JUMP PROCESSES - M2 MASEF/MATH. EXAM 8/01/2024 (3H)

Problem: Generator of a Lévy process via the Fourier transform.

Part 1. Let $X=\left(X_{t}\right)_{t \geq 0}$ be a one-dimensional Lévy process with triplet $\left(b, \sigma^{2}, \nu\right)$, where $b \in \mathbb{R}, \sigma^{2} \geq 0$ and ν a Lévy measure on \mathbb{R}. We recall that such a process always starts at the origin, by definition.
(1) Recall the other properties defining a Lévy process (as in the course).
(2) Recall the definition of a Lévy measure on \mathbb{R}.

We recall that any Lévy process is a Markov process and we define for all $0<s \leq t, x \in \mathbb{R}$ and bounded measurable $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\left(T_{s, t} f\right)(x)=\mathrm{E}\left(f\left(X_{t}\right) \mid X_{s}=x\right) .
$$

We admit that the conditioning above is well-defined.
(2) Show that $T_{s, t}$ depends on s and t via the difference $t-s$ only.

$$
\left(T_{s, t} f\right)(x)=\mathrm{E}\left(f\left(X_{t}\right) \mid X_{s}=x\right)=\mathrm{E}\left(f\left(X_{t}-X_{s}+x\right) \mid X_{s}=x\right) .
$$

Since $X_{t}-X_{s}$ is distributed as X_{t-s} and independent of X_{s}, we get $\left(T_{s, t} f\right)(x)=$ $\mathrm{E}\left(f\left(X_{t-s}+x\right)\right)$.
For the rest of the problem, and due to the time-homogeneity proven above, we consider the linear operator T_{t} defined by

$$
\left(T_{t} f\right)(x)=\mathrm{E}\left(f\left(X_{t}+x\right)\right)
$$

for all $t \geq 0, x \in \mathbb{R}$ and bounded measurable $f: \mathbb{R} \rightarrow \mathbb{R}$.
(3) Show that $\left(T_{t}\right)_{t \geq 0}$ has the semigroup property, i.e. $T_{t+s}=T_{t} \circ T_{s}$ for all $s, t \geq 0$.

$$
\left(T_{t+s} f\right)(x)=\mathrm{E}\left[f\left(X_{t+s}+x\right)\right]=\mathrm{E}\left[\mathrm{E}\left(f\left(X_{t+s}-X_{t}+X_{t}+x\right) \mid X_{t}\right)\right]
$$

Since $X_{t+s}-X_{t}$ is distributed as X_{s} and independent of X_{t}, we get

$$
\mathrm{E}\left(f\left(X_{t+s}-X_{t}+X_{t}+x\right) \mid X_{t}\right)=\left(T_{s} f\right)\left(X_{t}+x\right) .
$$

Then,

$$
\left(T_{t+s} f\right)(x)=\mathrm{E}\left[\left(T_{s} f\right)\left(X_{t}+x\right)\right]=\left(T_{t}\left(T_{s} f\right)\right)(x) .
$$

Let \mathcal{C}_{0} be the space of real-valued continuous functions defined on \mathbb{R} and vanishing (i.e. converging to zero) at infinity ($\pm \infty$). Such functions are bounded, so we may equip \mathcal{C}_{0} with the supremum norm, that is $\|f\|_{\infty}:=\sup \{|f(x)|: x \in \mathbb{R}\}$ for $f \in \mathcal{C}_{0}$.
(4) Prove that $T_{t}\left(\mathcal{C}_{0}\right) \subseteq \mathcal{C}_{0}$. This follows from the Dominated Convergence Theorem.
(5) Prove that $\lim _{t \rightarrow 0}\left\|T_{t} f-f\right\|_{\infty}=0$ for all $f \in \mathcal{C}_{0}$. Let $f \in \mathcal{C}_{0}$ and $\varepsilon>0$. For all $x \in \mathbb{R},\left(T_{t} f-f\right)(x)=\mathrm{E}\left[f\left(X_{t}+x\right)-f(x)\right]$. One can show that f is actually uniformly
continuous on the real line. Therefore, there exists $\delta>0$ such that $|a-b|<\delta$ implies $|f(a)-f(b)|<\varepsilon$. Then,

$$
\sup _{x \in \mathbb{R}}\left|\mathrm{E}\left[f\left(X_{t}+x\right)-f\left(X_{t}\right)\right]\right| \leq \varepsilon+2\|f\|_{\infty} \mathrm{P}\left(\left|X_{t}\right| \geq \delta\right)
$$

It now remains to prove that $\lim _{t \rightarrow 0} \mathrm{P}\left(\left|X_{t}\right| \geq \delta\right)=0$. This follows from the fact that X_{t} a.s. converges to $X_{0}:=0$ as $t \rightarrow 0$.
(The last two items show that $\left(T_{t}\right)_{t \geq 0}$ is a Feller semigroup.)
Part 2. When f is integrable (w.r.t. Lebesgue measure) we may define its Fourier transform by

$$
\hat{f}(u)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i u x} f(x) \mathrm{d} x, \quad u \in \mathbb{R}
$$

Let \mathcal{S} be the Schwartz space, that is the space of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that are infinitely differentiable and such that f and all its derivatives decay faster than any power at infinity. In other words, for every $n \geq 0$ and $k \geq 1, \sup \left\{\left|x^{k} f^{(n)}(x)\right|, x \in \mathbb{R}\right\}<+\infty$ for such functions. We will admit that if $f \in \mathcal{S}$ then $\hat{f} \in \mathcal{S}$ and the Fourier inversion formula holds:

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{i u x} \hat{f}(u) \mathrm{d} u
$$

Let η be the Lévy symbol of X.
(6) Recall (without proof) the explicit expression of η when the triplet of X is $\left(b, \sigma^{2}, \nu\right)$.

$$
\eta(u)=i b u-\frac{1}{2} \sigma^{2} u^{2}+\int_{\mathbb{R}}\left(e^{i u y}-1-i u y 1_{\{|y| \leq 1\}}\right) \nu(\mathrm{d} y)
$$

(7) Show that there exists a constant C such that $|\eta(u)| \leq C\left(1+u^{2}\right)$ for all $u \in \mathbb{R}$. The constant C may depend on the triplet of X. We use $|\cdot|$ to write the modulus of a complex number. The only nontrivial part is the third term. We split it in two:

$$
\left|\int_{[-1,1]}\left(e^{i u y}-1\right) \nu(\mathrm{d} y)\right| \leq 2 \nu([-1,1])<+\infty
$$

and

$$
\left|\int_{[-1,1]^{c}}\left(e^{i u y}-1-i u y\right) \nu(\mathrm{d} y)\right| \leq \frac{1}{2} u^{2} \int_{[-1,1]^{c}} y^{2} \nu(\mathrm{~d} y) \leq(\mathrm{Cst}) u^{2}
$$

(8) Show that for all $f \in \mathcal{S}, x \in \mathbb{R}$ and $t \geq 0$,

$$
\begin{aligned}
\left(T_{t} f\right)(x)=\frac{1}{\sqrt{2 \pi}} & \int_{\mathbb{R}} e^{i u x} e^{t \eta(u)} \hat{f}(u) \mathrm{d} u \\
\left(T_{t} f\right)(x)=\mathrm{E}\left(f\left(X_{t}+x\right)\right) & =\mathrm{E}\left(\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{i u\left(X_{t}+x\right)} \hat{f}(u) \mathrm{d} u .\right) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathbb{E}\left(e^{i u X_{t}}\right) e^{i u x} \hat{f}(u) \mathrm{d} u
\end{aligned}
$$

Since $\mathrm{E}\left(e^{i u X_{t}}\right)=e^{t \eta(u)}$, we may conclude. The interchange of integral and expectation, via the Fubini theorem, can be justified from the fact that the integrand is smaller than $|\hat{f}|$ in modulus and that $\hat{f} \in \mathcal{S} \subseteq L^{1}(\mathbb{R})$.

Part 3. Let \mathcal{D} be the set of functions $f \in \mathcal{C}_{0}$ such that $\left(T_{t} f-f\right) / t$ converges (pointwise) to an element of \mathcal{C}_{0} as $t \rightarrow 0$. We call $A f$ this limit and note that A is a linear operator on \mathcal{D} called the generator of X.
(9) Using the results of Part 2, show that $\mathcal{S} \subseteq \mathcal{D}$ and that for every $f \in \mathcal{S}$ and $x \in \mathbb{R}$,

$$
\begin{aligned}
(A f)(x) & =\frac{1}{\sqrt{2 \pi}} \int e^{i u x} \eta(u) \hat{f}(u) \mathrm{d} u \\
\frac{\left(T_{t} f-f\right)(x)}{t} & =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{i u x}\left[\frac{e^{t \eta(u)}-1}{t}\right] \hat{f}(u) \mathrm{d} u
\end{aligned}
$$

By the Intermediate Value Theorem, the term in brackets is less than $|\eta(u)|$ in modulus. Recall Question (8). Since $\int|\eta(u) \hat{f}(u)| \mathrm{d} u \leq C \int\left(1+u^{2}\right)|\hat{f}(u)| \mathrm{d} u<+\infty$ (recall that $\hat{f} \in \mathcal{S}$), we may let $t \rightarrow 0$ inside the integral and get the result.
(10) Prove that for all $f \in \mathcal{S}$ and $x \in \mathbb{R}$,

$$
(A f)(x)=b f^{\prime}(x)+\frac{1}{2} \sigma^{2} f^{\prime \prime}(x)+\int_{\mathbb{R}}\left[f(x+y)-f(x)-y f^{\prime}(x) 1_{\{|y| \leq 1\}}\right] \nu(\mathrm{d} y)
$$

It is enough to use the explicit expression of η and use the fact that for all $f \in \mathcal{S}$, $f^{(n)}(x)=(2 \pi)^{-1 / 2} \int e^{i u x}(i u)^{n} \hat{f}(u) \mathrm{d} u$, as can be checked via the integration by part formula. The interchange of integrals in u and y may be justified along similar lines as above.
(11) What would be the generator of a d-dimensional Lévy process? You may only give the (precise) result and sketch the argument. With shorthand notations:

$$
A f=(b, \nabla) f+\frac{1}{2}(\nabla, A \nabla) f+\int_{\mathbb{R}}\left[f(\cdot+y)-f-(y, \nabla) f 1_{\{|y| \leq 1\}}\right] \nu(\mathrm{d} y)
$$

where (\cdot, \cdot) is the usual scalar product in \mathbb{R}^{d}.
(12) (Bonus question) Explain how you would derive the generator of a Lévy process from the Itô formula instead of Fourier transform.

