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Introduction

In this course, we will introduce stochastic processes in continuous time. They form a very rich class of
processes that arise in many different situations. The aim of this course is to introduce a few important
continuous-time processes (counting processes, Poisson processes, compound Poisson processes, jump
Markov processes) . We will start with counting processes, that are the simplest example of continuous-
time processes: they are processes that are non-decreasing, right continuous with left limits, and take
values in N. The most important such process is the Poisson process that we will study thoroughly in
Chapter 1. In Chapter 2 we will introduce elements of the theory of Markov processes on a countable
state-space. Chapter 3 we will introduce queueing theory and branching processes. Finally, in Chapter 4
we will move to renewal processes and renewal theory, which is used in risk theory.

Continuous-time stochastic proc.

Counting proc.

Markov proc.

Renewal proc. Poisson proc.

Figure 1: Continuous-time stochastic processes include Counting processes and Markov processes.
Among Counting processes, one finds the class of Renewal processes. The intersection of all these
classes of processes consists of Poisson processes.

We conclude this introduction with general definitions on continuous-time stochastic processes. Let
(Ω,F ,P) be a probability space.

A random variable Y is a measurable map from (Ω,F) into some measurable space (E, E). Most
of the time, the measurable space is (R,B(R)), that is, the set of real values endowed with its Borel
sigma-field, or (N,P(N)) the set of integers endowed with its natural sigma-field. From time to time
(and implicitly), the measurable space is taken to be R ∪ {+∞} endowed with its natural sigma-field.
The law of a random variable Y is the pushforward (=mesure image) of P through the map Y : it is a
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probability measure µ on the space (E, E) defined by

µ(A) = P(Y −1(A)) ,

for all A in E . Recall that Y −1(A) = {ω ∈ Ω : Y (ω) ∈ A}.

At the first semester, were introduced stochastic processes in discrete time, that is, collections of
real-valued random variables indexed by the set N. For many different reasons, it is natural to deal with
stochastic processes in continuous time.

Definition 0.0.1. A stochastic process X = (Xt, t ≥ 0) is a collection of real-valued random variables
indexed by the set of nonnegative real numbers [0,∞).

In discrete time, the trajectories of the process, that is the maps n 7→ Xn(ω) for ω ∈ Ω, are random
sequences. In continuous time, they become “random functions” t 7→ Xt(ω) and one can ask about the
regularity of these functions.

Fix ω ∈ Ω. The map t 7→ Xt(ω) is said to be right continuous if for all t ≥ 0, Xt(ω) =
lims↓0Xt+s(ω). Similarly, it is said to be left continuous if for all t > 0, Xt(ω) = lims↓0Xt−s(ω).
It is said to admit left limits if for all t > 0, lims↓0Xt−s(ω) exists: in that case, we denote by Xt−(ω)
the left limit at t.

Definition 0.0.2 (Continuity). We say that a stochastic process (Xt, t ∈ R+) is almost surely right
continuous, respectively left continuous, if the event

{ω ∈ Ω : ∀t ∈ R+, Xt(ω) = lim
s↓0

Xt+s(ω)} ,

respectively the event
{ω ∈ Ω : ∀t ∈ R+\{0}, Xt(ω) = lim

s↓0
Xt−s(ω)} ,

belongs to F and has probability 1.
We say that (Xt, t ∈ R+) is almost surely continuous if it is right and left continuous.

Definition 0.0.3 (Càdlàg). We say that (Xt, t ∈ R+) admits almost surely left limits if

{ω ∈ Ω : ∀t > 0, lim
s↓0

Xt−s(ω) exists} ,

belongs to F and has probability 1.
We say that (Xt, t ∈ R+) is almost surely càdlàg if it is right continuous and if it admits left limits.

In English, non-decreasing means "croissant" while increasing means "strictement croissant".

Definition 0.0.4 (Non-decreasing). We say that (Xt, t ∈ R+) is almost surely non-decreasing if the event

{ω ∈ Ω : ∀t > s ≥ 0, Xt(ω) ≥ Xs(ω)} ,

belongs to F and has probability 1.

Frequently, we will simply write "continuous" or "càdlàg" for "almost surely continuous" or "almost
surely càdlàg".
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Remark 0.0.5. The measurability of the events above is not granted by the mere fact that (Xt, t ∈ R+)
is a stochastic process. Indeed, these events depend on uncountably many random variablesXt, t ∈ R+.

Recall that
P(ω ∈ Ω : ∀t ∈ R+, Xt(ω) = lim

s↓0
Xt+s(ω)) = 1 ,

is equivalent to saying that P-almost surely

∀t ∈ R+, Xt = lim
s↓0

Xt+s .

P-almost surely is often abbreviated P-a.s.
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Chapter 1

Counting processes and the Poisson
process

1.1 Counting processes

Definition 1.1.1. A process N = (Nt, t ≥ 0) is a counting process if P-a.s.:

• N0 = 0,

• N is non-decreasing and right continuous,

• Nt ∈ N ∪ {+∞} for all t ≥ 0.

The jump times of a counting process N are defined as the sequence of random variables

Tn := inf{t ≥ 0 : Nt ≥ n} , n ≥ 0 ,

with the convention inf ∅ = +∞. Notice that T0 = 0 and (Tn, n ≥ 0) is non-decreasing, P-a.s.

Example 1.1.2. The total number of claims to an insurance company can be modelled by a counting
process (Nt, t ≥ 0). The r.v. Tn is the time of the n-th claim.

Lemma 1.1.3. We have P-a.s.

Nt = #{k ≥ 1 : Tk ≤ t} =
∑
k≥1

1{Tk≤t} , t ≥ 0 .

Proof. By definition, N takes values in N∪{+∞} and is non-decreasing. Consequently, P-a.s. we have
for all t ≥ 0 and all n ≥ 0:

Nt = n⇔ n ≤ Nt < n+ 1⇔ Tn ≤ t < Tn+1 ⇔ #{k ≥ 1 : Tk ≤ t} = n ,

thus yielding the first identity. The second identity is immediate.

Proposition 1.1.4. The law of a counting process N is completely characterised by the law of its se-
quence of jump times (Tn)n≥1.
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Remark 1.1.5. Before talking about the notion of law of a stochastic process, we need to specify the
measurable space it lives in: we consider the product space R[0,∞) endowed with the product sigma-
algebra. The law of a stochastic process X is the pushforward of P through the map ω 7→ (Xt(ω), t ∈
[0,∞)).

Proof. The law of N is characterised by the law of its marginals (Nt1 , . . . , Ntn) for all 0 ≤ t1 < t2 <
. . . < tn and all n ≥ 1. For any k1 ≤ k2 ≤ . . . ≤ kn, the events

{Nt1 = k1, . . . , Ntn = kn} ,

and
{Tk1 ≤ t1 < Tk1+1, Tk2 ≤ t2 < Tk2+1, . . . , Tkn ≤ tn < Tkn+1} ,

coincide up to P-negligible sets. As a consequence, the law of (Nt1 , . . . , Ntn) is completely characterised
by the law of the sequence (Tk)k≥1, thus concluding the proof.

Definition 1.1.6. We say that N is a standard counting process if it is a counting process and

1. Nt →∞ as t→∞, P-a.s.,

2. Nt −Nt− ∈ {0, 1} for all t ≥ 0, P-a.s.,

3. Nt <∞ for all t ≥ 0, P-a.s.

Recall that increasing means "strictement croissant".

Proposition 1.1.7. Let N be a counting process and (Tn)n≥0 its jump times. N is standard if and only if

(a) Tn <∞ for all n ≥ 0, P-a.s.,

(b) (Tn)n≥0 is increasing, P-a.s.,

(c) Tn →∞ as n→∞, P-a.s.

Proof. We prove the equivalence (c)⇔ 3. Almost surely we have

{Tn →∞} = {∀t ≥ 0,∃nt ∈ N : Tnt > t}
= {∀t ≥ 0,∃nt ∈ N : Nt < nt}
= {∀t ≥ 0, Nt <∞} .

We turn to the equivalence (a)⇔ 1. Almost surely we have

{Nt →∞}c = {∃n0 : ∀t ≥ 0, Nt < n0} = {∃n0 : Tn0 =∞} = {∀n ≥ 0 : Tn <∞}c .

We now prove that (b) implies 2. If there exists t > 0 such that Nt − Nt− ≥ 2, then TNt = TNt−1.
Consequently P-a.s.

{(Tn)n≥0 is increasing } ⊂ {∀t > 0 : Nt −Nt− ∈ {0, 1}} .

Finally we prove that 2 implies (b). If there exists n ≥ 0 such that Tn = Tn+1, then NTn = NTn+1 ≥
n + 1. If n = 0, this implies that N0 ≥ 1 but this holds with null probability since N is a counting
process. If n ≥ 1, we find Nt −Nt− ≥ 2 for t = Tn but this holds with null probability by 2.
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Definition 1.1.8 (Stationarity and independence). A counting process N has independent increments if
for all n ≥ 1 and all 0 = t0 < t1 < . . . < tn, (Nti − Nti−1 , i = 1, . . . , n) is a vector of independent
random variables.
A counting process N has stationary increments if for all 0 ≤ s < t, Nt −Ns and Nt−s have the same
law.

Definition 1.1.9. Given a counting process N and its sequence of jump times (Tn)n≥0, we call

δn := Tn − Tn−1 , n ≥ 1 ,

the inter-arrival times of N .

Notice that (δn)n≥1 is not necessarily a sequence of i.i.d. r.v.

Definition 1.1.10 (Renewal process). Let (δn, n ≥ 1) be a sequence of i.i.d. random variables taking
values in (0,∞). Set T0 = 0 and Tn = δ1 + . . . + δn for all n ≥ 0. Then, (Tn)n≥0 is called a renewal
process.

1.2 Some classical probability distributions

Recall that the exponential distribution E(λ) with parameter λ > 0 is the probability distribution on
[0,∞) associated to the density λe−λx1x>0. If X has law E(λ), then

EX =
1

λ
, VX =

1

λ2
.

Its characteristic function is given by:

E[eitX ] =
1

(1− it
λ )

, t ∈ R .

The exponential distribution is memoryless: the law of X − t given X > t is E(λ). More precisely,
we have the following.

Lemma 1.2.1. Let X be distributed as E(λ). For all t, s > 0:

P(X > t+ s |X > t) = P(X > s) .

Conversely, let X be a (strictly) positive random variable. If for all s, t > 0 we have

P(X > t+ s |X > t) = P(X > s) ,

then there exists λ > 0 such that X has law E(λ).

Proof. The first part of the proof comes from a simple computation based on the identity P(X > t) =
e−λt for all t ≥ 0:

P(X > t+ s |X > t) =
P(X > t+ s;X > t)

P(X > t)
=

P(X > t+ s)

P(X > t)
= e−λ(t+s)+λt = P(X > s) .
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We turn to the converse property. First assume that P(X > t) > 0 for all t ≥ 0 and set ϕ(t) = P(X > t).
We have for all t, s > 0

ϕ(t+ s) = P(X > t+ s) = P(X > t+ s ; X > t) = P(X > t+ s |X > t)P(X > t)

= P(X > s)P(X > t) = ϕ(t)ϕ(s) .

Consequently, a simple recursion shows that for all k, p ∈ N∗ we have

ϕ(k) = ϕ(1)k , ϕ(k) = ϕ(k/p)p ,

and therefore
ϕ(k/p) = ϕ(1)k/p .

Notice that 0 < ϕ(1) ≤ 1 so that we can set λ = − logϕ(1) ≥ 0. We have shown that ϕ(t) = e−λt

for all t ∈ Q∗+. From the right continuity of distribution functions, we deduce that t 7→ P(X > t) =
1 − P(X ≤ t) is right continuous itself. The density of Q∗+ in R+ ensures that ϕ(t) = e−λt holds for
all t ≥ 0. To show that λ is actually strictly positive, it suffices to observe that, if it were equal to 0 then
ϕ(t) = 1 for all t ≥ 0 and so P(X =∞) = 1 thus raising a contradiction.
Let us now show that P(X > t) > 0 for all t ≥ 0. Since X is a positive random variable, there exists
ε > 0 such that P(X > ε) > 0. Thus, P(X > 2ε) = P(X > 2ε |X > ε)P(X > ε) = P(X > ε)2. A
simple recursion yields P(X > nε) = P(X > ε)n for all n ∈ N. Consequently, P(X > t) > 0 for all
t > 0.

Lemma 1.2.2. Let X1, . . . , Xn be n independent random variables with law E(λi), λi > 0. If we set
Mn = min(X1, . . . , Xn) then

Mn
(law)
= E(λ1 + . . .+ λn) .

Proof. For all t ≥ 0, using the independence of the Xi’s we get:

P(Mn > t) = P(∩ni=1{Xi > t}) =
n∏
i=1

P(Xi > t) =
n∏
i=1

e−λit = e−
∑n
i=1 λit ,

thus identifying completely the law of Mn.

The Gamma distribution Γ(α, β) with parameter α, β > 0 is the probability distribution on [0,∞)
associated to the density

xα−1 βα

Γ(α)
e−βx1x>0 ,

where Γ(α) =
´∞

0 xα−1e−xdx. Recall that Γ(n) = (n− 1)! for all n ∈ N∗. If X has law Γ(α, β) then

EX =
α

β
, VX =

α

β2
.

Its characteristic function is given by:

E[eitX ] =
1

(1− it
β )α

, t ∈ R .

It turns out that the distribution Γ(1, λ) coincides with the distribution E(λ). Furthermore, ifX1, . . . , Xn

are independent r.v. with distribution Γ(αi, β) for α1, . . . , αn > 0, then their sum X1 + . . . + Xn has
law Γ(α1 + . . .+ αn, β).
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A random variable X has a Poisson distribution P(µ) with parameter µ > 0 if for all n ∈ N, we
have P(X = n) = e−µ µ

n

n! . Then,

EX = µ , VX = µ .

Its characteristic function is given by:

E[eitX ] = eλ(eit−1) , t ∈ R .

1.3 The Poisson process

Definition 1.3.1 (First definition of the Poisson process). Let λ > 0. A Poisson process with intensity λ
is a counting process with stationary and independent increments such that

Nt −Ns
(law)
= P(λ(t− s)) , ∀t ≥ s ≥ 0 .

The existence of this process will be proven later on. Let us check that this definition characterises
the law of a unique process. To that end, it suffices to show that the definition characterises completely
the law of the vector (Nt1 , . . . , Ntn) for any 0 = t0 < t1 < . . . < tn and any n ≥ 1. But this vector
is a linear transformation of the vector (Nt1 , Nt2 − Nt1 , . . . , Ntn − Ntn−1) which is distributed as n
independent Poisson random variables with parameters ti − ti−1.
Notice that if N is a Poisson process, then N0 = 0 a.s. and therefore Nt

(law)
= P(λt) for all t ≥ 0.

Furthermore, we have

E[Nt −Ns] = λ(t− s) , V[Nt −Ns] = λ(t− s) .

Theorem 1. A counting process N is a Poisson process of intensity λ if and only if its sequence of
inter-arrival times (δn)n≥1 is i.i.d. with law E(λ).

This result yields a second, equivalent definition of the Poisson process.

Definition 1.3.2 (Second definition of the Poisson process). Let λ > 0. A Poisson process with intensity
λ is a counting process whose sequence of inter-arrival times is i.i.d. with law E(λ).

Then, the existence of the Poisson process is immediate as it can be constructed from a sequence of
i.i.d. random variables with law E(λ). This second definition ensures that the law of Tn is Γ(n, λ) since
this is the sum of n independent E(λ) r.v.

Proof. By Proposition 1.1.4, the law of a counting process is completely characterised by the law of its
sequence of jump times. Consequently, it suffices to check that the law of (T1, . . . , Tn) is the same in
both cases.

Case 1: The law of (T1, . . . , Tn) when N is a Poisson process. Suppose that N is a Poisson process
of intensity λ. Fix n ≥ 1 and 0 < s1 < . . . < sn. For any h1, . . . , hn > 0 such that s1 + h1 < s2 <
s2 + h2 < . . . < sn < sn + hn we use the independence and stationarity of the increments of N to

13



derive the following identities:

P
(
∩ni=1 {Ti ∈ (si, si + hi]}

)
= P

(
Ns1 = 0, Ns1+h1 −Ns1 = 1, Ns2 −Ns1+h1 = 0, . . .

, Nsn −Nsn−1+hn1
= 0, Nsn+hn −Nsn ≥ 1

)
= P

(
Ns1 = 0

)
P
(
Ns1+h1 −Ns1 = 1

)
P
(
Ns2 −Ns1+h1 = 0

)
. . .

P
(
Nsn −Nsn−1+hn1

= 0
)
P
(
Nsn+hn −Nsn ≥ 1

)
= P

(
Ns1 = 0

)
P
(
Nsn+hn −Nsn ≥ 1

) n−1∏
i=1

P
(
Nsi+hi −Nsi = 1

)
P
(
Nsi+1 −Nsi+hi = 0

)
= e−λs1(1− e−λhn)

n−1∏
i=1

e−λhiλhie
−λ(si+1−si−hi) .

This computation suggests to define for all 0 < s1 < . . . < sn:

fn(s1, . . . , sn) = lim
h1,...,hn↓0

P
(
∩ni=1 {Ti ∈ (si, si + hi]}

)∏n
i=1 hi

= λne−λsn ,

and to set this function to 0 for all other values of (s1, . . . , sn). In other words

fn(s1, . . . , sn) = 1{0<s1<...<sn}λ
ne−sn .

Let us show recursively that ˆ
Rn
fn(s1, . . . , sn)

n∏
i=1

dsi = 1 .

For any n ≥ 2, we have:

ˆ
Rn
fn(s1, . . . , sn)

n∏
i=1

dsi =

ˆ
0<s1<...<sn−1

λn−1e−sn−1

ˆ
sn∈(sn−1,∞)

λe−(sn−sn−1)dsn

n−1∏
i=1

dsi

=

ˆ
0<s1<...<sn−1

λn−1e−sn−1

n−1∏
i=1

dsi

=

ˆ
Rn−1

fn−1(s1, . . . , sn−1)

n−1∏
i=1

dsi .

Consequently, a simple recursion shows that this last expression equals
ˆ

(0,∞)
λe−λsds = 1 .

Hence fn is the density of a probability distribution on Rn supported in {0 < s1 < . . . < sn}. Moreover,
for all si, hi as above we have

P
(
∩ni=1 {Ti ∈ (si, si + hi]}

)
=

ˆ
∏n
i=1(si,si+hi]

fn(t1, . . . , tn)
n∏
i=1

dti .
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Consequently, (T1, . . . , Tn) admits a density on Rn given by the function fn.
Case 2: The law of (T1, . . . , Tn) when N is built from a sequence of i.i.d. E(λ). Assume that (δn)n≥1 is
a sequence of i.i.d. r.v. with law E(λ) and set Tn =

∑n
i=1 δi for all n ≥ 1. Observe that δi = Ti − Ti−1

for every i ≥ 1.
Fix n ≥ 1. If we denote by δ the vector (δ1, . . . , δn) and similarly, we denote by T the vector
(T1, . . . , Tn) then δ = AT where

A =



1 0 . . . 0 0
−1 1 . . . 0 0
0 −1 . . . 0 0
...

... . . . 0 0
0 0 . . . 1 0
0 0 . . . −1 1


A is an invertible matrix so that the map t 7→ At is a diffeomorphism from Rn into itself, and its
determinant is equal to 1. Let ϕ : Rn → Rn be a bounded measurable map, and denote by g(s1, . . . , sn)
the density of the vector δ:

gn(s1, . . . , sn) =

n∏
i=1

λe−λsi1si>0 .

By the change-of-variable formula and the fact that
∑n

i=1(At)i = tn, we find

E[ϕ(T1, . . . , Tn)] = E[ϕ(A−1δ)] =

ˆ
s∈Rn

ϕ(A−1s)gn(s1, . . . , sn)
n∏
i=1

dsi

=

ˆ
t∈Rn

ϕ(t)gn(At)| detA|
n∏
i=1

dti

=

ˆ
t∈Rn

ϕ(t)λne−λtn
n∏
i=1

1{0<t1<...<tn}dti ,

thus identifying the density of (T1, . . . , Tn) as being given by fn.

1.4 A reminder on conditional expectations

Let B be a sigma-field included in F . Let X be a real-valued random variable in L1(Ω,P).

Definition 1.4.1. The conditional expectation E[X|B] of X given B is the unique (up to almost sure
equivalence) B-measurable random variable that satisfies for all B ∈ B

E[X1B] = E[E[X|B]1B] .

Theorem 2. Let B be a sigma-field, and let X,Y be two real valued random variables, such that X is
B-measurable and Y is independent from B. Then for any bounded measurable map f : R2 → R, we
have the following almost sure identity:

E
[
f(X,Y ) | B

]
= F (X) ,

where
F (x) := E[f(x, Y )] , x ∈ R .
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Proof. Fix B ∈ B. We aim at showing that

E[f(X,Y )1B] = E[F (X)1B] .

It suffices to show that it holds true for all maps f of the form f = 1A with A ∈ B(R2). Indeed, by
linearity of this identity, we then deduce that it holds true for all linear combination of such indicators,
and by the Dominated Convergence Theorem for any map f which is non-negative. The general case is
then obtained by splitting f into its positive and negative parts.
Let us introduce the class M := {A ∈ B(R2) : E[1A(X,Y )1B] = E[FA(X)1B]} where FA(x) =
E[1A(x, Y )]. If A ⊂ A′ are inM, then by linearity A′\A is inM as well. Furthermore,M is stable
under increasing limit. Finally, Ω belongs to M since FΩ = 1. Hence M is a monotone class that
contains Ω. Now if we let C be the class of all product setsA1×A2 withA1, A2 ∈ B(R), then C is stable
under finite intersection and belongs toM. By the Monotone Class Theorem, we deduce that σ(C) also
belongs toM: since σ(C) = B(R2) this concludes the proof.

1.5 Some properties of the Poisson process

From now on, N is a Poisson process of intensity λ > 0.

Proposition 1.5.1 (Law of large numbers). As t→∞, we have the following almost sure convergence:

Nt

t
→ λ .

Proof. For any n ≥ 1, observe that Nn =
∑n

i=1(Ni − Ni−1). Since the increments of a Poisson
process are stationary and independents, we can apply the strong law of large numbers to the sequence
(Ni −Ni−1)i≥1 and get the following almost sure convergence as n→∞:

Nn

n
→ E[N1 −N0] = E[N1] = λ .

Let us now write nt = btc for the integer part of t ≥ 0. Since N has non-decreasing paths, we have for
all t ≥ 1:

nt
nt + 1

Nnt

nt
=

Nnt

nt + 1
≤ Nt

t
≤ Nnt+1

nt
=
nt + 1

nt

Nnt+1

nt + 1
.

Observe that nt/(nt + 1) → 1 as t → ∞. Consequently, the almost sure convergence Nn/n → λ
ensures that the leftmost and rightmost terms of the previous inequalities converge to λ almost surely,
thus yielding the asserted result.

We introduce the filtration generated by the process N :

Ft := σ(Ns, s ≤ t) , t ≥ 0 .

Lemma 1.5.2. For all t, s ≥ 0, the random variable Nt+s −Nt is independent of Ft.

Proof. LetM be the collection of all events E ∈ Ft such that E is independent from Nt+s − Nt. It is
simple to check that Ω ∈M. Furthermore, if E ⊂ E′ are inM, then for all f : R→ R measurable and
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bounded we have

E[1E′\Ef(Nt+s −Nt)] = E[(1E′ − 1E)f(Nt+s −Nt)]

= E[1E′f(Nt+s −Nt)]− E[1Ef(Nt+s −Nt)]

= P(E′)E[f(Nt+s −Nt)]− P(E)E[f(Nt+s −Nt)]

= P(E′\E)E[f(Nt+s −Nt)] ,

so that E′\E is inM as well. Similarly, one can check that if En is an increasing sequence of events in
M, then ∪nEn is also inM. Consequently,M is a monotone class that contains Ω. Let us introduce C
as the collection of all events of the form

{Ns1 ∈ A1, . . . , Nsn ∈ An} ,

for 0 ≤ s1 < . . . < sn ≤ t, A1, . . . , An some Borel sets of R and n ≥ 1. Notice that C is stable under
finite intersections. From the independence of the increments of a Poisson process, we deduce that C is
a subset ofM. The Monotone Class Theorem yields that σ(C) ⊂ M. By definition, Ft coincides with
σ(C) so this concludes the proof.

Proposition 1.5.3. If N,M are two independent Poisson processes of intensity λ, µ then their sum is a
Poisson process of intensity λ+ µ.

Proof. Left as an exercise.

Our next proposition describes the law of the jump times (T1, . . . , Tn) conditionally given Nt = n.
In order to state the result, we need to introduce the following.

Definition 1.5.4 (Order statistics). Let (Xi, i = 1, . . . , n) be a collection of real valued random variables
which are almost surely pairwise distinct. We define X(1) := inf{Xi, i ∈ {1, . . . , n}} and recursively

X(i) = inf{Xj : Xj > X(i−1)} .

The random variables (X(i), i = 1, . . . , n) are called the order statistics of (Xi, i = 1, . . . , n).

Notice that this definition makes sense almost surely since the r.v. (Xi, i = 1, . . . , n) are pairwise
distinct with probability one. Notice that if the Xi are independent and have a density, then they are
pairwise distinct with probability one. We now state a simple property of order statistics.

Lemma 1.5.5. If (Xi, i = 1, . . . , n) is a sequence of i.i.d., real valued r.v. with common density f , then
the vector (X(1), . . . , X(n)) admits the following density:

fn(y1, . . . , yn) = n!
n∏
i=1

f(yi)1y1<...<yn .

Proof. Let Σn be the set of all permutations of {1, . . . , n}. We have for every measurable and bounded
map g : Rn → R

E[g(X(1), . . . , X(n))] =
∑
σ∈Σn

E
[
g(Xσ(1), . . . , Xσ(n))1{Xσ(1)<...<Xσ(n)}

]
.

17



We define D := {x ∈ Rn : x1 < . . . < xn}. For every permutation σ of {1, . . . , n}, we set
Dσ := {x ∈ Rn : xσ(1) < . . . < xσ(n)}. The mapping ϕσ : x ∈ Dσ 7→ (xσ(1), . . . , xσ(n)) ∈ D is a
diffeomorphism. Consequently, by the change of variables formula we get

E
[
g(Xσ(1), . . . , Xσ(n))1{Xσ(1)<...<Xσ(n)}

]
=

ˆ
x∈Dσ

g(xσ(1), . . . , xσ(n))f(x1) . . . f(xn)dx1 . . . dxn

=

ˆ
y∈D

g(y1, . . . , yn)
∣∣Jϕ−1

σ

∣∣f(y1) . . . f(yn)dy1 . . . dyn .

Since
∣∣Jϕ−1

σ

∣∣ = 1, this last expression does not depend on σ. Since Σn contains n! elements, we deduce
that

E[g(X(1), . . . , X(n))] = n!

ˆ
y∈D

g(y1, . . . , yn)f(y1) . . . f(yn)dy1 . . . dyn ,

thus identifying uniquely the density of the distribution of (X(1), . . . , X(n)).

As usual, we let N be a Poisson process of intensity λ and we denote by T1, T2, . . . its jump times.

Theorem 3. Fix t > 0 and n ∈ N. Let Ui, i = 1 . . . n be a sequence of i.i.d. uniform r.v. on [0, t]. Then,
the law of (T1, . . . , Tn) given {Nt = n} coincides with the law of (U(1), . . . , U(n)), the order statistics
of (U1, . . . , Un).

Proof. Let f be a measurable and bounded map from Rn into R. We have

E[f(T1, . . . , Tn)1Nt=n]

= E
[
f(δ1, δ1 + δ2, . . . , δ1 + . . .+ δn)1{δ1+...+δn≤t<δ1+...+δn+1}

]
=

ˆ
s1,...,sn+1≥0

f(s1, . . . , s1 + . . . sn)λn+11{s1+...+sn≤t<s1+...+sn+1}

n+1∏
i=1

e−λsidsi

=

ˆ
s1,...,sn≥0

f(s1, . . . , s1 + . . . sn)1{s1+...+sn≤t}

n∏
i=1

e−λsidsiλ
ne−λ(t−s1−s2−...−sn)

=

ˆ
s1,...,sn≥0

f(s1, . . . , s1 + . . . sn)1{s1+...+sn≤t}

n∏
i=1

dsiλ
ne−λt

=

ˆ
t1,...,tn≥0

f(t1, . . . , tn)1{t1≤t2≤...≤tn≤t}

n∏
i=1

dtiλ
ne−λt .

Since in addition P(Nt = n) = e−λt(λt)n/n! we obtain

E[f(T1, . . . , Tn)
∣∣Nt = n]

=
E[f(T1, . . . , Tn)1Nt=n]

P(Nt = n)

= n!

ˆ
t1,...,tn≥0

f(t1, . . . , tn)1{0<t1<...<tn≤t}t
−ndt1 . . . dtn ,

We deduce that the law of (T1, . . . , Tn) given {Nt = n} admits the following density: n!1{0<t1<...<tn≤t}t
−n.

By Lemma 1.5.5, we recognise the density of the order statistics of n i.i.d. uniform r.v. on [0, t].
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1.6 The mixed Poisson process

Definition 1.6.1. Let N be a Poisson process of intensity 1, and let Θ be a positive random variable,
independent of N . The process

Ñt := NΘt , t ≥ 0 ,

is called a mixed Poisson process with random intensity Θ.

Remark 1.6.2. It is not completely immediate to check that the marginals of Ñ are well-defined random
variables.

To make computations on the law of a mixed Poisson process, one can condition first on its random
intensity. Indeed, conditionally given Θ, Ñ is a Poisson process of intensity Θ as the following result
shows.

Proposition 1.6.3. Conditionally given Θ, Ñ has the law of a Poisson process of intensity Θ.

Proof. First of all, t 7→ Ñt is an N-valued, non-decreasing, right-continuous process starting from 0: it
is therefore a counting process. It makes jumps of size 1 a.s. and its inter-arrival times δ̃n satisfy:

δ̃n = δn/Θ , n ≥ 1 .

Consequently, for all bounded measurable maps f1, . . . , fn we have by Theorem 2

E[f1(δ̃1) . . . fn(δ̃n) |Θ] = E[f1(δ1/Θ) . . . fn(δn/Θ) |Θ] = F (Θ) ,

where
F (x) = E[f1(δ1/x) . . . fn(δn/x)] .

Since for all x > 0, (δ1/x, . . . , δn/x) has the law of n independent E(x) r.v., we deduce that the condi-
tional law of (δ̃1, . . . , δ̃n) given Θ is the law of n independent E(Θ) r.v. This yields the statement of the
proposition.

Lemma 1.6.4. Let Ñ be a mixed Poisson process with random intensity Θ. For all t > 0, we have

E[Ñt] = E[Θ]t , Var [Ñt] = E[Θ]t+ Var [Θ]t2 .

Proof. Since Ñt, conditionally given Θ, is a Poisson r.v. with parameter Θt, we get

E[Ñt] = E[E[Ñt |Θ]] = E[Θt] ,

as well as
E[Ñ2

t ] = E[E[Ñ2
t |Θ]] = E[(Θt)2 + Θt] .

Consequently,

Var [Ñt] = E[Ñ2
t ]− E[Ñt]

2 = E[(Θt)2 + Θt]− E[Θt]2 = Var [Θ]t2 + E[Θ]t .

Proposition 1.6.5. Let Ñ be a mixed Poisson process with random intensity Θ. Then:

(i) Ñt does not follow a Poisson distribution, except if Θ is deterministic,
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(ii) Ñ does not have independent increments, except if Θ is deterministic,

(iii) Ñ has stationary increments.

Proof. Recall that the expectation and variance of a Poisson r.v. coincide. By the previous lemma, the
expectation and variance of Ñt coincide if and only if Var Θ = 0. But

Var Θ = 0⇔ E[(Θ− EΘ)2] = 0⇔ Θ− EΘ = 0 a.s. ,

which is equivalent to saying that Θ is deterministic. Consequently, if Θ is not deterministic then Ñt

does not follow a Poisson distribution. On the other hand, if Θ is deterministic, then Ñt is a Poisson
random variable with intensity Θ. This proves (i).
For all t > s ≥ 0, we have

E[Ñs(Ñt − Ñs)] = E[E[Ñs(Ñt − Ñs) |Θ]] = E[ΘsΘ(t− s)] = E[Θ2]s(t− s) ,

while
E[Ñs]E[Ñt − Ñs] = E[Θ]2s(t− s) .

Consequently, as soon as E[Θ2] 6= E[Θ]2, the random variables Ñs and Ñt − Ñs are not independent so
that the increment of Ñ are not independent. Notice that E[Θ2] 6= E[Θ]2 is equivalent with Var Θ 6= 0,
which is itself equivalent with Θ is not deterministic. On the other hand, if Θ is deterministic, then Ñ is
a Poisson process of intensity Θ and its increments are independent. This proves (ii).
To prove the stationarity, we observe that for all y ∈ R and all t ≥ s ≥ 0 we have

E[eiy(Ñt−Ñs)] = E[E[eiy(Ñt−Ñs) |Θ]] = E[E[eiyÑt−s |Θ]] = E[eiyÑt−s ] .

This proves (iii).

Proposition 1.6.6. Fix t > 0 and n ∈ N. Let 0 < T̃1 < . . . < T̃n < . . . be the jump times of a
mixed Poisson process Ñ of random intensity Θ. The law of (T̃1, . . . , T̃n) conditionally given Ñt = n
is independent of Θ and coincides with the law of (U(1), . . . , U(n)), the order statistics of (U1, . . . , Un),
taken to be n i.i.d. uniform r.v. over [0, t]

Proof. Recall that Ñ , conditionally given Θ, is a Poisson process of intensity Θ. Similarly as in the
proof of Theorem 3, we find for every bounded and measurable function g : Rn → R:

E[g(T̃1, . . . , T̃n)1{T̃n≤t<T̃n+1} |Θ] = Θn+1

ˆ
0<t1<...<tn+1

e−Θtn+1g(t1, . . . , tn)1{tn≤t<tn+1}dt1 . . . dtn+1

= Θne−Θt

ˆ
0<t1<...<tn

g(t1, . . . , tn)1{tn≤t}dt1 . . . dtn

=
(Θt)n

n!
e−ΘtE

[
g(U(1), . . . , U(n))

]
= P(Ñt = n |Θ)E

[
g(U(1), . . . , U(n))

]
,

where the equality before the last comes from Lemma 1.5.5 applied to (U1, . . . , Un).
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We now take h : R→ R bounded measurable. We have

E[g(T̃1, . . . , T̃n)h(Θ) | Ñt = n] =
E[g(T̃1, . . . , T̃n)h(Θ)1{Ñt=n}]

P(Ñt = n)

=
E[g(T̃1, . . . , T̃n)h(Θ)1{T̃n≤t<T̃n+1}]

E[1{T̃n≤t<T̃n+1}]

=
E[h(Θ)E[g(T̃1, . . . , T̃n)1{T̃n≤t<T̃n+1} |Θ]]

E[E[1{T̃n≤t<T̃n+1} |Θ]]

so that using the previous calculation, we get

=
E[ (Θt)n

n! e−Θth(Θ)]

E[ (Θt)n

n! e−Θt]
E
[
g(U(1), . . . , U(n))

]
=

E[Θne−Θth(Θ)]

E[Θne−Θt]
E
[
g(U(1), . . . , U(n))

]
Taking h = 1, we deduce that

E[g(T̃1, . . . , T̃n) | Ñt = n] = E
[
g(U(1), . . . , U(n))

]
,

and taking g = 1 we find

E[h(Θ) | Ñt = n] =
E[Θne−Θth(Θ)]

E[Θne−Θt]
.

Therefore, for any g and h bounded and measurable, we have the identity

E[g(T̃1, . . . , T̃n)h(Θ) | Ñt = n] = E[g(T̃1, . . . , T̃n) | Ñt = n]E[h(Θ) | Ñt = n] ,

which proves the statement of the proposition.

Corollary 1.6.7. Let n ≥ 1 and 0 ≤ t1 ≤ . . . ≤ tn. The law of (Ñt1 , . . . , Ñtn) conditionally given
Ñtn = m is independent of Θ and therefore coincides with the law of (Nt1 , . . . , Ntn) conditionally
given Ntn = m, where N is a Poisson process of arbitrary intensity λ > 0.

Proof. For all 0 ≤ k1 ≤ . . . ≤ kn = m, we have

P(Ñt1 = k1, . . . , Ñtn = kn | Ñtn = m)

= P(T̃k1 ≤ k1 < T̃k1+1 . . . T̃k2 ≤ t2 < . . . T̃kn−1 ≤ tn−1 < T̃kn−1+1 | Ñtn = m) .

By the previous proposition, we know that the law of (T̃1, . . . , T̃kn) conditionally given Ñtn = kn
is independent of Θ and coincides with the same quantity for a Poisson process of arbitrary intensity
λ > 0. Consequently, the last quantity equals

= P(Tk1 ≤ t1 < Tk1+1 . . . Tk2 ≤ t2 < . . . Tkn−1 ≤ tn−1 < Tkn−1+1 |Ntn = m)

= P(Nt1 = k1, . . . , Ntn = kn |Ntn = m) .
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1.7 The compound Poisson process

Definition 1.7.1. The process St =
∑Nt

i=1Xi, t ≥ 0, is called a compound Poisson process if the
sequence (Xi)i≥1 is i.i.d. with values in R, and N is a Poisson process independent of (Xi)i≥1.

As usual, we will denote by λ > 0 the intensity of the Poisson process N .

Proposition 1.7.2. Let S be a compound Poisson process. Then:

(i) S is almost surely càdlàg and has stationary and independent increments,

(ii) The distribution function of St satisfies for all x ∈ R

P(St ≤ x) =
∑
n≥0

P(Nt = n)P(X1 + . . .+Xn ≤ x) ,

(iii) If X is integrable, then
E[St] = E[Nt]E[X] ,

and if furthermore X has a finite second moment, then

Var [St] = Var [Nt]E[X]2 + Var [X]E[Nt] .

(iv) For all t ≥ 0 and all q ∈ R such that E[eqX ] <∞ we have

E[eqSt ] = exp
(
λt(E[eqX ]− 1)

)
.

Proof. To prove that S is almost surely càdlàg, it suffices to use the fact that N is itself almost surely
càdlàg so that almost surely for all t ≥ 0:

lim
s↓0

St+s = lim
s↓0

Nt+s∑
i=1

Xi =

Nt∑
i=1

Xi = St ,

and for all t > 0:

lim
s↓0

St−s = lim
s↓0

Nt−s∑
i=1

Xi =

Nt−∑
i=1

Xi = St− .

Let us show that S has stationary and independent increments. Fix n ≥ 1, and let q1, . . . , qn ∈ R and
0 = t0 < t1 < . . . < tn. Denote by ΦX(q) = E[eiqX ] the characteristic function of the law of X . We
have

E
[
ei

∑n
k=1 qk(Stk−Stk−1

)
]

= E
[ n∏
k=1

e
iqk

∑Ntk
j=Ntk−1+1

Xj
]

= E
[
E
[ n∏
k=1

e
iqk

∑Ntk
j=Ntk−1+1

Xj |N
]]
.
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Since the random variables (Xj)j≥1 are independent of N , their conditional law given N is the same: in
particular, they are i.i.d. Consequently, we have

= E
[ n∏
k=1

E
[
e
iqk

∑Ntk
j=Ntk−1+1

Xj |N
]]

= E
[ n∏
k=1

ΦX(qk)
Ntk−Ntk−1

]
.

Since the process N has stationary and independent increments, we get

=
n∏
k=1

E
[
ΦX(qk)

Ntk−tk−1

]
=

n∏
k=1

E
[
eiqkStk−tk−1

]
.

This concludes the proof of (i).
Regarding (ii), by independence we have

P(St ≤ x) =
∑
n≥0

P(St ≤ x,Nt = n)

=
∑
n≥0

P(X1 + . . .+Xn ≤ x,Nt = n)

=
∑
n≥0

P(X1 + . . .+Xn ≤ x)P(Nt = n) .

To prove (iii), we first show that |St| is integrable:

E[|St|] =
∑
n≥0

E[|St|1Nt=n]

=
∑
n≥0

E[|X1 + . . . Xn|]P(Nt = n)

≤
∑
n≥0

nE[|X1|]P(Nt = n)

≤ E[Nt]E[|X1|] <∞ .

Then, a similar computation shows that E[St] = E[Nt]E[X1]. If X has finite second moment, a similar
argument shows that St also has a finite second moment and we get

E[S2
t ] =

∑
n≥0

E[(X1 + . . .+Xn)2]P(Nt = n)

=
∑
n≥0

(
nE[X2

1 ] + n(n− 1)E[X1]2
)
P(Nt = n)

= E[Nt]E[X2
1 ] + E[N2

t −Nt]E[X1]2

= E[Nt](E[X2
1 ]− E[X1]2) + E[N2

t ]E[X1]2 .

23



Consequently,
Var St = E[S2

t ]− E[St]
2 = E[Nt]Var X1 + E[N2

t ]Var X1 .

Property (iv) is a consequence of the following computation:

E[eqSt ] =
∑
n≥0

E[eqSt1Nt=n]

=
∑
n≥0

E[eq(X1+...+Xn)]P(Nt = n)

=
∑
n≥0

E[eqX1 ]nP(Nt = n)

=
∑
n≥0

E[eqX1 ]n
(λt)n

n!
e−λt

= exp
(
λt(E[eqX1 ]− 1)

)
.

Proposition 1.7.3. Let S be a compound Poisson process and assume that E[|X|] <∞. Then, as t→∞
we have the following almost sure convergence

St
t
→ λE[X] .

Proof. Set

Ω1 := {ω ∈ Ω :
Nt(ω)

t
→ λ} , Ω2 := {ω ∈ Ω :

1

n

n∑
i=1

Xi(ω)→ E[X1]} .

By Proposition 1.5.1 for the first event, and the classical law of large numbers for the second event, we
deduce that P(Ω1 ∩ Ω2) = 1. Then for every ω ∈ Ω1 ∩ Ω2 we have as t→∞

St(ω)

t
=
Nt(ω)

t

1

Nt(ω)

Nt(ω)∑
i=1

Xi(ω)→ λE[X1] .

1.8 An exercise

Insects fall into a soup bowl according to a Poisson process N with intensity λ > 0 (the event {Nt = n}
means that there are n insects in the bowl at time t). Assume that every insect is green with probability
p ∈ (0, 1) and that its colour is independent of the colours of all other insects. Show that the number of
green insects that fall into the bowl, as a function of time, is a Poisson process with intensity λp.

Correction: First of all, we need to introduce mathematical objects to model the problem. We let N be
the Poisson process of intensity λ whose jump times Tn are the times at which an insect falls into the
bowl. We assume that the insects are numbered from 1 to∞ according to their order of appearance in
the bowl. We then consider a sequence (εn)n≥1 of i.i.d. Bernoulli(p) r.v., independent of N , that models
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the colours of the insects: the colour of the n-th insect is green if and only if εn = 1.

It is clear then that the number of green insects at time t in the bowl is given by

Ng
t =

Nt∑
j=1

εj , t ≥ 0 ,

that is a compound Poisson process. As such it has independent and stationary increments, and all we
have to do is to compute the distribution at time t.

E
(
eqN

g
t

)
= exp (λt (E [eqε1 ]− 1)) = exp (λt ([peqε1 + 1− p]− 1)) = eλpt(e

q−1),

that implies that Ng
t has a Poisson distribution of parameter λpt.
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Chapter 2

Continuous-time Markov processes with
countable state-space

In this chapter, we study continuous-time processes that take values in a countable set E and satisfy the
Markov property. Recall that E is a countable set if it is either a finite set or a set in bijection with N. We
will see that continuous-time Markov processes are intimately related with Markov chains, which were
studied at the first semester.

2.1 The Markov property: from discrete-time to continuous-time pro-
cesses

Let us recall the definition of Markov chains from the first semester.

Definition 2.1.1 (Markov chain - first version). Let (Xn)n≥0 be a discrete-time process taking values in
E. We say that (Xn)n≥0 is a time-homogeneous Markov chain if:

1. (Markov property): For all n ≥ 0 and all (x0, . . . , xn−1, x, y) ∈ En+2 such that P(X0 =
x0, . . . , Xn−1 = xn−1, Xn = x) > 0, we have

P(Xn+1 = y |X0 = x0, . . . , Xn−1 = xn−1, Xn = x) = P(Xn+1 = y |Xn = x) .

2. (Time-homogeneity): There exists a matrix Π : E × E → R such that

P(Xn+1 = y |Xn = x) = Π(x, y) .

Recall that Π is often called the transition matrix of the chain, although it is an “infinite” matrix as
soon as E is an infinite set. Recall also that Π satisfies Π(x, y) ≥ 0 for all x, y ∈ E and∑

y∈E
Π(x, y) = 1 ,

for all x ∈ E.
Our first task in this chapter is to extend this definition to the setting of continuous-time processes.

While the intuition behind the Markov property (the relevant information to determine the future evolu-
tion of the process consists of the current state of the process) remains the same in continuous-time, the
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precise definition is a priori unclear: the time parameter being continuous, there is no obvious way to
generalise the conditioning by X0 = x0, . . . , Xn−1 = xn−1, Xn = x from the definition.
At this point, we actually observe that one can simplify the above definition using the notion of filtration.
Let Fn := σ(X0, . . . , Xn), n ≥ 0, be the natural filtration associated to the process (Xn, n ≥ 0).

Definition 2.1.2 (Markov chain - second version). Let (Xn)n≥0 be a discrete-time process taking values
in E. We say that (Xn)n≥0 is a time-homogeneous Markov chain if:

1. (Markov property): For all n ≥ 0 and all y ∈ E, we have

P(Xn+1 = y | Fn) = P(Xn+1 = y |Xn) .

2. (Time-homogeneity): There exists a matrix Π : E × E → R such that almost surely

P(Xn+1 = y |Xn) = Π(Xn, y) .

Lemma 2.1.3. These two definitions are equivalent.

Proof. Let us start from the second definition. Under the assumption that P(X0 = x0, . . . , Xn−1 =
xn−1, Xn = x) > 0, we have

P(Xn+1 = y,X0 = x0, . . . , Xn−1 = xn−1, Xn = x) = E[1Xn+1=y1X0=x0,...,Xn−1=xn−1,Xn=x]

= E[E[1Xn+1=y1X0=x0,...,Xn−1=xn−1,Xn=x | Fn]]

= E[1X0=x0,...,Xn−1=xn−1,Xn=xE[1Xn+1=y | Fn]]

= E[1X0=x0,...,Xn−1=xn−1,Xn=xE[1Xn+1=y |Xn]]

= E[1X0=x0,...,Xn−1=xn−1,Xn=x ϕn(Xn)]

= ϕn(x)E[1X0=x0,...,Xn−1=xn−1,Xn=x] ,

where ϕn(z) := E[1Xn+1=y |Xn = z] for all z ∈ E. Hence

P(Xn+1 = y |X0 = x0, . . . , Xn−1 = xn−1, Xn = x)

=
P(Xn+1 = y,X0 = x0, . . . , Xn−1 = xn−1, Xn = x)

P(X0 = x0, . . . , Xn−1 = xn−1, Xn = x)

= ϕn(x) = P(Xn+1 = y |Xn = x) .

Let us now prove the converse implication. We start from the first definition. We aim at showing that for
all A ∈ Fn, we have

E[1Xn+1=y1A] = E[E[1Xn+1=y |Xn]1A] . (2.1)

We claim that this is true whenever A is of the form A = {X0 = x0, . . . , Xn−1 = xn−1, Xn = x}.
Indeed, if P(A) = 0 then both sides of the identity vanish. If P(A) > 0, then the assertion of the first
definition yields

E[1Xn+1=y1A] = P(Xn+1 = y |X0 = x0, . . . , Xn−1 = xn−1, Xn = x)

× P(X0 = x0, . . . , Xn−1 = xn−1, Xn = x)

= P(Xn+1 = y |Xn = x)P(X0 = x0, . . . , Xn−1 = xn−1, Xn = x)

= ϕn(x)P(X0 = x0, . . . , Xn−1 = xn−1, Xn = x) ,
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where ϕn is the (measurable) map from E to R such that ϕn(Xn) = P(Xn+1 = y |Xn) almost surely.
Hence

E[1Xn+1=y1A] = ϕn(x)P(X0 = x0, . . . , Xn−1 = xn−1, Xn = x)

= ϕn(x)E[1A]

= E[ϕn(Xn)1A] ,

which concludes the proof of the claim. Since the class Cn of all events A of the above form is stable
under finite intersections and is such that σ(Cn) = Fn, the Monotone Class Theorem allows to deduce
(2.1).

Given the second definition above, we can easily pass to continuous-time processes.

Definition 2.1.4. A càdlàg process (Xt, t ≥ 0) that takes values in E is a time-homogeneous Markov
process if:

1. (Markov property): For all t, s ≥ 0 we have almost surely

P[Xt+s = y | Ft] = P[Xt+s = y |Xt] ,

where Ft := σ(Xs, s ∈ [0, t]).

2. (Time-homogeneity): For every s ≥ 0 there exists a matrix Ps : E × E → R such that for all
y ∈ E we have almost surely

P[Xt+s = y |Xt] = Ps(Xt, y) .

It will be convenient to write Px and Ex when the process X starts from the deterministic initial
condition X0 = x.

Observe that we impose X to be càdlàg. Since E is countable, any càdlàg function with values in E
is necessarily piecewise constant.

Remark 2.1.5. We have not specified the topology on E while we have been talking of continuity for
E-valued functions. Here E is endowed with the discrete topology, that is, the topology induced by the
metric

d(x, y) :=

{
1 if x 6= y ,

0 if x = y .

From now on, all our Markov processes will be time-homogeneous so we will simply write “Markov
process” for “time-homogeneous Markov process”.

The next result shows that conditionally given Ft, (Xt+s, s ≥ 0) is a Markov process starting from
Xt.

Lemma 2.1.6. Let X be a Markov process. Then for all t > 0, 0 < t1 < . . . < tn and y1, . . . , yn ∈ En
we have

P(Xt+t1 = y1, . . . , Xt+tn = yn | Ft) = Pt1(Xt, y1)Pt2−t1(y1, y2) . . . Ptn−tn−1(yn−1, yn) .
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Proof. The proof consists of a recursion on n. The case n = 1 comes from the definition. Assume that
the identity holds true at rank n. At rank n+ 1, for all A ∈ Ft, we have

E[1X(t+t1)=y1,...,X(t+tn+1)=yn+1
1A]

= E[E[1X(t+t1)=y1,...,X(t+tn+1)=yn+1
1A | Ft+tn ]]

= E[1X(t+t1)=y1,...,X(t+tn)=yn1AE[1X(t+tn+1)=yn+1
| Ft+tn ]] ,

= E[1X(t+t1)=y1,...,X(t+tn)=yn1APtn+1−tn(yn, yn+1)]

= E[1X(t+t1)=y1,...,X(t+tn)=yn1A]Ptn+1−tn(yn, yn+1)

= E[1APt1(Xt, y1)]Pt2−t1(y1, y2) . . . Ptn−tn−1(yn−1, yn)Ptn+1−tn(yn, yn+1) ,

which ensures that the conditional probability of X(t + t1) = y1, . . . , X(t + tn+1) = yn+1 given Ft is
Pt1(Xt, y1)Pt2−t1(y1, y2) . . . Ptn+1−tn(yn, yn+1).

Similarly as in discrete-time, we say that a non-negative r.v. T is an F-stopping time if {T ≤ t}
is Ft-measurable for all t ≥ 0. We then define the sigma-field FT as the set of events A such that
A ∩ {T ≤ t} ∈ Ft for all t ≥ 0.

Proposition 2.1.7 (Strong Markov Property). Let T be an F-stopping time such that T < ∞ almost
surely. Then, the process (Xt+T , t ≥ 0) is a Markov process such that for all y ∈ E and all s ≥ 0 we
have almost surely

P(Xs+T = y | FT ) = Ps(XT , y) .

Proof. It suffices to prove the identity of the statement: then, the fact that the process starting at time T is
a Markov process is proven similarly as in Lemma 2.1.6. When T is deterministic, this is the definition.
Let us now assume that T takes values in a countable set, say Q+. Then, for every event A ∈ FT , we
have

P(Xs+T = y,A) =
∑
q∈Q+

P(Xs+T = y;A ∩ {T = q})

=
∑
q∈Q+

E[E[1{Xs+q=y}∩A∩{T=q} | Fq]]

=
∑
q∈Q+

E[1A∩{T=q}E[1{Xs+q=y} | Fq]] ,

At this point, we apply the Markov property at time q and obtain:

=
∑
q∈Q+

E[1A∩{T=q}E[1{Xs+q=y} |Xq]]

=
∑
q∈Q+

E[1A∩{T=q}Ps(Xq, y)]

= E[1APs(XT , y)] .

Henceforth, the conditional expectation E[1{Xs+T=y} | FT ] coincides with Ps(XT , y) almost surely, thus
establishing the proposition in this case.
We now consider a general stopping time T . We consider its dyadic approximation:

Tn :=
∞∑
k=0

k + 1

2n
1{ k

2n
≤T< k+1

2n
} .
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It is not difficult to check that Tn ≥ T almost surely, and Tn ↓ T almost surely as n→∞. Furthermore,
for every n ≥ 1, Tn is an F-stopping time. Finally, the right continuity of X and the Dominated
Convergence Theorem show that for all A ∈ FT we have

P(Xs+T = y,A) = lim
n→∞

P(Xs+Tn = y,A) .

Since Tn takes values in a countable set, we can apply the result proved right before and deduce that

P(Xs+Tn = y,A) = E[1APs(XTn , y)] .

This readily shows that

P(Xs+T = y,A) = lim
n→∞

E[1APs(XTn , y)] = E[1APs(XT , y)] .

2.2 The embedded Markov chain

In this section, we establish a deep connection between Markov processes and Markov chains. The key
observation is the following result.

Proposition 2.2.1. Let X be a Markov process starting from X0 = x almost surely, for some x ∈ E.
Denote by τ := inf{s ≥ 0 : Xs 6= X0}. Then the random variable τ has an exponential law whose
parameter will be denoted λx or λ(x).
If λx > 0 then τ < ∞ a.s. and the r.v. Xτ is independent of τ . We denote by Π(x, ·) the corresponding
probability measure on E.
If λx = 0 then τ =∞. In that case, we set Π(x, x) = 1 and Π(x, y) = 0 for all y 6= x.

This result shows the following fact. A continuous-time Markov process starting from some point
x ∈ E at time 0 stays at this point for a random time τ1 of exponential law with parameter λx: at that
time, the process “jumps” to a random point y independent of τ1 and chosen according to a probability
law Π(x, ·). Then, the process stays at point y for a random time τ2 of exponential law with parameter
λy: at time τ1 + τ2 it jumps to a point z chosen according to the probability law Π(y, ·) and independent
of τ1, τ2. And so on.

This implies that the law of a Markov process is completely characterised by λx and Π(x, ·) for all
x ∈ E.

Proof. We work under Px. Fix t, s > 0 and introduce τ ′ := inf{r ≥ 0 : Xt+r 6= Xt}. We have

Px(τ > t+ s) = Ex[Ex[1{τ>t+s} | Ft]] = Ex[Ex[1{τ>t}∩{τ ′>s} | Ft]] = Ex[1{τ>t}Ex[1{τ ′>s} | Ft]] .

At this point, we observe that

Ex[1{τ ′>s} | Ft] = Ex[1{∀r∈[0,s],Xt+r=Xt} | Ft] .
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From the Markov property, we know that the process (Xt+r, r ≥ 0) is a Markov process starting from the
random initial condition Xt, and that its conditional expectation given Ft is the same as its conditional
expectation given Xt. Therefore, there exists a measurable map ϕ such that

Ex[1{∀r∈[0,s],Xt+r=Xt} | Ft] = Ex[1{∀r∈[0,s],Xt+r=Xt} |Xt] = ϕ(Xt) .

Let us determine ϕ. Conditionally given Xt = y, the process (Xt+r, r ≥ 0) has the same law as
(Xr, r ≥ 0) starting from y. Consequently

ϕ(y) = Ey[1{∀r∈[0,s],Xr=y}] = Py(τ > s) .

Furthermore, on the event τ > t we have Xt = X0. Hence,

Ex[1{τ>t}Ex[1{τ ′>s} | Ft]] = Ex[1{τ>t}ϕ(Xt)]

= Ex[1{τ>t}ϕ(x)]

= Ex[1{τ>t}Px(τ > s)] = Px(τ > s)Px(τ > t) .

By Lemma 1.2.1, we deduce that the r.v. τ has an exponential distribution. Regarding the independence
of X(τ) with τ , we observe that on the event {τ > t} we have τ = t+ τ ′. Consequently

Ex[1X(τ)=y1τ>t] = Ex[1X(t+τ ′)=y1τ>t]

= Ex[Ex[1X(t+τ ′)=y1τ>t | Ft]]
= Ex[1τ>tEx[1X(t+τ ′)=y | Ft]]
= Ex[1τ>tEx[1X(t+τ ′)=y |Xt]]

= Ex[1τ>tEx[1X(τ)=y]]

= Px(τ > t)Px(X(τ) = y) .

This is sufficient to conclude to the asserted independence.

Let us now introduce Tn as the n-th jump time of the process X:

Tn := inf{t > Tn−1 : X(t) 6= X(Tn−1)} , T0 := 0 ,

then the discrete-time process Yn := X(Tn), n ≥ 0 is a Markov chain.

Proposition 2.2.2. The process Yn := X(Tn) is a discrete-time Markov chain of transition matrix Π.

Proof. The proof consists of a recursion of the previous result.

It is also possible to show that the process (Yn, n ≥ 0) is independent of (τnλYn−1 , n ≥ 1), where
τn := Tn − Tn−1 for every n ≥ 1.

2.3 Construction of Markov processes

Given a transition matrix Π and a collection of non-negative parameters λx, x ∈ E we can construct a
Markov process starting from some initial condition X0 as follows. Assume that we are given:

1. a collection of IID r.v. En, n ≥ 1 of exponential law with parameter 1,
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2. an independent Markov chain (Yn, n ≥ 0) of transition matrix Π, starting from Y0 := X0.

Remark 2.3.1. The careful reader will notice that, to be consistent with the notations introduced in
Proposition 2.2.1, one needs to impose a little restriction on Π and λ, namely: for all x ∈ E, we have

Π(x, x) 6= 0⇔ Π(x, x) = 1⇔ λx = 0 .

Remark 2.3.2. We do not address the construction of the chain (Yn, n ≥ 0). However this can be
achieved using random recursions, see Section 3.1.2 of the lecture notes of “Processus Discrets”.

We set τn := En
λYn−1

for every n ≥ 1, and we define T0 := 0 and

Tn := τ1 + . . .+ τn .

We define ζ := supn≥0 Tn. For all t ∈ [0, ζ[, we let n ≥ 0 be the unique (random) integer such that
t ∈ [Tn, Tn+1[ and we set

Xt := Yn .

Lemma 2.3.3. We have P(ζ <∞) = 0 in any of the following situations:

1. E is a finite set,

2. supx∈E λx <∞,

3. the chain Y is irreducible and recurrent.

Proof. If E is finite then supx∈E λx < ∞. Consequently, the first case is a particular instance of the
second. Let us therefore prove the second case: assume that λ̄ := supx∈E λx < ∞. Since λ̄τk ≥ Ek
almost surely for all k ≥ 1, we deduce that

λ̄ζ ≥
∑
k≥1

Ek .

Since the Ek’s are IID E(1) r.v., the law of large numbers ensures that their sum is infinite almost surely.
Consequently ζ =∞ almost surely.
Let us now assume that Y is irreducible and recurrent, and that E is not finite (if E is finite then we can
apply the previous arguments). Necessarily for any x ∈ E, Y visits x infinitely many times almost surely.
Moreover Π(x, x) 6= 1: indeed, if it were equal to 1 then Y would not be irreducible. Consequently
λx > 0. Let’s call N1, N2, . . . the successive discrete times n at which Yn = x. We have

λxζ ≥ λx
∞∑
k=1

τNk+1 =
∑
k≥1

ENk+1 .

Since (Nk)k≥1 only depends on the chain Y , it is independent of (En)n≥1. Hence, (ENk)k≥1 is a
sequence of IID E(1) r.v. Its sum is infinite almost surely.

Proposition 2.3.4. If ζ = ∞ almost surely, then the process (Xt, t ≥ 0) is a continuous-time Markov
process.

The proof of this proposition is delicate and will not be presented in the lectures.
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Proof. Let us show that for all n ≥ 1, all 0 < t1 < . . . < tn < t < t+ s and all x1, . . . , xn, x, y, z ∈ E,
we have

Px(Xt1 = x1, . . . , Xtn = xn, Xt = y,Xt+s = z) = Px(Xt1 = x1, . . . , Xtn = xn, Xt = y)Py(Xs = z) .

This will be enough to deduce that X satisfies the Markov property and is time-homogeneous.

First of all, observe that it suffices to show that for any m ≥ 0

Px(Xt1 = x1, . . . , Xtn = xn, Xt = y,Xt+s = z, Tm ≤ t < Tm+1)

= Px(Xt1 = x1, . . . , Xtn = xn, Xt = y, Tm ≤ t < Tm+1)Py(Xs = z) .
(2.2)

From now on,m ≥ 0 is fixed. By construction, there exists a map Φ such thatX = Φ((En)n≥1, (Yn)n≥0).
We do not give a precise definition of this map but it is intuitive that X is completely characterised by
(En)n≥1, (Yn)n≥0. In particular, note that for all r ≥ 0, we have Xr = Yn where n ≥ 0 is the unique
integer such that Tn ≤ r < Tn+1 and where Tn =

∑n
j=1

Ej
λYj−1

.

On the event {Tm ≤ t < Tm+1}, set

E′1 := λYm(Tm+1 − t) , E′2 := λYm+1(Tm+2 − Tm+1) = Em+2 , . . .

and for every k ≥ 1

T ′k :=
k∑
j=1

E′j
λYm+j−1

.

DefineX ′r := Xt+r for all r ≥ 0. On the event {Tm ≤ t < Tm+1}, we see thatX ′r = Ym+n where n ≥ 0
is the unique integer such that T ′n ≤ r < T ′n+1. We can then deduce thatX ′ = Φ((E′n)n≥1, (Ym+n)n≥0).
For ī := (i1, i2, . . . , in) with 0 ≤ i1 ≤ . . . ≤ in ≤ m and ȳ := (y1, . . . , ym) ∈ Em define the event

Aī,ȳ := ∩nj=1{Tij ≤ tj < Tij+1} ∩ {Tm ≤ t < Tm+1} ∩ {(Y1, . . . , Ym) = (y1, . . . , ym)} .

This event only depends onE1, . . . , Em+1 and Y1, . . . , Ym. By construction, conditionally givenAī,ȳ the
process (Ym+n)n≥0 is a Markov chain starting from ym which is independent from (E′n)n≥1. Note that
E′1 = Em+1−λYm(t−Tm). By the absence of memory of exponential r.v. we see that E′1, conditionally
given Aī,ȳ is still an exponential r.v. of parameter 1. Finally, one can check that conditionally given this
same event, the sequence (E′n)n≥1 is made of i.i.d. E(1) r.v.
We therefore have

Px(Xt1 = x1, . . . , Xtn = xn, Xt = y,Xt+s = z |Aī,ȳ)
= 1∩nj=1{xj=yij }1{y=ym}Px(X ′s = z |Aī,ȳ)

= 1∩nj=1{xj=yij }1{y=ym}Py(Xs = z) .

Moreover

Px(Xt1 = x1, . . . , Xtn = xn, Xt = y, Tm ≤ t < Tm+1)

=
∑
ī,ȳ

Px(Xt1 = x1, . . . , Xtn = xn, Xt = y,Aī,ȳ)

=
∑
ī,ȳ

1∩nj=1{xj=yij }1{y=ym}P(Aī,ȳ) .
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Consequently

Px(Xt1 = x1, . . . , Xtn = xn, Xt = y,Xt+s = z, Tm ≤ t < Tm+1)

=
∑
ī,ȳ

Px(Xt1 = x1, . . . , Xtn = xn, Xt = y,Xt+s = z,Aī,ȳ)

=
∑
ī,ȳ

Px(Xt1 = x1, . . . , Xtn = xn, Xt = y,Xt+s = z |Aī,ȳ)P(Aī,ȳ)

=
∑
ī,ȳ

1∩nj=1{xj=yij }1{y=ym}Py(Xs = z)P(Aī,ȳ)

= Px(Xt1 = x1, . . . , Xtn = xn, Xt = y, Tm ≤ t < Tm+1)Py(Xs = z) ,

so that (2.2) is proved.

Remark 2.3.5. Our definition of Markov processes excludes the so-called explosions, that is, the case
where ζ <∞ with positive probability. It is possible to introduce a more general definition that encom-
passes this case, see Section 2.7.

2.4 Semigroup and Kolmogorov equations

Definition 2.4.1. We call semigroup a collection of matrices (Pt, t ≥ 0) that satisfies the following
properties:

1. P0 = Id ,

2. For every t ≥ 0, Pt is a stochastic matrix, that is, for all x, y ∈ E we have Pt(x, y) ≥ 0 and∑
y∈E Pt(x, y) = 1,

3. For every t, s ≥ 0, we have Pt+s = PtPs, that is, for all x, y

Pt+s(x, y) =
∑
z∈E

Pt(x, z)Ps(z, y) .

Lemma 2.4.2. Let X be a Markov process. The collection of matrices (Pt, t ≥ 0) defined by

Pt(x, y) := Px(Xt = y) ,

is a semigroup.

Proof. Left as an exercise.

Given a semigroup (Pt, t ≥ 0) and a measure µ, one can define a collection of measures µPt, t ≥ 0
by setting

(µPt)(y) =
∑
x

µ(x)Pt(x, y) , y ∈ E .

Note that the mass of µPt is the same as the mass of µ.
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Let µ be a probability measure on E, and let X be a Markov process starting from the probability
measure µ, that is, such that X0 has law µ. Then the law of Xt is given by µPt: indeed we have

Pµ(Xt = y) =
∑
x∈E

µ(x)Px(Xt = y) =
∑
x∈E

µ(x)Pt(x, y) = µPt(y) .

More generally, for all 0 < t1 < . . . < tn and all x1, . . . , xn ∈ E we have

Pµ(X(t1) = x1, . . . , X(tn) = xn) =
∑
x0∈E

µ(x0)Pt1(x0, x1)Pt2−t1(x1, x2) . . . Ptn−tn−1(xn−1, xn) .

Recall that λx is the rate of the exponential distribution of the time the process X stays at x, and Π
is the transition matrix of the embedded Markov chain Y . We define a matrix Q by setting

Q(x, y) :=

{
λ(x)Π(x, y) if x 6= y ,

−λ(x) if x = y .

The matrix Q is called the generator of the Markov process X . Roughly speaking, Q(x, y) is the “rate”
at which the Markov process jumps from x to y while Q(x, x) is the opposite of the rate at which the
Markov process leaves x, that is, the sum over y 6= x of the rates from x to y.

Remark 2.4.3. We saw that ifX0 = x thenX stays at x an exponential time T1 of parameter λx and then
jumps to a random point drawn according to the probability measure Π(x, ·). An equivalent point of view
is the following. Consider independent exponential r.v. Sx,y of parameters λxΠ(x, y) for every y 6= x.
Then miny Sx,y is an exponential r.v. of parameter

∑
y λxΠ(x, y) = λx. Furthermore arg miny Sx,y has

law Π(x, ·). As a consequence, there is a competition between independent exponential r.v. of parameters
Q(x, y) for y 6= x: the next transition of the Markov process corresponds to the minimum of these r.v.

The generator is intimately related to the semigroup of X as the following theorem shows. In the
following f is a bounded function on X , and we denote ‖f‖∞ = supx∈X |f(x)|.

Theorem 4. For any x ∈ X we have

lim
t→0

1

t
[Ptf(x)− f(x)] = Qf(x), (2.3)

furthermore there exists a constant C <∞ such that

sup
x

∣∣∣∣1t [Ptf(x)− f(x)]−Qf(x)

∣∣∣∣ ≤ Ct‖f‖∞. (2.4)

Proof. Recall that by 2.2.1 T1 and XT1 are independent. Then

Ptf(x) = Px(T1 > t)f(x) + Ex(1{T1≤t}f(Xt))

= e−λxtf(x) + Ex(1{T1≤t}f(XT1)) + Ex
(
1{T1≤t} (f(Xt)− f(XT1))

)
= f(x)−

(
1− e−λxt

)
f(x) + Px(T1 ≤ t)Ex(f(XT1)) + Ex

(
1{T2≤t} (f(Xt)− f(XT1))

)
= f(x)−

(
1− e−λxt

)
f(x) +

(
1− e−λxt

)∑
y 6=x

Π(x, y)f(y) + Ex
(
1{T2≤t} (f(Xt)− f(XT1))

)

= f(x) + tQf(x) +
(

1− e−λxt − λxt
)∑

y 6=x
Π(x, y)f(y)− f(x)

+ Ex
(
1{T2≤t} (f(Xt)− f(XT1))

)
,

(2.5)
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that gives

1

t
[Ptf(x)− f(x)] +Qf(x) =

(
1− e−λxt − λxt

)
t

∑
y 6=x

Π(x, y)f(y)− f(x)


+

1

t
Ex
(
1{T2≤t} (f(Xt)− f(XT1))

) (2.6)

that gives the bound∣∣∣∣1t [Ptf(x)− f(x)] +Qf(x)

∣∣∣∣ ≤ cλ2
xt‖f‖∞ +

2

t
Px (T2 ≤ t) ‖f‖∞. (2.7)

Since supx λx is assumed finite, we have also that 2
tPx (T2 ≤ t) ≤ Ct (see the following Lemma 2.4.4)

and (2.4) follows.

Lemma 2.4.4. Given two independent r.v, τ1 ∼ E(λ1), τ2 ∼ E(λ2), then P (τ1 + τ2 ≤ t) ≤ Ct2.

Proof of 2.4.4. Exercise.

Theorem 5. The semigroup (Pt, t ≥ 0) satisfies:

1. The Chapman-Kolmogorov backward equation:

∂tPt(x, y) = (QPt)(x, y) , P0(x, y) = 1x(y) , (2.8)

2. The Chapman-Kolmogorov forward equation:

∂tPt(x, y) = (PtQ)(x, y) , P0(x, y) = 1x(y) . (2.9)

Furthermore, there exists a unique semigroup satisfying any of the two equations.

Proof of Chapman-Kolmogorov backward equation (2.8).

∂t(Ptf)(x) = lim
s→0

1

s
(Pt+s − Pt)f(x) = lim

s→0

1

s
(Ps(Ptf)(x)− Ptf(x)) = QPtf(x). (2.10)

Proof of Chapman-Kolmogorov forward equation (2.9).

∂t(Ptf)(x) = lim
s→0

1

s
(Pt+s − Pt)f(x) = lim

s→0
Pt

(
(Psf)(x)− f(x)

s

)
, (2.11)

and the bound (2.4) justify the exchange of the lims→0 with Pt and (2.9) follows.
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2.5 Recurrence and transience of Markov processes

The notions of recurrence and transience, already introduced for Markov chains, find natural counterparts
in continuous time.

Definition 2.5.1. Fix x ∈ E. We say that x is transient forX if Px({t > 0 : X(t) = x} is unbounded) =
0. We say that x is recurrent for X if Px({t > 0 : X(t) = x} is unbounded) = 1.
If x is recurrent for X , we say that x is positive recurrent for X if λx = 0 or if λx > 0 and

Ex[Rx] <∞ , where Rx := inf{t ≥ T1 : X(t) = x} ,

otherwise we say that x is null recurrent.

As we will see, any state x is either recurrent or transient.

Remark 2.5.2. An equivalent definition of recurrence/transience would be: x is recurrent if λx = 0 or
if λx > 0 and Px(Rx <∞) = 1; otherwise x is transient.

Remark 2.5.3. Note that if λx = 0, then the process X stays at x at all times if X(0) = x.

Recall that Y is the Markov chain embedded in X .

Proposition 2.5.4. Any state x is either transient or recurrent for X . Furthermore:

1. x is transient for X if and only x is transient for Y ,

2. x is recurrent for X if and only x is recurrent for Y .

In addition, if 0 < infx λx ≤ supx λx <∞, then x is positive recurrent (respectively null recurrent) for
X if and only if x is positive recurrent (respectively null recurrent) for Y .

Proof. Suppose x is transient for Y . Then there exists a random integer N such that almost surely
Yn 6= x for all n ≥ N . Consequently, almost surely X(t) 6= x for all t ≥ TN , and therefore almost
surely {t > 0 : X(t) = x} is bounded. This shows that x is transient for X .
Suppose x is recurrent for Y . Then there exists an infinite random sequence N1 < N2 < . . . such that
almost surely YNk = x for all k ≥ 1. Consequently, almost surely X(TNk) = x for all k ≥ 1. From the
construction of Markov processes, we know that almost surely TNk →∞ as k →∞. Therefore almost
surely {t > 0 : X(t) = x} is unbounded: x is recurrent for X .
Since any state x is either transient or recurrent for Y , we thus deduce that the same holds for X and that
there is an equivalence between transience/recurrence for X and Y .

Let us introduce RYx := inf{n > 0 : Yn = x}. Recall that x is positive recurrent for Y if Ex[RYx ] <
∞, and x is null recurrent for Y if Ex[RYx ] = ∞. From the construction of Markov processes, we have
almost surely

Rx :=

RYx∑
n=1

τn .

Now set λ̄ := supx λx and λ := infx λx. We have almost surely

τnλ ≤ En ≤ τnλ̄ .
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Consequently,

Rxλ ≤
RYx∑
n=1

En ≤ Rxλ̄ .

Since RYx is mesurable w.r.t. σ(Y ) and since (En)n≥1 is independent of σ(Y ), we deduce that

Ex[

RYx∑
n=1

En] = Ex[Ex[

RYx∑
n=1

En |Y ]] = Ex[RYx E[E1]] = Ex[RYx ] .

We therefore obtain
Ex[Rx]λ ≤ Ex[RYx ] ≤ Ex[Rx]λ̄ .

This shows that Ex[Rx] is finite if and only if Ex[RYx ] is finite.

Let us finally introduce the notion of irreducibility.

Definition 2.5.5. We say that X is irreducible if for all x 6= y ∈ E there exists t > 0 such that

Px(Xt = y) > 0 .

We have the following result whose proof is admitted.

Proposition 2.5.6. If X is irreducible then for all x 6= y ∈ E and all t > 0 we have

Px(Xt = y) > 0 .

Furthermore, X is irreducible if and only if Y is irreducible.

We then deduce that if X is irreducible then all states are either recurrent or transient. Indeed, if X is
irreducible then Y is irreducible too: all states of Y are either recurrent or transient. From the previous
proposition, we deduce the asserted property.
Therefore we say that an irreducible Markov process X is recurrent if one state (and therefore all states)
is (are) transient.

2.6 Invariant measure

From now on, we will assume that λx > 0 for all x ∈ E in order to avoid “pathological” cases. Of
course, all the results presented below can be adapted to encompass the general setting but at the price
of complexifying the statements and the proofs.

Definition 2.6.1. Let µ be a positive measure on E and let X be a Markov process. We say that µ is
invariant for X if µQ = 0, that is, if for all x ∈ E

µ(x)λx =
∑
y 6=x

µ(y)λyΠ(y, x) .

The next result shows that any invariant measure is invariant for the embedded Markov chain Y and
vice versa.
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Lemma 2.6.2. Let µ and ν be two positive measures on E satisfying for all x ∈ E

λxµ(x) = ν(x) .

Then µQ = 0 if and only if νΠ = ν.

Proof. We have for any y ∈ E

µQ(y) =
∑
x

µ(x)Q(x, y) = −µ(y)λy +
∑
x 6=y

µ(x)λxΠ(x, y) = −ν(y) +
∑
x 6=y

ν(x)Π(x, y) .

From the above identity we deduce that µQ(y) = 0 if and only if ν(y) = νΠ(y), this proves the
lemma.

We now present results on existence and uniqueness of invariant measure in the irreducible and
recurrent case.

Theorem 6. Assume that X is an irreducible and recurrent Markov process. Then for any given x ∈ E,
the measure µ(x) defined by

µ(x)(y) = Ex
[ ˆ Rx

0
1{Xt=y}dt

]
, y ∈ E , (2.12)

is an invariant measure. Furthermore, any invariant measure µ′ satisfies µ′ = cµ(x) for some c > 0.

This theorem implies that if X is irreducible and recurrent, then it admits at most one invariant
probability measure: indeed, either µ(x) has infinite mass and there is no invariant probability (even
finite) measure, or µ(x) has finite mass and there exists exactly one c > 0 that makes µ′ a probability
measure.

Proof. We recall that the measure

ν(x)(y) = Ex
[RYx −1∑
n=0

1{Yn=y}

]
, y ∈ E ,

is invariant for the Markov chain Y and that any measure ν ′ that is invariant for Y is of the form ν ′ =
cν(x) for some c > 0 (see Theorem 3.9 from the course “Processus discrets”). If we show that µ(x)

defined in (2.14) satisfies µ(x)(y) := ν(x)(y)/λy for all y ∈ E, then we will deduce from Lemma 2.6.2
the statement of the proposition.
Recall that τn is the random time that X spends in state Yn−1 before jumping to Yn. We have

ˆ Rx

0
1{Xt=y}dt =

RYx −1∑
n=0

τn+11{Yn=y} =
∑
n≥0

τn+11{Yn=y ; n<RYx } ,

so that Fubini’s Theorem yields

Ex
[ ˆ Rx

0
1{Xt=y}dt

]
=
∑
n≥0

Ex
[
τn+11{Yn=y ; n<RYx }

]
.
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From the construction of Markov processes, we know that conditionally given the process Y the r.v. (τn)n≥1

are IID E(λYn−1). Consequently

Ex
[
τn+11{Yn=y ; n<RYx }

]
= Ex

[
Ex
[
τn+11{Yn=y ; n<RYx } |Y

]]
= Ex

[
1{Yn=y ; n<RYx }Ex

[
τn+1 |Y

]]
= Ex

[ 1

λYn
1{Yn=y ; n<RYx }

]
=

1

λy
Ex
[
1{Yn=y ; n<RYx }

]
.

Consequently

µ(x)(y) = Ex
[ ˆ Rx

0
1{Xt=y}dt

]
=

1

λy

∑
n≥0

Ex
[
1{Yn=y ; n<RYx }

]

=
1

λy
Ex
[RYx −1∑
n=0

1{Yn=y}

]
=

1

λy
ν(x)(y) .

Proposition 2.6.3. Let X be irreducible and recurrent. Let µ′ be a measure on E. Then µ′Q = 0 if and
only if µ′Pt = µ′ for some t > 0 if and only if µ′Pt = µ′ for all t > 0.

This proposition gives a more intuitive meaning to the notion of invariant measure: in the irreducible
and recurrent case, a measure is invariant if and only if the law of the process starting from this measure
is the same at all times.

Proof. Assume that µ′Q = 0. By Theorem 6, there exists c > 0 such that µ′ = cµ(x) where µ(x) is
defined in (2.14). Therefore, it suffices to show µ(x)Pt = µ(x) for all t > 0. Fix t > 0. By the strong
Markov property applied at time Rx, we have

Ex
[ ˆ t

0
1{Xs=y}ds

]
= Ex

[ ˆ Rx+t

Rx

1{Xs=y}ds
]
.

Consequently

Ex
[ˆ Rx

0
1{Xs=y}ds

]
= Ex

[ ˆ t

0
1{Xs=y}ds

]
+ Ex

[ ˆ Rx

t
1{Xs=y}ds

]
= Ex

[ ˆ Rx+t

Rx

1{Xs=y}ds
]

+ Ex
[ˆ Rx

t
1{Xs=y}ds

]
= Ex

[ ˆ Rx+t

t
1{Xs=y}ds

]
= Ex

[ˆ ∞
0

1s<Rx1{Xs+t=y}ds
]
.
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We then compute

µ(x)(y) = Ex
[ˆ ∞

0
1s<Rx1{Xs+t=y}ds

]
=

ˆ
R+

Px(Xs+t = y, s < Rx)ds

=

ˆ
R+

∑
z∈E

Px(Xs = z, s < Rx)Pz(Xt = y)ds

=
∑
z∈E

Ex
[ ˆ Rx

0
1{Xs=z}ds

]
Pt(z, y)

=
∑
z∈E

µ(x)(z)Pt(z, y)

= µ(x)Pt(y) .

We have therefore proved that µ′Q = 0 implies µ′Pt = µ′ for all t > 0.
If µ′Pt = µ′ for all t > 0, then of course, µ′Pt = µ′ for some t > 0.
It remains to prove that if µ′Pt = µ′ for some t > 0 then µ′Q = 0: this will be proven in the exercises.

Proposition 2.6.4. Let X be irreducible. The following are equivalent:

1. All states x are positive recurrent,

2. One state x is positive recurrent,

3. There exists an invariant probability measure µ′.

If one these conditions hold, then the invariant probability measure µ′ is unique and is given by

µ′(x) :=
1

λxEx[Rx]
, x ∈ E .

To prove the proposition, we will need an intermediate fact on Markov chains, whose proof will be
given in the exercises.

Lemma 2.6.5. Fix x ∈ E. Let us introduce the measure

ν(x)(y) := Ex[

RYx −1∑
n=0

1{Yn=y}] , y ∈ E .

If ν ′ satisfies ν ′Π = ν ′ and ν ′(x) = 1 then ν ′ ≥ ν(x).

Proof of Proposition 2.6.4. Recall the measure µ(x) of (2.14). In the proof of Theorem 6 we have shown
that for all y ∈ E

µ(x)(y) =
1

λy
ν(x)(y) .
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Let us now assume that there exists an invariant probability measure µ′. Fix x ∈ E. We claim that
µ′(x)λx > 0. We postpone the proof of this claim and carry on the proof. We define

ν ′(y) :=
µ′(y)λy
µ′(x)λx

, y ∈ E .

Observe that the measure y 7→ µ′(y)/(µ′(x)λx) is invariant for X . By Lemma 2.6.2, we deduce that
ν ′Π = ν ′. Moreover, ν ′(x) = 1. Consequently by Lemma 2.6.5

ν ′ ≥ ν(x) .

Using the identity recalled at the beginning of the proof, we obtain

Ex[Rx] =
∑
y

µ(x)(y) =
∑
y

ν(x)(y)

λy
≤
∑
y

ν ′(y)

λy
=
∑
y

µ′(y)

µ′(x)λx
=

1

µ′(x)λx
.

Given the claim, this last quantity is finite and therefore x is positive recurrent. Since x was arbitrary, we
deduce that all states are positive recurrent.
Let us prove the claim. First of all, for any y ∈ E we have λy > 0 by assumption (this is the standing
assumption of this section). If µ′(x) = 0, then the fact that µ′Q(x) = 0 implies that

µ′(x)Q(x, x) +
∑
y 6=x

µ′(y)Q(y, x) =
∑
y 6=x

µ′(y)Q(y, x) = 0 ,

and then µ′(y) = 0 whenever Q(y, x) > 0, that is, whenever Π(y, x) > 0. Iterating this argument, we
see that µ′(y) = 0 whenever Πn(y, x) = 0 for some n ≥ 0. Since Y is irreducible

∪n≥0{y ∈ E : Πn(y, x) > 0} = E .

Consequently, µ′(y) = 0 for all y ∈ E thus contradicting the fact that µ′ is a probability measure.

If all states are positive recurrent, then obviously there exists one state which is positive recurrent.

Let us now assume that some x is positive recurrent. Then the measure µ(x) of (2.14) satisfies

µ(x)(E) =
∑
y∈E

µ(x)(y)

=
∑
y∈E

Ex
[ˆ Rx

0
1{Xt=y}dt

]
= Ex

[ˆ Rx

0

∑
y∈E

1{Xt=y}dt
]

= Ex[Rx] ,

where we used Fubini’s Theorem to go from the second to the third line. Since x is positive recurrent
we deduce that µ(x) is a finite measure. By Theorem 6, we deduce that there exists a unique invariant
probability measure µ′, which is given by µ′ = cµ(x) with c = 1/Ex[Rx]. The identity recalled at the
beginning of the proof shows that µ(x)(x) = ν(x)(x)/λx. Since ν(x)(x) = 1, we deduce that

µ′(x) =
1

λxEx[Rx]
.
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Since we showed that the existence of an invariant probability measure implies that all states are positive
recurrent, the above identity holds for all x, thus concluding the proof.

A consequence of the last result is that an irreducible and transient Markov process does never admit
a finite invariant measure.

2.7 General remarks on Markov processes

Generally speaking, the theory of Markov processes is delicate. Here we have concentrated on the case
where the state-space E is countable, but uncountable state-spaces are relevant too (for instance, the
Brownian motion takes values in R and satisfies the Markov property).
Our presentation did not encompass all Markov processes taking values in countable spaces: indeed, we
assumed that our Markov processes are càdlàg and this assumption is actually restrictive. In particular,
Markov processes that explode in finite time, that is, Markov processes for which ζ = limn→∞ Tn <∞,
do not admit a left limit at ζ and therefore do not satisfy this assumption. However, explosive Markov
processes appear in many different situations. If one replaces càdlàg by simply right-continuous in
Definition 2.1.4, then explosive processes are allowed.
More generally, one can suppress the regularity assumption on the trajectories: in that case, the definition
of Markov processes allow for “monsters”. For instance, if one considers a collection Xt, t ≥ 0 of IID
random variables then X is a Markov process but its trajectories do not have any regularity (except if the
law of Xt is trivial).
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Chapter 3

Some examples of Markov processes

3.1 Queueing theory

In this section, we will study stochastic processes that model a queue in a service unit. A service unit is
made of one or several servers. Customers arrive at random times in the queue. If a server is available at
the time a customer arrives, then the customer goes to that server - otherwise it waits in the queue. Each
customer requires some service time: this is the duration of a time required for the customer to be served.
The service unit has a maximal capacity (possibly infinite). The quantity of interest in this model is the
total number of customers that are either being served or are waiting in the queue.

There is a standard terminology to specify the parameters/characteristics of a queue. It consists of
[A] / [S] / [s] / [c] / [Discipline] where :

• A indicates the distribution of the interarrival times of customers. It can be G (general), nothing
is specified ; GI (general independent), that is, the interarrival times are IID; M (Markov), the
interarrival times are IID with exponential distribution; D (deterministic), the interarrival times are
deterministic.

• S indicates the distribution of the service time. The possible values are the same as for A.

• s is the total number of servers in the service unit: it’s either an integer or +∞,

• c is capacity of the service unit, that is, the maximal number of customers in the queue it’s either
an integer or +∞,

• Discipline is the service discipline: usually it is either FIFO (first in first out), which means that
among all customers that are waiting in the queue the first one who arrived will be the first one
to be served, or LIFO (last in first out), which means that the last customer who arrived is served
first.

By abuse of notation, the word “queue” is often used insead of “service unit”.
Let us give an example. M/GI/1/∞/FIFO denotes the queue where: customers arrive according to a

Poisson process, service times are IID, there is only one server, the service unit has infinite capacity, the
service discipline is FIFO.

If we do not specify the last two parameters, then they are implicitly taken to be∞ and FIFO.
The total number of customer in the service unit at time t is denoted X(t).
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3.1.1 M/M/1

We first examine the queue M/M/1. We let λ > 0 be the parameter of the exponential r.v. associated
to the arrival of new customers and γ > 0 the parameter of the exponential r.v. for the duration of the
service times. If there are n customers in the queue at time t, that is, if X(t) = n then:

• Either n ≥ 1. Then, the process X will jump by 1 after an exponential time of parameter λ or
by −1 after an exponential time of parameter γ. Consequently, the next jump of X occurs at the
minimum of two independent exponential r.v. of parameters λ and γ, which is itself an exponential
r.v. of parameter λ+ γ.

• Or n = 0. Then, the process X will jump by +1 after an exponential time of parameter λ.

This discussion suffices to deduce thatX is a Markov process with values inE = N. Its transition matrix
Π and transition rates λ are given by

λn = λ+ γ , Π(n, n+ 1) =
λ

λ+ γ
, Π(n, n− 1) =

γ

λ+ γ
, n ≥ 1 ,

and
λ0 = λ , Π(0, 1) = 1 .

(For all other values of n,m, Π(n,m) = 0.)

Remark 3.1.1. The process X is “almost” a compound Poisson process of intensity λ+γ and jump law
λδ+1 + µδ−1. This is true when the process is strictly positive.

It is clear that X is irreducible.
We turn to the investigation of invariant measures. Let us set ρ = λ/γ. Given Lemma 2.6.2, we start

with the invariant measure for the embedded Markov chain Y .

Proposition 3.1.2. A measure ν is invariant for Y if and only if it satisfies

ν(n) = ρn−1(1 + ρ)ν(0) , n ≥ 1 .

Proof. The measure ν is invariant for Y if and only if ν = νΠ. The later identity is equivalent to

ν(0) = ν(1)Π(1, 0) , ν(n) = ν(n− 1)Π(n− 1, n) + ν(n+ 1)Π(n+ 1, n) , n ≥ 1 .

This can be rewritten as

(1 + ρ)ν(0) = ν(1) , ν(n) = ν(n− 1)
ρ

1 + ρ
+ ν(n+ 1)

1

1 + ρ
, n ≥ 1 . (3.1)

Consider a measure ν that satisfies the condition of the statement of the proposition. Then, it is easy to
check that (3.1) is satisfied. Conversely, assume that (3.1) is satisfied, and let us prove by recursion that

ν(n) = ρn−1(1 + ρ)ν(0) , n ≥ 0 .

At rank n = 1 this holds true. Assume that this is true up to some rank n ≥ 1. Then, at rank n + 1 we
have

ν(n+ 1) = (1 + ρ)ν(n)− ρν(n− 1) = ρ2ν(n− 1) = ρn(1 + ρ)ν(0) .

This concludes the proof.
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We therefore deduce from Lemma 2.6.2 that the only invariant measures for X are the measures µ
that satisfy

µ(n) := ρnµ(0) , n ≥ 1 .

We deduce that X admits an invariant probability measure if and only if ρ < 1. If this condition
holds, then the invariant probability measure is Geometric with parameter ρ. From Proposition 2.6.4, we
deduce that X is positive recurrent if and only if ρ < 1.

Proposition 3.1.3. The following holds:

1. If ρ < 1, then X is positive recurrent,

2. If ρ = 1, then X is null recurrent,

3. If ρ > 1, then X is transient.

To prove this proposition, we start with an auxiliary lemma. Let (Zn, n ≥ 0) be a discrete-time
Markov chain with transition matrix ΠZ given by

ΠZ(n, n+ 1) = λ/(λ+ γ) , ΠZ(n, n− 1) = γ/(λ+ γ) , ∀n ∈ Z ,

and ΠZ(n,m) = 0 for all other values of m,n.

Lemma 3.1.4. For any q ∈ R, let cq := eqρ(1 + ρ)−1 + e−q(1 + ρ)−1. The process Mn, n ≥ 0 is a
martingale where

Mn := eqZnc−nq , n ≥ 0 .

Furthermore, if we let T0 := inf{n ≥ 1 : Zn = 0} we have for all q ∈ (−∞, ln(ρ−1 ∧ 1))

E1[exp(−T0 ln cq)] = eq .

As a consequence P(T0 <∞) = 1 ∧ ρ−1 and E[T0] <∞ if and only if ρ < 1.

Proof. Note that we have the deterministic bound |Zn − Z0| ≤ n for all n ≥ 0 so that Mn is integrable
for all n ≥ 0. Regarding the martingale property, we have

E[eqZn+1 | Fn] = eqZn
(
eqλ/(λ+ γ) + e−qγ/(λ+ γ)

)
= eqZn(eqρ(1 + ρ)−1 + e−q(1 + ρ)−1) .

Consequently E[Mn+1 | Fn] = Mn.
A simple computation shows that (−∞, ln(ρ−1∧1)] 3 q 7→ cq is decreasing and equals 1 at ln(ρ−1∧1).
Consequently, (Mn∧T0 , n ≥ 0) is a bounded martingale for all q ∈ (−∞, ln(ρ−1 ∧ 1)]. By the Stopping
Theorem, we deduce that

E1[Mn∧T0 ] = E1[M0] = eq .

On the event {T0 = +∞}, we have Zn ≥ 1 for all n ≥ 1. Since q ≤ 0, we have Mn ≤ c−nq so that
Mn →∞ as n→∞ on this same event. Consequently, almost surely

Mn∧T0 →MT01{T0<∞} , n→∞ .

By the Dominated Convergence Theorem, we thus deduce that

E[MT01{T0<∞}] = eq .
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This yields for q < ln(ρ−1 ∧ 1)

E[c−T0q ] = eq ,

and for q = ln(ρ−1 ∧ 1)

P(T0 <∞) = 1 ∧ ρ−1 .

This immediately ensures that for ρ > 1, E[T0] = +∞. Let us now assume that ρ ≤ 1, in which case
ln(ρ−1 ∧ 1) = 0. For any q < 0, by the Differentiation Theorem under the integral we have

E[−T0

c′q
cq
c−T0q ] = eq .

Rearranging terms, we get
E[T0c

−T0
q ] = −cq

c′q
eq .

By the Monotone Convergence Theorem we have

lim
q↑0

E[T0c
−T0
q ] = E[T0] .

On the other hand
lim
q↑0
−cq
c′q
eq =

1 + ρ

1− ρ
.

We thus deduce that E[T0] <∞ if and only if ρ < 1.

Proof of Proposition 3.1.3. Since the jump rates are bounded from above and below, Proposition 2.5.4
ensures that it suffices to determine the recurrence/transience nature of the irreducible Markov chain Y .
Let us determine the recurrence/transience of the state x = 0: by irreducibility, this suffices to deduce
the recurrence/transience of the whole chain. Let us observe that, if Y0 = 0 then Y1 = 1. Consequently
RY0 under P0 has the same law as 1 + RY0 under P1. Furthermore, since the processes Y and Z have
the same law up to their first hitting time of 0, we deduce that RY0 under P1 has the same law as T0 for
Z starting from 1. From the previous lemma, we deduce that P1(RY0 < ∞) = 1 if and only if ρ ≤ 1.
Consequently 0 is recurrent if and only if ρ ≤ 1, and therefore Y is recurrent if and only if ρ ≤ 1.
Furthermore, E1[RY0 ] < ∞ if and only if ρ < 1. Consequently 0 is positive recurrent for Y if and only
if ρ < 1. By Proposition 2.5.4, 0 is positive recurrent for X if and only if ρ < 1. By Proposition 2.6.4
we deduce that X is positive recurrent if and only if ρ < 1.

Hence we see that, if ρ > 1 then almost surely the queue is never empty (X never hits 0) after some
random time, while if ρ ≤ 1 then the set of times at which the queue is empty is unbounded.

3.1.2 M/M/s and M/M/∞

Let us examine the M/M/s queue with s ∈ N ∪ {+∞}. If there are n customers in the queue at time t,
that is, if X(t) = n then:

• Either n ≥ 1. Then, the process X will jump by 1 after an exponential time of parameter λ or by
−1 after an exponential time of parameter min(n, s)γ. Consequently, the next jump ofX occurs at
the minimum of two independent exponential r.v. of parameters λ and min(n, s)γ, which is itself
an exponential r.v. of parameter λ+ min(n, s)γ.
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• Or n = 0. Then, the process X will jump by +1 after an exponential time of parameter λ.

This discussion suffices to deduce thatX is a Markov process with values inE = N. Its transition matrix
Π and transition rates λ are given by

λn = λ+min(n, s)γ , Π(n, n+1) =
λ

λ+ min(n, s)γ
, Π(n, n−1) =

min(n, s)γ

λ+ min(n, s)γ
, n ≥ 1 ,

and
λ0 = λ , Π(0, 1) = 1 .

(For all other values of n,m, Π(n,m) = 0.)
We will concentrate on the case s =∞. Recall that ρ = λ/γ.

Proposition 3.1.5. When s =∞, the process X admits an invariant probability measure given by

µ(n) =
ρn

n!
e−ρ , n ≥ 0 .

As a consequence X is recurrent positive.

The proof will be the content of an exercise.

3.2 Branching processes

Let ξ be a probability law on N, called the offspring distribution and denote by φ(r) :=
∑

k≥0 r
kξ(k)

its generating function. We start with the following Markov chain Z, usually called a Galton-Watson
process. If Zn = k, then each of the k individuals is replaced at time n + 1 by a random number of
children distributed according to ξ. The associated transition matrix is given by

ΠZ(1, k) = ξ(k) , k ∈ N ,

and
ΠZ(n, k) =

∑
k1,k2,...,kn:k1+...+kn=k

ξ(k1) . . . ξ(kn) , n ≥ 2, k ≥ 0 ,

and ΠZ(0, 0) = 1.

Proposition 3.2.1. We have for all r ∈ (0, 1]

Ex[rZn ] = (φn(r))x ,

where φn(r) = φ ◦ φn−1(r) and φ0(r) = r.

We now consider a continuous-time process associated to the above model. Fix c > 0. To each
individual we associate a random liftetime distributed according to an exponential law of parameter
c > 0. We call X(t), t ≥ 0 the corresponding process.

The following result is admitted.
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Proposition 3.2.2. For all r ∈ (0, 1) and all t ≥ 0, we have

Ex[rX(t)] = F (t, r)x ,

where F (t, r) is the unique value satisfying

ˆ F (t,r)

r

dy

c(φ(y)− y)
= t .

Introduce τ∞ = inf{t ≥ 0 : X(t) =∞} and τ0 = inf{t ≥ 0 : X(t) = 0}.

Lemma 3.2.3. We have for all t > 0

Px(τ0 ≤ t) = F (t, 0+)x , Px(τ∞ ≤ t) = 1− F (t, 1−)x .

At least intuitively, X is a Markov process with generator

Q(n, n) = −cn , Q(n, n− 1 + k) = cnξ(k) .

However, our definition of Markov process does not allow for explosion in finite time and therefore, only
in the case where τ∞ =∞ almost surely we can apply our definition.
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Chapter 4

Introduction to Renewal Theory

4.1 Renewal processes

Recall that a renewal process (Tn)n≥1 is a non-decreasing sequence defined by setting:

Tn = δ1 + . . .+ δn , n ≥ 1 ,

where (δn)n≥1 is a sequence of i.i.d. positive random variables.

Proposition 4.1.1. Let (Tn)n≥1 be a renewal process and set

Nt =
∑
n≥1

1{Tn≤t} , t ≥ 0 .

Then, N is a standard counting process.

Proof. Since δn ∈ (0,∞) for all n ≥ 1, P-a.s., we deduce that (Tn)n≥0 is increasing and Tn < ∞ for
all n ≥ 0, P-a.s.
By the law of large numbers applied to the sequence (min(δn, 1))n≥1, we have P-a.s.

1

n

n∑
i=1

min(δi, 1)→ E[min(δ1, 1)] .

Notice that E[min(δ1, 1)] > 0 since, otherwise, we would have δ1 = 0 almost surely. Since Tn ≥∑n
i=1 min(δi, 1), we deduce that Tn → ∞ as n → ∞, P-a.s. Finally, given the definition of N , it is

simple to check that it is a counting process (left as an exercise).

Lemma 4.1.2 (Wald’s identity). Let Xn be a sequence of i.i.d. random variables. Let R be a stopping
time in the filtration Fn := σ(X1, . . . , Xn). Assume that X1 and R are integrable. Then, if we set
Sn = X1 + . . .+Xn for every n ≥ 0, we have

E[SR] = E[R]E[X1] .

Proof. We set
Z :=

∑
n≥1

|Xn|1n≤R .
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The event {n ≤ R} is the complement of {R ≤ n − 1} which belongs to Fn−1 by assumption. Since
Xn is independent from X1, . . . , Xn−1, it is independent from Fn−1. Consequently

E[|Xn|1n≤R] = E[|Xn|]P(n ≤ R) = E[|X1|]P(n ≤ R) .

Since R is integrable, we have E[R] =
∑

n≥1 P(n ≤ R) < ∞, and therefore E[Z] < ∞. As Z
is integrable, we can apply Fubini’s Theorem (the version for non-necessarily positive functions) and
deduce that

E[
∑
n≥1

Xn1n≤R] =
∑
n≥1

E[Xn1n≤R] .

By the same argument as above E[Xn1n≤R] = E[X1]P(n ≤ R) and therefore

E[
∑
n≥1

Xn1n≤R] = E[X1]E[R] .

Corollary 4.1.3. Let N be a counting process associated with a renewal process. Assume that δ1 is
integrable. Then for every t ≥ 0, we have

E[TNt+1] = E[Nt + 1]E[δ1] .

Proof. Fix m ≥ 1 and take R = Nt ∧ m + 1. The event {R ≤ n} belongs to Fn = σ(δ1, . . . , δn).
Indeed, either n ≥ m+ 1 in which case {R ≤ n} = Ω. Or n < m+ 1 in which case this event coincides
with {Nt ≤ n− 1} = {t < Tn} ∈ Fn.
Since R is bounded by m+ 1, it is integrable. Applying Wald’s identity, we get

E[TNt∧m+1] = E[Nt ∧m+ 1]E[δ1] .

Since N is standard, Nt < ∞ almost surely. Applying the Monotone Convergence Theorem, we can
pass to the limit on m→∞ and get

E[TNt+1] = E[Nt + 1]E[δ1] .

Proposition 4.1.4. LetN be a counting process associated with a renewal process. Assume that E[δ1] <
∞. As t→∞ we have

Nt

t
→ 1

E[δ1]
, a.s.

and
ENt

t
→ 1

E[δ1]
.

Proof. By the strong law of large numbers we know that almost surely

Tn
n
→ E[δ1] ,
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as n → ∞. By Proposition 1.1.7, we know that N is a standard counting process so that Nt → ∞ as
t → ∞ almost surely. Consequently we have the almost sure convergence TNt/Nt → E[δ1] as t → ∞.
Then we write

Nt + 1

TNt+1

Nt

Nt + 1
=

Nt

TNt+1
≤ Nt

t
≤ Nt

TNt
.

The leftmost and rightmost terms converge to 1/E[δ1] almost surely. This yields the first convergence of
the statement.
Applying Fatou’s Lemma, we get

lim inf
t→∞

E[Nt/t] ≥ E[lim inf
t→∞

Nt/t] =
1

E[δ1]
.

To bound the lim sup, we proceed as follows. Let δ′i := min(δi,K) for some K > 0 and let N ′ be the
associated counting process. Since the interarrival times of N ′ are shorter than those of N , we have the
almost sure bound Nt ≤ N ′t for all t ≥ 0. Thus

lim sup
t→∞

E[Nt/t] ≤ lim sup
t→∞

E[N ′t/t] .

By Corollary 4.1.3, we have
E[T ′N ′t+1] = E[δ′1]E[N ′t + 1] .

Since T ′N ′t+1 = T ′N ′t
+ δN ′t+1 ≤ t+K almost surely, we get

E[N ′t/t] =
1

t

(E[T ′N ′t+1]

E[δ′1]
− 1
)
≤ t+K

tE[δ′1]
.

Therefore
lim sup
t→∞

E[Nt/t] ≤ lim sup
t→∞

E[N ′t/t] ≤
1

E[δ′1]
.

Since E[δ′1] ↑ E[δ1] as K →∞, we obtain the desired result.

We now introduce the forward recurrence time process (Bt, t ≥ 0) as follows:

Bt := TNt+1 − t , t ≥ 0 .

At any time t, the random variable Bt measures the time remaining until the next jump of the counting
process N .
The process B takes values in (0,∞) and its evolution is as follows. If it starts from b > 0 at time 0,
then it decreases linearly like b − t on (0, b). At time b, it makes a jump of random size distributed like
δ1: from there, it decreases linearly again until its next jump.

4.2 A reminder on convolution of measures

Consider the map σ : R2 → R defined by σ(x, y) = x + y. Let µ and ν be two finite measures on R.
Recall that the product measure µ⊗ ν is the unique measure on B(R2) such that for all Borel sets A,B
of R, we have

µ⊗ ν(A×B) = µ(A)ν(B) .
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The convolution µ ∗ ν of µ and ν is defined as the pushforward measure (=mesure image) on R of µ⊗ ν
through the map σ. In other words, we have for all Borel sets A in R:

µ ∗ ν(A) = µ⊗ ν(σ−1(A)) .

More generally, for all bounded and measurable function ϕ we haveˆ
x∈R

ϕ(x)µ ∗ ν(dx) =

ˆ
y∈R

ˆ
z∈R

ϕ(y + z)µ(dy)ν(dz) , (4.1)

In the particular case where µ and ν are probability measures, we have the following probabilistic
interpretation of the convolution µ ∗ ν. Let X and Y be two independent r.v. with laws µ and ν. Then
the sum X + Y has law µ ∗ ν.

In the general case, let us mention that if µ or ν has a density, then µ ∗ ν has a density as well.
For convenience, we will denote by µ∗n the measure obtained by convolving n times µ with itself: in

the particular case where n = 0, by convention we set µ∗0(dx) = δ0(dx) where δ0 is the Dirac measure
at 0: for all Borel set A in R, δ0(A) = 1 if 0 ∈ A, δ0(A) = 0 otherwise.

4.3 The renewal equation

Let F be a finite measure on [0,∞) that does not charge 0. Let z be a function on [0,∞). We introduce
the renewal equation associated to F and z:

Z(t) = z(t) +

ˆ
[0,t]

Z(t− u)F (du) , t ≥ 0 . (4.2)

The main theorem of this section ensures existence and uniqueness of the solution of this equation (under
some hypothesis). Before we come to this result, let us introduce some further notations.
The measure

U(dx) =
∞∑
n=0

F ∗n(dx) ,

is called the renewal measure and its distribution function

U(t) :=

ˆ
[0,t]

U(dx) , t ≥ 0 ,

is called the renewal function.

Remark 4.3.1. Any measure on [0,∞) can be uniquely extended into a measure on R by setting to 0
its total mass on (−∞, 0): the notion of distribution function that we use here thus coincides with the
classical one.

Let us collect the following simple fact:

Lemma 4.3.2. The renewal function U(t) is finite for all t ≥ 0. Furthermore, if the total mass´
[0,∞) F (ds) of the measure F equals 1, then

U(t) = 1 + ENt , t ≥ 0 ,

where N is a counting process associated with a renewal sequence (δi)i≥1 with law F (the law of δ1 is
F ). Furthermore, we have

U(t+ a)− U(t) ≤ U(a) , ∀t, a ≥ 0 . (4.3)
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Proof. Recall that the measure F does not charge (−∞, 0). Consequently, it admits a Laplace transform:
ˆ

[0,∞)
e−qsF (ds) <∞ , ∀q ≥ 0 .

Observe that e−qs → 0 as q → ∞ for all s > 0, and that e−qs ≤ 1. Since F is a finite measure on
(0,∞), the constant 1 is integrable. By the Dominated Convergence Theorem:

ˆ
[0,∞)

e−qsF (ds)→ 0 , as q →∞ .

Therefore, there exists q0 > 0 such that
´

[0,∞) e
−q0sF (ds) ∈ [0, 1). We let δ be the latter quantity.

We claim that for every n ≥ 0 and every q ≥ 0, we have the identity
ˆ

[0,∞)
e−qsF ∗n(ds) =

(ˆ
[0,∞)

e−qsF (ds)
)n

.

We postpone the proof of the claim, and proceed to the proof of the first part of the lemma. For every
t ≥ 0 and n ≥ 0, we have

F ∗n(t) =

ˆ
[0,t]

F ∗n(ds) ≤ eq0t
ˆ

[0,t]
e−q0sF ∗n(ds)

≤ eq0t
ˆ

[0,∞)
e−q0sF ∗n(ds)

≤ eq0t
(ˆ

[0,∞)
e−q0sF (ds)

)n
≤ eq0tδn ,

so that
U(t) =

∑
n≥0

F ∗n(t) ≤
∑
n≥0

eq0tδn <∞ .

It remains to prove the claim. The case n = 0 is trivial since F ∗n = δ0. In the case n = 1, there is
nothing to prove. Let us consider the case n ≥ 2. By the defining property (4.1) of the convolution, we
have

ˆ
[0,∞)

e−qsF ∗n(ds) =

ˆ
R
1[0,∞)(s)e

−qsF ∗n(ds)

=

ˆ
R
. . .

ˆ
R
1[0,∞)(s1 + . . .+ sn)e−q(s1+...+sn)F (ds1) . . . F (dsn)

=

ˆ
[0,∞)

. . .

ˆ
[0,∞)

e−q(s1+...+sn)F (ds1) . . . F (dsn)

=
(ˆ

[0,∞)
e−qs1F (ds1)

)n
,

thus concluding the proof of the first part of the lemma.
We now assume that

´
[0,∞) F (ds) = 1. Let (δi)i≥1 be an i.i.d. sequence with law F , let Tn = δ1+. . .+δn
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for every n ≥ 1 and let N be the associated counting process. Notice that the law of Tn is F ∗n. We have
for all t ≥ 0

ENt =
∑
n≥1

P(Nt ≥ n) =
∑
n≥1

P(Tn ≤ t) =
∑
n≥1

F ∗n(t)

= U(t)− 1 ,

as asserted.
Fix t, a > 0. We have

Nt+a −Nt =
∑
n≥0

1TNt+1+n≤t+a = 1TNt+1≤t+a +
∑
n≥1

1TNt+1+n≤t+a .

We introduce the r.v.

T ′n = TNt+1+n − TNt+1 , n ≥ 1 .

Notice that TNt+1 = t+Bt so that

Nt+a −Nt = 10≤a−Bt +
∑
n≥1

1T ′n≤a−Bt .

It is possible to show that (T ′n)n≥1 is independent of Bt and has the same law as (Tn)n≥1. Since F ∗0 is
a Dirac mass at 0, and F ∗n is the law of Tn, we deduce that

E[Nt+a −Nt] = E[E[Nt+a −Nt|Bt]] = E[
∑
n≥0

F ∗n(a−Bt)] = E[U(a−Bt)] .

Since U is non-decreasing, the latter quantity is bounded by U(a).

Theorem 7. If the function z is bounded on finite intervals then the renewal equation (4.2) admits a
unique solution which is bounded on finite intervals and this solution is given by

Z(t) =

ˆ
[0,t]

z(t− x)U(dx) , t ≥ 0 .

Notice that U has a Dirac mass at 0 so it is very important to specify whether we integrate over [0, t]
or (0, t].

Proof. For every t ≥ 0, we set

Z(t) =

ˆ
[0,t]

z(t− x)U(dx) ,

and we observe that

|Z(t)| ≤ sup
x∈[0,t]

|z(x)|
ˆ

[0,t]
U(dx) = sup

x∈[0,t]
|z(x)|U(t) <∞ ,
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by assumption on z and by the previous lemma. Consequently, Z is bounded on finite intervals. Let us
now check that Z indeed satisfies the renewal equation. We compute

ˆ
[0,t]

Z(t− s)F (ds) =

ˆ
[0,t]

ˆ
[0,t−s]

z(t− s− x)U(dx)F (ds)

=

ˆ
R

ˆ
R
1s+x∈[0,t]z(t− s− x)U(dx)F (ds)

=

ˆ
[0,t]

z(t− y)U ∗ F (dy)

=

ˆ
[0,t]

z(t− y)
∑
n≥1

F ∗n(dy) .

Since z(t) =
´

[0,t] z(t− y)F ∗0(dy) we deduce that

z(t) +

ˆ
[0,t]

Z(t− s)F (ds) = Z(t) ,

as required.
We thus showed that Z solves the renewal equation. It remains to show that this is the unique

solution among all functions that are bounded on finite intervals. If Z1 and Z2 are two solutions, then
their difference D = Z1 − Z2 solves

D(t) =

ˆ
[0,t]

D(t− s)F (ds) , t ≥ 0 .

Iterating this equation and by the definition of the convolution of two measures, we get

D(t) =

ˆ
[0,t]

ˆ
[0,t−s]

D(t− s− u)F (du)F (ds) =

ˆ
[0,t]

D(t− x)F ∗2(dx) .

By induction, we then show that for all n ≥ 1

D(t) =

ˆ
[0,t]

D(t− x)F ∗n(dx) , t ≥ 0 .

Consequently

|D(t)| ≤
ˆ

[0,t]
|D(t− x)|F ∗n(dx) ≤ sup

u∈[0,t]
|D(u)|F ∗n(t) ,

which goes to 0 as n→∞ as we showed in the proof of the previous lemma.

4.4 Blackwell’s Renewal Theorem and Key Renewal Theorem

From now on, we assume thatF is non-lattice, that is, F is not supported on a set of the form {0, r, 2r, 3r, . . .}
for some r > 0. We also assume that F is a probability measure:

´
[0,∞) F (ds) = 1. Finally, we set

µ =
´∞

0 xF (dx).
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Theorem 8 (Blackwell’s Renewal Theorem). Assume that F is a non-lattice probability measure and
that µ <∞. Then for all a > 0 we have

U(t+ a)− U(t)→ a

µ
, t→∞ .

Theorem 9 (Key Renewal Theorem). Assume that F is a non-lattice probability measure and that
µ < ∞. Consider the renewal equation (4.2) and assume that the function z appearing therein is
non-increasing, non-negative and Lebesgue integrable. Then

Z(t) =

ˆ
[0,t]

z(t− s)U(ds)→ 1

µ

ˆ
[0,∞)

z(x)dx , t→∞ .

Remark 4.4.1. The theorem remains true under much less restrictive assumptions on z.

Although the Key Renewal Theorem seems to be stronger, these two theorems are equivalent.

Proposition 4.4.2. The Key Renewal Theorem and Blackwell’s Renewal Theorem are equivalent.

Proof. Assume that the statement of the Key Renewal Theorem holds true. Take z(s) = 1[0,a)(s), it is
plain that z is integrable, non-negative and non-increasing so that we have as t→∞

ˆ
[0,t+a]

z(t+ a− s)U(ds)→ 1

µ

ˆ
[0,∞)

z(x)dx =
a

µ
.

On the other hand, we have for all t > a

ˆ
[0,t+a]

z(t+ a− s)U(ds) = U(t+ a)− U(t) ,

so that the conclusion of Blackwell’s Renewal Theorem follows.

Conversely, let us assume that Blackwell’s Renewal Theorem holds true. Assume that z is integrable,
non-negative and non-increasing and define Ik(x) = [x − (k + 1)h, x − kh) for some h > 0. Then for
any x ∈ (nh, (n+ 1)h] we have

Z(x) =

ˆ x

0
z(x− y)U(dy) =

ˆ x−nh

0
z(x− y)U(dy) +

n−1∑
k=0

ˆ
Ik

z(x− y)U(dy) .

From the assumptions on z, we deduce that z goes to 0 at infinity. Notice that x− nh < h for all x and
h so that ∣∣∣ ˆ x−nh

0
z(x− y)U(dy)

∣∣∣ ≤ ˆ h

0
sup

r∈[x−h,x]
|z(r)|U(dy) = sup

r∈[x−h,x]
|z(r)|U(h) ,

goes to 0 as x→∞.
Using the fact that z is non-increasing we obtain for all k ∈ {0, . . . , n− 1}

z((k + 1)h)(U((k + 1)h)− U(kh)) ≤
ˆ
Ik

z(x− y)U(dy) ≤ z(kh)(U((k + 1)h)− U(kh)) .
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For some fixed n0, we then write

n−1∑
k=0

ˆ
Ik

z(x− y)U(dy) ≤
n−1∑
k=0

z(kh)
(
U(x− kh)− U(x− (k + 1)h)

)
≤

n0∑
k=0

z(kh)
(
U(x− kh)− U(x− (k + 1)h)

)
+

n−1∑
k=n0+1

z(kh)U(h) .

Therefore for any fixed n0 we obtain

lim sup
x→∞

Z(x) ≤ h

µ

n0∑
k=0

z(kh) + U(h)
∞∑

k=n0+1

z(kh) ,

and then taking the limit n0 →∞ and then h ↓ 0

lim sup
x→∞

Z(x) ≤ lim
h↓0

1

µ

ˆ
z(t)dt =

1

µ

ˆ
z(t)dt .

On the other hand, we have for all n > n0

n−1∑
k=0

ˆ
Ik

z(x− y)U(dy) ≥
n0∑
k=0

z((k + 1)h)
(
U(x− kh)− U(x− (k + 1)h)

)
.

so that

lim inf
x→∞

Z(x) ≥ h

µ

n0∑
k=0

z((k + 1)h) ,

and taking the limit n0 →∞ and then h ↓ 0 one gets

lim inf
x→∞

Z(x) ≥ lim
h↓0

1

µ

ˆ
z(t)dt =

1

µ

ˆ
z(t)dt .

Consequently, Z(x) admits a limit as x→∞ and this limit coincides with 1
µ

´
z(t)dt as required.

The proof of Blackwell’s Renewal Theorem is delicate so we do not present it here, and refer the
interested reader to [Asm03, Section V.5].

4.5 The exponential case

Assume that δ1 is distributed as E(λ) for some λ > 0. Then the renewal process are the jump times of a
Poisson process N of intensity λ. The parameter µ equals and 1/λ.
The function U is then explicit:

U(t) = 1 + E[Nt] = 1 + λt , t ≥ 0 .

In particular, the conclusion of Blackwell’s Theorem holds not only for t→∞ but for any t ≥ 0:

U(t+ a)− U(t) = λa =
a

µ
.

The forward recurrence process Bt has a very special behaviour.
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Lemma 4.5.1. The law of Bt does not depend on t and is E(λ).

Proof.

P(Bt > x) = P(TNt+1 − t > x) =
∑
k≥0

P(TNt+1 − t > x;Nt = k)

=
∑
k≥0

P(Tk ≤ t < t+ x < Tk+1) .

For every k ≥ 0, recall that Tk has a Γ(k, λ) distribution and is independent from δk+1 so that we have:

P(Tk ≤ t < t+ x < Tk+1) = P(Tk ≤ t < t+ x < Tk + δk+1)

=

ˆ
s≤t<t+x<s+r

sk−1 λk

(k − 1)!
e−λsλe−λrdsdr

=

ˆ
s≤t

sk−1 λk

(k − 1)!
e−λs

ˆ
r>t+x−s

λe−λrdsdr

=

ˆ
s≤t

sk−1 λk

(k − 1)!
e−λse−λ(t+x−s)

= e−λ(t+x)

ˆ
s≤t

sk−1 λk

(k − 1)!

= e−λ(t+x)tk
λk

k!
.

Consequently,

P(Bt > x) =
∑
k≥0

P(Tk ≤ t < t+ x < Tk+1) = e−λ(t+x)
∑
k≥0

tk
λk

k!

= e−λx ,

thus yielding the asserted result.
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