure bound Ny < Nj for all ¢ > 0. Thus

lim sup E[V;/t] < limsup E[N//¢] .

t—o00 t—o00

By Corollary 4.1.3, we have
E[ ]/Vt’—i—l} = E[§]E[N, +1] .

Since T]’\,{ 1= ]’Vé + 0741 < ¢+ K almost surely, we get
1 /BTy, ] t+ K
BN/t = 5 (it 1) < o
£\ Epy] B[]
Therefore 1
limsup E[N;/t] < limsup E[N//t] < ——~ .
t—o00 t—o00 E[(Sl]
Since E[d]] 1 E[01] as K — 0o, we obtain the desired result. O

We now introduce the forward recurrence time process (By,t > 0) as follows:
Bt::TNH—l_ta tZO

At any time ¢, the random variable B; measures the time remaining until the next jump of the counting
process N.

The process B takes values in (0, c0) and its evolution is as follows. If it starts from b > 0 at time 0,
then it decreases linearly like b — ¢ on (0, b). At time b, it makes a jump of random size distributed like
01: from there, it decreases linearly again until its next jump.

4.2 A reminder on convolution of measures

Consider the map o : R> — R defined by o(x,y) =  +y. Let p and v be two finite measures on R.
Recall that the product measure & ® v is the unique measure on B3(R?) such that for all Borel sets A, B
of R, we have

V(A x B)=pu(A)v(B) .
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The convolution w * v of p and v is defined as the pushforward measure (=mesure image) on R of ;1 ® v
through the map o. In other words, we have for all Borel sets A in R:

pxv(A) = p@ (o' (4).

More generally, for all bounded and measurable function ¢ we have

| ey vian) = / L et Atz .1

In the particular case where i and v are probability measures, we have the following probabilistic
interpretation of the convolution p % v. Let X and Y be two independent r.v. with laws p and v. Then
the sum X + Y has law p x v.

In the general case, let us mention that if p or v has a density, then p * v has a density as well.

For convenience, we will denote by p*" the measure obtained by convolving n times p with itself: in
the particular case where n = 0, by convention we set 1*0(dx) = §o(dx) where 4 is the Dirac measure
at 0: for all Borel set Ain R, dp(A) = 1if 0 € A, do(A) = 0 otherwise.

4.3 The renewal equation

Let F be a finite measure on [0, o) that does not charge 0. Let z be a function on [0, c0). We introduce
the renewal equation associated to F' and z:

Z(t) = 2(t) + /[O ) Z(t —u)F(du), t>0. 4.2)

The main theorem of this section ensures existence and uniqueness of the solution of this equation (under
some hypothesis). Before we come to this result, let us introduce some further notations.

The measure
o0

U(dz) =) F*(d),
n=0

is called the renewal measure and its distribution function
U(t)::/ U(dx), t>0,
[0,2]

is called the renewal function.

Remark 4.3.1. Any measure on [0, 00) can be uniquely extended into a measure on R by setting to 0
its total mass on (—00,0): the notion of distribution function that we use here thus coincides with the
classical one.

Let us collect the following simple fact:

Lemma 4.3.2. The renewal function U(t) is finite for all t > 0. Furthermore, if the total mass
f[o 00) F(ds) of the measure F equals 1, then

Ut)=1+EN,, t>0,

where N is a counting process associated with a renewal sequence (6;);>1 with law F (the law of 01 is
F). Furthermore, we have

U(t+a)—U®)<U), Vta>0. 4.3)
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Proof. Recall that the measure F' does not charge (—oo, 0). Consequently, it admits a Laplace transform:
/ e ¥®F(ds) <oo, Vg>0.
[0,00)

Observe that e7%° — 0 as ¢ — oo for all s > 0, and that e7?° < 1. Since F is a finite measure on
(0, 00), the constant 1 is integrable. By the Dominated Convergence Theorem:

/ e ¥F(ds) -0, asq— oo.
[0,00)

Therefore, there exists go > 0 such that f[o 00) e °F(ds) € [0,1). We let § be the latter quantity.
We claim that for every n > 0 and every ¢ > 0, we have the identity

/ e PF™(ds) = (/ equF(ds))n
[0,00) [0,00)

We postpone the proof of the claim, and proceed to the proof of the first part of the lemma. For every
t > 0and n > 0, we have

) = / F(ds) < et / =03 1 (gg)
04

[0,2]

< eo? /[0 )e_qosF*”(ds)

< eo? (/[0 ) e_qos]*"(ds))n

tcn
< e®to™

so that

Ut) =Y F7(t) <) e®§" <0,

n>0 n>0

It remains to prove the claim. The case n = 0 is trivial since F*"* = §y. In the case n = 1, there is
nothing to prove. Let us consider the case n > 2. By the defining property (4.1) of the convolution, we
have

/ e P F*"(ds) :/1[07m)(s)equ*"(ds)
[0,00)

R

:/.../1[0,00)(31+...+sn)eQ<81+---+Sn>F(dsl)...F(dsn)
R R

:/ / e~ A1t P(dsy) . F(dsy)
[0,00) [0,00)

U e

thus concluding the proof of the first part of the lemma.
We now assume that f[o 00) F(ds) = 1. Let (;);>1 be ani.i.d. sequence with law F', let T, = 01+. . .+0p,
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for every n > 1 and let NV be the associated counting process. Notice that the law of T3, is F*"*. We have
forallt > 0

EN; = EIIP’(M >n) = glP(T” <t)= ;1 F*(t)

—Ut) -1,

as asserted.
Fix t,a > 0. We have

Nt+a — Ny = § :1TNt+1+n§t+a = 1TNt+1§t+a + E :1TNt+1+n§t+a .
n>0 n>1

We introduce the r.v.

Ty =TN,414n — IN41, n>1.

Notice that Ty, 1 = t + B so that

NtJra - Nt = ]—OSa—Bt + § ]-TT/LSath .
n>1

It is possible to show that (77,),,>1 is independent of B; and has the same law as (T3,),,>1. Since F*? is
a Dirac mass at 0, and F™*™ is the law of T},, we deduce that

E[Nita — Ni] = E[E[Niva — Ni| BJ] = E[>_ F*"(a— By)] = E[U(a — By)] .
n>0

Since U is non-decreasing, the latter quantity is bounded by U (a). O

Theorem 7. If the function z is bounded on finite intervals then the renewal equation (4.2) admits a
unique solution which is bounded on finite intervals and this solution is given by

2(t) = /[Ot]z(t—x)U(dx), 150

Notice that U has a Dirac mass at 0 so it is very important to specify whether we integrate over [0, ¢]
or (0,1].

Proof. Forevery t > 0, we set

and we observe that

|Z(t)] < sup |z(z) U(dx) = sup |z(z)|U(t) < oo,
z€[0,t] [0,t] z€[0,t]
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by assumption on z and by the previous lemma. Consequently, Z is bounded on finite intervals. Let us
now check that Z indeed satisfies the renewal equation. We compute

/M Z(t — 5)F(ds) = /M /[o,ts] 2t — s — 2)U(dx)F(ds)
_ /R /R 1y acioq2(t — s — 2)U(dz) F(ds)

- / 2(t — y)U  F(dy)
[0,2]
- /[0 1 2t —y) Y F(dy) -

n>1

Since z(t) = f[o g 2t — y) F*0(dy) we deduce that

() + /[0 P F(s) = 2(0).

as required.

We thus showed that Z solves the renewal equation. It remains to show that this is the unique
solution among all functions that are bounded on finite intervals. If Z; and Z5 are two solutions, then
their difference D = Z; — Z9 solves

D)= [ D{t—s)F(ds), t>0.
0.4

Iterating this equation and by the definition of the convolution of two measures, we get

= —s—u U S) = — 2)F**(dz) .
D(t) = /[0 , /[0 R PP = [ D2

By induction, we then show that foralln > 1

D(t) = D(t—x)F™(dz), t>0.
[0,¢]
Consequently
[D@)| < / |D(t — )| F™"(dz) < sup |D(u)|F™(t),
[0,¢] u€(0,t]
which goes to 0 as n — oo as we showed in the proof of the previous lemma. O

4.4 Blackwell’s Renewal Theorem and Key Renewal Theorem

From now on, we assume that F' is non-lattice, that is, F is not supported on a set of the form {0, r, 2r, 3r, ...}
for some » > 0. We also assume that F' is a probability measure: f[o 00) F(ds) = 1. Finally, we set

p= [y xF(dx).
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Theorem 8 (Blackwell’s Renewal Theorem). Assume that F' is a non-lattice probability measure and
that p < oo. Then for all a > 0 we have

U(t+a)—U(t)—>%, t 00

Theorem 9 (Key Renewal Theorem). Assume that F' is a non-lattice probability measure and that
u < oo. Consider the renewal equation (4.2) and assume that the function z appearing therein is
non-increasing, non-negative and Lebesgue integrable. Then

Z(t):/ S(t—)U(ds) >~ [ 2(a)dz, t—oo.
[0,t] K J10,00)

Remark 4.4.1. The theorem remains true under much less restrictive assumptions on z.
Although the Key Renewal Theorem seems to be stronger, these two theorems are equivalent.
Proposition 4.4.2. The Key Renewal Theorem and Blackwell’s Renewal Theorem are equivalent.

Proof. Assume that the statement of the Key Renewal Theorem holds true. Take z(s) = 1 q)(s), it is
plain that z is integrable, non-negative and non-increasing so that we have as ¢ — oo

1 a

2(t+a—s)U(ds) — — z(x)dr = —

[0,t+a] M J10,00) H

On the other hand, we have for all t > a
/ S(t+a—s)U(ds) = Ut +a) — Ut) ,
[0,t+a]
so that the conclusion of Blackwell’s Renewal Theorem follows.

Conversely, let us assume that Blackwell’s Renewal Theorem holds true. Assume that z is integrable,
non-negative and non-increasing and define I (x) = [x — (k + 1)h,z — kh) for some h > 0. Then for
any z € (nh, (n + 1)h] we have

T z—nh n—1
Z(x) = /0 2z — y)U(dy) = /0 o =) + 3 /Ikzccy)U(dy).

From the assumptions on z, we deduce that z goes to O at infinity. Notice that x — nh < h for all « and
h so that

)/om_nh z(a:—y)U(dy)‘ < /Oh sup |z(r)|U(dy) = sup [z(r)[U(h),

relxz—h,z] relz—h,z]

goes to 0 as x — oo.
Using the fact that z is non-increasing we obtain for all k € {0,...,n — 1}

z((k+Dh)(U((k +1)h) = U(kh)) < /I z(x —y)U(dy) < 2(kh)(U((k + 1)h) = U(kh)) .
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For some fixed ng, we then write

Z/l dySZ:

U(x — kh)

<" 2(kh) (U(x — kh) —

e
Il
o

Therefore for any fixed ng we obtain

no

limsup Z(x) <

T—00

==

k=0
and then taking the limit ng — oo and then A | 0
. .1
limsup Z(x) < lim —
T—00 hi0

On the other hand, we have for all n > ng

Z/I i) 2 3

so that

o

T—r00

z(kh) +U(h

—U(z — (k+ 1)h))

n—1
Uz — (k+1)h)) + 2(kh)U (h)
k=no+1

oo

) Y A

k=nop+1

liminf Z(z) > ZZ z2((k+1)h),

k=0

and taking the limit n9 — oo and then % | 0 one gets

1
liminf Z(x) > lim —
T—00 hl0 L

Consequently, Z(z) admits a limit as  — oo and this limit coincides with 1 f

z(t)dt =

i/z(t)dt.

t)dt as required. [

The proof of Blackwell’s Renewal Theorem is delicate so we do not present it here, and refer the

interested reader to [Asm03, Section V.5].

4.5 The exponential case

Assume that 0 is distributed as £(\) for some A > 0. Then the renewal process are the jump times of a
Poisson process N of intensity \. The parameter x equals and 1/\.

The function U is then explicit:

Ut)=1+E[N;] =1+ \t,

t>0.

In particular, the conclusion of Blackwell’s Theorem holds not only for ¢ — oo but for any ¢ > 0:

Ult+a)—

a

Ult) =X a=—.

I

The forward recurrence process B; has a very special behaviour.
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Lemma 4.5.1. The law of B; does not depend on t and is E(\).

Proof.

P(B; > z) =P(Ty,41 —t > ) = Y P(Tyq1 —t > 25Ny = k)
k>0

= P(Th<t<t+z<Thp),
k>0

For every k > 0, recall that T} has a I'(k, \) distribution and is independent from d.; so that we have:

P(Tk §t<t+l’<Tk+1) :]P)(Tk <t<t+z <Tk+6k+1)
)\k

_ / i1
s<t<t+xz<s+r (k - 1)'

k—1 Ak A A
= st e e Mdsdr
/s<t (k - 1)‘ /7">t+:(:s

k—1 AF A A
:/ sk e Mo (t+x—s)
s<t

e M e N dsdr

(k—1)!
)\k
- e—A(t—i-x)/ k-1
s<t (k - 1)'
k
k!
Consequently,
At A
]P(Bt >Q?) :ZP<Tk §t<t+$<Tk+1) =e (+x)zt T
k>0 k>0
— 67)@ ’
thus yielding the asserted result. 0
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