CONVERGENCE OF PROBABILITY MEASURES : ADDENDUM

JULIEN POISAT

This is an addendum to the lectures notes written by François Simenhaus for the course "Limit theorems" as part of the master program MATH at Université Paris-Dauphine. These extra notes extend some results of the course to càdlàg processes. The main result is Theorem 6. The content is largely taken from [1]. When the proofs are only sketched the students are encouraged to fill in the gaps by themselves as an exercise. Detailed proofs can be found in the relevant sections of [1]. In the following, we denote by D the space of real-valued càdlàg (right-continuous with left limits) functions defined on [0, 1].

1. PROPERTIES OF CÀDLÀG FUNCTIONS

Let us start with basic properties of càdlàg functions. In the following, we note

(1)
$$w(f,I) := \sup\{|f(s) - f(t)| : s, t \in I\}, \quad I \subseteq [0,1].$$

Lemma 1. Let $f \in D$ and $\varepsilon > 0$. There exists $k \in \mathbb{N}$ and a subdivision $0 = t_0 < t_1 < \ldots < t_k = 1$ such that

(2)
$$\max_{1 \le i \le k} w(f, [t_{i-1}, t_i)) < \varepsilon.$$

Proof. Fix $f \in D$ and $\varepsilon > 0$. Define $\mathcal{T}_{\varepsilon}$ as the supremum of those t's between 0 and 1 such that [0,t) may be decomposed into finitely many such subintervals. Let \underline{t} be the supremum value of $\mathcal{T}_{\varepsilon}$. Check that (i) $\underline{t} > 0$ (ii) $\underline{t} \in \mathcal{T}_{\varepsilon}$ and (iii) assuming $\underline{t} < 1$ leads to a contradiction.

Corollary 2. For every $f \in D$,

- (1) $\forall \delta > 0$, the set $\{t \in (0,1] : |f(t) f(t^{-})| \ge \delta\}$ is finite.
- (2) The set of discontinuity points Disc(f) is at most countable.
- (3) $||f||_{\infty} := \sup_{0 \le t \le 1} |f(t)| \le +\infty.$
- (4) $\lim_{\delta \to 0} w'(f, \delta) = 0$ (non-increasing limit), where

(3)
$$w'(f,\delta) := \inf_{\substack{0=t_0 < t_1 < \dots < t_k = 1 \\ \min t_i - t_{i-1} > \delta}} \max_{1 \le i \le k} w(f, [t_{i-1}, t_i))$$

2. The Skorokhod metric

In this section we introduce a new metric, called Skorokhod metric, and investigate how projection maps interact with the induced topology and Borel σ -field. Let Λ be the space of increasing continuous functions $\lambda: [0,1] \to [0,1]$ such that $\lambda(0) = 0$ and $\lambda(1) = 1$ (the time parametrizations). One can check that the following map $d_S: D \times D \mapsto \mathbb{R}_+$:

(4)
$$d_S(f,g) := \inf_{\lambda \in \Lambda} \max(\|\lambda - \mathrm{id}\|_{\infty}, \|f - g \circ \lambda\|_{\infty})$$

defines a metric that is called the Skorokhod metric.

JULIEN POISAT

Lemma 3. Let (f_n) , f in D such that (f_n) converges to D w.r.t. the Skorokhod metric. Then,

- (1) $f_n \to f$ Lebesgue-a.e. on [0, 1].
- (2) (f_n) is uniformly bounded (for the uniform metric).

Proof. (1) Show that $f_n(t)$ converges to f(t) for every $t \notin \text{Disc}(f)$.

(2) Use that $\|\lambda_n - \operatorname{id}\|_{\infty} \to 0$ and $\|f \circ \lambda_n - f_n\|_{\infty} \to 0$ for some sequence (λ_n) in Λ along with Item (3) from Corollary 2.

In the following we denote by \mathcal{D} the Borel σ -algebra on D induced by the Skorokhod metric (generated by the Skorokhod-open sets). Let us now investigate the continuity and measurability properties of the projection maps.

Theorem 4. The following properties hold:

- (1) π_0 and π_1 are continuous from (D, d_S) to $(\mathbb{R}, |\cdot|)$.
- (2) For every $t \in [0,1]$, π_t is continuous at $f \in D$ if and only if f is continuous at t.
- (3) For every $n \in \mathbb{N}$ and $t_1, \ldots, t_n \in [0, 1]$, $\pi_{t_1, \ldots, t_k} \colon (D, \mathcal{D}) \mapsto (\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$ is measurable.
- (4) For every $T \subseteq [0,1]$ that satisfies $1 \in T$ and $\overline{T} = [0,1]$, $\mathcal{D} = \sigma(\pi_t, t \in T)$.

Proof. (1) This follows from $\lambda(0) = 0$ and $\lambda(1) = 1$ when $\lambda \in \Lambda$.

- (2) If f is continuous at t, decompose $f(t) f_n(t)$ as $[f(t) f(\lambda_n(t))] + [f(\lambda_n(t)) f_n(t)]$ for some appropriate sequence (λ_n) and use the triangular inequality. If f is not continuous at t, construct a counterexample.
- (3) It is enough to consider k = 1 and t < 1. Show that for every $\varepsilon > 0$, the map $f \in (D, d_S) \mapsto h_{\varepsilon}(f) := \frac{1}{\varepsilon} \int_t^{t+\varepsilon} f(s) ds \in (\mathbb{R}, |\cdot|)$ is continuous. Conclude by noting that π_t is the pointwise limit of $h_{1/m}$ as $m \to \infty$.
- (4) The proof is divided into several steps:
 - Assume that $0 \in T$ (w.l.o.g.).
 - Show that for every $m \in \mathbb{N}$, there exists $k \in \mathbb{N}$, $s_0, \ldots, s_k \in T$ such that $0 = s_0 < \ldots < s_k = 1$ and $\max_{1 \le i \le k} (s_i s_{i-1}) < 1/m$. Let $\sigma_m := \{s_i\}_{0 \le i \le k}$ in the sequel.
 - For all $f \in D$, let $A_m f \in D$ be the step function such that (i) f and $A_m f$ coincide on σ_m and (ii) $A_m f$ is constant on the intervals $[s_{i-1}, s_i)$ for every $1 \leq i \leq k$. Check that

$$d_S(f, A_m f) \le \max\left(\frac{1}{m}, w'(f, \frac{1}{m})\right).$$

- Deduce thereof that $(A_m f)$ converges to f in the Skorokhod topology.
- Show that A_m is measurable from $(D, \sigma(\pi_t, t \in T))$ to (D, \mathcal{D}) .
- Conclude.

3. Weak convergence of càdlàg processes

In this section we explain the general mechanism for proving weak convergence of càdlàg processes. It relies on the following proposition:

Proposition 5. Let $P \in \mathcal{M}_1(D, \mathcal{D})$ and $T_P := \{t \in [0, 1] : P(Disc(\pi_t)) = 0\}$. Then

- (1) $T_{\rm P}$ contains 0 and 1.
- (2) $[0,1] \setminus T_{\mathbf{P}}$ is at most countable.

Proof. The first item is a direct consequence of Item (1) in Theorem 4 so we only need to prove the second one. Let $t \in (0, 1)$ and

(6)
$$J_t = \{ f \in D \colon f(t) \neq f(t^-) \}.$$

Then $t \in T_P$ if and only if $P(J_t) = 0$, by Theorem 4. For every $\varepsilon > 0$, let

(7)
$$J_t(\varepsilon) := \{ f \in D \colon |f(t) - f(t^-)| > \varepsilon \},\$$

so that $P(J_t)$ is the nondecreasing limit of $P(J_t(\varepsilon))$ as $\varepsilon \to 0$. Therefore,

(8)
$$P(J_t) > 0 \Rightarrow \exists \delta, \varepsilon \in \mathbb{Q} \cap (0,1) \colon P(J_t(\varepsilon)) \ge \delta.$$

Assume that the assertation on the right-hand side holds for some fixed pair $\delta, \varepsilon \in \mathbb{Q} \cap (0, 1)$ and infinitely many t_n 's, $n \ge 1$. Then, for that pair (ε, δ) , one has

(9)
$$P\Big(\limsup_{n \to \infty} J_{t_n}(\varepsilon)\Big) \ge \delta$$

This is absurd, since any $f \in D$ must have only finitely many jumps larger than ε in absolute value. This means that the set

(10)
$$\bigcup_{\delta,\varepsilon\in\mathbb{Q}\cap(0,1)} \{t\in[0,1]\colon \mathcal{P}(J_t(\varepsilon))\geq\delta\}$$

is at most countable, which concludes the proof.

Theorem 6. Let (P_n) and P be probability measures on (D, D). Suppose that the two following conditions hold:

- (1) (\mathbf{P}_n) is tight;
- (2) $(\mathbb{P}_n \pi_{t_1,\ldots,t_k}^{-1})$ converges weakly to $\mathbb{P} \pi_{t_1,\ldots,t_k}^{-1}$ for every $t_1,\ldots,t_k \in T_{\mathbb{P}}$.

Then, (P_n) converges weakly to P w.r.t. the Skorokhod topology.

Proof. The sequence (P_n) is tight, hence relatively compact by Prokhorov's theorem. Then, it is enough to show that P is the only possible limit for any subsequence that converges weakly. Let $\varphi(n)$ be such a subsequence and Q the limit. By the continuous mapping theorem, for all $t_1, \ldots, t_k \in T_Q$,

(11)
$$\mathbf{P}_{\varphi(n)}\pi_{t_1,\dots,t_k}^{-1} \to \mathbf{Q}\pi_{t_1,\dots,t_k}^{-1}, \qquad n \to \infty, \quad \text{weakly.}$$

From our second assumption, we get for all $t_1, \ldots, t_k \in T_P \cap T_Q$,

(12)
$$P\pi_{t_1,\dots,t_k}^{-1} = Q\pi_{t_1,\dots,t_k}^{-1}$$

Moreover, by Proposition 5, $T_P \cap T_Q$ contains $\{0, 1\}$ and is dense in [0, 1] (as its complement is countable). We conclude that P = Q by using Item (4) in Theorem 4.

4. A TIGHTNESS CRITERION

We close this addendum by stating without proof a tightness criterion for càdlàg processes.

Theorem 7. Let (P_n) be a sequence of probability measures on (D, \mathcal{D}) . Assume:

- (1) $\lim_{M \to \infty} \limsup_{n \to \infty} \Pr_n(\{f \in D \colon ||f||_\infty \ge M\}) = 0.$
- (2) For every $\eta > 0$, $\lim_{\delta \to 0} \limsup_{n \to \infty} \Pr_n(\{f \in D : w'(f, \delta) \ge \eta\}) = 0$.

JULIEN POISAT

This criterion relies on the analogue of the Ascoli theorem for càdlàg functions. Let us end these notes with one subtlety: the metric space (D, d_S) is not complete (see Exercise 1) but d_S is topologically equivalent to another metric that makes D a Polish space. Therefore, a single probability measure on (D, \mathcal{D}) is tight.

Exercise 1. Consider $f_n := 1_{[0,1/2^n)}$.

- (1) Show that (f_n) is a Cauchy sequence for d_S .
- (2) Assume that $d_S(f_n, f) \xrightarrow{n \to \infty} 0$ for some $f \in D$. Show that $f(t) = 0, \forall t \in [0, 1]$.
- (3) Conclude.

References

 P. Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, second edition, 1999. A Wiley-Interscience Publication.