Processus de Poisson et méthodes actuarielles (2019-2020)

Exercise sheet n°1 : Poisson processes

Exercise 1. Let (7,,n > 1) be a sequence of IID (independent and identically
distributed) non-negative random variables. Set Ty = 0,

T,=7+..+7, n>1,

and
—#{i>1:T,<t}, t>0.

1. Give a necessary and sufficient condition for having

P(N only makes jumps of size 1) > 0.

2. Show that under this condition
P(N only makes jumps of size 1) = 1.

3. Is it possible that (T},,n > 0) converges to a finite limit with positive ! probability ?
4. Compute the probability of the event {3t > 0: N(t) = oo}.

Exercise 2. Let N be a Poisson process with intensity A > 0. Prove and give an
interpretation of the following properties

1. P(N, =1) = Ah+o(h) (h—0)

2. P(N, >2) =o(h) (h — 0)

3. P(N, =0)=1— X +o(h) (h — 0).
4. ¥t > 0, P(N jumps at time ¢) = 0.

5. Compute Cov(Ny, Ny), Vs, t > 0.

Exercise 3. Let N be a counting process with stationary and independent incre-
ments. Assume that there exists A > 0 such that

P(N), = 1) = M+ o(h), P(N, > 2) = o(h).

For u € R, let gi(u) = E[e™t].

1. En anglais le mot positive signifie strictement positif. Pour dire positif au sens large on dit non-
negative. De méme les termes negative, bigger, smaller sont a prendre au sens strict.
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1. Prove that giyn(u) = gi(u)gn(u) for every ¢, h > 0.
2. Prove that

%gt(u) =Me™ = 1)g, go(u) =1.
3. Conclude.

Exercise 4. Let N be a Poisson process with intensity A > 0, modelling the arrival
times of the claims for an insurance company. Let T} denote the arrival time of the first
claim. Show that the conditional law of T} given N, = 1 is uniformly distributed over
0, t].

Exercise 5. Let (T,,,n > 0) (Tp = 0) be a renewal process and N its associated
counting process. Assume that N has independent and stationary increments.

1. Show that
P(Tl > S+ t) = ]P(Tl > t)P(TI > S), VS,t > 0.

2. Derive that NN is a Poisson process.

Exercise 6.
1. Show that two independent Poisson processes cannot jump simultaneously a.s.

2. Let N! and N? be two independent Poisson processes with parameters A\; > 0
and Ay respectively. Show that the process

N,=N'+N}, t>0

is a Poisson process and give its intensity.

3. Derive that the sum of n independent Poisson processes with respective intensities
A1 > 0,..., A\, > 0 is a Poisson process and give its intensity.

Exercise 7. Liver transplants arrive at a hospital according to a Poisson process
N with intensity A > 0. Two patients are waiting for a transplant. The first patient
has lifetime T (before the transplant) according to an exponential distribution with
parameter ;. The second one has lifetime 7"(before the transplant) according to an
exponential distribution with parameter p,. The rule is that the first transplant that
arrives at the hospital is given to the first patient if he/she is still alive, and to the
second patient otherwise. Assume that 7,7’ and N are independent.

1. Compute the probability that the first patient is transplanted.
2. Compute the probability that the second patient is transplanted.

3. Let X denote the number of transplants arrived at the hospital during [0, 7.
Compute the law of X.



Exercise 8. [The bus paradox] Buses arrive at a given bus stop according to a Poisson
process with intensity A > 0. You arrive at the bus stop at time ¢.

1. Give a first guess for the value of the average waiting time before the following
bus arrives ?

2. Let B; = Tn,+1 —t be the waiting time before the next bus, and let A, =t — Ty,
denote the elapsed time since the last bus arrival. Compute the joint distribution
of (A¢, By) (hint : compute first P(A; > a1, By > xg) for z1,29 > 0).

3. Derive that the random variables A; and B; are independent. What are their
distributions ?

4. In particular, compute E[B;]. Compare with your initial first guess.

Exercise 9. [Law of large numbers and central limit theorem.]
1. Recall and prove a law of large numbers for a Poisson process with intensity A > 0.
2. Prove that N satisfies the following central limit theorem

N - At aw
L B AN(0,1) as ¢ — oo,
VAL

(a) by using characteristic functions

(b) by showing first that (N,, — An) /v/An converges in distribution as n — oo and
then maxycp, ni1) (Ny — Ny) /v/n — 0 in probability.

Exercise 10.

1. Give an expression for the density function of the conditional distribution of
(Ty,...,T,) given N, =n

when NN is a Poisson process with intensity A and 0 < T} < ... < T,, < ... are its
jump times.

2. Derive an expression for the density of T; given Ny = n, V1 < i < n and similarly
for (7;,7}) given Ny =n, V1 <i < j <n.

3. Set U ; =T; —T;, 1 <i < j <n. Give an expression for the density of U; ; given
N; = n. Derive an expression for the density of T,, — T},_1 given N; = n.

Exercise 11. Let X = (X}, ¢ > 0) be a continuous time process and F = (F;, ¢t > 0)
a filtration, i.e. a nested family of sigma-fields Fy; C F; C A Vs < t, where A is the
sigma-field on the probability space (€2,.4,P) over which X is defined. The process X
is a martingale with respect to the filtration F if X, is F;-measurable and integrable V¢t
and
E[X|Fs] = Xs, Y0O<s <t

Let N = (N, t > 0) be a Poisson process with intensity A > 0. Show that the three
processes



L (N — Mt > 0);
2. (Ny = Xt)2 = At),t > 0);
3. (exp(ulVy + At(1 —€*)),t > 0) (for a given real number u) ;
are martingales with respect to the filtration generated by N, i.e. FY = o(N,,s < t).

Exercise 12. Let N be a Poisson process with intensity A > 0 and let 0 < T} <
.. < T, < ... denote its jump times.

1. Show that 7T),/n converges almost surely as n — oo and identify its limit.

2. Show that } -, T, converges almost surely. Let X denote its limit.
3. Show that Xy, = Zﬁ(f) T2 — X as. as t — oo.

4. Let (U;,i > 1) denote a sequence of independent uniform random variables on
0, 1]. We admit the following result

n
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where Z is a positive random variable, whose Laplace transform is given by
Elexp(—sZ)] = exp(—cy/s),¥s > 0, for some ¢ > 0. The goal is to show that
X and ¢Z have same law for some ¢’ that we will explicitly compute.

We asssume moreover that (U;,7 > 1) is independent of N.

(a) Show that for every n > 1 and every ¢t > 0, the law of Xy, given N; = n is the
same as the law of t=2"" U %

(b) Derive that Xy has same distribution as ¢ =2 Zﬁ\;(lt) U2
(c) Prove that

N(#)
N(t)_Zz:U[2 L% 7 ast — oo.
i=1

(d) Recall the law of large numbers for Poisson processes and conclude.
5. Derive E[X] = oc.

Exercise 13. Let N = (N,;,t > 0) be a standard Poisson process with intensity
A > 0. Let f:[0,00) — [0,00) be a locally bounded Borel function. Set

N(f)e=)_ f(T)lnen for t20,
i>1

where the (7});>1 are the jump times of V.
1. Show that for all £ > 0, we have N(f); < oo almost-surely.
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2. If f(s) = 1(ap(s) where [a,b] C [0,1], what is the distribution of N(1(4p)¢ 7

. Show that for u > 0, we have

t n
E [e—uN(f)t}Nt _ n} _ tlﬂ(/ e_“f(S)ds> ]
0

. Derive E [e‘“N (f )t} and find back the result of Question 2.

5. Compute E [N(f);] and Var[N(f)].

. Prove that N(f); — )\f(f f(s)ds is a martingale.



