
Processus de Poisson et méthodes actuarielles (2019-2020)

Exercise sheet n◦1 : Poisson processes

Exercise 1. Let (τn, n ≥ 1) be a sequence of IID (independent and identically
distributed) non-negative random variables. Set T0 = 0,

Tn = τ1 + ...+ τn, n ≥ 1,

and
Nt = #{i ≥ 1 : Ti ≤ t}, t ≥ 0.

1. Give a necessary and sufficient condition for having

P(N only makes jumps of size 1) > 0.

2. Show that under this condition

P(N only makes jumps of size 1) = 1.

3. Is it possible that (Tn, n ≥ 0) converges to a finite limit with positive 1 probability ?

4. Compute the probability of the event {∃t ≥ 0 : N(t) = ∞}.

Exercise 2. Let N be a Poisson process with intensity λ > 0. Prove and give an
interpretation of the following properties

1. P(Nh = 1) = λh+ o(h) (h → 0)

2. P(Nh ≥ 2) = o(h) (h → 0)

3. P(Nh = 0) = 1− λh+ o(h) (h → 0).

4. ∀t ≥ 0, P(N jumps at time t) = 0.

5. Compute Cov(Ns, Nt), ∀s, t ≥ 0.

Exercise 3. Let N be a counting process with stationary and independent incre-
ments. Assume that there exists λ > 0 such that

P(Nh = 1) = λh+ o(h), P(Nh ≥ 2) = o(h).

For u ∈ R, let gt(u) = E[eiuNt ].

1. En anglais le mot positive signifie strictement positif. Pour dire positif au sens large on dit non-
negative. De même les termes negative, bigger, smaller sont à prendre au sens strict.
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1. Prove that gt+h(u) = gt(u)gh(u) for every t, h ≥ 0.

2. Prove that
d
dt
gt(u) = λ(eiu − 1)gt, g0(u) = 1.

3. Conclude.

Exercise 4. Let N be a Poisson process with intensity λ > 0, modelling the arrival
times of the claims for an insurance company. Let T1 denote the arrival time of the first
claim. Show that the conditional law of T1 given Nt = 1 is uniformly distributed over
[0, t].

Exercise 5. Let (Tn, n ≥ 0) (T0 = 0) be a renewal process and N its associated
counting process. Assume that N has independent and stationary increments.

1. Show that
P(T1 > s+ t) = P(T1 > t)P(T1 > s), ∀s, t ≥ 0.

2. Derive that N is a Poisson process.

Exercise 6.

1. Show that two independent Poisson processes cannot jump simultaneously a.s.

2. Let N1 and N2 be two independent Poisson processes with parameters λ1 > 0
and λ2 respectively. Show that the process

Nt = N1
t +N2

t , t ≥ 0

is a Poisson process and give its intensity.

3. Derive that the sum of n independent Poisson processes with respective intensities
λ1 > 0, ..., λn > 0 is a Poisson process and give its intensity.

Exercise 7. Liver transplants arrive at a hospital according to a Poisson process
N with intensity λ > 0. Two patients are waiting for a transplant. The first patient
has lifetime T (before the transplant) according to an exponential distribution with
parameter µ1. The second one has lifetime T ′(before the transplant) according to an
exponential distribution with parameter µ2. The rule is that the first transplant that
arrives at the hospital is given to the first patient if he/she is still alive, and to the
second patient otherwise. Assume that T, T ′ and N are independent.

1. Compute the probability that the first patient is transplanted.

2. Compute the probability that the second patient is transplanted.

3. Let X denote the number of transplants arrived at the hospital during [0, T ].
Compute the law of X.
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Exercise 8. [The bus paradox] Buses arrive at a given bus stop according to a Poisson
process with intensity λ > 0. You arrive at the bus stop at time t.

1. Give a first guess for the value of the average waiting time before the following
bus arrives ?

2. Let Bt = TNt+1 − t be the waiting time before the next bus, and let At = t− TNt

denote the elapsed time since the last bus arrival. Compute the joint distribution
of (At, Bt) (hint : compute first P(At ≥ x1, Bt ≥ x2) for x1, x2 ≥ 0).

3. Derive that the random variables At and Bt are independent. What are their
distributions ?

4. In particular, compute E[Bt]. Compare with your initial first guess.

Exercise 9. [Law of large numbers and central limit theorem.]

1. Recall and prove a law of large numbers for a Poisson process with intensity λ > 0.

2. Prove that N satisfies the following central limit theorem

Nt − λt√
λt

law−→ N (0, 1) as t → ∞,

(a) by using characteristic functions

(b) by showing first that (Nn − λn) /
√
λn converges in distribution as n → ∞ and

then maxt∈[n,n+1) (Nt −Nn) /
√
n → 0 in probability.

Exercise 10.

1. Give an expression for the density function of the conditional distribution of

(T1, ..., Tn) given Nt = n

when N is a Poisson process with intensity λ and 0 < T1 < ... < Tn < ... are its
jump times.

2. Derive an expression for the density of Ti given Nt = n, ∀1 ≤ i ≤ n and similarly
for (Ti, Tj) given Nt = n, ∀1 ≤ i < j ≤ n.

3. Set Ui,j = Tj − Ti, 1 ≤ i < j ≤ n. Give an expression for the density of Ui,j given
Nt = n. Derive an expression for the density of Tn − Tn−1 given Nt = n.

Exercise 11. Let X = (Xt, t ≥ 0) be a continuous time process and F = (Ft, t ≥ 0)
a filtration, i.e. a nested family of sigma-fields Fs ⊂ Ft ⊂ A ∀s ≤ t, where A is the
sigma-field on the probability space (Ω,A,P) over which X is defined. The process X
is a martingale with respect to the filtration F if Xt is Ft-measurable and integrable ∀t
and

E[Xt|Fs] = Xs, ∀0 ≤ s ≤ t.

Let N = (Nt, t ≥ 0) be a Poisson process with intensity λ > 0. Show that the three
processes
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1. (Nt − λt, t ≥ 0) ;

2. ((Nt − λt)2 − λt) , t ≥ 0) ;

3. (exp(uNt + λt(1− eu)), t ≥ 0) (for a given real number u) ;

are martingales with respect to the filtration generated by N , i.e. FN
t = σ(Ns, s ≤ t).

Exercise 12. Let N be a Poisson process with intensity λ > 0 and let 0 < T1 <
... < Tn < ... denote its jump times.

1. Show that Tn/n converges almost surely as n → ∞ and identify its limit.

2. Show that
∑

i≥1 T
−2
i converges almost surely. Let X denote its limit.

3. Show that XNt =
∑N(t)

i=1 T−2
i → X a.s. as t → ∞.

4. Let (Ui, i ≥ 1) denote a sequence of independent uniform random variables on
[0, 1]. We admit the following result

n−2

n∑
i=1

U−2
i

law→
n−→∞

Z,

where Z is a positive random variable, whose Laplace transform is given by
E[exp(−sZ)] = exp(−c

√
s),∀s ≥ 0, for some c > 0. The goal is to show that

X and c′Z have same law for some c′ that we will explicitly compute.

We asssume moreover that (Ui, i ≥ 1) is independent of N .

(a) Show that for every n ≥ 1 and every t > 0, the law of XNt given Nt = n is the
same as the law of t−2

∑n
i=1 U

−2
i .

(b) Derive that XN(t) has same distribution as t−2
∑N(t)

i=1 U−2
i .

(c) Prove that

N(t)−2

N(t)∑
i=1

U−2
i

law−→ Z as t → ∞.

(d) Recall the law of large numbers for Poisson processes and conclude.

5. Derive E[X] = ∞.

Exercise 13. Let N = (Nt, t ≥ 0) be a standard Poisson process with intensity
λ > 0. Let f : [0,∞) → [0,∞) be a locally bounded Borel function. Set

N(f)t =
∑
i≥1

f(Ti)1{Ti≤t} for t ≥ 0,

where the (Ti)i≥1 are the jump times of N .

1. Show that for all t ≥ 0, we have N(f)t < ∞ almost-surely.
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2. If f(s) = 1(a,b](s) where [a, b] ⊂ [0, t], what is the distribution of N(1(a,b])t ?

3. Show that for u ≥ 0, we have

E
[
e−uN(f)t

∣∣Nt = n
]
=

1

tn

(∫ t

0

e−uf(s)ds
)n

.

4. Derive E
[
e−uN(f)t

]
and find back the result of Question 2.

5. Compute E
[
N(f)t

]
and Var[N(f)t].

6. Prove that N(f)t − λ
∫ t

0
f(s)ds is a martingale.
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