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These notes are intended for the students of the MASTER 2 Applied and Theoreti-
cal Mathematics (MATH) at Université Paris-Dauphine PSL. They introduce the topic
of Large Deviations: that is (in short) the branch of Probability Theory which aims to
compute or at least estimate the probability of events that deviate from the typical law-of-
large-number behavior. In many cases, the probability of such rare events is shown to decay
exponentially fast in the system (or sample) size and the rate of decay may be expressed as
the solution of a certain variational problem. For the most part, the structure is borrowed
from [2]. In the first two sections we will treat (without much theory) two unavoidable
results in this field, that is Cramér’s theorem (large deviations for the sum of independent
and identically distributed real random variables) and Sanov’s theorem (large deviations
for the empirical measure of independent and identically distributed random variables).
Sanov’s theorem makes use of the important notion of entropy, which also appears in other
fields like information theory and statistical mechanics. General principles will be pre-
sented in Section 3, where topological considerations come into play. Those principles will
be applied to the so-called Curie-Weiss model (a mean-field spin system) as an illustration
of how large deviations and statistical mechanics are connected. Finally, Large Deviations
for finite Markov chains will be covered in Section 4. The last section offers a selection of
more advanced topics in order to arouse the reader’s curiosity (or possibly engage discus-
sions towards a research internship). Technical lemmas and reminders will be gathered in
an appendix.
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Much of the material (including some proofs) has been condensed in the form of exer-
cises, which will be corrected in class. It is strongly advised to read the relevant sections
beforehand (see the class journal on the author’s webpage) in order to fully benefit from
the lectures.

Notation

• N = {1, 2, . . .} is the set of positive integers, while N0 = {0, 1, 2, . . .} is the set of
non-negative integers.

• Unless stated otherwise, random variables are defined on a probability space (Ω,F ,P).
• N (m,σ2) is the Gaussian probability distribution on R with mean m ∈ R and
variance σ2 ∈ [0,∞). When σ2 = 0, this is a Dirac mass at m.

• We denote by δx the Dirac measure at x, i.e. δx(A) = 1A(x), that is one if x ∈ A
and zero if x /∈ A.

• By replicas of a random variable Z, we mean a collection of independent random
variables that all are distributed as Z.

• For every i, n ∈ N, i[n] is the unique integer in {1, . . . , n} such that i− i[n] ∈ nN0.
• For every α, β ∈ [−∞,∞], α ∨ β = max(α, β) and α ∧ β = min(α, β).

These notes start with an elementary but fundamental exercise that the reader should
keep in mind throughout the course:

Exercise 1 (Warm-up). Let (an) and (bn) be two sequences valued in [0,∞]. We use the
convention log 0 = −∞ and log∞ = ∞.

(1) Assume that lim inf 1
n log an ≥ α and lim inf 1

n log bn ≥ β. Prove that

(0.1) lim inf
n→∞

1

n
log(an + bn) ≥ α ∨ β.

(2) Assume that lim sup 1
n log an ≤ α and lim sup 1

n log bn ≤ β. Prove that

(0.2) lim sup
n→∞

1

n
log(an + bn) ≤ α ∨ β.

(3) Assume that lim 1
n log an = α and lim 1

n log bn = β. Prove that

(0.3) lim
n→∞

1

n
log(an + bn) = α ∨ β.

1. Cramér’s theorem for real-valued random variables

Let X = (Xi)i∈N be a sequence of independent and identically distributed (i.i.d.) real
random variables (r.v.). We assume that the r.v.’s are integrable, i.e. E(|X1|) < +∞. The
(typical) asymptotic behaviour of the empirical mean associated to this random sequence
is given by the (strong) Law of Large Numbers:

(1.1)
1

n

∑
1≤i≤n

Xi
n→∞−→ E(X1) < +∞, P-a.s. and in L1.

If the r.v.’s are also square-integrable, i.e. E(X2
1 ) < +∞, the fluctuations (also called

standard deviations) around the mean are given by the Central Limit Theorem:

(1.2)
√
n
( 1

n

∑
1≤i≤n

Xi − E(X1)
)

n→∞−→ N (0, σ2) weakly,
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where σ2 := V(X1) = E(X2
1 )− E(X1)

2. When the sum in (1.2) deviates from its mean by
a quantity of the same order than the mean (also called a large deviation ∗), the question
of the asymptotic behaviour is answered by the following theorem, known as Cramér’s
theorem, provided that the underlying r.v.’s satisfy a finite exponential moment condition.

Theorem 1.1 (Cramér’s theorem on the real line). Suppose that, in addition to the pre-
vious assumptions made on X, we have

(1.3) ∀λ ∈ R, M(λ) := E(eλX1) < +∞.

Then, for all a > E(X1),

(1.4) lim
n→∞

1

n
log P

( ∑
1≤i≤n

Xi ≥ an
)
= −I(a),

where

(1.5) I(a) := sup
λ∈R

{aλ− logM(λ)} ∈ [0,∞].

The function M in (1.3) is called the moment generating function, while logM is often
referred to as the logarithmic moment generating function. The function I is called the
rate function† and the formula in (1.5) shows that it coincides with the so-called Fenchel-
Legendre transform (or conjugate) of logM . The rate function quantifies the unlikelihood
or cost of a large deviation. We will see later that for upper deviations (a > E(X1)) the
supremum in (1.5) may be restricted to λ ≥ 0.

Exercise 2. Show that (1.3) implies that E(|X1|k) < +∞ for every k ∈ N.

Exercise 3. For the most common probability distributions, determine whether (1.3) is
satisfied or not.

Proof of Theorem 1.1. We first prove the upper bound corresponding to (1.4).

(1) Prove that l.h.s. (1.4) ≤ e−λanM(λ)n for all λ ≥ 0. Hint: use the Markov inequality
with an ad-hoc non-negative random variable.

(2) Conclude.

We continue with the lower bound. First, we introduce for every λ ∈ R a new probability
distribution Pλ under which the Xi’s remain i.i.d. and such that for every Borel set A ⊆ R,

(1.6) Pλ(X1 ∈ A) = E
( eλX1

M(λ)
1{X1∈A}

)
.

(1) Show that M and logM are twice differentiable on R and that for every λ ∈ R,
Eλ(X1) = (logM)′(λ) and Vλ(X1) = (logM)′′(λ).

(2) Prove that for every λ ≥ 0 and b > 0,

(1.7) l.h.s. (1.4) ≥ e−λ[an+b
√
n]M(λ)nPλ

(
an ≤

∑
1≤i≤n

Xi ≤ an+ b
√
n
)
.

(3) Conclude. Hint: make an appropriate choice of λ then use the Central Limit Theorem.
It might be necessary to restrict to values of a that lie strictly below the supremum
value in the support of P(X1 ∈ · ).

∗A more rigorous and general definition will follow in Section 3.
†Here we use the term rate function quite loosely: a formal definition will be given in Section 3.1.
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■

We have just met two important techniques for estimating large deviations:

• the Chernoff bound (for the upper bound);
• the change of measure argument (for the lower bound) a.k.a. tilting.

The law Pλ introduced in (1.6) is called a tilted or biased law (with respect to P). It may
seem at first quite fortunate that this particular (linear) change of measure gives a sharp
estimate for the large deviations. We will see in Exercise 10 that there is a deeper reason,
apart from the convenient fact the normalizing constant is explicit in terms of the moment
generating function.

Exercise 4 (Lower deviations have feelings too). Show that the statement of Theorem 1.1
may be extended to lower deviations, i.e. for the probability that

∑
1≤i≤nX1 ≤ an, when

a < E(X1).

Exercise 5. Compute the rate function I for all well-known probability distributions which
satisfy the finite exponential moment condition in (1.3).

Exercise 6 (Regularity and convexity of logM and I). (1) Show that M and logM are
smooth (i.e. infinitely differentiable).

(2) Show that logM is convex. When is it strictly convex?

(3) Is the rate function I always finite? When it is finite, is it smooth? Is it (strictly)
convex?

(4) On a schematic representation of logM , indicates how to find the quantity I(a) using
the idea used for proving the lower bound in Theorem 1.1.

Exercise 7 (Tilting and stochastic domination). (1) Let f, g : R → R be two non-increasing
functions. Show that for every real-valued r.v. Z,

(1.8) E(f(Z)g(Z)) ≥ E(f(Z))E(g(Z)),

provided that the three expectations are well-defined. We say that f(Z) and g(Z)
are positively correlated. Hint: consider the random variable [f(Z1)− f(Z2)][g(Z1)−
g(Z2)], where Z1 and Z2 are two independent copies (a.k.a. replicas) of Z.

(2) (Same notation as in the proof of Theorem 1.1). Show that for every λ > 0 and
x ∈ R, Pλ(X1 ≤ x) ≤ P(X1 ≤ x). We say that Pλ stochastically dominates P. What
if λ < 0?

2. Sanov’s theorem on a finite state space and relative entropy

In this section we denote by X = (Xi)i∈N a sequence of i.i.d. r.v.’s on a finite state space
Σ = {x1, . . . , xr} (r ∈ N). Using Cramér’s theorem (Theorem 1.1) one may compute the
large deviation probabilities for the empirical frequency (1/n)card{1 ≤ i ≤ n : Xi = x}, for
any x ∈ Σ (try and do it as an exercise). In this section, we will derive (via elementary
methods) the large deviation probabilities for all empirical frequencies simultaneously, i.e.
for the (empirical) occupation measure

(2.1) Ln :=
1

n

∑
1≤i≤n

δXi ,

that is, with a slight abuse of notation, a random element of

(2.2) M1(Σ) := {ν := (ν1, . . . , νr) ∈ [0, 1]r : ν1 + . . .+ νr = 1}
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This is the space of probability measures on Σ, that we see as a compact subset of Rr,
which we endow with the following metric (also called the total variation distance):

(2.3) d(ν, µ) =
1

2

∑
x∈Σ

|µx − νx|, µ, ν ∈ M1(Σ).

Open balls shall be denoted by B(ν, r), with ν the center and r > 0 the radius. Before
considering deviations of Ln, let us notice that its mean is given by the law of X1, as for
every x ∈ Σ (with a slight abuse of notation)

(2.4) E[Ln(x)] =
1

n

∑
1≤i≤n

P(Xi = x) = P(X1 = x).

Theorem 2.1 (Sanov’s theorem on a finite state space). Let µ ∈ M1(Σ) be the law of X1.
For every ν ∈ M1(Σ) and r > 0,

(2.5) lim
n→∞

1

n
log P(Ln ∈ B(ν, r)c) = − inf

B(ν,r)c
h( · |µ),

where

(2.6) h(ν|µ) :=
∑
x∈Σ

νx log
( νx
µx

)
≥ 0, ν ∈ M1(Σ),

denotes the relative entropy of ν with respect to µ.

Remark 2.2. In order for (2.6) to be well-defined, we may assume w.l.o.g. that µx > 0
for every x ∈ Σ. In general, the relative entropy of ν w.r.t. to µ is defined as in (2.6) when
ν ≪ µ (with the convention 0 log 0 = 0) and as +∞ otherwise. The non-negativity of the
relative entropy is a consequence of the convexity of x 7→ x log x on [0,∞).

Relative entropy is a ubiquitous notion that can be found in probability theory, analysis,
information theory and statistical physics. Although it does not define a metric (the reader
may check that it is not symmetric) it quantifies how much a measure is close to another
one. The infimum in (2.5) indicates that among all unlikely scenarii, the large deviation
event is achieved by the least unfavorable one, an idea that is reminiscent of the least action
principle in physics or the Laplace principle for evaluating the asymptotic behaviour of
certain integrals.

Proof of Theorem 2.1. This is taken from [2]. For all n ∈ N, Ln takes values in

(2.7) Kn := M1(Σ) ∩ (N0
n )r.

(1) Using Stirling’s formula, show that for all ν ∈ Kn,

(2.8) P(Ln = ν) = n!
∏

1≤s≤r

µnνs
s

(nνs)!
= exp

(
− nh(ν|µ) +O(log n)

)
,

where the term in O(log n) is uniform on Kn.

(2) Clearly, for all A ⊆ M1(Σ),

(2.9) max
ν∈Kn∩A

P(Ln = ν) ≤ P(Ln ∈ A) ≤ |Kn| max
ν∈Kn∩A

P(Ln = ν).

Evaluate |Kn| and conclude.

■
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The chain of inequalities in (2.9) is typical of Large Deviation bounds: the lower bound
is obtained by picking the most likely scenario, while for the upper bound one needs to
consider all other cases. In this simple example, it is enough to compute the total number
of possible outcomes. In other cases, more elaborate entropy reduction techniques may be
necessary.

Unless stated otherwise, the notation used in the exercises below is the same as the one
used in the beginning of this section.

Exercise 8. Show that the estimate in (2.8) can be made more precise, namely, for every
n ∈ N and ν ∈ Kn,

(2.10) (n+ 1)−|Σ|e−nh(ν|µ) ≤ P(Ln = ν) ≤ e−nh(ν|µ).

See [1, Lemma 2.1.9].

Exercise 9. Recalling that µ = P(X1 ∈ ·), prove that

(2.11) P(Ln = µ) ≥ P(Ln = ν), ν ∈ Kn.

Exercise 10 (Important exercise: towards the contraction principle). Let (Xi)i∈N be as
above, with Σ finite. Let f : Σ → R and Yi = f(Xi) for every i ∈ N. The goal of this
exercise is to estimate the large deviations for the empirical mean of the Yi’s via Sanov’s
theorem and compare it with Cramér’s theorem (as well as enlighten its proof).

(1) Assume for simplicity that E(Y1) = 0 and let ε > 0. Prove that

(2.12) lim
n→∞

1

n
log P

( ∑
1≤i≤n

Yi ≥ εn
)
= − inf

{
h(ν|µ) : ν ∈ M1(Σ), ⟨f, ν⟩ ≥ ε

}
,

where ⟨f, ν⟩ :=
∫
Σ fdν.

(2) Show that the infimum in (2.12) is attained for a unique probability measure ν which
corresponds to a tilted measure similar as the one that was introduced in the proof
of Theorem 1.1.

(3) Finally, show that the r.h.s. in (2.12) coincides with what we would get by applying
Cramér’s theorem.

We have been able to derive the large deviation asymptotic behaviour of ⟨f, Ln⟩ from that
of Ln. This is a general idea known as contraction principle that will be formalized in
Section 3.3.

Exercise 11 (A general lower bound using relative entropy). Prove that, for ν(A) > 0,

(2.13) log
(µ(A)

ν(A)

)
≥ − 1

ν(A)

(
h(ν|µ) + 1

e

)
.

Hint: use the convexity of x 7→ x log x on [0,∞).

Exercise 12. For every µ ∈ M1(Σ) we let µ⊗n denote the law of (X1, . . . , Xn) on Σn,
where the Xi’s are replicas of X1 ∼ µ.

(1) Show that for every n ∈ N, h(ν⊗n|µ⊗n) = nh(ν|µ).
(2) Give an alternative proof of the lower bound in Sanov’s theorem using (1) and Exer-

cise 11.
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Exercise 13 (A challenging exercise: large deviations for pair occupation measures).
From [2, Section II.2]. Let µ = P(X1 ∈ ·) ∈ M1(Σ) with Σ finite. The goal of this
exercise is to provide an analogue of Theorem 2.1 for the pair occupation measure (with
periodic boundary conditions) defined as

(2.14) L(2)
n =

1

n

∑
1≤i≤n

δ(Xi[n],Xi+1[n]), n ∈ N.

Observe that the pair occupation measure belongs to the set

(2.15) M̃1(Σ× Σ) :=
{
ν ∈ M1(Σ× Σ):

∑
y∈Σ

νxy =
∑
y∈Σ

νyx, ∀x ∈ Σ
}
.

For every ν ∈ M̃1(Σ×Σ), we shall denote by ν̄ the (common) marginal distribution on Σ.
Let us now define

(2.16) K(2)
n :=

{
k = (kxy) ∈ NΣ×Σ

0 :
∑
x,y∈Σ

kxy = n,
∑
y∈Σ

kxy =
∑
y∈Σ

kyx

}
.

For every k ∈ K
(2)
n , denote by G(k) the oriented graph with Σ as its set of vertices and kxy

distinct edges from x ∈ Σ to y ∈ Σ. An Euler circuit of G(k) is a looped path respecting
the arrows and making use of each arrow precisely once. Two looped paths that coincide
up to a cyclic time shift count as the same Euler circuit.

(1) Prove that

(2.17) P
(
L(2)
n (x, y) =

kxy
n

, ∀x, y ∈ Σ
)
=

∑
C∈E(k)

m(C)∏
x,y∈Σ kxy!

∏
x∈Σ

µk̄x
x ,

where E(k) is the set of Euler circuits on G(k), m(C) is the number of cyclic shifts
of C giving distinct paths (X1, . . . , Xn), and k̄x =

∑
y kxy.

(2) Prove that for every k ∈ K
(2)
n ,

(2.18)
∏

x∈Σ: k̄x>0

(k̄x − 1)! ≤ card(E(k)) ≤
∏
x∈Σ

k̄x!

(3) Conclude, using Stirling’s formula, that for every ν0 ∈ M̃1(Σ× Σ),

(2.19) lim
n→∞

1

n
log P(L(2)

n ∈ B(ν0, r)
c) = − inf

ν∈B(ν0,r)c
h(ν|ν̄ ⊗ µ),

where B(ν0, r) is the ball on M̃1(Σ × Σ) with center ν0 and radius r > 0, for the
total variation distance.

As an application of (2.19) we will give an alternative proof of the large deviation principles
for finite Markov chains in Exercise 21.

3. Large Deviations: general principles

We already gave a taste of what large deviation principles are with Cramér and Sanov’s
theorems in Sections 1 and 2. It is now time to turn to general principles.
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3.1. Large Deviation principles. Let X be a metric space. A function I : X → [0,∞]
is said to be a rate function if it is lower semi-continuous, i.e. if for every xn → x ∈ X ,

(3.1) lim inf
n→∞

I(xn) ≥ I(x).

The following exercise gives another useful characterization of lower semi-continuity.

Exercise 14. Show that f : X → [−∞,∞] is lower semi-continuous if and only if f has
closed level sets, i.e. {f ≤ α} := {x ∈ X : f(x) ≤ α} is closed for every α ∈ R.

A function I : X → [0,∞] is said to be a good rate function if it has compact level sets.

Exercise 15. Show that a lower semi-continuous function achieves its infimum on any
compact set.

Good rate functions will play a role in Section 3.3. ‡

Let us equip X with its Borel σ-algebra BX .

Definition 3.1. We say that a sequence of probability measures (µn) on (X ,BX ) satisfies
a Large Deviation Principle (LDP) with speed (an) and rate function I : X → [0,∞] if

(3.2)

lim inf
n→∞

1

an
logµn(O) ≥ − inf

x∈O
I(x), for all open sets O,

lim sup
n→∞

1

an
logµn(F ) ≤ − inf

x∈F
I(x). for all closed sets F.

The infimum over empty sets is understood as +∞.

Exercise 16 (Uniqueness of the rate function). (1) Prove that a function f : X → [−∞,∞]
is lower semi-continuous if and only if for every x ∈ X ,

(3.3) f(x) = lim
r→0

inf{f(y) : d(x, y) < r}.

(2) Prove that the rate function of an LDP is unique.

Definition 3.1 may also be applied to random variables instead of probability measures:
a sequence of random variables is said to satisfy an LDP if the corresponding sequence
of probability distributions (or laws) does. We remark an analogy with weak convergence
(see the Portmanteau theorem) as one asks for a lower bound for open sets and an upper
bound for closed sets. In general, the limit for an arbitrary set may or may not exist.
Theorems 1.1 and 2.1 may now be reformulated in terms of a proper LDP:

Theorem 3.2 (Cramér’s theorem: LDP reformulation). Let X = (Xi)i∈N be a sequence
of i.i.d. real r.v.’s with finite exponential moments, i.e. M(λ) := E(eλX1) is finite for every
λ ∈ R. Then, the sequence ( 1n

∑n
i=1Xi)n∈N satisfies an LDP on R (equipped with the usual

topology) with speed n and rate function

(3.4) I(a) := sup
λ∈R

{aλ− logM(λ)} ∈ [0,∞], a ∈ R.

Theorem 3.3 (Sanov’s theorem: LDP reformulation). Let X = (Xi)i∈N be a sequence
of i.i.d. r.v.’s valued in a finite set Σ, with common marginal distribution µ ∈ M1(Σ).
Then, the sequence of occupation measures (Ln)n∈N as defined in (2.1) satisfies an LDP on
M1(Σ) (equipped with the total variation distance) with speed n and rate function h(·|µ),
that is the relative entropy functional defined in (2.6).

‡Be careful that in some references, including [2], good rate functions are actually called rate functions,
and rate functions are called weak rate functions.
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We will prove Theorem 3.2 and leave the proof of Theorem 3.3 to the reader. Beforehand,
we need the following definition:

Definition 3.4 (Weak LDP). A sequence of probability measures is said to satisfy a weak
LDP when the lower bound holds for open sets and the upper bound holds for compact sets
instead of closed sets.

In contrast with the weak version, the LDP from Definition 3.1 is sometimes referred to
as strong or full LDP.

Proof of Theorem 3.2 (weak version). To simplify, we assume w.l.o.g. that E(X1) = 0.
Prove the lower bound for open intervals first, then for any open set (hint: use an ap-
proximate minimizer). As for the upper bound, we prove it for compact sets first (use that
from any covering of a compact set by open balls one may extract a finite covering). ■

We will see in the following section how to obtain the (strong/full) LDP from the weak
one using the notion of exponential tightness.

3.2. Exponential tightness. The notion of exponential tightness is an “exponential ver-
sion” of the notion of tightness used for weak convergence of measures.

Definition 3.5. We say that a sequence of probability measures (µn) on a metric space X
is exponentially tight (on a scale an) if for every A > 0, there exists a compact set KA ⊆ X
such that:

(3.5) lim sup
n→∞

1

an
logµn(K

c
A) ≤ −A.

Proposition 3.6. If a sequence of probability measures satisfies a weak LDP and is expo-
nentially tight (on a common scale) then it also satisfies the strong/full LDP.

Proof of Proposition 3.6. Hint: Let F ⊆ X be a non-empty closed set and x ∈ F an
arbitrary element. Let A := I(x) and decompose F = (F ∩KA) ∪ (F ∩Kc

A) where KA is
the compact set provided by the definition of exponential tightness. ■

We may now complete the proof of Theorem 3.2.

Exercise 17. Prove that the sequence ( 1n
∑n

i=1Xi)n∈N from Theorem 3.2 is exponentially
tight (on the scale n) and conclude the proof of Theorem 3.2 (strong/full LDP).

3.3. The contraction principle. We have already met the idea behind the contraction
principle in Exercise 10. Here is a general statement.

Theorem 3.7 (Contraction principle). If (µn) satisfies an LDP with good rate function
I on a metric space X and if T is a continuous map from X to another metric space Y,
then (µn ◦ T−1) satisfies an LDP with good rate function J given by

(3.6) J(y) = inf
x∈X : T (x)=y

I(x), (inf ∅ = +∞).

Proof of Theorem 3.7. First, prove the lower and upper large deviation bounds using the
fact that T−1 maps open sets into open sets and closed sets into closed sets. Then, prove
that for every α ∈ R, {J ≤ α} = T ({I ≤ α}) and conclude that J is a good rate
function. ■

The next exercise shows that Theorem 3.7 (partly) fails without assuming goodness of
the rate function.
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Exercise 18. Let (Un)n∈N be a sequence of random variables such that Un is uniformly
distributed on [−n, n].

(1) Show that (Un) satisfies a LDP with (trivial) rate function I(x) = 0 for x ∈ R.
(2) Show that I is not a good rate function.

(3) Let Zn := exp(Un). Show that (Zn) satisfies lower and upper large deviation bounds
but that the function corresponding to (3.6) with X = Y = R and T = exp is not a
rate function.

3.4. Varadhan’s lemma. The next lemma allows to obtain the asymptotic behaviour of
certain exponential moments when the underlying random variables satisfy an LDP. This
is extremely useful for instance in statistical mechanics, see Exercise 19 below.

Theorem 3.8 (Varadhan’s lemma). Let (µn) be a sequence of probability measures on X
that satisfies a LDP with speed n and rate function I. Let F : X 7→ R be a continuous
function that is bounded from above. Then,

(3.7) lim
n→∞

1

n
log

∫
X
enF (x)µn(dx) = sup

x∈X
{F (x)− I(x)}.

Proof of Theorem 3.8. Let us start with the lower bound.

(1) Let x0 ∈ X . Using the open set Ox0,ε := F−1((F (x0)− ε,∞)), prove that

(3.8) lim inf
n→∞

1

n
log

∫
X
enF (x)µn(dx) ≥ F (x0)− I(x0)

and conclude.

We continue with the upper bound. Let b := supF and a := sup[F − I].

(2) Show that −∞ < a ≤ b < ∞.

(3) Let C := F−1([a, b]) and for N ∈ N, 1 ≤ i ≤ N , define

(3.9) CN
i := F−1([cNi−1, c

N
i ]), where cNi := a+ i

N (b− a).

Prove that

(3.10) lim sup
n→∞

1

n
log

∫
C
enF (x)µn(dx) ≤ max

1≤i≤N
[cNi − I(CN

i )].

(4) Show that

(3.11) inf
CN

i

F − inf
CN

i

I ≤ sup
CN

i

[F − I].

(5) Deduce thereof that

(3.12) lim sup
n→∞

1

n
log

∫
C
enF (x)µn(dx) ≤ sup

C
[F − I] +

b− a

N

and conclude.

■

Exercise 19 (The Curie-Weiss model). Let σ = (σi)i∈N be a sequence of i.i.d. r.v.’s
uniformly distributed on {−1, 1} and β a positive parameter. The partition function of the
Curie-Weiss model for a system of size n ∈ N and inverse temperature β is

(3.13) Zn,β = E[exp(βHn(σ))], where Hn(σ) :=
1

n

∑
1≤i<j≤n

σiσj .
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(1) Show that Hn(σ) =
1
2(nMn(σ)

2 − 1), where Mn(σ) :=
1
n

∑n
i=1 σi is the mean magne-

tization.

(2) Using Varadhan’s lemma, prove that

(3.14)

lim
n→∞

1

n
logZn,β = f(β) := sup

m∈[−1,1]

{
1
2βm

2 − I(m)
}
,

where I(m) := −1 +m

2
log

(1 +m

2

)
− 1−m

2
log

(1−m

2

)
.

(3) Investigate the (existence and values of) maximizers in the variational formula above.
What do you notice? (This is an example of a phase transition in statistical mechan-
ics).

4. Large Deviations for finite Markov chains

We show in this section that Sanov’s theorem for the occupation measure of i.i.d. random
variables (Theorem 2.1) may be extended to finite Markov chains. Let X = (Xi)i∈N0 be an
irreducible Markov chain on a finite state space Σ, with transition matrix Q = (Qxy)x,y∈Σ
and unique stationary probability distribution π = (πx)x∈Σ. The initial distribution is
arbitrary. We assume for simplicity that Qxy > 0 for all x, y ∈ Σ. Recall the definition of
Ln in (2.1).

Theorem 4.1 (LDP for the occupation measure of finite Markov chains). The sequence
(Ln)n∈N satisfies a LDP on M1(Σ) with speed n and rate function:

(4.1) I(ν) = sup
u>0

−
∑
x∈Σ

νx log
[(Qu)x

ux

]
,

where u > 0 denotes the set of positive functions u : Σ → (0,∞).

Exercise 20. Check that Theorem 4.1 is consistent with Theorem 2.1.

The arguments for the proof are borrowed from [3]. Other lines of proof are suggested
in the exercises at the end of this section.

Proof of Theorem 4.1. We start by proving that I is a rate function.

(1) Show that I is a non-negative function.

(2) Show that I is lower semi-continous. Hint: it writes as the supremum of a collection
of continuous functions.

Let us now establish the upper bound. Let u be a positive function on Σ.

(3) Show that the sequence (Mn)n∈N0 defined by

(4.2)

Mn = u(Xn) exp
(
−

∑
0≤i<n

W (Xi)
)
,

where W (x) := log
(Qu)x
ux

, x ∈ Σ,

(empty sum is zero) is a martingale (for the natural filtration).
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(4) Show that there exists a constant C > 0 such that for all x ∈ Σ

(4.3) Ex

[
exp

(
− n

∫
Σ
W (y)Ln(dy)

)]
≤ C,

where Px denotes the law of Markov chain started at x.

(5) Deduce thereof that for every Borel set A ⊆ M1(Σ),

(4.4) Px(Ln ∈ A) ≤ C exp
(
n sup

ν∈A

∑
y∈Σ

νyW (y)
)
,

and finally

(4.5) Px(Ln ∈ A) ≤ C exp
(
− n sup

u>0
inf
ν∈A

−
∑
y∈Σ

νy log
[(Qu)y

uy

])
.

It remains to interchange the supremum and the infimum when A is closed, which we hence-
forth assume. To this end, we adapt a compactness argument from [4]. For convenience,
let us rewrite (4.5) as

(4.6) Px(Ln ∈ A) ≤ C exp
(
− n sup

u>0
inf
ν∈A

⟨ν,W (u)⟩
)
.

where ⟨·⟩ is the Euclidian scalar product on Rd and, slightly changing notation,

(4.7) W (u)y := − log
[(Qu)y

uy

]
, ∀y ∈ Σ.

Let ℓ ≥ 0 be the infimum of I over A, and ε > 0.

(6) Show that for every ν ∈ A, there exists uν > 0 such that ⟨ν,W (uν)⟩ ≥ ℓ− ε.

(7) Show that for every ν ∈ A, there exists an open neighborhood of ν in M1(Σ), denoted
by N(ν), such that

(4.8) ∀µ ∈ N(ν), ⟨µ,W (uν)⟩ ≥ ℓ− 2ε.

(8) Show that there exists a finite collection ν1, . . . , νk in M1(Σ) such that the union of
the N(νi)’s contains A. Hint: A is a closed set of the compact space M1(Σ).

(9) Deduce thereof that

(4.9) lim sup
n→∞

1
n log Px(Ln ∈ A) ≤ − min

1≤i≤k
sup
u>0

inf
µ∈N(νi)

⟨µ,W (u)⟩.

and conclude. Hint: recall Exercise 1 and (4.8).

This concludes the proof of the upper bound.

We finally turn to the lower bound. Suppose A is open and let ν ∈ A be fixed.

(10) Show that there exists ε > 0 such that

(4.10) P(Ln ∈ A) ≥ P(Ln ∈ B(ν, ε)).

(11) Show that the supremum in (4.1) is achieved by some positive function u0, which we
fix in the rest of the proof. Hint: observe that the function W (u) defined in (4.7) is
invariant under the maps u 7→ λu for all λ ∈ (0,∞).
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(12) Show that ν is the invariant probability distribution for the Markov chain with tran-

sition matrix Q̃ defined as

(4.11)
Q̃(x, y)

Q(x, y)
=

u0(y)

(Qu0)(x)
, x, y ∈ Σ.

(13) Let P̃x denote the law of the Markov chain started at x ∈ Σ with transition matrix

Q̃. Prove that there exists a constant C > 0 such that

(4.12) Px(Ln ∈ B(ν, ε)) ≥ C exp
[
− n

(
⟨ν,W (u0)⟩+ ε∥W (u0)∥∞

)]
P̃x(Ln ∈ B(ν, ε)),

and conclude using the ergodic theorem for irreducible finite Markov chains.

■

Remark 4.2. The proof of the upper bound shares similarities with the Chernoff bound that
was used to derive the upped bound in Cramér’s theorem: here the random variable under
consideration is the occupation measure instead of the empirical mean and the relevant
linear functional is integration against the functions W defined in (4.2) instead of scalar
multiplication. The proof of the lower bound uses a change of measure argument, as we did
for proving Cramér’s theorem.

Remark 4.3 (An important step in the proof of the upper bound). In order to obtain (4.9),
it is crucial to use the result from Exercise 1 before applying the intermediate estimate
in (4.6) to each N(νi) for 1 ≤ i ≤ k. If instead we directly apply (4.6) to the union of the
N(νi)’s, we would get supu>0min1≤i≤k infµ∈N(νi)(. . .) instead of min1≤i≤k supu>0 infµ∈N(νi)(. . .)
in the r.h.s. of (4.9). That would not be enough, since it is not possible to interchange
supu>0 and min1≤i≤k in general.

Exercise 21 (Alternative proof of the LDP for Markov chains using the pair occupation
measure). The goal of the exercise is to derive the LDP for the pair occupation measure of
finite Markov chains from that of i.i.d. random variables, see Exercise 13. Let us recall the

definition of the pair occupation measure L
(2)
n defined in (2.14). To avoid any confusion, we

let Px be the law of an irreducible Markov chain started at x ∈ Σ with transition matrix
Q and invariant probability distribution π, and Pi.i.d. be the law of a sequence of i.i.d.
random variables with common distribution π. We have (almost) proved in Exercise 13

that under Pi.i.d., L
(2)
n satisfies an LDP on M̃1(Σ × Σ) with speed n and rate function

h(ν|ν̄ ⊗ π).

(1) Show that for every A ⊆ Σn and x ∈ Σ,
(4.13)

Px((X1, . . . , Xn) ∈ A) = Ei.i.d.

[
exp

(
O(1) +

∑
1≤i≤n

log
Q(Xi−1, Xi)

π(Xi)

)
1{(X1,...,Xn)∈A}

]
.

(2) Deduce thereof that, under Px, L
(2)
n satisfies an LDP on M̃1(Σ × Σ) with speed n

and rate function

(4.14) h(ν|ν̄ ⊗Q) :=
∑
s,t∈Σ

log
( νst
ν̄sQst

)
νst.

Hint: recall the proof of Varadhan’s lemma (Theorem 3.8).

(3) Using the contraction principle (Theorem 3.7), check that the rate function in (4.14)
is consistent with Theorem 4.1.
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Exercise 22 (Alternative proof of the LDP for Markov chains using Exercise 11). Let

Pn (resp. P̃n) denote the law of (X1, . . . , Xn) when X is an irreducible Markov chain on a

finite state space Σ with transition matrixQ (resp. Q̃) and invariant probability distribution
π.

(1) Show that (recall the definition of relative entropy in (2.6)):

(4.15) lim
n→∞

1

n
h(P̃n|Pn) =

∑
x,y∈Σ

log
(Q̃xy

Qxy

)
πxQxy.

(2) Using the estimate in Exercise 11, retrieve the large deviation lower bound corre-
sponding to Theorem 4.1.

Let us close this section by mentioning another path to the LDP of finite Markov chains,
which consists in deriving the asymptotic behaviour of moment generating functions for
additive functionals of the Markov chain via the use of Perron-Frobenius eigenvalues (i.e.
principal eigenvalues of irreducible matrices with positive entries), see [8] or [1, Section 3].

5. Further topics

5.1. Sample path large deviations. Since the first part of the course (on weak conver-
gence) is devoted to Donsker’s theorem, that is a functional version of the Central Limit
Theorem, it is quite natural to ask about a functional version of Cramér’s theorem. As
in Section 1, we assume that X = (Xi)i∈N is a sequence of i.i.d. random variables with
all finite exponential moments and we recall the definition of the rate function I in (1.5).
Define

(5.1) S0 = 0, Sk = X1 + . . .+Xk, k ∈ N.
Let us denote by L∞([0, 1]) the space of real-valued and (essentially) bounded functions on
[0, 1], L1([0, 1]) the space of integrable real-valued functions on [0, 1], and Cabs([0, 1]) the
space of absolutely continuous real-valued functions on [0, 1]. We recall that ϕ ∈ Cabs([0, 1])
if and only if there exists a function in L1([0, 1]) denoted by ϕ′ (with a slight abuse of

notation since ϕ need not be everywhere differentiable) such that ϕ(t) =
∫ t
0 ϕ

′(s)ds for
every 0 ≤ t ≤ 1.

Theorem 5.1 (Mogulskii). The sequence of random processes
(
1
nS⌊nt⌋

)
0≤t≤1

satisfies an

LDP in L∞([0, 1]) (equipped with the supremum norm) with speed n and good rate function

(5.2) I(ϕ) =

{∫ 1
0 I(ϕ′(t))dt if ϕ ∈ Cabs([0, 1]) and ϕ(0) = 0,

+∞ otherwise.

The proof of Theorem 5.1 is outside the scope of these introductory notes (see [7] for a
self-contained proof or [1, Section 5] for a projective limit approach). Nevertheless, as an
exercise, we will prove an upper bound in order to enlighten the expression of Mogulskii’s
rate function.

Exercise 23. For convenience, let us note Zn(t) =
1
nS⌊nt⌋ for 0 ≤ t ≤ 1.

(1) Show that for every fixed 0 ≤ t ≤ 1, the sequence (Zn(t))n∈N satisfies an LDP and
identify its rate function.

Let 0 = t0 < t1 < . . . < tk = 1 for k ∈ N be any subdivision of the unit interval,
a = (a1, . . . , ak) ∈ Rk and ε > 0.
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(2) Prove that

(5.3) lim sup
n→∞

1

n
log P

(
|Zn(ti)− ai| ≤ ε, 1 ≤ i ≤ k

)
≤ −

∑
1≤i≤k

(ti − ti−1) inf
x∈Ci

I(x),

where Ci := {x ∈ R : |(ti − ti−1)x− (ai − ai−1)| ≤ ε}.
Let ϕ : [0, 1] → R be continuous and differentiable on [0, 1] (that is differentiable on (0, 1)
with left (resp. right) derivative at 1 (resp. 0).

(3) Show that

(5.4) lim sup
ε→0

lim sup
n→∞

1

n
log P

(
∥Zn − ϕ∥∞,[0,1] ≤ ε

)
≤ −

∫ 1

0
I(ϕ′(t))dt.

Let us conclude this section with a special case: if X1 is the standard Gaussian distribu-
tion on the real line then I(x) = (1/2)x2 and the expression of the rate function obtained

thereby in Theorem 5.1, that is I(ϕ) = (1/2)
∫ 1
0 ϕ′(t)2dt actually coincides with the rate

function for the LDP of Brownian motion sample paths (Schilder’s theorem). Results are
available for diffusions as well (Freidlin-Wentzell theory). We refer to [8] and [1, Section 5]
for a larger overview of sample path large deviations and their applications.

5.2. Beyond independence: the Gärtner-Ellis theorem. Apart from Section 4, these
notes deal with large deviations related to a sample of independent and identically dis-
tributed random variables. It is however possible to go beyond that setup, as we will see
now, using a result due to Gärtner [6] and Ellis [5]. Let (Zn)n∈N be a sequence of real
random variables (we stick to d = 1 for simplicity) and assume that the following limit
exists for every λ ∈ R,

(5.5) M(λ) := lim
n→∞

E(enλZn)1/n ∈ [0,+∞].

Assume moreover that there exists a neighborhood of the origin where M is finite. If Zn is
the empirical mean of i.i.d. real random variables, then this definition of M is consistent
with (1.3). We call logM the limiting logarithmic moment generating function and define,
similarly as in (1.5)

(5.6) I(a) := sup
λ∈R

{aλ− logM(λ)} ∈ [0,∞], a ∈ R.

The reader may check that I is a convex good rate function.

Theorem 5.2 (Gärtner-Ellis). Under the above conditions, we have, as n → ∞,

(1) lim sup 1
n log P(Zn ∈ F ) ≤ − inf{I(x), x ∈ F}, for every F ⊆ R closed.

(2) lim inf 1
n log P(Zn ∈ O) ≥ − inf{I(x), x ∈ O ∩ E}, for every O ⊆ R open, where

(5.7) E := {x ∈ R : ∃τ ∈ R : M(τ) < ∞, I(y)− I(x) > (y − x)τ, ∀y ̸= x}.

This way of obtaining a LDP by scaling of the moment generating functions is reminiscent
of the Central Limit Theorem (CLT) obtained by scaling of the characteristic functions.
The proof is quite close to that of Cramér’s theorem, with some modifications needed
for the lower bound. It is possible to remove the set E (the exposed points) from that
lower bound under additional assumptions on the limiting logarithmic moment generating
function, see [2, Theorem V.6] and [1, Exercise 2.3.20]. Finally, the LDP for i.i.d. random
variables and Markov chains may be recovered from the Gärtner-Ellis theorem, see [2,
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Section V.4] and a more abstract version in topological vector spaces is available in [2,
Section 4.5].

Proof. (1) Let δ > 0. Show that for every x ∈ R, there exists λ(x) ∈ R such that

(5.8) λ(x)x− logM(λ(x)) ≥ min(I(x)− δ, 1δ ),

and a neighborhood of x, denoted by Ax, such that

(5.9) λ(x)(y − x) ≥ −δ, ∀y ∈ Ax.

Then, show that

(5.10) P(Zn ∈ Ax) ≤ en(δ−λ(x)x)E(enλ(x)Zn).

Deduce theoreof the large deviation upper bound for compact sets, and extend it to
closed sets using exponential tightness, see Section 3.2.

(2) Let x ∈ O∩E and ε > 0 small enough so that (x−ε, x+ε) ⊆ O. By (5.7), there exists
τ ∈ R such that M(τ) is finite and I(y)− I(x) > (y − x)τ for every y ̸= x. The idea
is, as in the proof of Cramér’s theorem, to obtain a lower bound on P(|Zn − x| < ε)

by using a change-of-measure argument. If Pn := P(Zn ∈ ·), then we define P̂n by

(5.11)
dP̂n

dPn
(y) =

enτy

E(enτZn)
, y ∈ R.

The delicate part is proving that the interval (x−ε, x+ε) becomes “typical” under P̂n

without resorting to the CLT. Compute the limiting logarithmic moment generating
function associated to the sequence of probability measures (P̂n) and, using the upper
bound of Item (1), show that there exists x0 ̸= x such that

(5.12) lim sup
n→∞

1

n
log P̂n((−∞, x− ε] ∪ [x+ ε,∞)) ≤ −Î(x0) < 0,

where Î(y) := I(y)− yτ + logM(τ). Conclude.
■

Exercise 24. Let (Xi)i∈Z be a Gaussian stationary sequence of centered real random vari-
ables with summable correlations, i.e.

∑
n≥0 |Cov(X0, Xn)| < ∞. Show that the empirical

mean 1
n

∑
1≤i≤nXi satisfies an LDP and identify the rate function.

Appendix A. Constrained optimisation

Theorem A.1. Let Ω be a non-empty subset of Rn and

(A.1) U = {x ∈ Ω: gi(x) = 0, 1 ≤ i ≤ p},
where g1, . . . , gp are functions from Ω to R. Let f : Ω → R and a ∈ U . Assume that

(1) a is a local extremum of f in U ;

(2) f is differentiable at a;

(3) g1, . . . , gp are continuously differentiable in a neighborhood of a;

(4) ∇g1(a), . . . ,∇gp(a) are linearly independent.

Then, there exist p real numbers λ1, . . . , λp, uniquely defined (and called the Lagrange
multipliers), such that

(A.2) ∇f(a) = λ1∇g1(a) + . . .+ λp∇gp(a).
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