
GRANDES DÉVIATIONS.

EXAMEN FINAL (3H).

(English version on the back of the sheet)

Documents et appareils électroniques non autorisés. Toute réponse doit être justifiée et lisible. La
qualité de la rédaction pourra être prise en compte dans la notation. Vous pouvez répondre en français ou
en anglais. La terminologie utilisée est celle du cours.

Exercice 1. (Principe de grandes déviations et produit). Soient X et Y deux espaces métriques.
Soient {Xn}n≥1 et {Yn}n≥1 deux suites de variables aléatoires à valeurs dans X et Y respectivement.
On suppose que ces deux suites sont définies sur un même espace de probabilité (Ω,F ,P), qu’elles sont
indépendantes entre elles (en tant que suites), et qu’elles vérifient un principe de grandes déviations (PGD)
de vitesse n et de fonction de taux IX : X → [0,∞] et IY : Y → [0,∞] respectivement.

(1) Montrer que la suite de variables aléatoires {(Xn, Yn)}n≥1 définies sur l’espace métrique produit X×Y
(muni de la topologie produit) vérifie un PGD dont on notera la fonction de taux IX,Y . Identifier IX,Y

en pensant à vérifier qu’il s’agit bel et bien d’une fonction de taux. On rappelle que les intersections
finies de cylindres (ensembles de la forme A × B où A est un ouvert de X et B un ouvert de Y)
forment une base d’ouverts pour la topologie produit (i.e. tout ouvert de la topologie produit s’écrit
comme réunion d’ouverts de cette base).

(2) Montrer que si IX et IY sont des bonnes fonctions de taux, alors IX,Y est également une bonne fonction
de taux.

(3) On suppose dans cette question que X = Y = R (muni de la distance euclidienne) et que IX et IY
sont des bonnes fonctions de taux. Montrer que la suite {XnYn}n≥1 vérifie un PGD sur R dont on
déterminera la fonction de taux.

Exercice 2. (Modèle de Curie-Weiss avec champ extérieur). Soit σ = (σi)i≥1 une suite de
variables aléatoires indépendantes et identiquement distribuées (i.i.d.) telles que P(σ1 = 1) = P(σ1 =
−1) = 1/2. La fonction de partition du modèle de Curie-Weiss pour un système de taille n ≥ 1, de
température inverse β > 0 et de champ extérieur h ∈ R est

Zβ,h
n = E[exp(Hβ,h

n )], où Hβ,h
n :=

β

n

∑
1≤i<j≤n

σiσj + h
∑

1≤i≤n

σi.

(1) Montrer que la magnétisation moyenne Mn := 1
n

∑n
i=1 σi satisfait un principe de grandes déviations

(PGD) sur [−1, 1], de vitesse n et de fonction de taux:

I(m) :=
1

2

[
(1 +m) log(1 +m) + (1−m) log(1−m)

]
.

(2) Énoncer le lemme de Varadhan.

(3) Montrer que

lim
n→∞

1

n
logZβ,h

n = sup
m∈[−1,1]

{
1
2
βm2 + hm− I(m)

}
,

(4) Rechercher les maximiseurs (existence, nombre) dans la formule variationnelle ci-dessus. Que remarquez-
vous ?
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LARGE DEVIATIONS.
FINAL EXAM (3H).

(Version française au recto)

Documents and electronic devices are not allowed. Answers must be justified and readable. The quality
of writing may be taken into account in the grading. You may answer in French or English. We use the
same terminology as in class.

Exercise 1. (Large deviation principles and product). Let X and Y be two metric spaces. Let
{Xn}n≥1 and {Yn}n≥1 be two sequences of random variables respectively valued in X and Y. We assume
these two sequences to be defined on a common probability space (Ω,F ,P), to be mutually independent
(as sequences), and to satisfy a large deviation principle (LDP) with speed n and respective rate functions
IX : X → [0,∞] and IY : Y → [0,∞].

(1) Show that the sequence of random variables {(Xn, Yn)}n≥1 defined on the product metric space X ×Y
(equipped with the product topology) satisfies an LDP, the rate function of which shall be denoted
IX,Y . Identify IX,Y and check that this is indeed a rate function. We remind that finite intersections
of cylinder sets (sets of the form A × B where A is an open set of X and B is an open set of Y)
constitute a topological basis for the product topology (i.e. every open set in the product topology
writes as a union of open sets in that basis).
We will show that {(Xn, Yn)}n≥1 satisfies an LDP with speed n and rate function

IX,Y (x, y) := IX(x) + IY (y), (x, y) ∈ X × Y.

(i) Lower bound. If A is an open set of X and B is an open set of Y then, using the independence of
X and Y ,

lim inf
n→∞

1

n
log P((Xn, Yn) ∈ A×B) ≥ lim inf

n→∞

1

n
log P(Xn ∈ A) + lim inf

n→∞

1

n
log P(Yn ∈ B)

≥ − inf
x∈A

IX(x)− inf
y∈B

IY (y) = − inf
(x,y)∈A×B

IX,Y (x, y).

In the general case, we may write any open set O ⊆ X × Y as

O = ∪i∈I ∩k∈Ji (Ai,k ×Bi,k),

where the J ′
is are all finite and the Ai,k’s and Bi,k’s are open sets of X and Y respectively. Then, for

every i ∈ I,

lim inf
n→∞

1

n
log P((Xn, Yn) ∈ O) ≥ lim inf

n→∞

1

n
log P((Xn, Yn) ∈ ∩k∈Ji(Ai,k ×Bi,k))

= lim inf
n→∞

1

n
log P((Xn, Yn) ∈ (∩k∈JiAi,k)× (∩k∈JiBi,k))

≥ − inf{IX,Y (x, y), (x, y) ∈ (∩k∈JiAi,k)× (∩k∈JiBi,k)},

from what precedes. It remains to maximize over i ∈ I to get the lower bound.
(ii) Upper bound. Using the same notation as in the previous step, any closed set F ⊆ X ×Y may be
written as

F = ∩i∈I ∪k∈Ji (Ai,k ×Bi,k)
c = ∩i∈I ∪k∈Ji (A

c
i,k × Y) ∪ (X ×Bc

i,k).

Therefore, we may write

F = ∩i∈I ∪k∈Ki (Ci,k ×Di,k),

where the Ki’s are finite and the Ci,k’s and Di,k’s are closed sets of X and Y respectively. Let us first
suppose, for simplicity, that I is finite and write I = {1, . . . , n} for some n ≥ 1. Then,

F = ∪k̄∈K1×...×Kn
(∩1≤i≤nCi,ki)× (∩1≤i≤nDi,ki) =: ∪k̄∈KC̄k̄ × D̄k̄,
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where k̄ := (k1, . . . , kn), K := K1 × . . .×Kn (that is finite) and the C̄k̄’s and D̄k̄’s are closed sets of
X and Y respectively. Then,

lim sup
n→∞

1

n
log P((Xn, Yn) ∈ F ) ≤ lim sup

n→∞

1

n
log P((Xn, Yn) ∈ ∪k̄∈KC̄k̄ × D̄k̄)

≤ lim sup
n→∞

1

n
log

∑
k̄∈K

P((Xn, Yn) ∈ (C̄k̄ × D̄k̄))

≤ sup
k̄∈K

lim sup
n→∞

1

n
log P((Xn, Yn) ∈ (C̄k̄ × D̄k̄))

≤ sup
k̄∈K

{
lim sup
n→∞

1

n
log P(Xn ∈ C̄k̄) + lim sup

n→∞

1

n
log P(Yn ∈ D̄k̄)

}
≤ sup

k̄∈K

− inf
x∈C̄k̄

IX(x)− inf
y∈D̄k̄

IY (y)

≤ sup
k̄∈K

− inf
(x,y)∈C̄k̄×D̄k̄

IX,Y (x, y)

= − inf
k̄∈K

inf
(x,y)∈C̄k̄×D̄k̄

IX,Y (x, y)

= − inf
(x,y)∈∪k̄∈K(C̄k̄×D̄k̄)

IX,Y (x, y) = − inf
(x,y)∈F

IX,Y (x, y).

In the general case, we may optimize over “finite extractions” of I. An additional assumption is
actually necessary to treat the general case, like goodness of the rate functions, see for instance
Exercise 4.2.7 in Dembo and Zeitouni’s monograph on Large Deviations (second edition). Another
solution (which some of you wrote) is proving the upper bound for compact sets (using the finite
covering property), thus proving a weak LDP.
(iii) Rate function. We check that IX,Y is non-negative, non-trivially infinite and lower semi-continuous.

(2) Show that if IX and IY are good rate functions, then IX,Y is a good rate function as well. Let us show
that the level sets {IX,Y ≤ a} (a ≥ 0) are compact. Let a ≥ 0. First, {IX,Y ≤ a} is a closed set by
lower semi-continuity of the rate function. Moreover, since rate functions are non-negative,

{(x, y) ∈ X × Y : IX,Y (x, y) ≤ a} ⊆ {x ∈ X : IX(x) ≤ a} × {y ∈ X : IY (y) ≤ a}.

Since IX and IY are both good rate functions, the set on the right-hand side in the above line is
compact (as a product of compact sets). In conclusion, the level set {IX,Y ≤ a} is a closed subset of
a compact set, therefore it is compact.

(3) We suppose in this question that X = Y = R (equipped with the Euclidian metric) and that IX and
IY are good rate functions. Show that the sequence {XnYn}n≥1 satisfies an LDP on R with a rate
function to be determined. The map Φ: (x, y) ∈ R2 7→ xy ∈ R is continuous and from what precedes,
the sequence {(Xn, Yn)}n≥1 satisfies an LDP on R2 with speed n and good rate function IX,Y . By
the contraction principle, we infer that the sequence {XnYn}n≥1 = {Φ(Xn, Yn)}n≥1 satisfies an LDP
on R with speed n and good rate function

z ∈ R 7→ inf{IX(x) + IY (y) : x, y ∈ R, xy = z}.

Exercise 2. (Curie-Weiss model with external field). Let σ = (σi)i≥1 be a sequence of inde-
pendent and identically distributed (i.i.d.) random variables such that P(σ1 = 1) = P(σ1 = −1) = 1/2.
The partition function of the Curie-Weiss model for a system of size n ≥ 1, inverse temperature β > 0 and
external field h ∈ R is

Zβ,h
n = E[exp(Hβ,h

n )], where Hβ,h
n :=

β

n

∑
1≤i<j≤n

σiσj + h
∑

1≤i≤n

σi.

(1) Show that the mean magnetization Mn := 1
n

∑n
i=1 σi satisfies a Large Deviation Principle on [−1, 1]

with speed n and rate function

I(m) :=
1

2

[
(1 +m) log(1 +m) + (1−m) log(1−m)

]
.
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Same as in class.

(2) State Varadhan’s lemma. See lecture notes.

(3) Prove that

lim
n→∞

1

n
logZβ,h

n = sup
m∈[−1,1]

{
1
2
βm2 + hm− I(m)

}
,

First, note that

Hβ,h
n =

β

2n
(n2M2

n − n) + hnMn = n
[β
2
M2

n + hMn

]
− β

2
.

By applying Varadhan’s lemma to the continuous and bounded (from above) function m ∈ [−1, 1] 7→
(β/2)m2 + hm and the sequence of random variables (Mn)n≥1, we obtain the desired result.

(4) Investigate the (existence and number of) maximizers in the variational formula above. What do you
notice?
First, we compute, for every m ∈ (−1, 1):

I ′(m) =
1

2
log

(1 +m

1−m

)
, lim

m→−1
I ′(m) = −∞, lim

m→1
I ′(m) = +∞

I ′′(m) =
1

1−m2
∈ [1,+∞).

Letting f(m) := 1
2
βm2 + hm− I(m), we obtain for every m ∈ (−1, 1):

f ′(m) = βm+ h− 1

2
log

(1 +m

1−m

)
, lim

m→−1
f ′(m) = +∞, lim

m→1
f ′(m) = −∞

f ′′(m) = β − 1

1−m2
∈ (−∞, β − 1].

We now distinguish two cases:

Case β ≤ 1. In that case, f ′′(m) ≤ 0 (so f is concave) with equality if and only if β = 1 and m = 0.
Therefore, f ′ is (strictly) monotone and the equation f ′(m) = 0 has exactly one solution. It follows
that the variational formula has a unique maximiser (which is zero if h = 0 and has the sign of h
otherwise).

Case β > 1. In that case, f ′′(m) ≥ 0 if |m| ≤ m(β) :=
√

1− 1/β (and f ′′(m) ≤ 0 otherwise), with
equality if and only if m = ±m(β). We deduce thereof the following:

• If h = 0 then there are two distinct maximizers ±m∗(β) (note that f ′(0) = 0 and f is symmetric
in that case). Let h(β) be the value of f ′(m(β)) when h = 0.

• If 0 < h ≤ h(β) then the equation f ′(m) = 0 has two or three solutions (one that is positive and
one or two that are negative). However only the positive solution corresponds to a maximizer
(note that f ′(m)− f ′(−m) = 2hm).

• If h(β) < h then the equation f ′(m) = 0 has a unique solution (that is positive) and therefore
a unique maximizer.

• A similar reasoning applies to the case h < 0 (changing m to −m).

In conclusion, we observe a phase transition at the critical value βc = 1 when h = 0 but no phase
transition when h ̸= 0 (however there remains a local maximizer when β > 1 and |h| < h(β)).


