
JUMP PROCESSES - M2 MASEF/MATH

EXAM 13/01/2020 (3H)

No phone and no document is allowed. No indication is given during the exam. You
can answer in French or English. The grading scheme given below is approximative. The
quality of writing, justification and presentation is taken into account.

Notation. Open intervals of R are denoted by (a, b). Closed intervals are denoted by
[a, b]. The interval (a, b] is open at a and closed at b. Lebesgue measure is denoted by
symbols ds, dt or dz. All Lévy processes below are one-dimensional and start from zero.
The small jumps and large jumps in the Lévy-Itô decomposition are chosen as the sets
{z ∈ R : |z| < 1} and {z ∈ R : |z| ≥ 1}, respectively. If {x(t)}t≥0 is a càd-làg function, then
the value of the jump at t > 0 is denoted by ∆x(t) := x(t)−x(t−). The minimum between
two real numbers a and b is denoted by a ∧ b.

Questions

(1) What is a Lévy process? Give one example with continuous sample paths and one
example that is only made of jumps. A Lévy process is a process with (i) independent
and stationary increments, and (ii) càdlàg sample paths (starting from the origin).
Brownian motion is one example with continuous sample paths. Any Poisson counting
process is an example with jumps only.

(2) What is a Lévy measure? Give one example of a Lévy measure on the real line that
is not a finite measure. A measure ν on R is a Lévy measure if R

∫
(1∧ z2)ν(dz) <∞

(and ν({0}) = 0).

(3) What is an infinitely divisible probability distribution (on the real line)? What is the
connection with Lévy processes? See lecture notes.

(4) What is a subordinator? Give one example. See lecture notes.

(5) Let α ∈ (0, 2) and N be a random Poisson measure on (0,∞)2 with intensity measure
dt⊗ ν(dz), where

ν(dz) = z−(1+α)dz (z > 0).

For which values of β ∈ R is the process

X(t) =

∫
(0,t]×(0,1)

zβÑ (ds, dz), t ≥ 0

well-defined as a centered and square-integrable càd-làg martingale? From the lecture
notes, this is true when∫

(0,t]×(0,1)
z2βν(dz)ds = t

∫
(0,1)

z2β−1−αdz < +∞,

that is when β > α/2.
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(6) Let P be a probability distribution under which (Nt)0≤t≤1 is a Poisson counting
process with intensity one. Identify the law of (Nt)0≤t≤1 under the probability dis-

tribution P̃, which is defined by

dP̃

dP
= e−12N1 .

Under P̃, (Nt)0≤t≤1 is a Poisson counting process with intensity two. Indeed, for all n ≥ 1,
t0 := 0 < t1 < t2 < . . . < tn := 1 and k0 := 0 ≤ k1 ≤ k2 ≤ . . . ≤ kn,

P̃(Nt1 = k1, . . . , Ntn = kn) = E
(
1{Nt1 = k1, . . . , Ntn = kn}

dP̃

dP

)
= e−12knP(Nt1 = k1, . . . , Ntn = kn)

= e−12kn
∏

1≤i≤n
P(Nti−ti−1 = ki − ki−1)

= e−12kn
∏

1≤i≤n

e−(ti−ti−1)

(ki − ki−1)!

=
∏

1≤i≤n
2(ki−ki−1)

e−2(ti−ti−1)

(ki − ki−1)!
.

Exercise 1. Solution of a stochastic differential equation (around 6 points).
Let X be a Lévy process with Lévy measure ν and triplet (0, 0, ν). We assume that
ν(−∞,−1] = 0. Let h(x) = x − log(1 + x) for x > −1. We define the process Y (t) =
X(t)−

∑
0≤s≤t h(∆X(s)) for t ≥ 0.

(1) Explain why Y is well defined and write it as a Lévy-type stochastic integral.
(a) If s is a continuity point of X (actually, of a sample path of X) then ∆X(s) = 0

and h(∆X(s)) = 0. Therefore the sum in the definition of Y (t) is restricted to the
countably many jumps of the sample path (that is when ∆X(s) 6= 0). Moreover, one
can find a constant C > 0 such that 0 ≤ h(x) ≤ Cx2 for all x > −1 (by a Taylor
expansion). This gives

0 ≤
∑

0≤s≤t
h(∆X(s)) ≤ C

∑
0≤s≤t

∆X(s)2,

and the right-hand side is a.s. finite (see lecture notes).
(b) By the Lévy-Itô decomposition, we may write

X(t) =

∫
(0,t]×(−1,1)

zÑ (ds, dz) +

∫
(0,t]×[1,∞)

zN (ds, dz).

Also, ∑
0≤s≤t

h(∆X(s)) =

∫
(0,t]×(−1,∞)

h(z)N (ds, dz).

After straightforward simplifications, we obtain

Y (t) = −bt+

∫
(0,t]×(−1,1)

log(1 + z)Ñ (ds, dz) +

∫
(0,t]×[1,∞)

log(1 + z)N (ds, dz),

where b :=
∫
(−1,1) h(z)ν(dz).
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(2) Apply the Lévy-Itô formula and compute the stochastic differential of f(Y (t)), where
f ∈ C2(R), the space of twice continuously differentiable functions on the real line.

df(Y (t)) = −bf ′(Y (t))dt+

∫
[1,∞)

[f(Y (t−) + log(1 + z))− f(Y (t−))]N (dt,dz)

+

∫
(−1,1)

[f(Y (t−) + log(1 + z))− f(Y (t−))]Ñ (dt,dz)

+

∫
(−1,1)

[f(Y (t−) + log(1 + z))− f(Y (t−))− log(1 + z)f ′(Y (t−))]dtν(dz).

(3) Prove that the process {exp(Y (t))}t≥0 solves the stochastic differential equation
dS(t) = S(t−)dX(t). What is the name usually given to this solution? Pick f = exp
in the above equality and simplify (see lecture notes). This solution is known as the
Doléans-Dade exponential.

(4) Find a simple expression for this solution when ν is the Dirac mass at u > −1. In this
case, we may write X(t) as uN(t)− ut1(−1,1)(u), where (N(t)) is a Poisson counting
process with intensity one. Therefore,∑

0≤s≤t
h(∆X(s)) = h(u)N(t),

which gives Y (t) = log(1 + u)N(t)− ut1(−1,1)(u), and

exp(Y (t)) = (1 + u)N(t)e−ut1(−1,1)(u), t ≥ 0.

Exercise 2. Integrability of a Lévy process (around 6 points). We consider a
Lévy process X with bounded jumps, meaning that there exists C > 0 such that (for all
realizations of the process) |∆X(t)| ≤ C for all t ≥ 0. We define the sequence of stopping
times (Tn)n≥0 by T0 = 0 and

Tn = inf{t > Tn−1 : |X(t)−X(Tn−1)| > C} (n ≥ 1).

(The candidate is not required to prove that those are stopping times.)

(1) Prove that |X(t ∧ Tn)| ≤ 2nC for all n ≥ 1 and t ≥ 0. Define

Ui(t) = |X(t ∧ Ti)−X(t ∧ Ti−1)|, t ≥ 0, i ∈ N.
Since X0 = 0, we get by the triangular inequality

|X(t ∧ Tn)| ≤
∑

1≤i≤n
Ui(t).

Let us now prove that for any 1 ≤ i ≤ n and t ≥ 0, Ui(t) ≤ C, which is enough to
conclude. We use a pathwise approach. Suppose first that t ≤ Ti−1. Then Ui(t) = 0.
Now, assume that t > Ti−1. Then

Ui(t) ≤ sup
Ti−1<s≤Ti

|X(s)−X(Ti−1)|.

If Ti−1 < s < Ti then |X(s)−X(Ti−1)| ≤ C (by definition of Ti). Moreover,

|X(Ti)−X(Ti−1)| ≤ |X(Ti)−X(T−i−1)|+ |∆X(Ti)| ≤ 2C.

This concludes the proof.



4

(2) Prove that P(|X(t)| ≥ 2nC) ≤ etE(e−T1)n for all n ≥ 1 and t ≥ 0. By the strong
Markov property, (Ti−Ti−1)i≥1 is a sequence of i.i.d. random variables. Then, using
the Markov inequality, we obtain

P(|X(t)| ≥ 2nC) ≤ P(Tn ≤ t) = P(e−Tn ≥ e−t) ≤ etE(e−Tn) = etE(e−T1)n.

(3) Prove that E(|X(t)|) <∞ for all t ≥ 0. We have from the previous question

E(|X(t)|) =

∫ +∞

0
P(|X(t)| ≥ x)dx

=
∑
n∈N0

∫ 2(n+1)C

2nC
P(|X(t)| ≥ x)dx

≤ 2C
[
1 +

∑
n∈N

P(|X(t)| ≥ 2nC)
]

≤ 2C
[
1 + et

∑
n∈N

E(e−T1)n
]
,

which is finite, since E(e−T1) ∈ (0, 1).

We now assume X is a compound Poisson process with jump probability measure ν.

(4) Prove that E(|X(t)|) <∞ for all t ≥ 0 if and only if
∫
R |z|ν(dz) <∞.

Let us write
X(t) =

∑
i≤N(t)

Zi =
∑
i≥1

Zi1{N(t)≥i},

where (N(t)) is a Poisson counting process with intensity λ > 0 and (Zi)i∈N is a sequence
of i.i.d. random variables with law ν. By the triangular inequality, we get on the one side

E(|X(t)|) ≤ E(|Z1|)E(N(t)) = λtE(|Z1|).
On the other side, we have

E(|X(t)|) ≥ E(|X(t)|1{Nt=1}) = E(|Z1|)λte−λt.
The two combined inequalities prove our claim.

Finally, let X be a Lévy process with Lévy measure ν (with no further assumption).

(5) Prove that E(|X(t)|) <∞ for all t ≥ 0 if and only if
∫
|z|≥1 |z|ν(dz) <∞.

By the Lévy-Itô decomposition, we may decompose X(t) as

X(t) = at+ σBt +X1(t) +X2(t),

where a, σ ∈ R, B is a Brownian motion, X1 is a Lévy process with bounded jumps (less
than one in absolute values) and X2 is a compound Poisson process whose jump probability
measure is

ν̄(dz) =
ν(dz)1{|z|≥1}

ν((−∞,−1] ∪ [1,∞))
.

From what precedes, X(t) is integrable if and only if X2(t) is integrable, that is if and only
if
∫
R |z|ν̄(dz) <∞, which is equivalent to the condition

∫
|z|≥1 |z|ν(dz) <∞.


