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5.2. Itô’s formula 16
5.3. A bit of practice: integration with respect to a Poisson counting measure 17
5.4. A quick look at infinitesimal generators 18
6. Stochastic differential equations 18
6.1. Existence and uniqueness of solutions 18
6.2. Proof without the large jumps 19
6.3. Proof with the large jumps 19
7. Exponential martingales and change of measures 20
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These lecture notes were written for the students of the MATH and MASEF master
programs at Université Paris-Dauphine. They contain an introductory course on the topic
of jump processes, by which we mean (possibly multi-dimensional) real-valued stochastic
processes with càdlàg (right-continuous with left-limits∗) sample paths. In short, this is an
extension of the stochastic calculus course (stochastic integration with respect to Brow-
nian motion and Itô processes that have continuous sample paths) to the world of jump
processes, or at least a particular class of them. Such processes appear in several areas of
mathematical modeling and arise as the scaling limits of heavy-tailed random walks, in the
same way as Brownian motion arises as the scaling limit of random walks with finite vari-
ance step distributions (see Section 4.5 on this matter). Section 1 is devoted to compound
Poisson processes, that are one of the most elementary (yet satisfying key properties) jump
processes one can start with. Those are extended in Section 2 by considering more general
random Poisson measures, leading to the key notion of compensated Poisson measures. The
other important notion of infinitely divisible distributions is covered in Section 3. Then,
Section 4 wraps up Brownian motion and the (compensated/compound) Poisson processes
considered in Sections 1 and 2 into the more general class of Lévy processes. From Section 5
to Section 7, the structure of the course parallels that of a standard course on stochastic
calculus. Finally, an application to option pricing is given in Section 8 while a brief and
informal excursion outside of the realm of Markov processes is provided in Section 9.

Notation:

• x being positive (negative) means that x > 0 (x > 0);
• x being non-negative (non-positive) means that x ≥ 0 (x ≤ 0);
• f : R 7→ R is increasing (decreasing) if x > y implies f(x) > f(y) (f(x) < f(y)).
• f : R 7→ R is non-decreasing (non-increasing) if x > y implies f(x) ≥ f(y) (f(x) ≤
f(y)).

• N is the set of positive integers {1, 2, . . .};
• N0 is the set of non-negative integers {0, 1, 2, . . .};
• a ∧ b = min(a, b);
• a ∨ b = max(a, b);
• unless stated otherwise, du, ds and dt are notations for Lebesgue measure on R
(time) and dx, dy and dz are notations for Lebesgue measure on Rd (space);

• the symbol | · | stands for absolute value, complex modulus or Euclidean norm
according to context.

∗continue à droite, limite à gauche in French
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• M(E) and M1(E) are the sets of σ-finite and probability measures on E, respec-
tively;

• unless stated otherwise, B = (Bt) is a standard Brownian motion.

1. Poisson processes and compound Poisson processes

1.1. Poisson processes. Let (Tn)n∈N be an increasing sequence of random variables on
the positive half-line (0,∞) (the timeline). The counting process N = (Nt)t≥0 associated
to the sequence (Tn) is the N0-valued process defined by

(1.1) Nt =
∑
n≥1

1{Tn≤t} = card{n ≥ 1: Tn ≤ t}.

Let T0 := 0 and denote by ∆Tn = Tn − Tn−1 (for n ∈ N) the increments of (Tn) (we shall
keep this notation for the increments of discrete-time processes). The increments are also
called inter-arrival times.

These counting processes are our first basic examples of stochastic processes that in-
crease by jumps. Among theses processes, one class is of particular interest.

Definition 1.1 (Poisson counting process on the half-line). If the increments (∆Tn)n∈N
are independent and identically distributed (i.i.d.) with common law E(λ) (the exponential
law with parameter λ > 0) then the associated counting process is called Poisson counting
process with intensity λ.

The next exercise explains why it is called a Poisson process.

Exercise 1. Let (Ti) be the sequence associated to a Poisson counting process (Nt) with
intensity λ. Let n ∈ N.

(1) Find the joint density of (T1, . . . , Tn).

(2) Show that Tn is distributed as the Γ(n, λ) law (Gamma distribution).

(3) Prove that for all t ≥ 0, Nt is distributed as the P(λt) law (Poisson distribution).

(4) Prove that, conditionally on {Nt = n}, the random vector (T1, . . . , Tn) follows the
order-statistics of n i.i.d. random variables uniformly distributed on [0, t].

(5) Show that P(Nt <∞,∀t ≥ 0) = 1.

Exercise 2 (Scaling property). Check that if (Nt) is a Poisson counting process with
intensity λ then for all c > 0 the process (Nct) is a Poisson counting process with intensity
cλ.

Here are some important properties of the Poisson counting process.

Proposition 1.1. Let N = (Nt) be a Poisson point process with intensity λ.

(1) N has càdlàg trajectories (right-continuous with left limits) with N0 = 0.

(2) N has independent increments: for all s, t ≥ 0, Nt+s−Nt is independent of σ(Nu, 0 ≤
u ≤ t).

(3) N has stationary increments: for all s, t ≥ 0, Nt+s −Nt has the same law as Ns.

Remark 1.1. In this case, the collection of jump times {Tn}n∈N (seen as a random col-
lection of points on the positive half-line) is distributed as a Poisson point process with
intensity λ, see Exercice 5 below.
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We will come back to stochastic processes with independent and stationary increments
in Section 4 (Lévy processes), from a larger perspective.

For all t > 0, we define

(1.2) ∆Nt = Nt − lim
s→t−

Ns ∈ {0, 1}.

We shall keep this notation for continuous-time processes. There is a jump at time t if
∆Nt = 1 and no jump otherwise.

Exercise 3. Check that P(∆Nt = 0) = 1 for all t > 0, whereas P(∆Nt = 0,∀t > 0) = 0.

We end this section with the Law of Large Numbers and the Central Limit Theorem.

Theorem 1.1 (Asymptotic properties). Let N = (Nt) be a Poisson counting process with
intensity λ. The following statements hold true:

(1) The process (Nt
t ) converges a.s. to λ as t→ ∞.

(2) The process
√

t
λ(

Nt
t − λ) converges in law to N (0, 1) as t→ ∞.

Proof of Theorem 1.1. To prove the first statement, we first show thanks to Proposition 1.1
and the (strong) Law of Large Numbers that (Nn

n )n∈N converges a.s. to λ and then use that
N⌊t⌋ ≤ Nt ≤ N⌊t⌋+1. The second statement may be proven by convergence of characteristic
functions. ■

1.2. Compound Poisson processes. The Poisson counting process that was introduced
in the last section makes jumps of size one only. In this section we generalize the idea by
allowing random Rd-valued jump sizes.

Definition 1.2 (Compound Poisson process). Let N = (Nt) be a Poisson counting process
with intensity λ and (Tn)n∈N the associated sequence of jump times. Let ν ∈ M1(Rd) (the
space of probability measures on Rd) and (Zn)n∈N be a sequence of i.i.d. random variables
with common law ν, independent from N . The process X = (Xt)t≥0 defined by

(1.3) Xt =
∑

1≤n≤Nt

Zn =
∑
n≥1

Zn1{Tn≤t}

is called a (d-dimensional) compound Poisson process with intensity λ and jump distribution
ν. The law of such process shall be denoted by CPP(λ, ν).

Example 1.1 (Continuous-time random walk on Z). Suppose P(Z1 = 1) = P(Z1 = 1) =
1/2 and define

(1.4) S0 = 0, Sn = Z1 + . . .+ Zn, n ∈ N.

Then S = (Sn) is a discrete-time simple random walk on Z whereas (Xt) = (S(Nt)) is its
continuous-time counterpart.

Proposition 1.2. A compound Poisson process has càdlàg trajectories with independent
and stationary increments.

Exercise 4 (Characteristic functions). Let X = (Xt) be a compound Poisson process as
in Definition 1.2. Prove that for any t > 0 and u ∈ Rd,

(1.5) ϕXt(u) := E
[
ei⟨u,Xt⟩

]
= exp(λ(ϕν(u)− 1)t),
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where

(1.6) ϕν(u) :=

∫
Rd

ei⟨u,z⟩ν(dz).

Compute the characteristic function of the recentered variable X̄t := Xt − E(Xt).

We shall see in Section 4 that similar formulas hold for the more general class of Lévy
processes. The exponent λ(ϕν(u)−1) sitting in (1.5) will be referred to as a Lévy exponent.

2. Integration with respect to random Poisson measures

Let us give another viewpoint on the Poisson processes defined in the previous section.
Let (Tn) be the sequence of jump times associated to a Poisson counting measure. We may
think of this sequence as a random subset of points in R+ and, if a Dirac mass is attached to
each of these points, we get an (infinite) random measure on R+. Then, Nt is nothing else
but the integral over [0, t] of the constant one (the jump size) with respect to this measure
(see Exercise 5). A similar observation can be made for compound Poisson processes if one
replaces the point measure on R+ by a point measure on R+×Rd in order to keep track of
the values of the jumps (see Exercise 8). This viewpoint may seem quite artificial at first
but it will allow us to go beyond the elementary processes of the first section. In particular,
the compound Poisson processes of Section 1 have finitely many jumps in any bounded set
of the positive half-line. In what follows we will allow accumulation of infinitely many
small jumps.

2.1. Random measures. Let E = R+ × Rd (product of time and space) be equipped
with its Borel σ-algebra B(E). Let M(E) be the set of (non-negative) σ-finite measures
on E. We equip M(E) with the smallest σ-algebra that makes all mappings

(2.1) φB : m ∈ M(E) 7→ m(B) (B ∈ B(E))

measurable.

Definition 2.1 (Random measure). A random measure is a M(E)-valued random variable
(with respect to the σ-algebra defined above).

Proposition 2.1. N : Ω 7→ M(E) is a random measure iff for all B ∈ B(E), φB ◦ N =:
N (B) is a real-valued non-negative random variable.

Proposition 2.2 (Independence). Let (Nn)n∈N be a sequence of random measures. They
are independent iff for all m ∈ N, for all Borel sets Bn,1, . . . , Bn,m, the random vectors

(2.2) (Nn(Bn,1), . . . ,Nn(Bn,m)), n ∈ N,

are independent.

Remark 2.1. One can check the Borel sets Bn,1, . . . , Bn,m (for a given n ∈ N) may be
chosen disjoint.

2.2. Random Poisson measures.

Definition 2.2 (Random Poisson measure). Let m ∈ M(E). A random measure N
is called a Poisson measure random measure with intensity measure m and denoted by
RPM(m) if the two following conditions hold:

(1) For all B ∈ B(E), N (B) is a Poisson random variable with parameter m(B).
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(2) For all k ∈ N and all Borel sets B1, . . . , Bk that are pairwise disjoint, the random
variables N (B1), . . . ,N (Bk) are independent.

Remark 2.2. By convention, N (B) = 0 a.s. if m(B) = 0 and N (B) = +∞ a.s. if
m(B) = +∞.

Exercise 5. Let (Tn)n∈N be the random sequence of jump times associated to a Poisson
counting measure N = (Nt) with intensity λ > 0. Define the random measure

(2.3) N =
∑
n∈N

δTn ,

where δx is a notation for the Dirac mass at x. Check that Nt = N ((0, t]) for all t > 0.
Check that N is a RPM on R+ and identify its intensity measure.

Exercise 6 (Same exercise with compound Poisson processes). Let (Tn, Zn)n∈N be the ran-
dom sequence of jump times and jumps sizes associated to a real-valued (d = 1) compound
Poisson counting process X = (Xt) with intensity λ > 0 and jump distribution ν ∈ M1(R).
Define the random measure

(2.4) N =
∑
n∈N

δ(Tn,Zn),

Check that N is a RPM and identify its intensity measure.

Let us prove the existence of RPM’s (in general):

• If m(E) = 0, we simply set N = 0 (null measure).
• If m(E) ∈ (0,+∞), we consider a sequence of i.i.d. random variables (Xn)n∈N
with common law m̄ := m/m(E) and an independent random variable N with law
P(m(E)). Then, one can check that the random measure

(2.5) N :=
∑

1≤i≤N

δXi

is a RPM(m) (same idea as in Exercises 5 and 6).
• If m(E) = +∞, we let (En)n∈N be a countable partition of E such that m(En) <
+∞. Such a partition exists because m is σ-finite. Using the previous case, we may
now construct (Nn)n∈N a sequence of independent RPM with respective intensity
measures mn := m(· ∩ En). By the superposition property (see Proposition 2.3)
the sum of these measures

(2.6) N :=
∑
n∈N

Nn

is a RPM(m).

Random Poisson measures have two convenient properties:

Proposition 2.3 (Superposition property). Let (Nn) be a sequence of independent RPM’s
with respective intensity measures (mn). If m :=

∑
n≥1mn is σ-finite then N :=

∑
n≥1Nn

is a RPM(m).

Proposition 2.4 (Thinning property). Let (En) be a countable partition of E and N be
a RPM(m). For all n ≥ 1, define the restricted measure Nn := N (· ∩ En). The Nn’s are
independent RPM’s with respective intensity measures mn := m(· ∩ En).
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2.3. Integration. Let N be a random measure on E. For all ω ∈ Ω (the underlying
probability space), we may define

∫
E fdNω (or

∫
E f(x)Nω(dx)) as the integral of a suitable

function f : E → R with respect to the mesure Nω. This gives rise to a random variable∫
E fdN (by the way, why is it a random variable?).

Exercise 7. Find an alternative expression (at least formally) of the integral
∫
E fdN when

N is a RPM(m) and m is a finite measure. Hint: use the explicit construction given in
Section 2.2.

In the following we give some properties of the integral when N is a random Poisson
measure.

Proposition 2.5. Let N be a RPM(m).

(i: Expectation) If f ∈ L1(E,m) then
∫
fdN is integrable and

(2.7) E
(∫

fdN
)
=

∫
fdm.

(ii: Variance) If f ∈ L2(E,m) then
∫
fdN is square-integrable and

(2.8) Var
(∫

fdN
)
=

∫
f2dm.

(iii: Laplace transform) If f : E → R+ is measurable then

(2.9) E
(
e−

∫
fdN

)
= exp

(∫
(e−f − 1)dm

)
.

(iv: Characteristic function) If f ∈ L1(E,m) then

(2.10) E
(
ei

∫
fdN

)
= exp

(∫
(eif − 1)dm

)
.

Exercise 8 (Connection with compound Poisson processes). Let X = (Xt)t≥0 be a com-
pound Poisson process with intensity λ > 0 and jump distribution ν ∈ M1(Rd). Show that
we may write

(2.11) Xt =

∫
(0,t]×Rd

fdN

for an appropriate function f and a random Poisson measure N to identify. Check that
we can replace the condition ν(Rd) = 1 by ν(Rd) <∞.

Proposition 2.6. Let f : E → R+ be measurable. The three following statements are
equivalent:

(1)
∫
fdN < +∞ a.s.,

(2)
∫
(1 ∧ f)dm < +∞,

(3)
∫
(1− e−f )dm < +∞.

Exercise 9 (Continuation of Exercise 8). Show that we may define a compound Poisson
process with jump measure (instead of jump distribution) ν satisfying

∫
Rd(1∧|z|)ν(dz) <∞.

Exercise 9 shows that it is possible to define a process which has infinitely many (small)
jumps over bounded time intervals, provided that the small jumps are small enough (in the
sense of the condition in Exercise 9). We will come back to this dichotomy between small
and large jumps in Theorem 3.1 and Section 4.
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2.4. Compensated Poisson measures. In what follows, we introduce a recentered ver-
sion of the integral

∫
fdN , which will allow us to weaken Condition (2) in Proposition 2.6

thanks to an approximation argument.

Let m ∈ M(E). Since m is σ-finite, there exists (En)n≥1 a countable partition of E
such that m(En) < ∞ for all n ≥ 1. Let f : E → R be a measurable function such that
f ∈ L1(En,m) for all n ∈ N. Define

(2.12)

∫
En

fd(N −m) :=

∫
En

fdN −
∫
En

fdm,

and

(2.13) In :=
∑

1≤k≤n

∫
Ek

fd(N −m).

Proposition 2.7. Suppose
∫
(|f | ∧ f2)dm <∞. The random sequence (In) converges a.s.

and in L2 to a limit which does not depend on the choice of the partition.

Definition 2.3. The limit above is denoted by
∫
E fdÑ , where Ñ := N − m is called

compensated Poisson measure.

Again, let us slightly anticipate on Section 4 by noting that Proposition 2.7 will allow us
to weaken the condition of Exercise 9 on the jump measure and consider even more general
jump processes.

The functions we have integrated so far are deterministic. We will treat the case of
random functions in Section 5 on stochastic integration.

3. Infinite divisibility

3.1. Infinitely divisible probability distributions. If µ1 and µ2 are two probability
distributions on Rd then the convolution of µ1 and µ2, denoted by µ1 ∗ µ2, is defined by

(3.1) (µ1 ∗ µ2)(A) = (µ1 ⊗ µ2)({(x1, x2) : x1 + x2 ∈ A}), A ∈ B(Rd).

In other words, µ1 ∗ µ2 is the law of the sum of two independent random variables respec-
tively distributed as µ1 and µ2. The convolution operation is associative and commutative.
We denote by µ∗n the n-th fold convolution of µ with itself.

Definition 3.1. A probability distribution µ ∈ M1(Rd) is infinitely divisible (I.D.) if for
all n ≥ 1 there exists µn ∈ M1(Rd) such that µ = µ∗nn .

Definition 3.2. An Rd-valued random variable Y is infinitely divisible (I.D.) if for all
n ≥ 1 there exists a collection of i.i.d. random variables Y1,n, . . . , Yn,n such that Y =
Y1,n + . . .+ Yn,n (in law).

One can check that the two definitions are consistent with each other in the sense that
a random variable is infinitely divisible iff its law is infinitely divisible.

Exercise 10. Prove that the following probability distributions (or random variables) are
I.D.

(1) N (m,σ2);

(2) P(λ);
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(3) X1, where X = (Xt) is a compound Poisson process with intensity λ and jump
distribution ν ∈ M1(Rd);

(4) Gamma(a, b) with density bata−1e−bt

Γ(a) 1{t>0};

(5) the constant a ∈ M(Rd).

Exercise 11. Prove that Ber(p) is not I.D. when p ∈ (0, 1).

Proposition 3.1 (Necessary conditions). Let µ ∈ M1(Rd) be I.D. and ϕµ its characteristic
function. Then,

(1) µ is a Dirac measure or it has an unbounded support;

(2) for all u ∈ Rd, ϕµ(u) ̸= 0;

(3) there exists a unique continuous function Ψ: Rd → C such that Ψ(0) = 0 and ϕµ(u) =
exp(Ψ(u)).

Exercise 12. Find the function Ψ corresponding to each example in Exercise 10.

Note that the n-th root probability distribution of an I.D. law is unique. Indeed (with

the same notation as in Proposition 3.1) if ϕn and ϕ̃n are two characteristic functions
satisfying

(3.2) ϕn(u)
n = ϕ̃n(u)

n = ϕµ(u), ∀u ∈ Rd,

then there exists k : Rd 7→ {0, . . . , n− 1} such that ϕn(u) = ϕ̃n(u) exp(2iπk(u)/n). Since k

is Z-valued, continuous on a connected set and k(0) = 0, we get k = 0. Therefore, ϕn = ϕ̃n.
One can easily check that the unique solution is u ∈ Rd 7→ exp( 1nΨ(u)).

We end this section with two useful stability properties.

Proposition 3.2. Let Y1 and Y2 be two independent I.D. random variables in Rd and
(α1, α2) ∈ R2. The random variable α1Y1 + α2Y2 is also I.D.

Proposition 3.3. Any weak limit (i.e. any limit in the sense of weak convergence) of a
sequence of I.D. random variables (or probability distributions) is I.D.

3.2. Lévy-Khintchine Theorem. In this section we give a characterization of I.D. dis-
tributions in terms of their characteristic functions.

Definition 3.3 (Lévy measure). A measure ν on Rd is called a Lévy measure if ν({0}) = 0
and

∫
Rd(1 ∧ |z|2)ν(dz) <∞.

Remark 3.1. A probability measure ν such that ν({0}) = 0 is a Lévy measure. A Lévy
measure is necessarily a σ-finite measure. The converse statements are false.

Theorem 3.1 (Lévy-Khintchine theorem). A probability distribution on Rd is infinitely
divisible if and only if there exist b ∈ Rd, a non-negative symmetric d × d matrix A and
a Lévy measure ν on Rd such that its characteristic function writes u ∈ Rd 7→ exp(Ψ(u)),
where

(3.3) Ψ(u) = i⟨b, u⟩ − 1

2
⟨u,Au⟩+

∫
Rd

(
ei⟨u,z⟩ − 1− i⟨u, z⟩1{|z|≤1}

)
ν(dz).

The cut-off at the value |z| = 1 in the integral above is only a matter of convention.
Before proving the theorem, we advise to treat the following two exercices.
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Exercise 13. Explain why the last integral in the equation above is well-defined.

Exercise 14 (Continuation of Exercise 12). In the simpler case where ν(Rd) < ∞ (finite
measure) prove that a probability distribution with a characteristic function as in (3.3)

coincides with the law of b+ c+ Y + Ỹ1 where

(3.4) c := −
∫
|z|≤1

zν(dz), Y ∼ Nd(0d, A), Ỹ ∼ CPP
(
ν(Rd),

ν

ν(Rd)

)
,

and Y and Ỹ are independent.

4. Lévy processes

We have seen in Proposition 1.2 that compound Poisson processes have independent
and stationary increments (with càdlàg trajectories). These are the properties we could
expect from a continuous-time counterpart of the discrete random walk (sum of i.i.d. ran-
dom variables). But they are not the only processes to fulfill such requirements, Brownian
motion being another well-known example. In Section 4.1 we will call such processes Lévy
processes and state a few important properties such as the Markov property. The most
important result of this section is the Lévy-Itô decomposition, which essentially states that
any Lévy process may be decomposed into a deterministic drift, a Brownian part and a
(possibly compensated) jump component. This decomposition directly parallels that of
the Lévy-Khintchine theorem (Theorem 3.1). We will focus on the jump component in
Section 4.3 and then treat the special case of subordinators in Sections 4.4. Finally, in
Section 4.5 we explain the relevance of Lévy processes in the study of scaling limits of
random walks.

Throughout the section (Ω,A,P) is a generic probability space.

4.1. Definition and strong Markov property.

Definition 4.1 (Lévy process). Let X = (Xt)t≥0 be an Rd-valued stochastic process. We
say X is a Lévy process if it satisfies the following conditions:

(1) X0 = 0 a.s.;

(2) X has càdlàg trajectories a.s.;

(3) X has independent and stationary increments.

The third item in the definition above means that, for all n ∈ N and 0 = t0 < t1 < . . . <
tn, the random variables (Xti −Xti−1)1≤i≤n are independent and for all h ≥ 0, the random
vectors (Xti −Xti−1)1≤i≤n and (Xti+h −Xti−1+h)1≤i≤n have the same law.

Example 4.1. Brownian motions (with constant drift and standard deviation) and com-
pound Poisson processes (see Proposition 1.2) are Lévy processes.

Let F = (Ft)t≥0 be the natural filtration associated to X. We recall that a [0,+∞]-
valued random variable T is a stopping time with respect to (w.r.t.) F if for all t ≥ 0, the
event {T ≤ t} belongs to Ft. We also denote by

(4.1) FT := {A ∈ A : A ∩ {T ≤ t} ∈ Ft,∀t ≥ 0}
the σ-algebra of events prior to this stopping time. We may now state the following
proposition.
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Proposition 4.1 (Strong Markov property). Let X = (Xt)t≥0 be a Lévy process and T
a stopping time such that T < ∞ a.s. The process (XT+t − XT )t≥0 is a Lévy process
independent of FT and distributed as X.

Of course, the strong Markov property implies the simple version of it, when T is a
deterministic time.

4.2. Lévy-Itô decomposition. It turns out that Lévy processes are strongly connected
to infinitely divisible distributions (Section 3).

Proposition 4.2. Let X = (Xt)t≥0 be a Lévy process. Then Xt is I.D. for all t ≥ 0 and
there exists a function Ψ: Rd 7→ C such that

(4.2) ϕXt(u) := E(ei⟨Xt,u⟩) = exp(tΨ(u)), (t ≥ 0, u ∈ Rd).

The function Ψ is called Lévy (or characteristic) exponent of the process.

Exercise 15. Find the Lévy exponent of a Brownian motion with constant drift b ∈ Rd

and covariance matrix A. Find the Lévy exponent of a CPP(λ, ν), where λ > 0 and
ν ∈ M1(Rd).

Theorem 4.1. The function Ψ is a Lévy exponent iff there exist b ∈ Rd, a non-negative
symmetric d× d matrix A and a Lévy measure ν on Rd such that

(4.3) Ψ(u) = i⟨b, u⟩ − 1

2
⟨u,Au⟩+

∫
Rd

(
ei⟨u,z⟩ − 1− i⟨u, z⟩1{|z|≤1}

)
ν(dz).

Remark 4.1. The eigenvalues of A are not necessarily positive as one may show by con-
sidering the R2-valued process (t, Bt)t≥0, where B is a one-dimensional standard Brownian
motion.

The following proposition comes as a corollary of the proof of Theorem 4.1.

Proposition 4.3 (Lévy-Itô decomposition). Suppose X = (Xt)t≥0 is a Lévy process with
a Lévy exponent as in (4.3). Then X has the same law as the process

(4.4) bt+
√
ABt +

∫
(0,t]×{z : |z|>1}

zN (ds, dz) +

∫
(0,t]×{z : |z|≤1}

zÑ (ds, dz) (t ≥ 0),

where B = (Bt)t≥0 is a standard d-dimensional Brownian motion and N is a RPM(dt⊗ν)
independent of B (dt stands for Lebesgue measure).

Hence, any Lévy process may be written as the sum of a deterministic drift (first term),
a Brownian part (second term), a large jump component (third term) and a compensated
small jump component (fourth part). Let us insist on the term compensated: the fourth
part does not consist merely of jumps! Of course, some of these components might be equal
to zero.

The triplet (b, A, ν) is called Lévy triplet of the process. Let us stress that the Lévy
triplet depends on our (arbitrary) cut-off between small and large jumps. If we stick
to our convention (inherited from Theorem 3.1) then the Lévy triplet associated to the
most elementary Poisson counting process, that is CPP(1, δ1), is (1, 0, δ1). If we decide
that jumps of size one are large instead of small, we get (0, 0, δ1) instead (only the first
component changes).
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4.3. Jump measure of a Lévy process. Let X = (Xt)t≥0 be a Lévy process with triplet
(b, A, ν). We recall that the jump (if any) at time t > 0 is denoted by

(4.5) ∆Xt := Xt −Xt− = Xt − lim
s→t−

Xs.

Definition 4.2. The jump measure of X is the random measure on (0,∞) × Rd defined
by

(4.6) J :=
∑
t>0

∆Xt ̸=0

δ(t,∆Xt).

Exercise 16. Check that J has indeed a countable number of atoms, a.s.

The next proposition may be deduced from Proposition 4.3:

Proposition 4.4. The jump measure of a Lévy process with triplet (b, A, ν) is a RPM(dt⊗
ν).

Corollary 4.1. The sample paths of an Rd-valued Lévy process X are a.s. continuous if
and only if X is a Brownian motion with drift (i.e. Xt = bt + ABt for some b ∈ Rd, A a
positive semi-definite matrix and B a d-dimensional standard Brownian motion).

Proposition 4.5. The random variable
∑

s∈(0,t] |∆Xs| is a.s. finite iff
∫
(1 ∧ |z|)ν(dz) is

finite.

Proposition 4.6. For all t > 0, the random variable
∑

s∈(0,t] |∆Xs|2 is a.s. finite.

Therefore, we may have in some cases
∑

s∈(0,t] |∆Xs|2 <∞ a.s. but
∑

s∈(0,t] |∆Xs| = ∞
a.s. This phenomenon is due to the presence of small jumps.

Exercise 17. Let X be a pure-jump (i.e. Xt =
∑

s∈(0,t]∆Xs) one-dimensional (d = 1)

Lévy process which makes only positive jumps. Prove that
∫
(1 ∧ |z|)ν(dz) <∞.

We will focus on this special case further in the chapter.

4.4. Subordinators.

Definition 4.3 (Subordinator). A one-dimensional Lévy process is called a subordinator
if Xt ≥ 0 for all t ≥ 0, a.s.

Exercise 18. Give a simple example of a subordinator.

Exercise 19. Prove that a subordinator is a.s. non-decreasing.

Theorem 4.2. The function Ψ: R → C is the Lévy exponent of a subordinator iff it writes

(4.7) Ψ(u) = iβu+

∫
R
(eiuz − 1)ν(dz), (u ∈ R),

with β ≥ 0 and ν a Lévy measure that satisfies

(4.8) ν((−∞, 0]) = 0 and

∫ ∞

0
(1 ∧ z)ν(dz) <∞.

We refer to Exercise 17 for an explanation of the second condition on the Lévy measure.

Since a subordinator is non-negative, we may work with its Laplace transform:
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Proposition 4.7. If X is a subordinator with Lévy exponent Ψ, then

(4.9) E(e−rXt) = etΨ(ir), (r ≥ 0).

Exercise 20. Find the Lévy-Itô decomposition corresponding to a subordinator.

Proposition 4.8 (Asymptotic behaviour). Let X be a subordinator with a Lévy exponent
as in (4.7). The following limits hold a.s. :

(4.10)

(i) lim
t→∞

Xt

t
= E(X1) = β +

∫ ∞

0
zν(dz) ∈ [0,∞],

(ii) lim
t→0

Xt

t
= β.

Exercise 21 (Brownian ladder times). Let B be a one-dimensional standard Brownian
motion and define

(4.11) Ta = inf{t ≥ 0: Bt = a}, a ≥ 0.

We denote by F = (Ft) the filtration associated to B.

(1) Prove that for all a ≥ 0, Ta is an a.s. finite F-stopping time and that the process
(Ta)a≥0 is a subordinator.

(2) Does this process have a.s. continuous paths?

(3) Prove by a martingale argument that E[e−uTa ] = e−a
√
2u for all u ≥ 0.

(4) Deduce thereof that the density of Ta is given by

(4.12) fa(x) :=
a

(2πx3)1/2
exp

(
− a2

2x

)
, x ≥ 0.

Hint: define L(u) =
∫∞
0 e−uxfa(x)dx for all u ≥ 0, use the change of variable ux = a2

2y

to find an ODE satisfied by L.

Exercise 22 (Supremum of Brownian motion). Let B be a standard Brownian motion and
define

(4.13) Mt = sup
0≤s≤t

Bs, t ≥ 0.

Is M = (Mt)t≥0 a subordinator? Hint: use Corollary 4.1.

Exercise 23. Let α ∈ (0, 1) and X be a subordinator with Lévy triplet (b, 0, ν), where

(4.14) ν(dz) =
α dz

Γ(1− α)z1+α
.

Compute the Laplace transform L(u) = E(e−uX1), for u ≥ 0, and find b such that L(u) =
exp(−uα).

Exercise 24. With the help of Exercise 23, find the jump measure of the process of Brow-
nian ladder times from Exercise 21.
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4.5. Limits of heavy-tailed random walks. This section contains a short and informal
discussion on how some Lévy processes arise as the limits of random walks (i.e. sums of
independent random variables). Let (Xi)i≥1 be a sequence of real random variables and
for all n ≥ 1, let Sn := X1 + . . . + Xn, with S0 := 0. Donsker’s theorem says that if
σ2 := E(X2

1 ) <∞ then the sequence of processes

(4.15) n−1/2(S⌊nt⌋ − ⌊nt⌋E(X1)), t ∈ [0, 1],

converges weakly to standard Brownian motion as n → ∞, for the uniform topology.
What happens when there is no second moment? To simplify, suppose that the Xi’s are
nonnegative, with

(4.16) P(X1 > x)
+∞∼ Cx−α, α ∈ (0, 1) ∪ (1, 2).

(The case α = 1 turns out to be critical and is dismissed at this level of discussion.) Let
us consider

(4.17) Z
(n)
t :=

S⌋nt⌋

n1/α
, t ≥ 0,

which we write as

(4.18) Z
(n)
t =

∫
(0,t]×(0,∞)

zNn(ds, dz), where Nn :=
∑
i∈N

δ(
i
n
,

Xi

n1/α

).
The renormalization by n1/α will be justified a posteriori but it is not completely surprising
as n1/α is the right order of magnitude for max(X1, . . . , Xn), when n→ ∞. Then, one can
show that the sequence of random measures Nn converges (in some sense) to a random
Poisson measure that shall be denoted by N , with intensity measure:

(4.19) Leb⊗ Cαz−(1+α)1(0,∞)(z)dz.

One is then tempted to interchange the limit as n → ∞ and the integral sign in (4.18).
There are however two cases:

• If α ∈ (0, 1) then
∫ +∞
0 (1∧z)z−(1+α)dz <∞, so

∫
(0,t]×(0,∞) zN (ds, dz) is well-defined

as an a.s finite random variable. No centering of (4.17) is needed.

• If α ∈ (1, 2) then
∫ +∞
0 (1 ∧ z2)z−(1+α)dz < ∞ and only the compensated integral∫

(0,t]×(0,∞) zÑ (ds, dz) is well-defined. This means one has to recenter (4.17).

Assuming that the previous argument can be made rigorous, we obtain thereof that for all
t ≥ 0,

(4.20)

Z
(n)
t

(law)−→
∫
(0,t]×(0,∞)

zN (ds, dz) (0 < α < 1)

Z
(n)
t − EZ

(n)
t

(law)−→
∫
(0,t]×(0,∞)

zÑ (ds, dz) (1 < α < 2).

Finally, one may upgrade the above to a weak convergence statement at the level of pro-
cesses, provided we equip the space of càdlàg functions with a suitable topology. For a
complete treatment, we refer the reader to [11, Exercise 4.4.2.8].
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5. Stochastic integration

Our goal in this section is to make sense of integration and differentiation of Lévy pro-
cesses (or stochastic processes based on them). As we have seen, Lévy processes in general
have jumps, hence differentiation must be thought of in a broader sense than usual. Suppose

f : R → R is a differentiable function (in the usual sense). Then f(t) − f(0) =
∫ t
0 f

′(s)ds
or, equivalently, f(t) − f(0) is the value on [0, t] of a (signed) measure that is absolutely
continuous w.r.t. to Lebesgue measure and the Radon-Nikodym derivative of the former
w.r.t to the latter is a.e. equal to f ′. Now, consider the Heaviside function g defined by
g(t) = 0 if t < 0 and g(t) = 1 if t ≥ 0. This function is càdlàg but it is not differentiable in
the usual sense because of the jump at the origin. Yet, we may write that for all t ∈ R, g(t)
is the value on (−∞, t] of the measure δ0. Hence, the Dirac measure at 0 is in some sense
a weak derivative of the Heaviside function. This lays the path to the notion of (random)
distributions, which we will not pursue, but it is useful to keep this example in mind.

In what follows, N is a RPM on E = R+ × Rd with intensity measure dt ⊗ ν (ν a
Lévy measure) and B is a standard Brownian motion independent from N . We denote by
F = (Ft)t≥0 the filtration generated by N and B. In other words, Ft = σ(Bs, N ((0, s]×
A), s ≤ t, A ∈ B(Rd)).

5.1. Stochastic integral with respect to a random Poisson measure. In Section 2
we learnt how to integrate deterministic functions w.r.t. random Poisson measures (but
the reader should keep in mind that even in this case the integral is a random variable).
We will now treat the case of random integrands.

Definition 5.1. Let T > 0. The predictable σ-algebra†, denoted by P, is the smallest
σ-algebra w.r.t. which all mappings F : [0, T ]×Rd ×Ω → R that satisfy the two conditions
below are measurable.

(1) ∀t ∈ [0, T ], the mapping (z, ω) 7→ F (t, z, ω) is B(Rd)⊗Ft-measurable.

(2) ∀z ∈ Rd, ω ∈ Ω, the mapping t 7→ F (t, z, ω) is left-continuous.

A process F : [0, T ]× Rd × Ω → R is said to be predictable if it is P-measurable.

Let us now introduce the space of random functions that we want to integrate. We define
H2(T ) as the space of predictable processes that are square integrable on [0, T ] × Rd × Ω
with respect to dt⊗ ν ⊗ P.

Proposition 5.1. The space H2(T ) is a Hilbert space equipped with the scalar product:

(5.1) ⟨F,G⟩H2(T ) :=

∫ T

0

∫
Rd

E
(
F (t, z)G(t, z)

)
dtν(dz).

We now aim at defining a notion of integral of F ∈ H2(T ) on [0, T ] × Rd w.r.t a com-

pensated RPM denoted by Ñ . The main idea is to define this integral for a set of simple
functions that are dense in H2(T ). This defines an isometry between this space of simple
functions and the space of square-integrable random variables, which can be extended to
the whole space H2(T ) thanks to a density argument.

†tribu prévisible in French
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Let S be the space of simple predictable functions, which satisfy

(5.2) F (t, z) =
∑

1≤j≤m

∑
1≤i≤n

ciYj1(tj ,tj+1](t)1Ai(z),

where

• m,n ∈ N;
• 0 < t1 < . . . < tm < tm+1 := T ;
• A1, . . . , An are disjoint Borel sets such that ν(Ai) <∞ for all 1 ≤ i ≤ n;
• the ci’s are real numbers;
• Yj is a bounded Ftj -measurable random variable.

We then define the mapping

(5.3) IT : F ∈ S 7→
∑

1≤j≤m

∑
1≤i≤n

ciYjÑ ((tj , tj+1]×Ai).

Exercise 25. The goal of this exercise is to define the stochastic integral IT (F ) for
all functions F ∈ H2(T ).

(1) Check that for all F ∈ S, IT (F ) is a centered square-integrable random variable.

(2) Prove that IT is an isometry from S to L2(Ω).

(3) Check that S is a dense subset of H2(T ).

(4) Conclude.

Proposition 5.2 (Martingale property). For all F ∈ H2(T ), the stochastic process (It(F ))0≤t≤T

is a square-integrable F-adapted and centered càdlàg martingale.

We will henceforth write

(5.4) IT (F ) =

∫ T

0

∫
Rd

F (t, z)Ñ (dt,dz), (F ∈ H2(T )).

Remark 5.1. The stochastic integral in (5.4) may be extended to the case where the pre-

dictable process F satisfies the weaker assumption
∫ T
0

∫
F (t, z)2ν(dz)dt <∞ a.s., in which

case the process (It(F ))0≤t≤T is a local martingale that has a càdlàg modification, see [1,
Theorem 4.2.12].

5.2. Itô’s formula. To simplify, we restrict from now on to dimension one (d = 1). Let
T > 0 (deterministic time horizon), b, σ : [0, T ] × Ω → R be predictable processes‡ such
that

(5.5) E
(∫ T

0
|b(t)|dt

)
<∞, E

(∫ T

0
σ(t)2dt

)
<∞,

K : [0, T ]× Rd × Ω → R predictable and H ∈ H2(T ). The process X = (Xt)0≤t≤T defined
by
(5.6)

Xt = X0+

∫ t

0
b(s)ds+

∫ t

0
σ(s)dBs+

∫ t

0

∫
|z|≤1

H(s, z)Ñ (ds, dz)+

∫ t

0

∫
|z|>1

K(s, z)N (ds, dz)

‡Here, b and σ do not depend on the space (z) variable so we only ask that both functions are left-
continuous and adapted.
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is called a Lévy-type stochastic integral, which we may also write, formally,

(5.7) dXt = b(t)dt+ σ(t)dBt +

∫
|z|≤1

H(t, z)Ñ (dt,dz) +

∫
|z|>1

K(t, z)N (dt,dz).

Remark 5.2. The last term in (5.6) is well-defined as ν is finite on [−1, 1]c, so that it
may be written as

(5.8)

∫ t

0

∫
|z|>1

K(s, z)N (ds, dz) =
∑

0<s≤t

K(s,∆Xs)1{|∆Xs|>1}.

The sum above has an a.s. finite number of nonzero terms.

Exercise 26. Check that a Lévy process is a Lévy-type stochastic integral.

Theorem 5.1 (Itô’s formula). Let X = (Xt)0≤t≤T be a Lévy-type stochastic integral of the
form (5.6) and f ∈ C1,2(R+ × R). Then, for all 0 ≤ t ≤ T , we have a.s.

(5.9) f(t,Xt)− f(0, X0) = (I) + (II) + (III),

with

(5.10) (I) =

∫ t

0
∂tf(s,Xs)ds+

∫ t

0
∂xf(s,Xs)b(s)ds,

(5.11) (II) =

∫ t

0
∂xf(s,Xs)σ(s)dBs +

1

2

∫ t

0
∂2xxf(s,Xs)σ

2(s)ds,

and
(5.12)

(III) =

∫ t

0

∫
|z|>1

[f(s−, Xs− +K(s, z))− f(s−, Xs−)]N (ds, dz)

+

∫ t

0

∫
|z|≤1

[f(s−, Xs− +H(s, z))− f(s−, Xs−)]Ñ (ds, dz)

+

∫ t

0

∫
|z|≤1

[f(s−, Xs− +H(s, z))− f(s−, Xs−)−H(s, z)∂xf(s
−, Xs−)]dsν(dz).

The first term is the deterministic part of the differentiation while the second term
comes from the standard Itô’s formula for stochastic calculus based on Brownian motion.
We will thus focus on the third term, which is specific to this course. This last term itself
is decomposed in three parts : the first part is due to the large jumps while the second and
third ones, which can be somehow put in parallel with the two terms in (II) (first-order
and second-order variations), are due to the small jumps.

5.3. A bit of practice: integration with respect to a Poisson counting measure.

Exercise 27 (Integration with respect to a Poisson counting measure). Let N = (Nt)t≥0

be a Poisson counting measure with intensity λ > 0 and B = (Bt)t≥0 a standard Brownian
motion.

(1) Give a meaning to dNs and dÑs.

(2) Let s 7→ f(s) be a (deterministic) function. Give simple alternative expressions for
the stochastic integrals

(5.13)

∫ t

0
f(s)dNs and

∫ t

0
f(s)dÑs.
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(3) Give a simple description of the stochastic process
∫ t
0 BsdNs (t ≥ 0).

(4) Compute explicitely Xt :=
∫ t
0 Ns−dNs. Same question for the compensated version of

the integral. Why do we need to write s− instead of s?

(5) Use Itô’s formula to write Yt = N2
t as a Lévy-type stochastic integral and check that

dYt ̸= 2Nt−dNt.

5.4. A quick look at infinitesimal generators. Infinitesimal generators are tools to
describe the evolution of a Markov process X = (Xt)t≥0. Let us assume that for functions
f in certain space (called domain of the generator), the following limit exists:

(5.14) Lf(x) := lim
h→0

E
[f(Xh)− f(X0)

h

∣∣∣X0 = x
]
.

Then L is a linear functional defined on this domain, called generator of the process.
Suppose X is a one-dimensional Lévy process with triplet (b, σ2, ν). An application of Itô’s
formula shows that for smooth enough functions f we have

(5.15) Lf(x) = bf ′(x) + 1
2σ

2f ′′(x) +

∫
R
[f(x+ z)− f(x)− zf ′(x)1{|z|≤1}]ν(dz).

Exercise 28. Identify the drift, Brownian and jump components. Identify the local and
non-local parts of the operator L. Find an analogy between the infinitesimal generator and
the Lévy-Khintchine formula in Theorem 3.1.

6. Stochastic differential equations

6.1. Existence and uniqueness of solutions. Let σ, b : R → R and F,G : R × R → R
be measurable (deterministic) functions. In this section, a stochastic differential equation
(SDE) is an equation of the form

(6.1)

Yt = Y0 +

∫ t

0
b(Ys−)ds+

∫ t

0
σ(Ys−)dBs +

∫ t

0

∫
{|z|≤1}

F (Ys− , z)Ñ (ds, dz)

+

∫ t

0

∫
{|z|>1}

G(Ys− , z)N (ds, dz),

where the stochastic process Y = (Yt)t≥0 is the unknown process and Y0 is assumed to be
a square-integrable F0-measurable random variable (hence it is independent of B and N ).

Definition 6.1. A solution of the SDE above, if it exists, is any adapted càdlàg process Y
such that for all t ≥ 0, the equality in (6.1) holds a.s. A solution is said to be unique if,

for any pair of solution Y (1) and Y (2), we have P(∀t ≥ 0, Y
(1)
t = Y

(2)
t ) = 1.

Assumption 6.1. There exists K ∈ (0,∞) such that, for all y, y′ ∈ R,

(i) |b(y)− b(y′)|2 + |σ(y)− σ(y′)|2 +
∫
{|z|≤1} |F (y, z)− F (y′, z)|2ν(dz) ≤ K|y − y′|2;

(ii) |b(y)|2 + |σ(y)|2 +
∫
{|z|≤1} |F (y, z)|

2ν(dz) ≤ K(1 + |y|2)

and for all |z| > 1,

(iii) y 7→ G(y, z) is continuous.

Theorem 6.1. There exists a unique solution to the SDE in (6.1) under Assumption (6.1).
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6.2. Proof without the large jumps. For simplicity, we first assume in this section that
G = 0 (no large jumps). We shall only focus on the jump component and hereby assume
that b and σ are identically zero. The main idea of the proof is Picard iteration. Define,
for all t ≥ 0 and n ∈ N,

(6.2)

Y
(0)
t = Y0

Y
(n)
t = Y0 +

∫ t

0

∫
|z|≤1

F (Y
(n−1)
s− , z)Ñ (ds, dz).

Here are the main steps of the proof.

(1) Note that, for all n ∈ N, (Y (n)
t ) is a square-integrable càdlàg martingale.

(2) Define

(6.3) yn(t) := E
(

sup
0≤s≤t

|Y (n)
s − Y (n−1)

s |2
)
,

and prove that

(6.4)

y1(t) ≤ 4t

∫
|z|≤1

E
(
F (Y0, z)

2
)
ν(dz),

yn+1(t) ≤ C1(t)K

∫ t

0
yn(s)ds.

(3) Deduce thereof that for all t, (Y
(n)
t )n∈N is a Cauchy sequence in L2 and denote by Yt

the limit (in L2).

(4) Prove that the convergence holds a.s. and that t 7→ Yt is adapted and càdlàg. Hint:
prove that for some constant C = C(t),

(6.5) P
(

sup
0≤s≤t

|Y (n)
s − Y (n−1)

s | ≥ 2−n
)
≤ Cn

n!
,

and deduce thereof that Y (n) converges a.s. and uniformly to Y on compact sets.

(5) Define

(6.6) Ỹt := Y0 +

∫ t

0

∫
|z|≤1

F (Ys− , z)Ñ (ds, dz)

and check that, for all t, Y
(n)
t converges to Ỹt in L

2. Deduce thereof that Ỹt = Yt a.s.
(This concludes the existence part of the proof)

(6) Prove uniqueness of solutions.

6.3. Proof with the large jumps. For simplicity, we stick to the case where b = σ = 0.
We now briefly explain how to incorporate the large jumps to the solution. Let Ŷ be
the solution of the SDE with G = 0. Let (Ti, Zi)i∈N be the atoms of the RPM N on
R+ × {z : |z| > 1}. Define

(6.7)

Yt = Ŷt (0 < t < T1)

YT1 = YT−
1
+G(YT−

1
, Z1)

Yt = YT1 + Ŷ
(1)
t (t− T1) (T1 < t < T2)

YT2 = YT−
2
+G(YT−

2
, Z2)
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where Ŷ (1) is the unique solution of the SDE with G = 0 and initial condition YT1 , and so
on, recursively. One can check that Y solves the SDE.

7. Exponential martingales and change of measures

Throughout this section, X = (Xt)t≥0 is a one-dimensional Lévy process with Lévy
triplet (b, σ2, ν).

7.1. Doléans-Dade exponential. We consider the following SDE

(7.1) dSt = St−dXt,

which describes for instance the evolution of the price of a risked asset.

Exercise 29. Check that (7.1) has a unique solution (given some initial condition).

We remind from standard stochastic calculus (see [8, Section 8.4.2]) that if Xt = σBt

(i.e. b = 0 and ν = 0) then

(7.2) St = S0 exp
(
σBt −

1

2
σ2t

)
and we note that (i) the solution is a martingale and (ii) the solution is not the usual
exponential. Let us now come back to the general case, to which we add the following:

Assumption 7.1. ν((−∞,−1]) = 0.

Under this assumption (which guarantees that the process remains positive, as we may
expect from the price of an asset for instance) we get the following:

Proposition 7.1. The process

(7.3) St := S0 exp
(
Xt −

1

2
σ2t

) ∏
0<s≤t

(1 + ∆Xs)e
−∆Xs , (t ≥ 0)

is well-defined and solves the SDE in (7.1). Moreover, there exists a process L = (Lt)t≥0

such that St = S0 exp(Lt).

The process S = (St) is called a Doléans-Dade exponential.

Remark 7.1. The product in (7.3) may be rewritten as the exponential of

(7.4)
∑

0<s≤t

log(1 + ∆Xs)−∆Xs,

and log(1 + δ) − δ is equivalent to −1
2δ

2 as δ → 0 (compare to the Brownian part). This
sum is well-defined, by Proposition 4.6.

Exercise 30. The goal of this exercise is to prove Proposition 7.1.

(1) Determine L = (Lt) and write it as a Lévy-type stochastic integral.

(2) Prove that L is actually a Lévy process and identify its Lévy triplet.

(3) Apply Itô’s formula to f(Lt), where f ∈ C2(R).
(4) Pick f = exp and conclude.

Exercise 31. Let (Nt) be a Poisson counting process with unit rate. Prove that t ∈
[0,∞) → 2Nt is the unique solution of the stochastic differential equation dSt = St−dNt

with initial condition S0 = 1, using (i) Itô’s formula, or (ii) Proposition 7.1, or (iii) a
more elementary approach, where dSt and dNt are seen as random measures.



JUMP PROCESSES 21

7.2. Exponential martingales. In this section, X is a Lévy process with triplet (b, σ2, ν).
We now want to find a condition under which the exponential of Lévy process (such as the
Doléans-Dade exponential from Section 7.1) is a martingale. An application will be given
in Section 8 (determination of a risk-neutral measure in option pricing).

Proposition 7.2. Assume
∫∞
1 ezν(dz) <∞. The process (eXt)t≥0 is a martingale iff

(7.5) b+ 1
2σ

2 +

∫ (
ez − 1− z1{|z|≤1}

)
ν(dz) = 0.

Exercise 32. Using Proposition 7.2 and Question (2) in Exercise 30, give a condition for
the Doléans-Dade exponential defined in (7.3) to be a martingale.

7.3. Change of measures. Let us first recall a few definitions. Let m1 and m2 be two
measures on a measurable space (X ,A). We say that m1 is absolutely continuous with
respect to m2, which is denoted by m1 ≪ m2, if for all A ∈ A, m2(A) = 0 implies that
m1(A) = 0. The two measures are said to be equivalent if m1 ≪ m2 and m2 ≪ m1. In
this section we will inspect conditions under which probability measures corresponding to
Lévy processes with different Lévy triplets are equivalent (on a finite time horizon).

Let us start with the simpler case of Brownian motions with drifts (no jump component).

Proposition 7.3. Let P1 (resp. P2) be the law of a Brownian motion with drift b1 (resp.
b2) and standard deviation σ1 > 0 (resp. σ2 > 0). The probability measures P1 and P2

restricted to Ft are equivalent iff σ1 = σ2, in which case

(7.6)
dP1

dP2

∣∣∣
Ft

= exp
(b1 − b2

σ2
Bt −

1

2

b21 − b22
σ2

t
)
, (σ := σ1 = σ2).

Let us now treat the case of two Poisson counting processes (jumps have size one) with
different parameters.

Proposition 7.4. Let P1 (resp. P2) be the law of a Poisson counting process with intensity
λ1 (resp. λ2). The probability measures P1 and P2 restricted to Ft are equivalent and

(7.7)
dP1

dP2

∣∣∣
Ft

= exp
(
log(λ1/λ2)Nt − (λ1 − λ2)t

)
.

We now provide a more general formula for compound Poisson process.

Proposition 7.5. Let P1 (resp. P2) be the law of a CPP with finite jump measure ν1
(resp. ν2). The probability measures P1 and P2 restricted to Ft are equivalent iff ν1 and
ν2 are equivalent, in which case

(7.8)
dP1

dP2

∣∣∣
Ft

= exp
( ∑

0<s≤t :
∆Xs ̸=0

ϕ(∆Xs)− (ν1(R)− ν2(R))t
)
, ϕ(z) := log

dν1
dν2

(z).

Exercise 33. Check that (7.8) is consistent with (7.7).

Exercise 34. Using Proposition 7.2, check that the processes appearing on the right-hand
sides of (7.6), (7.7) and (7.8) are martingales w.r.t. P2.
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8. Application to finance

Let S = (St) and A = (At) be two stochastic processes that respectively describe
the evolution in time of the values of a risk asset (like stock) and a risk-free asset (like
bank account). Unless stated otherwise, the risk-free asset follows the simple deterministic
evolution At = A0e

rt, where r is the interest rate. A portfolio (U, V ) is a couple of processes
such that Ut and Vt are the amounts of units of risk and risk-free assets (respectively) at
time t. It is such that (Ut, Vt) only depends on the past, that is (Ss)0≤s<t, and not on the
future (Ss)s≥t. The value of the portfolio at time t shall be denoted by

(8.1) Wt := UtSt + VtAt.

We will first recall the notions of arbitrage opportunities and complete markets by way
of simple discrete models. Then, we remind the Black-Scholes pricing formula in the case
when the stock value evolves according to Brownian motion. Finally we consider a model
where the stock value evolves according to a Lévy process (with possible jumps) and we
will see how it may lead to incomplete markets.

8.1. Reminders on arbitrage opportunities, contingent claims and complete
markets.

8.1.1. Arbitrage opportunities.

Definition 8.1 (S.F.P). A portfolio is self-financing (S.F.P.) when any risk asset bought
is paid for from the risk free asset holdings, and vice-versa.

Definition 8.2 (Arbitrage opportunity). There is an arbitrage opportunity if there exists
a S.F.P. W = (Wt) such that W0 = 0 (a.s.) and, for some t > 0,

(1) P(Wt ≥ 0) = 1,

(2) P(Wt > 0) > 0.

In other words, there is an arbitrage opportunity when there exists a portfolio that
guarantees a positive chance of making profit without any risk of loss. Let us illustrate
this notion with a simple example.

Example 8.1 (One-period model, see [15]). Let us consider a simple time evolution with
only an initial time (t = 0) and a final time (t = 1). We assume that between these two
times, the stock value may jump from its initial state S0 to two possible distinct final states
S1(−) and S1(+), depending on two possible scenarii. For instance, S0 is the initial stock
value of an ice-cream company, S1(−) its value after a cold summer (bad scenario) and
S1(+) its value after a hot summer (good scenario), with of course S1(−) < S1(+). The
initial portfolio value is assumed to be zero: if U0 < 0 < V0 this means selling U0 shares of
risk asset to buy V0 units of risk-free asset; if V0 < 0 < U0, this means the opposite. There
is arbitrage opportunity in the two following cases:

Case 1: risk-free asset is uniformly preferable to risk asset. This happens when

(8.2)
S0
A0

>
S1(+)

A1
.

Indeed, in this case we pick U0 < 0 < V0 and get:

(8.3) W1 ≥ U0S1(+) + V0A1 = V0A0

(A1

A0
− S1(+)

S0

)
> 0.

We get the equality above from the initial condition W0 = U0S0 + V0A0 = 0.
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Case 2: risk asset is uniformly preferable to risk-free asset. This happens when

(8.4)
S1(−)

A1
>
S0
A0
.

Indeed, in this case we pick V0 < 0 < U0 and get

(8.5) W1 ≥ U0S1(−) + V0A1 = U0S0

(S1(−)

S0
− A1

A0

)
> 0.

A first lesson is to be learned from this elementary example: to investigate the existence
of arbitrage opportunities, we should not consider the arithmetic increase of the risk asset
but rather its geometric (or logarithmic) increase with respect to that of the risk-free asset.
Equivalently, we may consider the logarithmic increase of the discounted risk asset, defined
and denoted by

(8.6) S̃t := A−1
t St, t ≥ 0.

Let us now turn to the notion of arbitrage-free price of a contingent claim.

Definition 8.3. A contingent claim (or derivative security) with maturity T > 0 is a
contract that provides the owner with a payoff dependent on the performance of (Ss)0≤s≤T .

Example 8.2 (European call option). This contingent claim (bought at some initial time
t = 0) gives the option to buy stock at a fixed later time T (expiration time) at a given
price k (strike price or exercise price). The corresponding payoff equals (ST − k)+, where
(·)+ is the positive part of some real number.

The question that motivates the rest of the section is the following: what should be the
fair price of such contingent claim? We first give some basic definitions, which we shall
then illustrate with a continuation of Example 8.1.

Definition 8.4. Let us consider a contingent claim with maturity T > 0 and payoff ZT .
If there exists a S.F.P with value WT = ZT at time T then such a portfolio is called a
hedging portfolio process replicating the contingent claim. The value W0 = U0S0+V0A0 of
the hedging portfolio at time 0 is called the arbitrage-free price of the derivative security.

If the option sells at P > W0 there is an opportunity of risk-free profit for the seller. If
the option sells at P < W0 there is an opportunity of risk-free profit for the buyer.

Example 8.3 (Continuation of Example 8.1). Consider a contingent claim with payoff
W1(−) and W1(+) (we choose this notation for the payoff by anticipation of the hedging
portfolio). To compute the hedging portfolio (U0, V0) that replicates this contingent claim,
we must solve the linear equation:

(8.7)
U0S1(+) + V0A1 =W1(+)

U0S1(−) + V0A1 =W1(−).

The solution is

(8.8)

(
U0

V0

)
=

(
S1(+) A1

S1(−) A1

)−1(
W1(+)
W1(−)

)
,

hence

(8.9) W0 = U0S0 + V0A0 =
A0

A1

(
qW1(+) + (1− q)W1(−)

)
,
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where

(8.10) q :=
S0

A1
A0

− S1(−)

S1(+)− S1(−)
∈ (0, 1),

provided we are in the regime free of any arbitrage opportunity. In conclusion the arbitrage-
free price may be written

(8.11) W0 =
A0

A1
Eq(W1),

where Pq is the measure that puts probability q to the plus scenario and 1− q to the minus
scenario. The ratio A0/A1 is a discount (see discussion below Example 8.1). Note that q
has nothing to do in general with the actual probability (say p) of plus scenario happening.
However, one should keep in mind that the probability measures Pp and Pq are equivalent,
provided p ∈ (0, 1).

In the example above, any contingent claim can be hedged by a S.F.P. This leads to the
following definition:

Definition 8.5 (Complete model). A market model is complete if every contingent claim
can be hedged by a S.F.P.

Let us end this section with a slightly more elaborate model, which turns out to be
complete as well, and will serve as a transition with the continuous-time stochastic models
below.

Exercise 35 (n-period model – Continuation of Examples 8.1 and 8.3). Suppose time is
discrete, with index k ∈ {0, 1, . . . , n}. The risk asset evolves as the exponential of a random
walk, that is Sk = eRk , where

(8.12) R0 = 0 and Rk =
∑

1≤i≤k

Xi,

with (Xi)1≤i≤n a collection of i.i.d. random variables with common law

(8.13) Pp(X1 = 1) = 1− Pp(X1 = −1) = p ∈ (0, 1).

LetWn : {−1, 1}n → R be a contingent claim, where each element of {−1,+1}n corresponds
to a realization of the random vector (Xi)1≤i≤n.

(1) Suppose first that A0 = A1 = . . . = An = 1 (no interest rate). Let q := 1/(1 + e).
Prove that the value of the contingent claim at time k ∈ {0, 1, . . . , n} is given by

(8.14) Wk = Eq(Wn|Fk), where Fk = σ(X1, . . . , Xk) if k > 0 and F0 = {∅,Ω}.
(2) We now consider the case A0 = 1 and r ∈ (−1, 1) (arbitrage-free model with interest

rate). Check that the value of the contingent claim at time k ∈ {0, 1, . . . , n} is now
given by

(8.15) Wk = e−r(n−k)Eq(Wn|Fk),

for a new value of q ∈ (0, 1).

(3) Check that the discounted process (S̃k) := (e−rkSk) is a martingale under Pq.

We proved in the exercise above that the n-period model is complete as well. Moreover,
we showed that the value of the contingent claim at any time may be written as the
conditional expectation of its value at maturity. The corresponding probability measure is
equivalent (but not necessarily equal) to the probability measure underlying the evolution
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of the risk asset value. The fact that there exists such an equivalent probability measure
(called risk-neutral measure) under which the discounted risk asset value is a martingale,
is actually a general feature of market models that are free of arbitrage opportunities. The
fact that it is unique is a feature of complete markets. This is the fundamental theorem of
asset pricing, see Propositions 9.1 to 9.3 in [4].

8.2. Reminders on the Black-Scholes pricing formula. Let us illustrate once more
the fundamental theorem of asset pricing, this time with a continuous-time model such that
the stock (risk asset) value evolves according to Brownian motion (no jump). This will
eventually lead us to the famous Black-Scholes pricing formula. An example of a market
model with jumps shall be treated in the next section. To simplify, we assume A0 = 1.

Throughout this section, B = (Bt) is a standard Brownian motion and the corresponding
Wiener measure is denoted by P. We assume that the stock process satisfies the following
S.D.E

(8.16) dSt = St−(σdBt + µdt),

the solution of which writes

(8.17) St = S0 exp(σBt + [µ− 1
2σ

2]t).

We shall first seek a probability measure equivalent to P under which the discounted process
is a martingale. Then we use it to find the arbitrage-free value (as well as a replicating
portfolio) for any contingent claim.

8.2.1. Girsanov transform. Let Y = (Yt) be a stochastic integral of the form

(8.18) Yt =

∫ t

0
G(s)ds+

∫ t

0
F (s)dBs

(with F and G to be determined later) and such that (eYt) is a P-martingale.

Exercise 36. Check that the martingale above defines a probability measure Q equivalent
to P (if restricted to [0, t] for any t) such that

(8.19)
dQ

dP

∣∣∣
Ft

= eYt , (t ≥ 0).

Hint: use Kolmogorov’s extension theorem, see [8, Theorem 6.3] or [7, Section 2.2]. See
also [6, Chap. VII] for the extension theorem in a general case.

By Girsanov’s theorem (see Justin Salez’s lecture notes or [8, Theorem 5.22] for a general
formulation), the process

(8.20) BQ(t) := Bt −
∫ t

0
F (s)ds

is a Q-martingale.

Exercise 37. Assume σ > 0. Compute dS̃t and find the only choice of F that guarantees

(S̃t) to be a Q-martingale. Find the corresponding value of G. In this case, check that we
may write

(8.21) dS̃t = σS̃t−dBQ(t).



26 JULIEN POISAT

8.2.2. Derivation of the replicating portfolio and pricing. Let Z be a contingent claim with
expiration time T > 0. Let us define the process

(8.22) Zt := A−1
T EQ(Z|Ft) = e−rTEQ(Z|Ft), t ∈ [0, T ].

One may check that this process is aQ-martingale. Hence, by themartingale representation
theorem (see Djalil Chafäı’s lecture notes or [8, Theorem 5.18]), there exists a process (δt)
such that

(8.23) dZt = δtdBQ(t).

Combining the equality above with (8.21), we obtain

(8.24) dZt = γtdS̃t, γt :=
δt

σS̃t
.

This allows us to define the following portfolio:

(8.25)
Ut := γt

Vt := Zt − γtS̃t, 0 ≤ t ≤ T.

Exercise 38. The goal of the present exercise is to prove that the portfolio we have just
defined is a hedging portfolio.

(1) For all t ∈ [0, T ], compute the value of the portfolio Wt = UtSt + VtAt.

(2) Deduce thereof that the portfolio is replicating.

(3) Prove that dWt = UtdSt + VtdAt, hence (U, V ) is a S.R.P.

(4) Compute the arbitrage-free value of the contingent claim.

We conclude this section with

Exercise 39 (Black-Scholes formula). Apply Question (4) of Exercise 38 in the case of a
European call option (see Example 8.2) and deduce the Black-Scholes pricing formula.

8.3. Merton’s model. Robert Merton first applied jump processes to option pricing in
1976. On a probability space (Ω,A,P), let X = (Xt) be the following Lévy process:

(8.26) Xt = µt+ σBt +
∑

1≤i≤Nt

Yi,

where B = (Bt) is a standard Brownian motion, N = (Nt) is a Poisson counting process
with intensity λ > 0 and Y = (Yi)i∈N is a sequence of i.i.d. random variables with distribu-
tion N (m, v2). The processes B, N and Y are independent. Let us start with a warm-up
exercise.

Exercise 40. Let (b, σ2, ν) be the Lévy triplet of X. Find the values of b and ν.

In the present model we assume that the risk asset value is given by

(8.27) St = S0 exp(Xt), t ≥ 0.

Our goal is to show that there may exist several risk-neutral measures, hence such model
is (in general) not complete.
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8.3.1. Playing with the drift. Suppose σ > 0. By using Proposition 7.3 we may find a
measure Q1 equivalent to P such that, under Q1, X has Lévy triplet (b′, σ2, ν), with

(8.28)
b′ − b

σ2
=: η ∈ R.

By Proposition 7.2, we get that S̃t = S0 exp(Xt − rt) is a Q1-martingale provided

(8.29) b′ − r + 1
2σ

2 +

∫ (
ez − 1− z1{|z|≤1}

)
ν(dz) = 0.

This allows us to find the value of b′ (or equivalently, of η) such that Q1 is a risk-neutral
measure.

8.3.2. Exponential tilting of the jump measure. The technique of the previous section does
not apply if σ = 0. Another solution consists in changing the jump measure. More precisely,
we consider the one-parameter family of measures defined by

(8.30) νθ(dz) := eθzν(dz), θ ∈ R.

Exercise 41. Check that for all θ ∈ R, νθ is a Lévy measure.

This technique of exponential tilting is standard in Large Deviation Theory. In this
context, it is also known as the Esscher transform. By applying the change of measure in
Proposition 7.5 with (ν1, ν2) = (νθ, ν), we get a new measure Q2 equivalent to P (on finite
intervals) under which X has Lévy triplet (b′, σ2, νθ), with

(8.31) b′ := b+

∫ 1

−1
z(eθz − 1)ν(dz).

Therefore, (S̃t) is a Q2-martingale if θ solves the equation

(8.32) b− r + 1
2σ

2 + f(θ) = 0,

where

(8.33) f(θ) :=

∫ ∞

−∞
(ez − 1− z1{|z|≤1})e

θzν(dz) +

∫ 1

−1
z(eθz − 1)ν(dz).

We conclude with the following exercise:

Exercise 42. The aim of this exercise is to prove that (8.32) has a unique solution.

(1) Compute f ′ and prove that f is nondecreasing.

(2) Using that ν((0,∞)) and ν((−∞, 0)) are both positive, prove that there exists a con-
stant M ∈ (0,∞) such that f ′(θ) ≥M for all θ ∈ R.

(3) Conclude.

9. Beyond the Markov property : Hawkes processes

We have treated so far the case of jump processes that have independent stationary
increments and satisfy the Markov property. In this section we give an example of a jump
process the evolution of which may depend on the past history of the process.

Let N = (Nt)t≥0 be a counting process, that is a nondecreasing process starting at
N0 := 0, with jumps of size one. Let µ > 0 and φ : R+ → R+ be a locally bounded
function.
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Definition 9.1 (Hawkes process). Suppose that t 7→ Nt−λ(t) is a local martingale, where

(9.1) λ(t) := µt+

∫ t

0

∫ s

0
φ(s− u)dNuds.

The process (Nt) is called a Hawkes process.

If φ = 0 then (Nt) is actually a Poisson counting measure with intensity λ, so depen-
dence on the past is encoded in φ, which is typically chosen as a decreasing function (close
past events have a stronger influence on the evolution of the process than remote ones).

We shall now prove that such processes exist by means of an explicit construction. We
first iteratively define a sequence of jump times by T0 := 0, T1 distributed as E(µ) and, for
all n ∈ N,

(9.2) P(Tn+1 > Tn+s|T1, . . . , Tn) = exp
(
−µs−

∫ s

0

∑
1≤i≤n

φ(u+Tn−Ti)du
)
, (s ≥ 0).

We now simply define (Nt) as the counting process associated to these jump times. Let us
prove that this process satisfies the local martingale property, by a formal derivation. To
be more precise, we shall prove below that

(9.3) P((Nt) makes a jump in [t, t+ dt]|Ft) = λ′(t)dt.

Suppose that Tn ≤ t < Tn+1 for some positive integer n (the only other remaining case
n = 0 can be treated separately). The probability in (9.3) equals

(9.4) 1− P(Tn+1 > t+ dt|T1, . . . Tn)
P(Tn+1 > t|T1, . . . Tn)

.

By (9.2), this quantity equals

(9.5)
(
µ+

∑
1≤i≤n

φ(t− Ti)
)
dt =

(
µ+

∫ t

0
φ(t− s)dNs

)
dt = λ′(t)dt,

which concludes the proof.

Appendix A.

A.1. Hilbert spaces.

Lemma A.1. Let H be a pre-Hilbert space (i.e. equipped with an inner product) and S a
linear subspace of H. Then S is dense in H if and only if the orthogonal of S is reduced
to {0}.

Proof of Lemma A.1. Use that (S⊥)⊥ = S̄. ■

A.2. Measurability.

Proposition A.1. Let φ = (φi)i∈I be a collection of mappings from X to (Y,AY ) and
Ψ: (Z,AZ) 7→ X. Then, Ψ is measurable from AZ to σ(φi, i ∈ I) iff for all i ∈ I, φi ◦ Ψ
is measurable from AZ to AY .
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A.3. Simple functions. Let (Ω,A) be a measurable space. We recall that a simple func-
tion is a measurable function which can only take finitely many values.

Lemma A.2. Any [0,+∞]-valued measurable function may be written as the point-wise
nondecreasing limit of simple functions.

Proof of Lemma A.2. From [10, Lemme 4.3.3]. Let us call f the [0,+∞]-valued measurable
function under consideration. For all n ∈ N, define
(A.1) ϕn(x) = 2−n⌊2nx⌋1[0,n](x)
for x < +∞ and ϕn(+∞) = n. Check that the sequence of simple functions (fn) defined
by fn = ϕn ◦ f non-decreasingly converges to f (point-wise convergence). Check that the
convergence is actually uniform on the set of points where f is finite. ■

Let µ be a measure on (Ω,A).

Lemma A.3. The set of simple functions is dense in any Lp(µ), for p ∈ [1,+∞).

Proof of Lemma A.3. From [10, Théorème 7.3.1]. Let f ∈ Lp(µ), where p ∈ [1,+∞). Pick
fn as in the proof of Lemma A.2 and check that |fn − f |p ≤ fp. Conclude. ■

A.4. Weak convergence.

Theorem A.1 (Prokhorov). Any tight collection of probability measures is relatively com-
pact (for the topology of weak convergence).

A.5. Càdlàg martingales.

Proposition A.2. Let (fn) be a sequence of Rd-valued càdlàg functions (defined on a
subset of the real line) converging uniformly to f . Then, f is also càdlàg.

The metric space Rd may actually be replaced by any complete metric space. The state-
ment is false when uniform convergence is replaced by the weaker point-wise convergence,
as one may check by considering the example

(A.2) f(t) = sin
(1
t

)
1{t > 0} and fn(t) = sin

( 1

t+ 1
n

)
1{t > 0}, n ∈ N.

Proposition A.3 (Doob’s inequality in Lp). Let (Xt)t≥0 be a martingale with right-
continuous sample paths. For t > 0 and p > 1,

(A.3) E
[

sup
0≤s≤t

|Xs|p
]
≤

( p

p− 1

)p
E(|Xt|p).

See [8, Proposition 3.15].

A.6. Grönwall’s lemma.

Lemma A.4. Let (x(t)) be a non-negative function that is integrable on [0, T ] (w.r.t.
Lebesgue measure) and satisfies

(A.4) x(t) ≤ α+ β

∫ t

0
x(s)ds, t ∈ [0, T ],

for some constants α, β ≥ 0. Then, xt ≤ αeβt for all t ∈ [0, T ].
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Proofs

Proof of Proposition 1.1. The first statement is quite clear from the definition. In order to
prove the other two points we shall prove that for suitable functions f and g,

(A.5) E[f(Nu, u ≤ t)g(Nt+s −Nt)] = E[f(Nu, u ≤ t)]E[g(Ns)].

We decompose the expectation on the left-hand side according to the countable partition
of events An = {Tn ≤ t < Tn+1}, (n ∈ N0). On An, we may write

(A.6) Nt+s −Nt =
∑
k∈N

1{Tn+k≤t+s} =
∑
k∈N

1{T̃n,k≤s},

where T̃n,k := Tn+k−t. It is now a matter of checking that conditionally on An, the sequence

(T̃n,k)k≥1 is independent of (Nu)u≤t and follows the same law as (Tk) (the assumption that
the inter-arrival times are exponentially distributed is here crucial). Hint : check that for
all i, n ∈ N and all bounded measurable functions ϕ : Rn → R, ψ : Ri → R,

(A.7)
E[ϕ(T1, . . . , Tn)1{Tn≤t<Tn+1}ψ(T̃n,1, . . . , T̃n,i)|T1, . . . Tn]

= ϕ(T1, . . . , Tn)1{Tn≤t}e
λ(Tn−t)E[ψ(T1, . . . , Ti)]

and conclude. ■

Proof of Proposition 2.1. Use Proposition A.1. ■

Proof of Proposition 2.2. This follows from the fact that the law of a random measure N
is characterized by the collection of joint laws:

(A.8) (N (B1), . . . ,N (Bk)), k ∈ N, B1, . . . , Bk ∈ B(E),

which itself comes from the definition of a random measure and Dynkin’s theorem. ■

Proof of Proposition 2.3. The first condition of the definition of a RPM is proved by using
that the sum of independent Poisson random variables is still a Poisson random variables.
Let us check the second condition. Let B1, . . . , Bm be pairwise distinct Borel sets. Define
Xi,j = Ni(Bj) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. One may check using Proposition 2.2 that
these n×m random variables are (mutually) independent. Therefore, the random variables

(A.9)
( ∑

1≤i≤n

Ni(B1), . . . ,
∑

1≤i≤n

Ni(Bm)
)

are independent. We may finally conclude by letting n→ ∞. ■

Proof of Proposition 2.4. The fact that each Nn is RPM(mn) is quite clear. To prove
the second part of the proposition, we use the characterization of independence given in
Proposition 2.2 (see also the remark just below it) which we combine with the second part
of the definition of a RPM and the fact that the En’s are disjoint. ■

Proof of Proposition 2.5. We first check the four relations when f is a simple function, that
is, when there exist k ∈ N, real numbers a1, . . . , ak and disjoint Borel sets B1, . . . , Bk such
that

(A.10) f =
∑

1≤i≤k

ai1Bi .

Suppose now that f is a non-negative measurable function. Then, there exists a sequence of
simple functions (fn) that converge non-decreasingly to f . Thus, we get (i), (iii) and (iv) for
such functions thanks to the monotone convergence theorem and dominated convergence,
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respectively. To complete the proof of (i), let us decompose f ∈ L1(E,m) as f+ − f−,
where f+ and f− are the positive and negative parts, respectively. From what precedes,

(A.11) E
(∫

f+dN
)
=

∫
f+dm <∞, E

(∫
f−dN

)
=

∫
f−dm <∞,

so

(A.12)

∫
fdN :=

∫
f+dN −

∫
f−dN

is integrable, with

(A.13) E
(∫

fdN
)
:=

∫
f+dm−

∫
f−dm =

∫
fdm.

To extend (ii) to the square-integrable functions, we may use the density of simple functions
on E in L2(E,m) (see Lemma A.3). Hint : Pick a sequence of simple functions (fn)
converging to f in L2(E,m) and define Xn :=

∫
fndN . Prove that (Xn) is a Cauchy

sequence in the Hilbert space of square integrable random variables and that its limit (in
the L2 sense) necessarily coincides with

∫
fdN . Let us now prove that (iv) extends to

integrable functions. Let f ∈ L1(E,m). There exists a sequence of simple functions (fn)
which converge to f in L1(E,m). This readily implies that

∫
(eifn − 1)dm converges to∫

(eif − 1)dm as n → ∞. By using (i) we get that the sequence of random variables
(
∫
fndN ) converges to

∫
fdN in L1(Ω,P). Therefore, the convergence also holds a.s. on a

subsequence (use the Markov inequality and the Borel-Cantelli lemma). By the dominated

convergence theorem, we get that E(ei
∫
fndN ) converges to E(ei

∫
fdN ) (on a subsequence).

We may conclude by uniqueness of the limit. Note: another way to obtain (i) and (ii) from

(iii) is by differentiation of the function λ 7→ E(e−λ
∫
fdN ). ■

Proof of Proposition 2.6. Statements (2) and (3) are clearly equivalent, since there exists
C > 0 such that

(A.14) C(1 ∧ x) ≤ 1− e−x ≤ 1 ∧ x (x ≥ 0).

Let us now prove that (2) implies (1). To this purpose, we make two observations:

(i) if
∫
fdm is finite, then

∫
fdN is a.s. finite, by the first item of Proposition 2.5.

(ii) if m(E) is finite then
∫
fdm is a.s. finite, see Exercise 7.

We now write
∫
fdN as the sum of the restrictions to {|f | ≤ 1} and {|f | > 1}, to which

we apply (i) and (ii) respectively. This proves the desired implication. We finally prove
that (1) implies (3). By the third item in Proposition 2.5, we get

(A.15) E
(
e−

∫
fdN

)
= exp

(∫
(e−f − 1)dm

)
> 0,

which implies that
∫
(1− e−f )dm is finite. ■

Proof of Proposition 2.7. We proceed in several steps.
Step 1. We first deal with the part of the integral which corresponds to large values of f .
Let F = {x ∈ E : |f(x)| > 1}. Note that

(A.16) m(F ) ≤
∫
F
|f |dm =

∫
F
(|f | ∧ f2)dm ≤

∫
(|f | ∧ f2)dm <∞.

Thus we get that
∫
F fdm and

∫
F fdN are both a.s. finite, hence

∫
F fd(N −m) is well-

defined. Henceforth we shall assume that |f | ≤ 1, so that our assumption becomes
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∫
f2dm <∞.

Step 2. We now prove convergence of the sequence (In). Let

(A.17) ∆Ik :=

∫
Ek

fd(N −m)§, (k ∈ N).

One can check that

(A.18) E(∆Ik) = 0, Var(∆Ik) =

∫
Ek

f2dm.

Moreover, the ∆Ik’s are independent, by Proposition 2.4. Therefore, (In) is a martingale.
Since

∫
f2dm < ∞, it is bounded in L2 so the sequence converges a.s. and in L2 to a

square-integrable random variable with variance
∫
f2dm.

Step 3. Let us finally check that the limit does not depend on the choice of the parti-
tion. Let (Ek)k≥1 and (Fℓ)ℓ≥1 two countable partitions. It is enough to show that the
corresponding limits coincide with that of the third partition (Ek ∩ Fℓ)k,ℓ≥1 (left to the
reader). ■

Proof of Proposition 3.1. (1) Let X be a random variable with law µ, which we assume
to have bounded support. Therefore there exists M > 0 such that |X| ≤ M almost
surely. Let n ∈ N. Since µ is I.D. there exists n i.i.d. random variables Y1,n, . . . , Yn,n
such that Y1,n + . . . + Yn,n equals X in law. Check that |Y1,n| ≤ M/n almost surely
and deduce thereof that Var(X) = 0, hence µ is a Dirac measure.

(2) Let µn ∈ M1(Rd) such that µ∗nn = µ. For simplicity, we write ϕ and ϕn for the
respective characteristic functions of µ and µn. Check that for all u ∈ Rd,

(A.19) |ϕn(u)|−→1{ϕ(u) ̸=0}, n→ ∞.

Note that |ϕn(·)|2 is the characteristic function of Y − Y ′, where Y and Y ′ are
independent and distributed as µn. From what precedes,

(A.20) |ϕn(u)|2−→1{ϕ(u)̸=0}, n→ ∞.

Since the right-hand side is continuous in a neighborhood of the origin, it is the char-
acteristic function of some probability distribution, by Lévy’s theorem [10, Théorème
11.2.2]. Furthermore, this characteristic function is constant equal to one in a neigh-
borhood of the origin. By continuity, it is actually the characteristic function of the
Dirac measure at the origin. Consequently, ϕ(u) ̸= 0 for all u ∈ Rd.

(3) This part is taken from [13, p. 32-34]. Let us start with existence. Let u ∈ Rd. As
t ∈ [0, 1], ϕµ(tu) draws a continuous curve in C∗. Let hu(t) be the unique branch
of log ϕµ(tu) (multi-valued complex logarithm) such that hu(0) = 0 and hu(t) is
continuous in t (that is the lifting property w.r.t. the covering map exp: C → C∗, see
e.g. [9, Chapter 2]). Define Ψ(u) = hu(1). By definition, Ψ(0) = 0 and exp(Ψ(u)) =
ϕµ(u). We now sketch the proof of continuity for Ψ. To this end, let u0, u ∈ Rd.

Let u : t ∈ [0, 3] 7→ Rd describe a triangle going from u(0) = 0 to u(1) = u0 then to
u(2) = u and back to u(3) = 0. One may check that as t ∈ [0, 3], ϕµ(t) describes

§If need be, we may partition space further by using the collection of disjoint sets {z ∈ Rd : 1
p+1

<

|f(z)| ≤ 1
p
}, where p ∈ N. In this way, f is guaranteed to be bounded from below on each Ek, which yields

that f ∈ L1(Ek,m). Therefore, ∆Ik is well-defined.
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a curve whose rotation number around the origin is zero, provided u is close to u0.
Under the latter condition, the imaginary part of Ψ(u) coincides with the value at
t = 2 of the unique branch of arg ϕµ(u(t)) which is continuous in t and equals zero
at t = 0. Continuity follows. Uniqueness follows from uniqueness of the function hu
defined above.

■

Proof of Proposition 3.2. Let n ∈ N. There exist two (independent) vectors of i.i.d. ran-

dom variables (Y
(i)
1,n)1≤i≤n and (Y

(i)
2,n)1≤i≤n such that the two following equalities hold in

law:

(A.21) Y1 =
n∑

i=1

Y
(i)
1,n, Y2 =

n∑
i=1

Y
(i)
2,n.

Then, we have the following equality in law:

(A.22) α1Y1 + α2Y2 =

n∑
i=1

[α1Y
(i)
1,n + α2Y

(i)
2,n].

Since the random variables (α1Y
(i)
1,n+α2Y

(i)
2,n)1≤i≤n are i.i.d, we may conclude the proof. ■

Proof of Proposition 3.3. For simplicity, we assume d = 1. Let (Xn)n∈N be a sequence of
real random variables such that for all n, Xn is I.D. and follows the law µn. By assumption,
Xn converges in law to a real r.v. X, with law µ. Let p ∈ N, which is fixed throughout the
proof. We want to show that there exists νp ∈ M1(R) such that µ = ν∗pp . By assumption,
there exists a sequence of probability measures (νn,p)n∈N such that µn = ν∗pn,p. The idea
of the proof is to show that this sequence is tight (in n, for every fixed p). Then, by
Prokhorov’s theorem (Theorem A.1), it converges along some subsequence to a limit which
we denote by νp. From what precedes, this convergence enforces the relation µ = ν∗pp . Let
us now check tightness. Let K > 0 and write

(A.23) Xn =
∑

1≤i≤p

X(i)
n,p,

where the X
(i)
n,p’s are independent and distributed as νn,p. Clearly,

(A.24) νn,p(]K,+∞[) = P(X(1)
n,p > K) ≤ P(Xn > Kp)1/p = µn(]Kp,+∞[)1/p.

Since (µn) converges weakly, it is tight, hence µn(]Kp,+∞[)1/p converges to zero as K →
∞ uniformly in n, and the same holds for νn,p(]K,+∞[). A similar argument holds for
νn,p(]−∞,−K[). This settles the proof of tightness. ■

Proof of Theorem 3.1. We will only prove one implication, namely that the characteristic
function being of the given form implies infinite divisibility¶. The case of a finite measure
ν has already been treated in Exercise 14 hence we will explain how to treat the case of
an infinite Lévy measure ν. The main idea is to use a truncation argument. For all k ∈ N,
define

(A.25) Ψk(u) := i⟨b, u⟩ − 1

2
⟨u,Au⟩+

∫
|z|>1/k

(. . .) ν(dz), (u ∈ Rd).

¶To prove the reverse implication, Applebaum [1, Theorem 1.2.14 and bottom of Corollary 2.4.20]
uses the construction of a canonical Lévy process from a given I.D. probability measure and the Lévy-Itô
decomposition, see Section 4 of these notes. See also [5, Theorem 1, Section 3.18]
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By using Exercise 14, we may assert that each Ψk corresponds to some (explicit) I.D.
probability distribution, which we denote by µk. By using the dominated convergence
theorem, we may then prove that Ψk converges (pointwise) to a function Ψ (defined in the
same way as Ψk but without truncating the integral) that is continuous at 0. Hence, by
Lévy’s theorem, the sequence (µk) converges weakly to some µ ∈ M1(Rd). The limit µ is
I.D. by Proposition 3.3. ■

Proof of Proposition 4.1. Let us define Yt = XT+t −XT for all t ≥ 0. We will show that
for all 0 ≤ s1 < s2 < . . . < sn, A ∈ FT and F : (Rd)n 7→ R continuous and bounded,

(A.26) E[F (Ys1 , . . . , Ysn)1A] = E[F (Xs1 , . . . , Xsn)]P(A).

This simultaneously proves that the processes X and Y have the same law (since they have
the same finite-dimensional distributions) and that Y is independent from FT . We proceed
in two steps.

Step 1. Let us first assume that T takes its values in a countable set {tm}m≥1. Then

(A.27) E[F (Ys1 , . . . , Ysn)1A] =
∑
m≥1

E[F (Xtm+s1 −Xtm , . . . , Xtm+sn −Xtm)1A∩{T=tm}].

Note that A∩ {T = tm} ∈ Ftm . By applying the simple Markov property (X has indepen-
dent increments) we get
(A.28)

E[F (Ys1 , . . . , Ysn)1A] =
∑
m≥1

E[F (Xtm+s1 −Xtm , . . . , Xtm+sn −Xtm)]P(A ∩ {T = tm}).

Since X has stationary increments, we obtain

(A.29)
E[F (Ys1 , . . . , Ysn)1A] =

∑
m≥1

E[F (Xs1 , . . . , Xsn)]P(A ∩ {T = tm})

= E[F (Xs1 , . . . , Xsn)]P(A).

Step 2. In general, one can set

(A.30) Tk =
⌊2kT ⌋+ 1

2k
, k ∈ N.

The random sequence (Tk) converges a.s. and non-increasingly to T . Define Y
(k)
s = XTk+s−

XTk
for all s ≥ 0 and note that Y

(k)
s a.s. converges to Ys as k → ∞, by right-continuity of

X. Therefore, we may write

(A.31)

E[F (Ys1 , . . . , Ysn)1A] = lim
k→∞

E[F (Y (k)
s1 , . . . , Y (k)

sn )1A]

= lim
k→∞

E[F (Y (k)
s1 , . . . , Y (k)

sn )]P(A)

= E[F (Ys1 , . . . , Ysn)]P(A).

The first and third equalities above follow from the dominated convergence theorem, while
the second equality follows from the first step of the proof (Tk has a countable support and
one may check that A ∈ FTk

for all k ∈ N). ■

Proof of Proposition 4.2. To prove that Xt is I.D., write

(A.32) Xt =
∑

1≤i≤n

X it
n
−X (i−1)t

n
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and use that X has stationary and independent increments. Let us now prove the second
property. Let us fix u ∈ Rd and define, for all t ≥ 0, Φ(t) := ϕXt(u). By Proposition 3.1,
we may write Φ(1) = exp(Ψ(u)) for some continuous complex-valued function Ψ. From
the definition of a Lévy process, one can check that t 7→ Φ(t) is right-continuous and
Φ(t+ s) = Φ(s)Φ(t). Necessarily, Φ(t) = exp(tΨ(u)). ■

Proof of Theorem 4.1. The fact that a Lévy exponent is of the given form directly follows
from Proposition 4.2 and Theorem 3.1 (Lévy-Khintchine). To prove the reverse statement,
we pick Ψ of the given form and construct a Lévy process with corresponding Lévy expo-
nent ‖. We proceed step by step.

Step 1. The map u ∈ Rd 7→ i⟨b, u⟩ − 1
2⟨u,Au⟩ is the characteristic exponent of the Lévy

process t 7→ bt+
√
ABt (

√
A is an abuse of notation for a matrix M such that A =MM t).

Step 2. If ν does not put any mass on {z : |z| ≤ 1} then u ∈ Rd 7→
∫
Rd [e

i⟨u,z⟩ − 1]ν(dz) is
the characteristic exponent of a CPP(1, ν), which is a Lévy process.

Step 3. Let us now assume that ν only charges {z : |z| ≤ 1} and satisfies
∫
|z|2ν(dz) <∞.

Let N be a RPM on R+ × Rd with intensity dt⊗ dν and define, for all n ∈ N0 and t > 0,

(A.33) X
(n)
t :=

∫
(0,t]×{z : |z|>1/(n+1)}

z dÑ (ds, dz).

By Proposition 2.7, this sequence of random variables converges a.s. and in L2(Ω,P), as
n→ ∞, to

(A.34) Xt :=

∫
(0,t]×Rd

z dÑ (ds, dz).

It is not too difficult to check that (Xt) has independent and stationary increments and
that it has the following characteristic exponent:

(A.35) u ∈ Rd 7→ +

∫
Rd

(
ei⟨u,z⟩ − 1− i⟨u, z⟩

)
ν(dz).

The remaining (and delicate) point is checking that (Xt) has a.s. càdlàg sample paths.

First, one may check that for all n ≥ 1, (X
(n)
t ) is a square-integrable centered martingale

w.r.t. time parameter t and for the natural filtration (use Proposition 1.2). The rest of the
proof follows the same strategy as in the proof of Proposition 1.5 in Salez’s lecture notes
on stochastic calculus. By Doob’s inequality in L2 (see Proposition A.3)

(A.36)

E
(

sup
0≤s≤t

|X(n+k)
s −X(n)

s |2
)
≤ 4 sup

0≤s≤t
E
(
|X(n+k)

s −X(n)
s |2

)
= 4t

∫
{z : 1

n+k+1
<|z|≤ 1

n+1
}
z2ν(dz).

Therefore, there exists an increasing sequence of integers (nk)k≥0 such that n0 = 0 and

(A.37) E
(

sup
0≤s≤t

|X(nk)
s −X

(nk+1)
s |2

)
≤ 2−k × 4t

∫
|z|≤1

z2ν(dz).

‖An alternative proof consists in using [1, Corollary 1.4.6] (canonical Lévy processes)
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By Fubini-Tonelli, we get

(A.38) E
(∑

k≥0

sup
0≤s≤t

|X(nk)
s −X

(nk+1)
s |2

)
<∞.

This implies that for almost every ω ∈ Ω, (X
(nk)
s (ω))0≤s≤t converges uniformly on [0, t] to

(Xs(ω))0≤s≤t as k → ∞. Applying Proposition A.2 completes the proof. ■

Proof of Proposition 4.5. Use Proposition 4.4 and Proposition 2.6 with f(s, z) = |z|, m =
dt⊗ ν and N = J . ■

Proof of Proposition 4.6. Let t > 0. By the right-continuity of X, there are a.s. finitely
many jumps with modulus larger than one on (0, t]. To deal with the small jumps, we
write

(A.39) E
( ∑

s∈(0,t]
|∆Xs|≤1

|∆Xs|2
)
= t

∫
|z|≤1

|z|2ν(dz),

which is finite, since ν is a Lévy measure. ■

Proof of Theorem 4.2. See [3, Theorem 1.2] and [12, p. 78-9]. ■

Proof of Proposition 4.7. Admitted. ■

Proof of Proposition 4.8. To prove (i) use the monotonicity of t 7→ Xt and the strong Law
of Large Numbers. Let us now prove (ii). We first prove the convergence in law. We have

(A.40) E(e−r
Xt
t ) = e−tϕ(r/t),

with

(A.41) tϕ(r/t) = βr +

∫
(0,+∞)

t(1− e−rz/t)ν(dz).

The quantity inside the integral converges to 0 as t→ 0. Moreover, for all t ∈ (0, 1),

(A.42) t|1− e−rz/t| ≤ t
(
1 ∧ rz

t

)
= 1 ∧ (rz).

The right-hand side is integrable w.r.t. ν so, by dominated convergence, we get that tϕ(r/t)
converges to βr as t→ 0. This proves the convergence in law. We refer to [2, Proposition
III 4.8] for a.s. convergence (martingale argument). ■

Proof of Proposition 5.1. The space H2(T ) is a subspace of the Hilbert space L2(dt⊗ν⊗P)
hence it is enough to show that it is closed. If the sequence of predictable and square-
integrable functions (Fn) converges to F in L2(dt⊗ ν⊗P) then it converges dt⊗ ν⊗P-a.e.
on a subsequence, so the limit F is predictable. ■

Proof of Proposition 5.2. Sketch. (i) Adaptedness. Check first that It(F ) is Ft-measurable
when F is a simple predictable function. For a general predictable function F , use that
there exists a sequence of simple predictable functions such that (It(Fn)) converges a.s. to

It(F ). (ii) Martingale property. Prove it first when F is simple. Use that Ñ ((u, v] × A)
is centered and independent of Fu (u < v). In the general case, use the approximation by
simple functions and the contractive property of conditional expectation in L2. We refer
to [1, Theorem 4.2.3] for details. ■
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Proof of Theorem 5.1. We shall only treat the terms due to the jump component of the
Lévy process (the terms in (III)) and hereby assume that b(t) = σ(t) = 0 for all t. To
simplify, we also assume that f only depends on the space variable. Let us first deal with
the first term in (III). Suppose that

(A.43) Xt −X0 =

∫ t

0

∫
Bc

K(s, z)N (ds, dz), B := {z : |z| ≤ 1}.

Since ν is a Lévy measure, we have ν(Bc) <∞ and we may write

(A.44) Xt −X0 =
∑
i≤Nt

K(Ti, Zi),

where (Nt) is a Poisson counting process with intensity ν(Bc) and the Zi’s are i.i.d. with
common law ν(·∩Bc)/ν(Bc). Thus (Xt) is piecewise constant w.r.t the intervals [Tn, Tn+1)
(with n ∈ N0) and for all t ∈ [Tn, Tn+1),

(A.45)

f(Xt)− f(X0) = f(XTn)− f(X0)

=
∑
i≤n

f(XTi)− f(XTi−1)

=
∑
i≤n

f(XT−
i
+K(Ti, Zi))− f(XT−

i
),

which we may rewrite

(A.46)

f(Xt)− f(X0) =
∑
i≤Nt

f(XT−
i
+K(Ti, Zi))− f(XT−

i
)

=

∫ t

0

∫
Bc

[f(Xs− +K(s, z))− f(Xs−)]N (ds, dz).

Note that the integrand is indeed a predictable process. Let us now explain the second
and third terms in (III). To this purpose, suppose that

(A.47) Xt −X0 =

∫ t

0

∫
B
H(s, z)Ñ (ds, dz), B := {z : |z| ≤ 1}.

We approximate this process by

(A.48) X
(ε)
t −X0 =

∫ t

0

∫
Bε

H(s, z)Ñ (ds, dz), Bε := {z : ε < |z| ≤ 1}.

Using the same argument as above, we may write (for a different Poisson counting process
whose law depends on the truncation level ε > 0):

(A.49) X
(ε)
t −X0 =

∑
i≤Nt

H(Ti, Zi)−
∫ t

0

∫
Bε

H(s, z)dsν(dz).

To simplify notations we omitted the dependence of (Nt), (Tn) and (Zn) on ε. We now
proceed as in (A.46) but this time the decomposition reads, when t ∈ [Tn, Tn+1):

(A.50) f(X
(ε)
t )− f(X0) = f(X

(ε)
t )− f(X

(ε)
Tn

) +
∑

1≤i≤n

[f(X
(ε)
Ti

)− f(X
(ε)
Ti−1

)].
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The expression in the sum above can itself be decomposed as

(A.51)

f(X
(ε)
Ti

)− f(X
(ε)

T−
i

) + f(X
(ε)

T−
i

)− f(X
(ε)
Ti−1

)

= f(X
(ε)

T−
i

+H(Ti, Zi))− f(X
(ε)

T−
i

)−
∫ Ti

Ti−1

∫
Bε

f ′(X(ε)
s )H(s, z)dsν(dz).

We finally obtain
(A.52)

f(X
(ε)
t )− f(X0)

=

∫ t

0

∫
Bε

[f(X
(ε)
s− +H(s, z))− f(X

(ε)
s− )]N (ds, dz)−

∫ t

0

∫
Bε

f ′(X
(ε)
s− )H(s, z)dsν(dz)

=

∫ t

0

∫
Bε

[f(X
(ε)
s− +H(s, z))− f(X

(ε)
s− )]Ñ (ds, dz)

+

∫ t

0

∫
Bε

[f(X
(ε)
s− +H(s, z))− f(X

(ε)
s− )− f ′(X

(ε)
s− )H(s, z))]dsν(dz).

It remains to justify the limit as ε → 0. To simplify, we first treat the case when H
and the derivatives of f are bounded (or alternatively that H and X are bounded). It

is then enough to prove that X
(ε)
s converges to Xs in L2, uniformly in 0 ≤ s ≤ t, as

ε → 0. To this end we argue that X
(ε)
t converges to Xt in L2 as ε → 0 (Itô’s isometry)

and that (X
(ε)
s − Xs) is a martingale w.r.t the time parameter (Proposition 5.2). The

uniform convergence follows from Doob’s inequality in L2 (Proposition A.3). The general
case follows by a stopping-time argument. ■

Proof of Theorem 6.1 (Details of the proof without the large jumps). (1) We proceed by
induction on n. The statement is true for n = 0. Suppose that it is true for n − 1.
Let us first check that the process

(A.53) (s, z, ω) 7→ F (Y
(n−1)
s− (ω), z) is predictable.

The process Y (n−1) has right-continuous sample paths by assumption, so (Y
(n−1)
s− )

has left-continuous sample paths. Moreover, the latter process is adapted and does
not depend on the z-variable, so it is predictable. Since F is (jointly) measurable,
(A.53) is proven. The integrability condition

(A.54)

∫ t

0

∫
|z|≤1

E[F (Y
(n−1)
s− , z)2]ν(dz) <∞, ∀t ≥ 0.

can be readily checked by using Item (ii) in Assumption 6.1 and the assumption that

the process Y (n−1) is a square-integrable martingale. We may now conclude with the
help of Proposition 5.2.

(2) For all s ≥ 0,

(A.55) Y (1)
s − Y (0)

s =

∫ s

0

∫
|z|≤1

F (Y0, z)Ñ (du,dz).

By the growth condition on F and our assumption on Y0, we have

(A.56) E

∫ s

0

∫
|z|≤1

F (Y0, z)
2duν(dz) ≤ K(1 + E(Y 2

0 ))s <∞
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Moreover, the random function (s, ω, z) 7→ F (Y0(ω), z) is predictable so it belongs

to H2(t) for all t > 0. Therefore, by Proposition 5.2, the process (Y
(1)
t − Y

(0)
t ) is a

càdlàg F-adapted square-integrable martingale. By Doob’s maximal inequality,

(A.57) y1(t) ≤ 4 sup
0≤s≤t

E[(Y (1)
s − Y (0)

s )2] = 4t

∫
|z|≤1

E[F (Y0, z)
2]ν(dz).

With the same line of arguments, one can show that for all n ∈ N, (Y (n+1)
t − Y

(n)
t )

is a càdlàg F-adapted square-integrable martingale and, by using Doob’s maximal
inequality and the Lipschitz condition,

(A.58) yn+1(t) ≤ 4K

∫ t

0
E[(Y

(n)
s− − Y

(n−1)
s− )2]ds ≤ 4K

∫ t

0
yn(s)ds.

Note: we realize that C1(t) does not depend on t here, but it does when b ̸= 0.

(3) By induction, we deduce from what precedes that for all n ∈ N and t ≥ 0,

(A.59) yn(t) ≤
(ct)n

n!
, c = 4K[1 + E(Y 2

0 )].

Since ∥Y (n)
t − Y

(n−1)
t ∥2 ≤

√
yn(t), we get that

(A.60)
∑
n≥1

∥Y (n)
t − Y

(n−1)
t ∥2 <∞,

which proves that (Y
(n)
t ) is a Cauchy sequence in L2. Its limit is denoted by Yt.

(4) By the Chebyshev inequality,

(A.61) P
(

sup
0≤s≤t

|Y (n)
s − Y (n−1)

s | ≥ 2−n
)
≤ 4nyn(t) ≤

(4ct)n

n!
,

which implies that

(A.62)
∑
n≥1

P
(

sup
0≤s≤t

|Y (n)
s − Y (n−1)

s | ≥ 2−n
)
< +∞.

By the Borel-Cantelli lemma, we obtain that for almost every ω ∈ Ω, there exists
n(ω) such that

(A.63) sup
0≤s≤t

|Y (n)
s (ω)− Y (n−1)

s (ω)| < 2−n, n ≥ n(ω).

This implies that for a.e. ω ∈ Ω and all t > 0, the sequence (Y (n)(ω))n≥1 converges
uniformly on [0, t]. Therefore, the limit Y is adapted and càdlàg.

(5) For all t > 0,

(A.64) Y
(n)
t − Ỹt =

∫ t

0

∫
|z|≤1

[F (Y
(n−1)
s− , z)− F (Ys− , z)]Ñ (ds, dz).

By using the isometry property of the stochastic integral and the Lipschitz condition
on F , we get

(A.65)

∥Y (n)
t − Ỹt∥22 = E

∫ t

0

∫
|z|≤1

[F (Y
(n−1)
s− , z)− F (Ys− , z)]

2dsν(dz)

≤ K × E

∫ t

0
(Y

(n−1)
s− − Ys−)

2ds.
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Let us show that the right-hand side converges to zero as n tends to infinity. By

using our previous estimates, the convergence of Y
(n)
t to Yt in L

2 and the triangular
inequality, we get

(A.66) ∥Y (n)
t − Yt∥2 ≤

∑
k≥n

[yk(t)]
1/2 n→∞−→ 0,

and by Fatou’s lemma, for all 0 ≤ s ≤ t,

(A.67) ∥Y (n)
s− − Ys−∥2 ≤

∑
k≥n

[yk(t)]
1/2 n→∞−→ 0.

By injecting this estimate in (A.65), we see that Y
(n)
t converges to Ỹt in L2. This

convergence also holds a.s. on a subsequence. By uniqueness of limits, Ỹt = Yt a.s.

(6) Let Y [1] and Y [2] be two solutions of the SDE and define

(A.68) δ(t) = E
[

sup
0≤s≤t

|Y [1]
s − Y [2]

s |2
]
.

With the same line of arguments as above, we get that

(A.69) δ(t) ≤ 4K

∫ t

0
δ(s)ds, δ(0) = 0.

By Gronwall’s lemma (see Lemma A.4) we get that δ(t) = 0 for all t ≥ 0. This
completes the proof.

■

Proof of Proposition 7.2. Let us first check that eXt is integrable for all t ≥ 0, with

(A.70) E(eXt) = exp
(
t
[
b+

1

2
σ2 +

∫
(ez − 1− z1|z|≤1)ν(dz)

])
.

We use the Lévy-Itô decomposition to split Xt in four independent parts and only focus on
the jump parts. The large negative jump part (z < 1) can be dealt with via Proposition 2.5.
The large positive jump (z > 1) part can be dealt with via approximation by a non-
decreasing sequence of compound Poisson processes. The computation of the exponential
moments for compound Poisson processes follows the same line as in Exercise 4. Let us
now focus on the small jump part (|z| ≤ 1). From what precedes, we let (Xt,n)t≥0 be
the truncated Lévy process with triplet (0, 0, νn), where νn(dz) = ν(dz)1{|z|>1/n} and ν
is supported by [−1, 1]. Thanks to the interpretation in terms of a compound Poisson
process, one may explicitely compute:

(A.71) E(eXt,n) = exp
(
t

∫
(ez − 1− z1{1/n<|z|≤1})ν(dz)

)
.

For every t ≥ 0, the right-hand side converges to what we want as n → ∞, so it remains

to prove that the left-hand side converges to E(eXt). To this end we remark that e
1
2
Xt,n

is a non-negative sub-martingale (in n). By Doob’s L2 inequality for non-negative sub-
martingales [14, Section 14.11], we get

(A.72) E
(
sup
n≤N

eXt,n

)
≤ 4E(eXt,N ).

Letting N → ∞, we get that supn≥1 e
Xt,n is integrable. By dominated convergence, we

finally get (A.71) from (A.70).
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We now conclude. By the property of a Lévy process, we have for all 0 < s < t,

(A.73) E[eXt |Fs] = eXsE[eXt−Xs |Fs] = eXsE[eXt−s ],

so the process (eXt)t≥0 is a martingale iff E(eXt) = 1 for all t > 0, and we get the desired
result.

Let us notice that the solution above is quite specific to the case when X is a Lévy
process, for which exponential moments are computable. Another standard approach,
which works beyond this case (for instance when X is a Lévy-type stochastic integral
satisfying appropriate assumptions) consists in applying Ito’s formula to eXt , writing it
as a Lévy-type stochastic integral with only a (local) martingale component and checking
integrability conditions, see for instance [1, Section 5]. ■

Proof of Proposition 7.3 (sketch for one implication). Assume σ1 = σ2(=: σ). Let 0 =
t0 < t1 < . . . < tn = t. We have

(A.74)
dP

(t1,...,tn)
1

dt1 . . . dtn
(x1, . . . , xn) =

1

(2πσ2)n/2

∏
1≤i≤n

exp
(
− [xi − xi−1 − b1(ti − ti−1)]

2

2σ2(ti − ti−1)

)
.

By taking the logarithm and expanding the square, we see that the only term depending
on b1 is indeed:

(A.75)
b1
σ2
xn − b21

2σ2
t.

■

Proof of Proposition 7.4 (sketch). Let 0 = t0 < t1 < . . . < tn = t and 0 ≤ k1 ≤ . . . ≤ kn
integers. We have

(A.76) P1(Nt1 = k1, . . . , Ntn = kn) =
∏

1≤i≤n

P(P(λ1(ti − ti−1)) = ki − ki−1).

By a straightforward computation, we get

(A.77)
P1(Nt1 = k1, . . . , Ntn = kn)

P2(Nt1 = k1, . . . , Ntn = kn)
= exp

(
(λ2 − λ1)t+ kn log(λ1/λ2)

)
,

from which we conclude. ■

Proof of Proposition 7.5. To simplify, let us treat the case when ν1 and ν2 are discrete with
finitely many (common) atoms {a1, a2, . . . , am}, that is

(A.78) ν1 =
∑

1≤i≤m

λ
(i)
1 δai , ν2 =

∑
1≤i≤m

λ
(i)
2 δai .

By assumption,

(A.79) ν1(R) =
∑

1≤i≤m

λ
(i)
1 <∞, ν2(R) =

∑
1≤i≤m

λ
(i)
2 <∞.

Moreover, we may write

(A.80) Xt =
∑

1≤i≤m

aiN
(i)
t ,
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where the N (i)’s are independent Poisson counting processes with respective rates λ
(i)
1

under P1 and λ
(i)
2 under P2. For 1 ≤ i ≤ m, we denote by P

(i)
1 the law of N (i) under P1

and P
(i)
2 the law of N (i) under P2. By independence,

(A.81) P1 = P
(1)
1 ⊗ . . .⊗ P

(m)
1 , P2 = P

(1)
2 ⊗ . . .⊗ P

(m)
2 .

By Proposition 7.4, we have for 1 ≤ i ≤ m

(A.82)
dP

(i)
1

dP
(i)
2

∣∣∣
Ft

= exp
(
log(λ

(i)
1 /λ

(i)
2 )N

(i)
t − (λ

(i)
1 − λ

(i)
2 )t

)
.

By taking the product, we get

(A.83)
∏

1≤i≤m

dP
(i)
1

dP
(i)
2

∣∣∣
Ft

= exp
( ∑

1≤i≤m

log(λ
(i)
1 /λ

(i)
2 )N

(i)
t −

∑
1≤i≤m

(λ
(i)
1 − λ

(i)
2 )t

)
.

We conclude by observing that

(A.84)

∑
1≤i≤m

log(λ
(i)
1 /λ

(i)
2 )N

(i)
t =

∑
0<s≤t

log(λ
(i)
1 /λ

(i)
2 )1{∆Xs=ai}

=
∑

0<s≤t :
∆Xs ̸=0

log
(dν1
dν2

(∆Xs)
)
,

and

(A.85)
∑

1≤i≤m

(λ
(i)
1 − λ

(i)
2 ) = ν1(R)− ν2(R).

■
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