Université Paris-Dauphine Master 2 MATH

Exam - Convergence of probability measures Thursday 17 th of November 2022

duration : 2h00 The (*)-question may be more intricate Difficulty is not an increasing function of the question number.

Title : Cylinder sets form a convergence-determining class in S but not in C.

This problem is inspired mainly by [1]. Instead of a true correction I simply indicate the places where these questions are addressed.

Introduction. Let C be the space of continuous functions on [0,1] with values in \mathbb{R} . We consider the metric defined by the uniform norm $|| \cdot ||_{\infty}$ on C:

$$||f||_{\infty} = \sup\{|f(t)|, t \in [0,1]\}, \quad f \in \mathcal{C}.$$

Recall that $(\mathcal{C}, || \cdot ||_{\infty})$ is a polish space. We define the class \mathcal{C}_{f} of finite-dimensional sets (or cylinder sets) to be the subsets of \mathcal{C} that write

$$\{f \in \mathcal{C}; f(t_i) \in B_i \text{ for all } i \leq k\},\$$

where $k \ge 1$ is an integer, $t_i \in [0, 1]$ and $B_i \in \mathcal{B}(\mathbb{R})$ for all $i = 1, \dots, k$.

- 1. Prove that $C_{\rm f}$ is a separating class, that is if P and Q are two probability measures on \mathcal{C} such that ${\rm P}(A) = {\rm Q}(A)$ for all $A \in \mathcal{C}_{\rm f}$ then ${\rm P} = {\rm Q}$. See the notes (this is a consequence of : monotone class lemma, stability of $\mathcal{C}_{\rm f}$ under finite intersection and $\sigma(\mathcal{C}_{\rm f}) = \mathcal{F}$)
- 2. Prove with a simple counter-example that if $(P_n)_{n\geq 1}$ and P are probability measures on \mathcal{C} such that $P_n(A) \to P(A)$ for all $A \in \mathcal{C}_{\mathrm{f}}$, this does not imply that necessarily $P_n \implies P$ (for the uniform topology). See the notes for a counter-example

Problem. Let (E, d) be a metric space. We denote by \mathcal{T} the topology endowed by d and by $\mathcal{F} := \sigma(\mathcal{T})$, the Borel sigma algebra. We consider a class $\mathcal{A} \subset \mathcal{F}$ such that $P_n(A) \to P(A)$ for all $A \in \mathcal{A}$. We first assume that

- (i) \mathcal{A} is closed under finite intersections;
- (ii) each open set of E writes as a countable union of sets in \mathcal{A} .
- 3. Prove that if a subset $B \subset E$ writes as finite union of sets in \mathcal{A} , it satisfies

$$P_n(B) \to P(B).$$

See [1, Theorem 2.2 p.17]

4. Remind the characterization of weak convergence using open sets in the Portmanteau's Theorem and prove that $P_n \implies P$ (where " \implies " denotes the weak convergence with respect to \mathcal{T}). See [1, Theorem 2.2 p.17]

Instead of (ii) we now assume :

(ii') E is separable and, for every $x \in E$ and $\varepsilon > 0$, there exists $A \in \mathcal{A}$ that satisfies

$$x \in \mathring{A} \subset A \subset B(x,\varepsilon). \tag{1}$$

- 5. (*) Use that E is separable to prove that, from any covering of an open set B by open sets, one can extract a countable covering (this is known as Lindelöf's lemma). See https://en.wikipedia.org/wiki/Lindelöf's lemma
- 6. Prove that (ii') implies (ii). See [1, Theorem 2.3 p.17]

A class $\mathcal{G} \subset \mathcal{F}$ is called a *convergence-determining class* if : For every sequence of probability measures $(P_n)_{n\geq 1}$ and every probability measure P : convergence $P_n(A) \to P(A)$ for all $A \in \mathcal{G}$ such that $P(\partial A) = 0$ implies $P_n \implies P$.

7. Prove that if \mathcal{G} is a convergence-determining class then it is a separating class, that is if P and Q are probability measures such that P(A) = Q(A) for all $A \in \mathcal{G}$ then P = Q. Use the sequence (P_n) constant equal to P that weakly converges to both P and Q

Given a class $\mathcal{G} \subset \mathcal{F}$ we consider the following notations : For $x \in E$ and $\varepsilon > 0$, we consider the subclass $\mathcal{G}_{x,\varepsilon} \subset \mathcal{G}$ of sets $A \in \mathcal{G}$ that satisfy $x \in A^{\circ} \subset A \subset B(x,\varepsilon)$. We also denote by $\partial \mathcal{G}_{x,\varepsilon}$ the class of their boundaries that is

$$\partial \mathcal{G}_{x,\varepsilon} = \{\partial A, A \in \mathcal{G}_{x,\varepsilon}\}.$$

Our next goal is to prove the following

Theorem. Let $\mathcal{G} \subset \mathcal{F}$ be a class that satisfies

- (i) \mathcal{G} is closed under finite intersections;
- (iii) E is separable and for each $x \in E$ and $\varepsilon > 0$, $\partial \mathcal{G}_{x,\varepsilon}$ either contains \emptyset or contains uncountably many disjoint sets.

Then \mathcal{G} is a convergence-determining class.

From now on we fix a class $\mathcal{G} \subset \mathcal{F}$ that satisfies the assumptions of the above theorem, a probability measure P and a sequence of probability measures $(P_n)_{n>1}$.

- 8. Prove that if a class $\mathcal{G} \subset \mathcal{F}$ is stable under finite intersections then the same happens for the class $\mathcal{G}_{\mathbf{P}}$ of sets A in \mathcal{G} that satisfy $\mathbf{P}(\partial A) = 0$. It is just a consequence of $\partial A \cap B \subset \partial A \cup \partial B$ (the proof of that inclusion would have been appreciated)
- 9. Prove that, for each $x \in E$ and $\varepsilon > 0$, $\mathcal{G}_{x,\varepsilon}$ contains a set in \mathcal{G}_{P} and conclude the proof of the Theorem. See [1, Theorem 2.4 p.18]

Application. Let S be the space of all real valued sequences $x = (x_i)_{i \ge 1}$. We consider the metric b on \mathbb{R} defined by

$$b(x,y) = |x-y| \wedge 1, \qquad x, y \in \mathbb{R}.$$

Note that b defines the same topology as $|\cdot|$ and that (\mathbb{R}, b) is a polish space. We define ρ on \mathcal{S} by

$$\rho(x,y) = \sum_{i=1}^{+\infty} \frac{b(x_i, y_i)}{2^i}$$

It is easy to check that ρ is a distance on S. See [1, Example 2.4 p.19]

- 10. Prove that a sequence $(x^n)_{n\geq 1}$ in $S \ \rho$ -converges to $x \in S$ if and only if $(x^n)_{n\geq 1}$ converges pointwise to x, that is for all $i\geq 1$, $x_i^n \to x_i$ when n goes to ∞ . The implication \implies is easy. The converse also once noticed that for all $\varepsilon > 0$ there exists $N \geq 1$ so that if $x, y \in S$ are such that $x_i = y_i$ for all $i \leq N$ then $\rho(x, y) < \varepsilon$.
- 11. Prove that (\mathcal{S}, ρ) is a polish space :
 - (a) separable : prove that the family of sequences having only finitely many non zero coordinates, each of them rational, is dense in S; Use the above property together with the density of \mathbb{Q} in \mathbb{R} and the characterisation of the convergence in 10.
 - (b) prove that (S, ρ) is *complete*. For all $i \ge 1$, $(x_i^n)_{n\ge 1}$ is a Cauchy (for b or $|\cdot|$) sequence and thus converges. Use question 10 to conclude.

We define the class $S_{\rm f}$ of *finite-dimensional sets* to be the sets in S that write

$$\{x \in \mathcal{S}; x_i \in B_i \text{ for all } i \leq k\},\$$

where $k \geq 1$ is an integer and $B_i \in \mathcal{B}(\mathbb{R})$ for all $i = 1, \dots, k$.

12. Use the sets

$$A(x,\eta,k) = \{ y \in S; |y_i - x_i| < \eta \text{ for all } i \le k \}, \qquad x \in S, \ \eta > 0, \ k \ge 1,$$

to prove that $S_{\rm f}$ is a convergence-determining class. See [1, Example 2.4 p.19]

13. In the Introduction we proved that $C_{\rm f}$ is not a convergence-determining class for the weak convergence in $(\mathcal{C}, \mathcal{T})$. Why is it clear that $C_{\rm f}$ does not satisfy the assumptions of our Theorem ? For $f \in \mathcal{C}$ and $\varepsilon > 0$, the subclass $\mathcal{G}_{x,\varepsilon} = \emptyset$ as no cylinder sets is included in $B(x, \varepsilon)$.

Références

 P. Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics : Probability and Statistics. John Wiley & Sons, Inc., New York, second edition, 1999. A Wiley-Interscience Publication.