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The (?)-question may be more intricate

Difficulty is not an increasing function of the question number.

Title : Cylinder sets form a convergence-determining class in S but not in C.

This problem is inspired mainly by [1]. Instead of a true correction I simply indicate
the places where these questions are addressed.
Introduction. Let C be the space of continuous functions on [0, 1] with values in R. We
consider the metric defined by the uniform norm || · ||∞ on C :

||f ||∞ = sup{|f(t)|, t ∈ [0, 1]}, f ∈ C.

Recall that (C, || · ||∞) is a polish space. We define the class Cf of finite-dimensional sets
(or cylinder sets) to be the subsets of C that write

{f ∈ C; f(ti) ∈ Bi for all i ≤ k},

where k ≥ 1 is an integer, ti ∈ [0, 1] and Bi ∈ B(R) for all i = 1, · · · , k.

1. Prove that Cf is a separating class, that is if P and Q are two probability measures
on C such that P(A) = Q(A) for all A ∈ Cf then P = Q. See the notes (this is a
consequence of : monotone class lemma, stability of Cf under finite intersection and
σ(Cf) = F)

2. Prove with a simple counter-example that if (Pn)n≥1 and P are probability measures
on C such that Pn(A) → P(A) for all A ∈ Cf, this does not imply that necessarily
Pn =⇒ P (for the uniform topology). See the notes for a counter-example

Problem. Let (E, d) be a metric space. We denote by T the topology endowed by d and by
F := σ(T ), the Borel sigma algebra. We consider a class A ⊂ F such that Pn(A)→ P(A)
for all A ∈ A. We first assume that

(i) A is closed under finite intersections ;

(ii) each open set of E writes as a countable union of sets in A.

3. Prove that if a subset B ⊂ E writes as finite union of sets in A, it satisfies

Pn(B)→ P(B).

See [1, Theorem 2.2 p.17]

4. Remind the characterization of weak convergence using open sets in the Portman-
teau’s Theorem and prove that Pn =⇒ P (where “ =⇒ ” denotes the weak
convergence with respect to T ). See [1, Theorem 2.2 p.17]

Instead of (ii) we now assume :



(ii’) E is separable and, for every x ∈ E and ε > 0, there exists A ∈ A that satisfies

x ∈ Å ⊂ A ⊂ B(x, ε). (1)

5. (?) Use that E is separable to prove that, from any covering of an open set B by
open sets, one can extract a countable covering (this is known as Lindelöf ’s lemma).
See https ://en.wikipedia.org/wiki/Lindelöf’s lemma

6. Prove that (ii’) implies (ii). See [1, Theorem 2.3 p.17]

A class G ⊂ F is called a convergence-determining class if :
For every sequence of probability measures (Pn)n≥1 and every probability measure P :
convergence Pn(A)→ P(A) for all A ∈ G such that P(∂A) = 0 implies Pn =⇒ P.

7. Prove that if G is a convergence-determining class then it is a separating class, that
is if P and Q are probability measures such that P(A) = Q(A) for all A ∈ G then
P = Q. Use the sequence (Pn) constant equal to P that weakly converges to both
P and Q

Given a class G ⊂ F we consider the following notations : For x ∈ E and ε > 0, we consider
the subclass Gx,ε ⊂ G of sets A ∈ G that satisfy x ∈ A◦ ⊂ A ⊂ B(x, ε). We also denote by
∂Gx,ε the class of their boundaries that is

∂Gx,ε = {∂A, A ∈ Gx,ε}.

Our next goal is to prove the following

Theorem. Let G ⊂ F be a class that satisfies

(i) G is closed under finite intersections ;

(iii) E is separable and for each x ∈ E and ε > 0, ∂Gx,ε either contains ∅ or contains
uncountably many disjoint sets.

Then G is a convergence-determining class.

From now on we fix a class G ⊂ F that satisfies the assumptions of the above theorem,
a probability measure P and a sequence of probability measures (Pn)n≥1.

8. Prove that if a class G ⊂ F is stable under finite intersections then the same happens
for the class GP of sets A in G that satisfy P(∂A) = 0. It is just a consequence of
∂A ∩B ⊂ ∂A ∪ ∂B (the proof of that inclusion would have been appreciated)

9. Prove that, for each x ∈ E and ε > 0, Gx,ε contains a set in GP and conclude the
proof of the Theorem. See [1, Theorem 2.4 p.18]

Application. Let S be the space of all real valued sequences x = (xi)i≥1. We consider
the metric b on R defined by

b(x, y) = |x− y| ∧ 1, x, y ∈ R.

Note that b defines the same topology as | · | and that (R, b) is a polish space. We define
ρ on S by

ρ(x, y) =
+∞∑
i=1

b(xi, yi)

2i
.

It is easy to check that ρ is a distance on S. See [1, Example 2.4 p.19]



10. Prove that a sequence (xn)n≥1 in S ρ−converges to x ∈ S if and only if (xn)n≥1
converges pointwise to x, that is for all i ≥ 1, xni → xi when n goes to ∞. The
implication =⇒ is easy. The converse also once noticed that for all ε > 0 there
exists N ≥ 1 so that if x, y ∈ S are such that xi = yi for all i ≤ N then ρ(x, y) < ε.

11. Prove that (S, ρ) is a polish space :

(a) separable : prove that the family of sequences having only finitely many non
zero coordinates, each of them rational, is dense in S ; Use the above property
together with the density of Q in R and the characterisation of the convergence
in 10.

(b) prove that (S, ρ) is complete. For all i ≥ 1, (xni )n≥1 is a Cauchy (for b or | · |)
sequence and thus converges. Use question 10 to conclude.

We define the class Sf of finite-dimensional sets to be the sets in S that write

{x ∈ S; xi ∈ Bi for all i ≤ k},

where k ≥ 1 is an integer and Bi ∈ B(R) for all i = 1, · · · , k.

12. Use the sets

A(x, η, k) = {y ∈ S; |yi − xi| < η for all i ≤ k}, x ∈ S, η > 0, k ≥ 1,

to prove that Sf is a convergence-determining class. See [1, Example 2.4 p.19]

13. In the Introduction we proved that Cf is not a convergence-determining class for the
weak convergence in (C, T ). Why is it clear that Cf does not satisfy the assumptions
of our Theorem ? For f ∈ C and ε > 0, the subclass Gx,ε = ∅ as no cylinder sets is
included in B(x, ε).
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